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ABSTRACT

Best arm identification (BAI) is an important research topic in sequential decision-
making. In the fixed-confidence setting, the sample complexity, i.e., the number
of samples needed to guarantee a given confidence level, serves as a fundamental
metric for evaluating algorithms. |Garivier & Kaufmann| (2016) provided a tight
characterization of this complexity as H* log(1/d), where H* captures the prob-
lem hardness and ¢ is the confidence parameter. We improve this best-known
bound to 7*log(1/d) with a strictly smaller hardness parameter 7*. Our ap-
proach is based on correlated sampling, which requires no assumptions on the
reward function or the arm structures. A key theoretical challenge is that the re-
sulting lower bound is defined by a non-convex optimization problem. To solve
it, we propose an efficient method that decomposes the feasible region into sub-
intervals and identifies local optima within each. Moreover, we propose the first
CORrelated-SAmpling-based BAI algorithm, CORSA, and prove its asymptotic
optimality. Finally, we conduct numerical experiments to evaluate the algorithm’s
performance.

1 INTRODUCTION

Best arm identification (BAI) is a fundamental and widely studied problem in machine learning, with
broad applications in clinical trials (Villar et al., [2015)), chemical engineering (Wang et al., 2024)),
and prompt optimization for large language models (Shi et al.,2024). The fixed-confidence BAI set-
ting, which aims to identify the best arm with probability at least a given threshold while minimizing
the required number of samples, is now well understood. Tight instance-dependent lower bound on
sample complexity (Garivier & Kaufmannl 2016)) and asymptotically optimal algorithms (Degenne
et al., 2019; |Wang et al., [2021)) have been established. Building on this framework, a line of work
focuses on reducing sample complexity further by exploiting similarity information about the re-
ward function. The central idea is to incorporate similarity information about the reward function,
enabling the agent to leverage such information to improve sampling efficiency and reduce sample
complexity. Commonly studied similarity structures include linearity (Jedra & Proutiere, [2020),
generalized linear models (Jun et al., 2021; Rivera & Tewari, [2024)), Lipschitz continuity (Wang
et al.l 2021; [Wanner et al., 2025), and kernelized reward functions (Zhu et al.| 2021} |Du et al.,
2021). However, these approaches rely on strong assumptions that are often difficult to justify or
verify in practice. This raises an important open question: can we improve the best achievable
sample complexity without relying on strong structural assumptions about the reward function?

In this paper, we provide a positive answer to this open question by introducing a key concept
called correlated sampling into the BAI problem. Correlated sampling is a widely used technique
for variance reduction when comparing stochastic systems through simulation (Glasserman & Yao,
1992). For the BAI problem under correlated sampling, at each time step ¢, the agent selects an
arm to sample and receives a random observation. Observations from different arms are correlated
whenever they share the same replication index; for example, the i-th samples of different arms are
correlated. In the fixed-confidence setting, the agent aims to exploit this correlation structure to
estimate the mean performance of the arms more efficiently, identify the best arm with probability
at least 1 — 9, and minimize the total number of samples required.

Compared to approaches that exploit similarity information in the reward function, correlated sam-
pling relies on weaker assumptions, is straightforward to implement, and applies to nearly all BAI
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problem instances—as long as correlation among observations can be introduced. We present two
motivating examples that highlight the practical relevance of this setting. In queueing system opti-
mization, a higher service rate typically reduces average sojourn time but also increases operational
costs. The agent aims to identify the best service rate, such as the optimal number of servers, that
balances these competing factors. Positive correlation can be naturally introduced by using the same
sequence of customer arrivals time across different service rate configurations. The goal is then to
develop an efficient sampling strategy to identify the best configuration as quickly as possible. In
many personalized medicine problems, treatment decisions are guided by disease simulation mod-
els (Hur et al.| 2004). The agent seeks to identify the most effective treatment plan by interacting
with the simulation model and random treatment outcomes. By simulating the same virtual patient
across different treatment plans, positive correlation is introduced among the observations, enabling
counterfactual-like analysis at the individual level (Stout & Goldiel 2008).

We summarize the primary technical challenges and contributions of this work as follows:

* We introduce the concept of correlated sampling into the fixed-confidence BAI problem.
This correlation breaks the independence assumption commonly used in canonical BAI
analyses, rendering existing algorithms and theoretical guarantees inapplicable. Building
on this, we establish the first tight, instance-dependent lower bound on sample complexity
in this setting. The resulting bound takes the form of a non-convex min-max optimization
problem, fundamentally different from the convex formulations that arise in canonical BAIL
Furthermore, we demonstrate that incorporating positive correlation can lead to a reduction
in sample complexity.

* To address the challenges posed by non-convexity, we conduct a detailed analysis of the
min-max optimization problem. We establish key theoretical properties that reduce the non-
convex formulation to a single-variable nonlinear optimization problem. By exploiting its
structure, we show that the problem can be solved efficiently by decomposing the feasible
interval into sub-intervals and locating the root within each. Moreover, we present the two-
armed case, where the optimal sampling ratio admits a closed-form solution, providing
clear intuition into how the introduced correlation influences the optimal sampling ratio.

* Building on these theoretical results, we propose CORSA, the first correlated sam-
pling—based BAI algorithm. CORSA iteratively solves the nonlinear optimization problem
and leverages the solution to guide the sampling process. We prove that CORSA attains the
improved sample complexity bound and verify these theoretical results through numerical
experiments.

Our study relates to three main strands of the existing literature:

Best Arm Identification. BAI is one of the most extensively studied problems in the multi-armed
bandit literature (Audibert & Bubeck, 2010;|Gabillon et al., 2012). |Garivier & Kautmann|(2016)) es-
tablished a tight, instance-dependent lower bound on the sample complexity in the fixed-confidence
setting and proposed an asymptotically optimal algorithm, Track-and-Stop. This framework has
since inspired a substantial body of research, including the design of efficient and asymptotically op-
timal algorithms (Degenne et al., [2019; Wang et al.l 2021])), as well as extensions to broader settings
such as partition identification (Juneja & Krishnasamy,2019), multiple correct answers (Degenne &
Koolen, [2019), multi-fidelity evaluations (Poiani et al., {2022 |20244a)), and unknown variances (Jour-
dan et all |2023). This paper aims to improve upon the best achievable sample complexity lower
bound established by |Garivier & Kaufmann| (2016). However, since our method incorporates cor-
relation, which violates the standard independence assumption, the existing theoretical results and
algorithms are not directly applicable.

BAI with Similarity Structure. Another line of work explores methods to improve sample com-
plexity by incorporating similarity structures in the reward function. Commonly studied structures
include linear models (Jedra & Proutierel 2020)), generalized linear models (Jun et al.| 2021} Rivera
& Tewari) 2024), kernelized reward functions (Zhu et al.,[2021; Du et al.,[2021)), Lipschitz continu-
ity (Wang et al., 2021 Wanner et al., |2025), and unimodality (Poiani et al., 2024b)). Compared to
this line of work, our correlated sampling approach is fundamentally different: it does not rely on
any structural assumptions about the unknown reward function. This generality makes our method
applicable to a broader range of problem settings.
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Correlated Sampling. The idea of leveraging positive correlation to reduce variance in the com-
parison of different stochastic systems originates in the simulation literature (Wright & Ramsay Jr,
1979;|Glasserman & Yao, |1992). Prior work in this area has typically treated correlated sampling as
standard variance-reduction techniques, without explicitly analyzing their implications for sample
complexity (Chick & Inouel [2001} Fu et al.,2007;|Zhong & Hong}, 2022). This work introduces cor-
related sampling into the BAI framework, thereby extending the application of this technique. More
importantly, the associated theoretical results on sample complexity enrich the correlated sampling
literature by providing a new perspective on the benefits of correlation in sequential decision-making
problems.

2 PROBLEM FORMULATION AND SAMPLE COMPLEXITY

In this section, we formulate the BAI problem and review the asymptotically optimal sample com-
plexity that can be achieved by any BAI algorithm.

Suppose there are K arms, and we use K = {1,2,..., K} to index all the arms. Each arm a €
K is associated with a Gaussian random variable X, with an unknown mean p, and a known,
common variance 2. In the case of unknown variance, one may instead use a conservative upper
bound on o2 or adopt the framework proposed in (Jourdan et al.l [2023). The agent’s objective is
to identify the arm with the largest mean based on noisy observations. Without loss of generality,
we assume that the means are ordered in descending order throughout this paper, i.e., 1 > po >

. > g, so that arm 1 is the unique best arm. This assumption, commonly used in the BAI
literature (Garivier & Kaufmann, |2016), can be relaxed to the setting where the goal is to identify
an e-optimal arm (Degenne & Koolen, 2019).

Learning Problem. In the online setting, at each time step ¢, the agent selects an arm a; to sample
and then observes a random outcome Y;, drawn independently from the distribution of the corre-
sponding random variable X,,. We denote by F; = o(ay, Y1, ..., as, ;) the sigma-algebra gener-
ated by the sampling decisions and observations up to time step ¢.

A BALI algorithm is characterized by three components: the sampling rule {a;};, which specifies
the arm to pull at time step ¢ based on the past history and is F;_1-measurable; the stopping rule
7, which determines when to terminate and is a stopping time with respect to F;; and the decision
rule G, which outputs the recommended arm at termination and is J,-measurable. In the fixed-
confidence setting, given a confidence level § € (0, 1), the agent aims to identify the best arm (arm
1) with probability at least 1 — §, while minimizing the sample complexity E[r].

Asymptotically Optimal Sample Complexity. In this subsection, we review the best-known lower
bound on the sample complexity achievable by any BAI algorithm, which serves as a benchmark
for evaluating algorithmic performance. An algorithm is said to be valid if it identifies the best arm
with probability at least 1 — §. According to Theorem 1 of |Garivier & Kaufmann|(2016), the sample
complexity of any valid BAI algorithm must satisfy the following lower bound:

20t (442
lim inf _Elr] > H*(p) = minmax M

5—0 log(1/0) weQaek (1 — fla)? M

where Q = {w € R¥ : 3w, = 1} denotes the probability simplex, K’ = {2,..., K} is the
index set of suboptimal arms, and w,, represents the sampling ratio assigned to arm a € .

This result implies that as the confidence level § tends to zero, the minimal sample complex-
ity achievable by any algorithm is H*(u)log(1/5). The quantity H*(u) captures the instance-
dependent hardness of the problem. In the Gaussian reward setting, it depends on the variance and
the optimality gaps between the best arm and each suboptimal arm, while the log(1/§) term reflects
the difficulty imposed by the confidence requirement. An algorithm is said to be asymptotically
optimal if it is valid and its sample complexity satisfies

2 (1 1
i E[r] < 1 () = mi 20 (Fﬁa)
imsup ———= < () = min max ——————*.
50 log(1/0) weQaek! (1 — fia)?
In the BALI literature, the quantity H*(u) serves as a key benchmark for evaluating algorithms.
Several algorithms (Garivier & Kaufmann, 2016; Degenne et al., 2020; [Wang et al., [2021) have

2
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been shown to match H* (1) asymptotically. This raises a fundamental question: can we improve
upon H*(u) without imposing restrictive assumptions on the unknown reward function? A positive
answer would not only reshape existing algorithmic design but also enhance performance across a
wide range of BAI problems.

3 IMPROVED SAMPLE COMPLEXITY

In this section, we first introduce the correlated sampling method and demonstrate its ability to im-
prove the optimal sample complexity by comparing it with existing results. Since the improved
sample complexity is characterized by a min—max optimization problem, we then analyze key the-
oretical properties of this problem and the corresponding optimal sampling ratios, which provide
useful guidance for algorithm design. Finally, we conclude with insights from the two-armed BAI
problem, which explicitly reveal the effect of correlation on the optimal sampling ratio.

3.1 IMPROVED SAMPLE COMPLEXITY THROUGH CORRELATED SAMPLING

Correlated sampling is a variance-reduction technique that has been extensively studied in the simu-
lation literature (Glasserman & Yaol|1992). The key idea is that by introducing a positive correlation
between two random variables, the variance of their sample mean difference is reduced, yielding a
more accurate estimate of the true mean difference. However, this method has not yet been explored
in the BAI literature, and the potential impact of correlation on sample complexity remains unclear.

We introduce the correlated sampling method for BAI as follows. Let Ya(l) denote the [-th sample
from arm a. We assume that, for a fixed replication index [, samples across different arms are
dependent, while samples from different replications are independent. The correlation between
arms a and b is characterized by the Pearson correlation coefficient p, defined as

Cov(YP, v, )
p= g

BLORENY 3)

o
where Cov(Ya(l), Yb(l)) denotes the covariance between Y.\ and Yb(l). This correlation structure can
be easily implemented using common random numbers across arms for the same replication index
l, a technique widely used in the simulation literature (Fu et al., |2007). As with the variance as-
sumption, we assume a known, common correlation coefficient p for notational simplicity, although
the framework can be readily extended to settings with heterogeneous variances and correlations.
Theorem [I] presents the new sample complexity lower bound for any valid BAI algorithm under
correlated sampling.

Theorem 1. For any confidence level 6 € (0, 1), the sample complexity of a BAI algorithm that
guarantees P(a, = 1) > 1 — § must satisfy

Elr] > T'() k(6,1 -5),  liminf —o0]

i m > T*(N)» €]

where
952 (9_1)2+1_02
max w1 5 Ya if w1 > we,
« . ack’ (/Jl - Ma)
T (1) = min T (1) = i . 5)
wen 2 (p—1) 1—p
20 +
Wq w1 .
f > wy.
2%%5 (,U1 - Ma)Q b He=

Technical Novelty. The analysis of Theorem|T|builds on the classical change-of-measure arguments
in multi-armed bandits (Garivier & Kaufmann, 2016). However, the introduction of correlation
introduces additional technical challenges. In contrast to the independent case, where the Kullback-
Leibler (KL) divergence between two BAI problem instances can be decomposed as the sum of
the KL divergences of individual arms, the divergence under correlated samples is more complex.
We provide a detailed analysis of the KL divergence between two BAI instances, which results
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in a piecewise objective function. This divergence is then related to the sample complexity and
confidence level § via the Transportation Lemma (Kaufmann et al., 2016). By considering the
cases wy > w, and w, > w; separately, and using the definition of the KL divergence for multi-
dimensional Gaussian vectors, we derive the closed-form min-max optimization problems described
in (3). A key distinction in Theorem[T]is that the sample complexity is characterized by a non-convex
optimization problem, in contrast to the convex problem in the canonical BAI setting.

Comparison to Existing Result. The existing sample complexity lower bound #H* (1) arises as a
special case of Theorem [I] with p = 0. In the absence of correlation across arms, we recover

952 ((,0— 1)? n 1 _/)2)
. w1 Wq
T*(1) = minma =H"
(k) e atk) (111 — pa)? (
which corresponds to the canonical independent case.

1), (6)

Moreover, we show that introducing positive correlation can strictly improve the asymptotically
optimal sample complexity. In particular, we have

1 1 2 1 1
202 7+7_7p+p2 —_— - —
. w1 Wq w1 w1 Wq .
min max 5 if w1 > wa,
. . weN ack’ (,U,l — /La)
H (1) > T () = %)
o 1 1 2p of 1 1
200 | —+— — — +p°| — — —
. w1 Waq Wq Wq w1 .
min max if we > wi,
weQ aek’ (1 — pha)?

which implies that the minimal achievable sample complexity under positive correlation is
T*(w)log(1/8) under positive correlation, strictly smaller than H*(u) log(1/4) in the independent
case. The key intuition is that incorporating positive correlation reduces the uncertainty when com-
paring arms, thereby requiring fewer samples to identify the best arm.

From Theorem the optimal ratio w*(p) is characterized as the solution of a non-convex min-max
optimization problem. This ratio balances the variance term, the effect of positive correlation, and
the optimality gaps between the best arm and the suboptimal arms. Let NV, (t) denote the number
of samples allocated to arm a up to time step ¢, and define the corresponding sampling ratio as
wa(t) = Ng(t)/t. Intuitively, an optimal algorithm must ensure that the empirical sampling ratio
w(t) converges to the optimal ratio w*(u). Thus, designing an optimal algorithm requires solving
the optimization problem and analyzing the structure of the optimal sampling ratio. For simplicity,
we omit the dependence of w* (1) on u whenever it is clear from the context.

3.2 OPTIMAL SAMPLING RATIO

In this subsection, we study the min-max optimization problem (3)), which provides deeper insights
into the optimal sampling ratio w™* and plays a key role in designing an optimal algorithm.

The following Lemma [T] establishes a key property of the optimal sampling ratio. Intuitively, the
hardness of each suboptimal arm is characterized by Fy, (w, 1), which is proportional to its variance
and inversely related to the optimality gap. The optimal sampling ratio equalizes this hardness across
all suboptimal arms.

Lemma 1. The optimal sampling ratio w* satisfies
F,(w* n) = Fw" ), Vabek,

where for any suboptimal arm a € K/,

_12 1— 2
1 a .
— D) if lewav
Fulw,) = o) ®)
20_2((p_1)2 1_p2)
(:f—u )2 - R
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To obtain the optimal sampling ratio w*, we need to solve the non-convex optimization problem
in (3). However, directly solving this problem is challenging due to its non-convexity. To address
this difficulty, we leverage the key property in Lemma [I] to derive an implicit solution for w* in
Theorem [2] The main advantage of Theorem [2]is that it reduces the original non-convex min-max
optimization problem to a single-variable nonlinear optimization problem in (T}, which will be the
focus of our subsequent analysis.

Theorem 2. The optimal sampling ratio w* satisfies, for any suboptimal arm a € K,
20°(1 — p*)wi
i 2t — pa)? > 40 (1 - p)
* a* (1 — pa)® — 20%(p — 1)? ‘ )

w, =
. 20%(p — 1)%wi
A 2t (= pa)? < do(1 —
T (i — pn)? — 2021~ %) (1 = o)™ < 407(1 = p)

The sampling ratio for the optimal arm is

20°(1 - p?) 20°(p—1)° -
wi= |1+ + . (10)
' [ a%;l w* (1 — Ha)? = 20%(p — 1)? ;2 ot (i — a)? = 20%(1 = p?)

Here, x* is the solution to the following single-variable nonlinear optimization problem

202(1 — p?)x 202(p —1)%x
min g(x) =x + + , (1D
ek D Dl i T RV z;c: (i — 1a)? —20°(1— )

with K1 = {a € K' 1 (1 — pa)? > 402(1 — p)}, Ke = {a € K" : (1 — pa)? < 40%(1 — p)},
and F(z) = {x > 20%(1 — p?) /(111 — pa)?,Va € Ka}.

The optimization problem (TI)) is challenging because the index sets of arms, Ky and Ko, as well as
the feasible region F(z), depend on the decision variable 2, and the problem may possess multiple
local optima. To address these difficulties, we provide a detailed analysis of its theoretical properties.
The key idea is to decompose the interval [0, +00) into several sub-intervals. Within each sub-
interval, the problem can be solved efficiently, and the global optimum can then be determined by
comparing the local optima across all sub-intervals.

Define C, = 40%(1 — p)/(11 — 1a)?, and let C) denote the i-th smallest element in the set
{C,,a € K}, with C(® = 0 and C) = fc0. Corollarydivides the interval [0, +00) into sub-
intervals according to {C'¥),i = 0,..., K}, and, more importantly, shows that the corresponding
objective function has at most one zero within each sub-interval. This property enables the design
of a highly efficient algorithm for solving the optimization problem (TT).

Corollary 1. The optimization problem in (I1)) can be equivalently expressed as

min min i (), 12
1€{0,..., Kfl}IG[C(i),C(iJrl))mf(m)g( ) (12)
where
20%(1 - p?)x 20%(p —1)°x
gl =t + .13
aGICZ’\V» (p = pa)? = 20%(p — 1) ; w(p1 — pa)? — 20%(1 — p?)

with V; = {a € K' : 40%(1 — p)/ (11 — pa)? > CDY. Furthermore, the derivative g|(x) has at
most one zero within each interval [C),CU+1) i =0,... K — 1.

3.3 Two-ARMED CASE

In this subsection, we consider the two-armed case, which admits a closed-form solution and re-
veals that the introduced correlation alters the optimal sampling ratio. When the variances are ho-
mogeneous across arms, the equal sampling ratio is optimal. To obtain more insightful results, we
therefore focus on the heteroscedastic setting.

Consider a two-arm BAI problem instance with mean vector y = (j1, j12) and known variances o2
and 02. Let r = 09/0 denote the standard deviation ratio. Following the approach in Theorem
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we can derive that

o (oilr=1?  o3(1 - p2))
mig wl( E w2 if w1 > wa,
we M1 — p2
* = 14
7w (il =V it =) o
2 +
. W2 w1 .
min if wy > wi.
weQ (11 — p2)? =

Proposition |I| summarizes the optimal sampling ratio in the two-arm case. In the independent case,
the optimal ratio is proportional to the standard deviations, i.e., w} /wj = 1/r. With positive correla-
tion, however, the structure of the optimal sampling ratio changes, depending jointly on the standard
deviation ratio r and the correlation coefficient p.

Proposition 1. The optimal sampling ratio satisfies that

(1/r)y/Tor = 1?1 = ?)
ROEY e
T T e 2o/ — 12> (1— o2 (15)

+(1/T)\/(1—p2)/(pr_1)2’ (p/ 12> (1-p?)

) O0.W.

,if (1= p?) < (pr— 1)

1
1
2

4 OPTIMAL ALGORITHM

In this section, we propose the first algorithm that achieves improved sample complexity through
correlated sampling. We show that the proposed algorithm asymptotically attains the improved
lower bound on sample complexity established in Theorem I]

4.1 CORSA ALGORITHM FRAMEWORK

In this subsection, we present the general framework of the CORSA algorithm. To design an opti-
mal algorithm, it is essential to ensure that the actual sampling ratio w(t) converges to the optimal
sampling ratio w* (). However, there are some main challenges. First, the problem parameter (s is
unknown. Second, even if the parameter p were known, computing w* () requires solving a nonlin-
ear optimization problem. Third, the stopping rule must incorporate the effect of correlation while
guaranteeing both correctness and optimality. We address these challenges by carefully designing
the sampling, stopping, and decision rules of the CORSA algorithm.

Sampling Rule. Since the problem parameter y is unknown, a natural approach is to replace it with
the empirical estimate at time step ¢:

fia(t) = f(t) Z;YSI[(aS =a). (16)

We then substitute the empirical parameter [i(t) = {/i,(t) }sci into the optimization problem
and solve it to obtain the empirical optimal sampling ratio w*(/i(t)). Based on this, we define the
following sampling rule to ensure that the actual sampling ratio w(t) closely tracks the empirical
optimal ratio:

o Jare min, e, Na(t), if U #0 a7
i arg max,cx tw (fi(t)) — No(t), o.w.

where Uy = {a € K : N,(t) < v/t — K/2}. The sampling rule in is a standard approach
in the BAI literature (Garivier & Kaufmann| 2016} Juneja & Krishnasamyl 2019). Intuitively, it
guarantees that each arm is sampled at least Q(v/Z) times. Asymptotically, by the law of large
numbers, the empirical estimate fi(¢) converges to the true parameter x. By continuity of w*(-), this
implies that w*(fi(¢)) converges to w*(u).
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To solve the nonlinear optimization problem (TIJ), we first locate all zeros of the derivative of the
objective function g(z). Using the property in Corollary 1] the feasible interval can be decomposed
into K sub-regions, allowing us to compute the local optimum in each sub-region. Since each sub-
region contains at most one zero, the corresponding subproblem can be solved efficiently. Finally,
the results in Theorem [2| are used to determine the optimal sampling ratio.

Stopping and Decision Rule. The stopping rule of the algorithm is defined as follows
7 =inf{t € N:¢tT(a(t),w(t))™ > B(t,4,p)}, (18)

where the threshold function is given by

C(5, K, p)t? 1og<1/6)“”1> (19)

At 0.0) = o :

for some constant C'(J, K, p) that depends on the confidence level ¢, the number of arms K, and the
correlation coefficient p.

Intuitively, 5(t, d, p) controls the statistical validity of the CORSA algorithm. Once the accumulated
empirical evidence, measured by ¢7 (fi(t),w(t)) !, exceeds this threshold, the algorithm stops and
returns the current estimated best arm. The decision rule is then straightforward: select the arm with
the largest fi(7). The overall framework of the algorithm is summarized in Algorithm

Algorithm 1: CORSA Algorithm

Input: Confidence level § € (0, 1).
Initialization: Sample each arm ng times. Update i(K), w(noK) = (1/K,...,1/K), and U;.
Set the solution and optimal value of as z(noK) =0, g*(noK) = +o00. Set t + ngK.
while ¢ 7 (i(t),w(t)) ™! < B(t, 8, p) do
if U, # () then
| aip1 = argming, g, N,(t)
else

Calculate the sequence {C),i =0,..., K — 1} based on ji(t).
fori < 0to K —1do
Determine the minimum of g(z) in the interval [C(?), C(+1)),
Define ) = lim, | o) gi(2),n; = lim,yca+) gi(x), and the left endpoint
¢i = minye o), cG+0)NF(z) P-
(20)

pA—

. x such that g/(z) =0 if 7 <0,andn; >0
b; 0.W.

if g;(2*) < g*(t) then
L =(t) =2",g"(t) = gi(2")
Compute the empirical optimal sampling ratio w*(fi(t)) using Theorem
| @1 = argmax,ex twg (i(t)) — Na(t)
Sample the arm a; 11 once. Sett « ¢ + 1.
| Update fi(t), w(t), U, x(t) = 0, and g*(t) = +oo.
Output: The estimated best arm a..

Theorem [3| establishes both the statistical validity and the asymptotic optimality of CORSA. As
the confidence level § — 0, the empirical sampling ratio converges to the optimal ratio, while
the number of samples required for exploration becomes negligible, causing the upper bound to
asymptotically match the lower bound almost surely and in expectation.

Theorem 3. There exists a constant C(6, K, p) such that, under the stopping rule with the
threshold function , CORSA algorithm guarantees that for any BAI problem instance, P(a, =
a*) > 1 — 0. Moreover, the stopping time T satisfies the following asymptotic optimality properties:

. T . B . E[7] y
P(h?fspmw =T “”) =L limswp ey < T W 2D
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5 NUMERICAL EXPERIMENT

In this section, we validate our theoretical results by comparing CORSA with the state-of-the-art
BAI algorithm Track-and-Stop (Garivier & Kaufmann, 2016).

To obtain the theoretical optimal sampling ratio, we consider a problem instance with three arms,
with mean parameters 1 = (2.0, 1.8, 1.8) and common variance o2 = 1. The probability of correct
identification and sample complexity are estimated from 200 independent runs of the algorithms.

Probability of Correct Identification

1.0 ,!---:'_'_'_'ll:':_: ~wfrecfoego—i=—1# $
- » 5000
H [
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Figure 1: Performance Comparison Between CORSA and Track-and-Stop (§ = 0.1 and ny = 10)

Figure [I|compares CORSA and Track-and-Stop in terms of empirical sample complexity, probabil-

ity of correct identification, and sampling ratio. The results demonstrate that CORSA outperforms

Track-and-Stop in both probability of correct identification and sample complexity, highlighting that
the proposed correlated sampling method improves sampling efficiency. Moreover, the gain in sam-
ple complexity becomes more pronounced as the correlation coefficient p increases. Finally, the
sampling ratio w(¢) of Track-and-Stop converges to (0.414, 0.293,0.293) with a higher complexity
measure H*(p) = 145.71, whereas CORSA converges to the optimal ratio (1/3,1/3,1/3) with a
lower complexity 7*(u) = 75, thereby verifying the asymptotic optimality stated in Theorem
The results remain consistent across different confidence levels ¢ (Appendix [A8).

We also conduct a queueing service rate optimization example to evaluate the practical performance
of the algorithm in real-world applications. The detailed experimental setup and results are provided
in Appendix [A.9] The findings consistently show that CORSA is more sample-efficient than Track-

and-Stop.

6 CONCLUSION

This paper shows how correlated sampling can improve the best-known sample complexity for BAI
under the fixed-confidence setting. We establish an instance-dependent lower bound and propose
CORSA, an asymptotically optimal algorithm that achieves this bound. Unlike existing methods, our
approach is flexible, reward-function independent, and easy to implement. These results introduce
a new algorithmic framework for BAI with correlated sampling and offer fresh insights into the role
of correlation in sequential decision-making. Future directions include extensions to heterogeneous

correlations and applications to best-policy identification in reinforcement learning.
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A APPENDIX

A.1 LARGE LANGUAGE MODELS USAGE

ChatGPT was used for wording refinement and expression improvement.

A.2 PROOF OF THEOREM[IL

For every t > 1, let N,(t) denote the random number of samples allocated to arm « up to time
step t. Sort the arms in descending order based on the number of samples obtained, and use the
subscript (a) to denote the arm ranked a-th in this ordering. Since, for a fixed replication index [,
the observations are dependent, the KL divergence between two BAI problem instances p and A can
be expressed as

> E[Na)(t) = Nae 1y OIKL(tt(a) - - > 10 [ A @) - -5 M) (22)
acl
where we define N(g)(t) = 0.
Let a*(\) denote the best arm under problem instance A, so that a* () = 1. Then, for any alternative
instance A with a unique best arm a* () # 1, the definition of a fixed-confidence algorithm implies

that
Pu(ir #1) <4, (23)

and
Px(ar #1) > 1-0. 24)

11
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By the transportation lemma (Lemma 1 in |[Kaufmann et al.| (2016)), for any alternative instance A
with a*(\) # 1, we obtain

> E[N)(T) = Na—1) (MIKL(t(a) - - > (0 A @ys - - Ay) = K8, 1= 6). (25)
aell

Therefore, it holds that

KI(6,1—8) < Y E[Nwy(7) = Neam 1y (MIKL (1), - - 101 (@) -+, M)
aell
< %gl)f# E[N(a)( 7) = Nia—1) (DKLt - - -5 () [N @)s - - - M)
< sup inf ZEN(“) ( 1)(7—)]KL(/~L(a);-~-7M(K)||)\(a)v~-~»)\(K))

wEQ a*()\ﬁﬂ

<E|[r f — w(qa—1)) KL Ala)s s A ,
< []igga*g\l);ﬁl K(w(a) Wia—1))KL(tays - - 5 1) [ A (a) (K))

(26)
where w(,) = E[N(,)(7)]/E[7] denote the sampling ratio of the arm (a) € K.

Therefore, we conclude that
E[r] > |su inf Wia) — Wia—1)) KL(t(g), - -+ Aa)s ey A k(6,1 —6
7] = sup inf | ;C( (@) = W(a—1)KL(t(ays - - 1) [\ @) (K)) ( )

= T*(Wkl(6,1 - 6). 27)

Asd — 0,kl(d,1 — J) ~ log(1/6). Hence, we obtain the following asymptotic lower bound

E[r] ,
hgnﬁlélf Tog(1/0) > T (). (28)

We can further verify that
T ()"

=sup inf W) — Wia—1)) KL(t(a)s - - -, Aa)s v s A
weg“*“#laze;c( (a) = Wa—)KL(H(ay, - ) [[A0) (K))

_ {maxwen minge s infy, <x, WaKL(p1, fall A1, Aa) + (w1 — wa)KL(pa[| A1), i w1 > wa,
max,e Mingexr infx, <x, w1KL(p1, pal[A1; Aa) + (wa — w1)KL(1al[Aa), if wa > wi.
(29)

We begin with the case w; > w, and consider the following optimization problem

max gel}Cn' /\11nf wWa KL (11, ftal| A1, Aa) + (w1 — wa)KL(pe1|[A1). (30)

By the definition of the KL divergence between two-dimensional Gaussian distributions, we obtain
1
KL (1, pra||As Aa) = 5575 [ (11 = M) = 2p(p1 = A1) (ke — Aa) + (e = Aa)? ). B1)
20%(1 - p?)
Similarly, in the one-dimensional case, we obtain

— )2
KL(p[[ M) = % (32)

Then, the inner optimization problem in (30) can be rewritten as

Wq W1 — Wq

it o s (G = 07 = 201 = )t = D) + (= M)+ = 0,

s.t. )\1 S )\a-

(33)

12
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The Lagrangian corresponding to this optimization problem is

Wa 9
LA, v) “22(1— ) ((Ml = A1)7 = 2p(p1 — A1) (e — Aa)
(34)
w1 — Wq
= M) L = M v = A,
The KKT conditions are given by
Wq W1 — Wq
02(1_102)((/\1 — 1) + ppta — )\a)) T2 (M —p1)+v=0
Wa (35)
M(P(Ml = A1)+ (Ao — Ma)) —v=0

l/()\l - )\a) = 0,
where (A, V) is the primal and dual pair.

It is straightforward to verify that v* = 0. Consequently, by the third KKT condition, the optimal
solution satisfies A} = A%. Combining this with the first two KKT conditions, we obtain

N = w1 + plwr — wy) Wa

= + . 36
C w1 we + plwr — wy) ! w1+wa+P(W1—wa)ua (30

Then, we can obtain that

w,
—Ua), N—pq = e a—p1). (37
)(ul fa), AT—Ha w1+wa+p(wl_%)(u p1). (37)

v w1 + plwr — wy)
o Ma =
w1 + we + plwr — wq

Using these results, we find that the optimal value satisfies

Wq *\2 * %12 w1 — Wq « 512
20_2(1_'02)<(M1 = A1)7 = 2p(pn = A1) (Ha = Aa) + (e = Ag) ) + (w5 — A7)

_ wlwa(ﬂfl - Ma)Q
202(1 — p)(w1 + wq + plwr — wy))

- (1 — /“a)Q
N —-1)2  1-p%\"
202< (p=1)° 1-p )
w1 Wy
(38)
This implies that, when w; > w,, the optimization problem is equivalent to
. w1 Wq
ST o

Similarly, we can follow the same method show that when w, > wy, the corresponding optimization
problem is equivalent to

9,2 <(,01)2 N 1p2>

. Wq w1
40
seloek (gl “
which concludes the proof of Theorem [I] O

A.3 PROOF OF LEMMA Il

We prove this result by contradiction. Define

*: Fa * ,
G1 = max Fo(w", )

13
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and let
S ={aeK : F,(w*u) =G}, (41)
where ' = {2, ..., K} denotes the set of suboptimal arms. Suppose the conclusion does not hold.
Then there exists a nonempty set
S =K'\8 #0.
Then, we know that
G; = Fo(w*,p) < F,(w*,u) =Gj. 42
2 = max Fy (", p) < max Fo (W', p) = G (42)

Next, we construct a perturbed sampling ratio w(e). Consider

wi + €, if a=1,
Wal€) = Wi + e, if aed, (43)
UJ: — Cpe, if a €8s,

where Cp = (1 +|S1|)/|Sz2| and € € (0, minges, wk/Co).

It is straightforward to verify that &(e) € €, so it is a feasible solution to the optimization prob-
lem (©).

Define

Gi(e) = max Fo((e), 1), Ga(e) = max Fo((e), ).

Since F,,(w, p) is a monotonically decreasing function with respect to w, we have that

Gi(e) = géa’uggF(w(e),u) < Zré&}g;Fa(w 1) =G, (44)

Moreover, as G (€) is continuous in € and G < G7, for sufficiently small € we obtain

Ga(e) < G7. (45)

Thus, under &(e) the objective value is strictly smaller, implying that w(e) is a better solution than
w*. This contradicts the optimality of w*.

Therefore, we conclude that for any suboptimal arm a, b € K,

Fu(w’, 1) = (", ).

O
A.4  PROOF OF THEOREM[2]
By Lemmal([I] the optimization problem in (3] can be reformulated as
min Y
w,y
-1 2 1— 2
s.t. 207 ((p ) + P ) = V(1 — pa)?, Va € K1,
w1 Wq
-1 2 1— 2 (46)
202 ((p Syl ) = V(i — pa)?,  Va € Ko,
Wa w1
dwa=1, wg>0, ¥V=>0,
ack
where K1 = {a € K’ 1w} <wi},Ka={a e K :wi>wi}.
Consider first a € Ky, i.e., w} < wj. Solving the equality constraint yields
2 2 1— 2Y, %

¢ YWt — pa)? = 202 (p = 1)

14
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while the condition w] < wj reduces to

V'wi(i = pa)® 2 40*(1 = p), (48)
while the condition w; > 0 reduces to
Yiwi(p = pa)? > 20%(p — 1)%. (49)

Since 402(1 — p) > 202%(p — 1)2, the non-negativity requirement is automatically satisfied
whenever (48) holds.

Now consider a € Ko, where w} > w]. From the equality constraint we obtain

20%(p — 1)*wi

K R T T ) c0
The condition w;, > wj is equivalent to
Viwi(pm — pa)? < 40”(1 = p), (51)
and the non-negativity constraint w > 0 requires
Vowi(pr = pa)® 2 20%(1 = p?). (52)

Define * = Y*wj, and substitute w into the normalization constraint. This yields

20°(1 - p?) 20°(p — 1)?
W1+ n 1. (53)
! [ %C: 2* (11 — pa)? — 20%(p — 1) ; 2* (11 — pa)? — 20%(1 — p?)

Multiplying both sides of the equation by V*, we can obtain

21— pH)a* 202(p — 1)%x*
R Y- = P VR Dl ey 7 s S

a€ky a€ks (1

Hence, the original optimization problem is equivalent to

1 —p)x 20%(p— 1)z
min =x+ + , (55)
zeF(z) 9l aezlc —202(p—1)2 aezlcz x(p1 — pa)? — 202(1 — p?)

where the feasible region is determined by the non-negativity conditions,

20%(1 — p?
]-"(x):{x>g<'02)7VaelC2}. (56)
(:ul - ,Ua)
O
A.5 PROOF OF COROLLARYI]
By the definition of {C¥) i = 0,..., K — 1}, the interval [0, +00) can be decomposed as
K-1 ‘
[0,+00) = | [cW, 0+, (57)
i=0
Therefore, it is straightforward to verify that the optimization problem in (TI) is equivalent to
gi(x), 58
iE{O,r.I.l.,K 1} ze[C® C(Hrl))m]-'( ) 9:(z) (58)
where
202(1 — p?)x 20%(p—1)
i(2) =2+ ;o (39
() 2w 21 T 2w ) 270 )
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andV; = {a e K’ : 402(1 —p)/(u1 — Ma)2 > C(i)}.

Next, we show that the function g;(x) has at most one zero on the interval [C(), C(*+1)) for each
i € {0,..., K — 1}. It is straightforward to verify that g;(z) is smooth on [C(®), C(+1)) for all
i €{0,...,K — 1}. Hence, we have

oy 4o'(1-p)(p -1 40t (1= p?)(p —1)?
gi(z) =1 Z [2(p1 — pa)? — 202%(p — 1)2)2 Z [(p1 — pa)? — 202(1 — p?)]?

aEIC’\V7: B ac€V; (60)
=1- Z i 27
ack’ ('r - Da)
where 2 2
20%(p—1 .
—, fae KL\,
g U g \
‘ (11 — pra) 7 ‘ o\l=p ;
m, ifa e V.
Define the function f;(z) = g/(x)z2. Then we have
—2B.Dy(x — Dy/2)
_ 2 _ .2 aa a
fiz) = gi(x)a” == _(;CBa'i'(;C (z — D,)? : (61)
A direct calculation gives
2B, D,x(x — D,)
./ — 2 a a a .
file) =22+ %:C & D) (62)

It is straightforward to verify that B, D, > 0. Since x € [C(i), C(”l)), when a € V;, we have
Do =20%(1 —p?) /(11 — pa)?, and

Wa w1

—1)2 1-—p? 1—p?
y(ul—ua)2=202<(p )+ p)>20—2w1p, (63)

which means & = Yy > 20%(1 — %)/ (1 — j1a)?* = D
Similarly, when a € K’ \ V;, we have D, = 20%(p — 1)?/(p1 — j1a)?, and

2 9 12
y(ul—ua>2=2az((p DR ) s 9,2 P = (64)

w1 Wq w1
which means & = Y > 20%(p — 12/ (s — )? = D

Therefore, we conclude that f/(z) > 0 and f;(x) is strictly increasing on the interval [C'("), C(+1)),
It follows that g/ (x) has at most one zero for > 0 on this interval. O

A.6 PROOF OF PROPOSITION[I]

The optimization problem in (T4) is equivalent to
2 -1 2 2 1— 2
mmol(m’ ) _|_<72( r°) i Wy > wo,
" weN w1 w2
T ('LL) - 2 1 2 2 1 2 (65)
min%(ﬂ/r_ ) +01( —r°)
wel w2 w1

if W2 Z w1.

Consider the case w; > wo, and define

oi(pr —1)? N o3(1—p?)

F =
((U1 ) w1 1-— w1

(66)
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Since w? > (1 — wy)?, we have

F’ = —
() (1 —wp)? w?
o2(1 — p? a2(pr — 1)2
2 2(w2 14 ) o 1(pw2 ) (67)
1 1
_ 03(1=p*) —of(pr —1)?
= =
1

When r2(1 — p2) > (pr — 1)2, we have F'(w;) > 0, and the corresponding optimal solution is
w} = 1/2. Otherwise, solving F’(wy) = 0 yields
1 —12/1—p2
i = VT .
L+ (1/r)y/(pr = 1)2/(1 = p?)

Next, consider the case wo > wq, and define

2 12 201 _ 2
F(w1)=02(lp/_rw11) +Ul(1w1p). (69)

Since we have w? < (1 — wy)?, it holds that

as(p/r—=1)* ai(1—-p?)

F' =

(w1) (1—wy)? w?

o2(p/r—1)2 o321 — p?
< 2(/)/2 ) _ i( 2P) (70)

wi w1
_ a3(p/r = 1)* — o (1 - p?)
- — )

1

When 72(p/r — 1)? < (1 — p?), we have F’(w;) < 0, and the corresponding optimal solution is
w} = 1/2. Otherwise, let F’(wy) = 0, we can obtain that

e )T A r 1P an
L1 (/- A (or — 12

which completes the proof. O

A.7 PROOF OF THEOREM[3]

The proof of Theorem [3] builds on several supporting lemmas. Lemma [2] establishes the statistical
validity of the CORSA algorithm, while Lemma[3|proves a key continuity property. Lemma|recalls
known results for the sampling rule. Finally, these results are combined to derive both almost-sure
and expected upper bounds on the stopping time 7.

Lemma 2. The CORSA algorithm satisfies that P(a, # 1) < 6.

Proof. We begin by presenting a useful property of the KL divergence for a K -dimensional Gaussian
distribution with positive correlation p > 0.

By definition, the KL divergence between N (1, 2) and N'(\, X) is
KLl = 2 (- 2T (- A 72
(ul]A) = 5 (u = A) (k=) (72)

where the covariance matrix is
Y =0*((1-p)I +p117),

with I denoting the identity matrix and 1 the all-ones vector.

17
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Applying the Sherman—Morrison formula, we obtain

—1_i 1 . 4 T
> ‘02(1—/ <1—p><1+<K—1>p>”>' 7

For K > 1and p € (0,1), we have X1 < m[, which implies that

KL(ulN) = 30— X757 (u = 3)
< Wm N ()
- (74)
02 (;C

=77 X KL( a||)‘a)'
<1—p>a§c g

This property yields an upper bound on K L(u||A\) in terms of the KL divergence of the marginal
distribution, thereby simplifying the analysis of the statistical validity of the CORSA algorithm.

The stopping rule of the CORSA algorithm is defined as follows
7 =inf{t € N: T (i(t),w(t) " > B(t,6,p)}- (75)

To establish the statistical validity of the CORSA algorithm, it suffices to show that
P(r < oco,a, #1) <. (76)

We begin by noting that
P(r <oo,a, #1)

<P (3t € N,a # 1,tT (a(t), w(t)) ™" > B(t, 6, p))
=P (Elt €N, a; 7é 1, a*(i)\n)géd Z[N(a) (t) - N(a—l) (t)}KL(ﬂ(u) (t)’ s aﬂ(K)(t)H)‘(a)a ) A(K)) > ﬂ(ta 67 p))
taek
=P (31& €N, [Na)(t) = Nia1y OIKL(fr(ay (8), - - - ficic) )| thgay s - - > 1)) = B, P))
aell
<P <3teN ZN ) K L(f1a( )I|Ma)26(t767p)>
aGIC

<>P (Z No(t)K L(fia(t)||pa) > (1 - p)B(t&p))
t=1 ackl
> 1—p)2B(t,8,p) log(t) \
SZGK-H (( p) 5(1}7,0) og( )) o~ (1=P)B(L.5.0)
t=1
77
By setting
Ct?log(1/6)K+1
B(t,6.p) = log ( 5010 ) :
and choosing the constant C, which depends on K, §, and p, sufficiently large such that
oo K
ZEK+1 <(1 7p)2ﬂ(t757 p)2 10g(t)> ef(lfp)ﬁ(t,zs,p) <5 (78)
K —_ )
t=1
we can conclude that
P(r < 00,4, #1) <4. (79)
O
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Lemma 3. The function T (11, w) ™! is continuous in both ;1 and w. Moreover, the optimal sampling
ratio w* () satisfies wi(u) > 0forall a € K.

Proof. Proof of LemmaE]For each suboptimal arm a € K, define the function

o 2
(p(,Lill)Q.ua) - p2 if w1 2 Wa,
202( ” + ” >
falw,p) = N (80)
(#1 ~ ta) if wy>w
2<<p1>2 1p2> o=
20 +
Wq w1

Then we have 7 (w, ) ™! = mingexr fa(w, ). For the cases wy > w, and wy < w,, the function

fa(w, i) is continuous in both w and .

When w; = w,, we have

_ (Ml _,ua)2
Faewi) = 952 ((p— D —pQ) ’ ®h

w1 Wq

which shows that f, (w, ) is also continuous in w at the boundary. Therefore, f,(w, i) is continuous
in both w and .

Define the set B = {\ € RX : \; > \y >,..., A\ }. By the definition of y, we have i € B. Then,
there exists a sufficiently small constant e; > 0 such that, if ||u — Moo < €1, it follows that A € 5.

Then, for any £ > 0, there exists a constant 0 < €3 < €7 such that

T 1) =T (w0, )7 = | iy falw )iy a0, V)] < €2l i, fa(eo, )] = €2l T, )71,

(82)
which establishes the continuity of 7 (w, ) ~! with respect to . The continuity of w follows by the
same argument.

Now, we show that the optimal sampling ratio w* (1) satisfies w’ () > 0 for all a € K. Suppose,
for the sake of contradiction, that there exists an arm a € K such that w’(y) = 0. In this case,
the corresponding f,(w, u) = 0, which implies 7 (w, 1)~ = 0. This contradicts the optimality of
w* (1), since we can always select a feasible uniform sampling rule @ € Q with @, = 1/K,Va € K,
yielding 7 (w, )~ > 0. Therefore, it must hold that w* (1) satisfies w?(y) > 0 foralla € K. [

Lemma 4. (Lemma 17 in|Garivier & Kaufmann|(2016))). Consider the following sampling rule

o Jare min, ¢y, Na(t), it U A0 83)
i arg max,cx tw (fi(t)) — No(t), o.w.

where Uy = {a € K : N.(t) < /t — K/2}. Then, for every arm a € K, we have N,(t) >
(vt — K/2) 1 — 1. Furthermore, for any ¢ > 0 and tq > 0 such that

sup ma [l (A(2)) — w;:w)\ <e (84)
t>tg aek
there exists t1 > 0 such that
N, (t
Sup max ® _ w;‘(u)‘ < 3(K — e (85)
>t ackk

We now proceed to establish the sample complexity upper bound stated in Theorem

Consider the following clean event

t a

£ = {ﬂ(t) — p, max Na®) w*(u)’ — 0}. (86)
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According to Lemmal 4 the sampling rule guarantees that N, (t) > (vt — K/2), — 1. Applying
the law of large numbers, it then follows that fi(t) — p almost surely. According to Corollaryl 1] the
function ¢/(z) has at most one zero on the interval [C(), C+1) foreachi = 0,..., K — 1. If no
zero exists on the interval [C(Y), C("+1)), then the minimum of g;(x) occurs at one of the endpoints,
C® or C*1) | The search mechanism of CORSA guarantees finding the global minimum of g(z),
from which we can further obtain the empirical sampling ratio w*(ji(¢)). Since w* () is continuous
with respect to u, then for any € > 0, there exists ¢y > 0 such that

€
sup max |wi(f(t)) — wp <—. 87
Sup may wg (A(t)) — wa ()| < SK=1) (87)
Applying Lemmaf] there exists some ¢; > 0 such that
Ng(t
sup max alt) _ w;(u)’ <e. (88)
t>t ae

Therefore, we conclude that P(£) = 1. Condition on the event £, and by Lemma T (w, )~ is
continuous in both w and p. Hence, for any € > 0, there exists to > 0 such that, for all ¢ > o, we
have

T(w(t), at) ' > (1= T (w (1), )" (89)

Since the threshold function satisfies 5(¢, 9, p) = o(t), there exists t3 > 0 such that, for all ¢ > 3,

we have
B(t,8,p) <log(1/6) + €T (w* (1), 1)~ 't. (90)
Then, the stopping time 7 satisfies that
r=inf{t € N: tT(a(t),w(t))™* > B(t,0,p)}

<to+ty+ty +inf{t € N:tT(a(t),w(t) ™! > log(1/8) + €T (w* (1), u) "'t}

<to+tyHtyFinf{t € N:t(1— )T (w* (1), )" > log(1/6) + €T (w* (1), u) "'t} 1)

=to 4t +to +inf{t € N:t(1 —26)T (w* (), ) "' > log(1/6)}
T (" (1), 1) los(1/6)

=19+t +1i2+ 1 — 9
Therefore, we have
: T T (W (1), 1)
1 92
o log(1/8) = 1-2¢ o
almost surely. By letting ¢ — 0, it follows that
-
P( limsup ——— < T~ =1. 93
(v iy < 7°00) o

Next, we derive an upper bound on the expected stopping time E[7]. According to Lemma
T (w, 1)~ is continuous in both w and p.Then, for any ¢ > 0, there exists £;(¢) > 0 such that
for any w(t) and /i(t) satisfy ||/i(t) — plloo < &1(€), and ||w(t) — w* (1) |loo < &1(€), we have

T(w(®), p(6) ™" = (1= T (@ )" (94)
Since w*(fi(t)) — w*(w) almost surely, then there exists 2(e) such that for any [i(t) satis-
fies [|4(t) — plloo < §2(€), we have [[w*(4(t)) — w*(p)llee < &1(€)/3(K —1). Let £(e) =
min{¢; (¢), £2(€) } and define the event
T
) A = plle <€)} (95)
t=T1/4
Let ¢; = &1(e)/3(K — 1), according to Lemma 4] we know that there exists a constant T'(¢; ), such
that for all T' > T'(¢; ), condition on the event Er, we have
Ng(t
sup max ® _ w;(u)’ < & (e), (96)
t>T1/2 GEK
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which further implies that 7 (w(t), a(t)) ™ > (1 — )T (w*, u) L.

Then, we have

T
min(r, T) < T2 + Z I(r > t)

t=T1/2
T
STV 4 Y I(tT(w(t), a(t) ™ < B(t,6,p))
(=T /2 97)
T *
<724 3T (t < B(t,0,p)T (w (u%u))
1—¢
t=T1/2
- 1—c¢
Define T;(5) = inf {t e N: 712 4 BLIATW () T}, then, for any T >
max(T(e1), T5(9)), we have Ep C (7 < T'). Therefore, we have
E[r] =Y P(r>T)<T(a)+T7(5)+ Y Pr=T)<T(a)+T7(0)+ > PEF).
T=1 T=T(e1)+T (5) T=1
(98)
According to Lemmas 18 and 19 of |Garivier & Kaufmann|(2016)), we have that
T* w* ,
7(er) = T (0(10g(1/8)) + 010z 108(1/9))). 99)
and Y 7 P(EL) < oo. Therefore,
E 1
lim sup 7] T (w* (), p)- (100)

<
50 log(1/6) — 1—¢
Letting e — 0 completes the proof.

A.8 DETAILS OF NUMERICAL EXPERIMENTS

For Track-and-Stop, we adopt the heuristic threshold 3(t,6) = log((log(t) + 1)/d) proposed
in |Garivier & Kaufmann| (2016) and also used in (Wang et all [2021). For CORSA, we use
B(t,0) = log((log(t) + 1)/((1 — p)36)), which, although not theoretically justified, remains con-
servative enough to ensure correct identification.

Figure[2]compares the sample complexity of CORSA and Track-and-Stop under different confidence
levels §. The results show that as § decreases, the required number of samples increases. Moreover,
CORSA consistently requires fewer samples than Track-and-Stop.

A.9 APPLICATION EXAMPLE: QUEUEING SERVICE RATE OPTIMIZATION

In this subsection, we evaluate the performance of CORSA through a queueing service rate opti-
mization example. Queueing service rate optimization is a fundamental problem in simulation, as
it plays a key role in improving the performance and efficiency of stochastic systems (Weber &
Stidham Jr, [1987).

Consider a single-server queueing system where customers arrive according to a Poisson process
with rate A\, and service times are independent and identically distributed (i.i.d.) according to an
exponential distribution with rate pi. The performance measure of the system is defined as

f(u) =E[S(w)] + Cu, (101)

where E[S(p)] denotes the average sojourn time under service rate , and C' > 0 represents the
corresponding operational cost. Intuitively, increasing the service rate reduces the average sojourn
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Figure 2: Performance Comparison Between CORSA and Track-and-Stop

time but also raises the operational cost. Hence, the problem requires a trade-off between system
efficiency and cost.

In this example, we set the arrival rate to A = 0.5, the unit cost to C' = 10, and consider alternative
service rates ;. € {0.51,0.53,0.55,0.57,0.59}. At each time step ¢, the agent selects a service
rate u; and runs a simulation model to obtain a random observation of the average sojourn time.
For each simulation experiment, the average sojourn time is estimated using 40 customers. Positive
correlation is naturally introduced by employing the same sequence of customer arrivals and service
times across different service rate configurations.

The probability of correct identification and the sample complexity are estimated based on 200
independent runs of the algorithms. Since the variance and correlation coefficient are unknown, we
adopt a homogeneous upper bound with o2 = 20 and p = 0.5 in the implementation.

Figure [3] compares CORSA and Track-and-Stop in terms of the empirical probability of correct
identification and sample complexity. The results demonstrate that CORSA outperforms Track-and-
Stop on both metrics.
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Figure 3: Performance Comparison Between CORSA and Track-and-Stop (§ = 0.1, ng = 10)
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