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Abstract001

It has been shown that perturbing the input during002

training implicitly regularises the gradient of the003

learnt function, leading to smoother models and en-004

hancing generalisation. However, previous research005

mostly considered the addition of ambient noise in006

the input space, without considering the underlying007

structure of the data. In this work, we propose sev-008

eral methods of adding geometry-aware input noise009

that accounts for the lower dimensional manifold the010

input space inhabits. We start by projecting ambient011

Gaussian noise onto the tangent space of the mani-012

fold. In a second step, the noise sample is mapped on013

the manifold via the associated geodesic curve. We014

also consider Brownian motion noise, which moves015

in random steps along the manifold. We show that016

geometry-aware noise leads to improved generaliza-017

tion and robustness to hyperparameter selection on018

highly curved manifolds, while performing at least019

as well as training without noise on simpler mani-020

folds. Our proposed framework extends to learned021

data manifolds.022

1 Introduction023

One of the most intuitive and practical methods to024

improve the generalisation properties of a learnable025

model is to consider data augmentation techniques026

[1]. During training, new data samples are created027

from given ones, sharing the same features and028

labels. This approach has been extensively used029

with image data, for example through adjusting the030

illumination, changing the orientation or cropping.031

032

Classic machine learning research has already033

established the influence of input noise on gener-034

alisation performance [2, 3]. One widely studied035

technique is adding Gaussian noise to the inputs,036

which leads to a smoothness penalty on the learnt037

function [4, 5], however, these works do not take038

into account the structure of the input data.039

A fundamental observation in modern machine040

learning is the manifold hypothesis: it states that041

high-dimensional data tends to concentrate around042

a lower-dimensional manifold in the ambient space043

[6, 7]. In the context of noise-based learning, this044

has the implication that, with high probability,045

Gaussian noise will be almost perpendicular to046

the manifold [8]. Hence, adding Gaussian noise047

Figure 1. Noise injection is a data augmentation
technique that can improve generalisation. For a data
point ( ) lying on a lower-dimensional manifold, sam-
pling noise in the ambient space ( ) almost surely de-
viates from the input manifold whereas a sample from
a geometry-aware noise process ( ) stays on the mani-
fold and respects the data geometry. Illustrated of the
biconcave disc that resembles a red blood cell.

to the data leads to unlikely or non-informative 048

augmented data samples. 049

050

Additionally, many real-world problems require 051

learning functions on a known manifold rather than 052

the unconstrained Euclidean space. Weather and 053

climate observations naturally live on the surface of 054

the sphere, which approximates the shape of the 055

Earth. In cell biology we might consider red blood 056

cells, which can be approximated by a biconcave 057

disc [9]. Or in brain imaging, quantities like cortical 058

thickness and grey matter intensity are measured on 059

the cortical surface [10]: although the cortex can be 060

mapped onto the sphere, it is actually highly wrinkly. 061

In such settings, applying perturbations or learning 062

representations that ignore the intrinsic manifold 063

structure can lead to deceptive results as Euclidean 064

distances in the embedding space fail to capture the 065

true distances between points: two points which 066

might be close with respect to the Euclidean metric 067

can be far apart when travelling along the manifold 068

surface. This highlight the necessity of geometry- 069

aware methods that respect the manifold structure 070

when perturbing data as an augmentation technique. 071
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072

In this paper, we propose geometry-aware073

noise injection strategies as a data augmentation074

technique and show their benefits compared to075

ambient space noise injection. We consider three076

such strategies – tangent space noise, geodesic noise077

and Brownian motion noise – and demonstrate their078

effect on manifolds embedded in R3, namely the079

Swiss roll and families of spheroids and tori.080

081

Our contributions include:082

• definitions, derivations, and implementations083

of geometry-aware input noise for various084

parametrised manifolds and their deformations,085

• establishing the implicit regulariser of adding086

manifold-restricted input noise,087

• empirical demonstration that geometry-aware088

noise improves generalisation and robustness089

over manifold-agnostic noise.090

2 Preliminaries091

We consider a dataset of N points {xn, yn}Nn=1,
where the inputs xn ∈ X = RD are assumed to
lie on an embedded d-dimensional manifold M with
d < D, and the outputs yn ∈ Y may be either con-
tinuous or discrete. Our goal is to learn a function
fθ : X → Y, typically parametrised by a deep neu-
ral network with parameters θ ∈ RK . The model is
trained by minimizing the empirical loss

L(x,θ) =
N∑

n=1

ℓ(fθ(xn), yn),

where ℓ : Y × Y → R+ ∪ {0} is a loss function,092

often chosen as the mean squared error (MSE) in093

regression settings. For simplicity of notation, we094

write x = {xn}Nn=1 and L (x) = L (x,θ).095

2.1 Gaussian Input Noise096

As mentioned, several previous works consider097

Gaussian input noise [2, 4, 11, 12]. In this section,098

we summarise the previous analysis and show099

that adding Gaussian noise to the input during100

training is equivalent in expectation to Tikhonov101

regularisation [13].102

103

Consider an input data point xn ∈ X , which we104

perturb with noise following a normal distribution105

ϵ ∼ N (0, σ2ID) for σ > 0. Then the second-order106

Taylor expansion of the loss function L (x) is given107

by:108

L (x+ ϵ) ≈ L (x) + ϵ⊤∇xL (x) +
1

2
ϵ⊤HLϵ. (1)109

We take the expectation of the Gaussian noise dis- 110

tribution and get 111

Eϵ [L (x+ ϵ)] = L (x) +
σ2

2
∆xL (x) , (2) 112

where ∆ is the Laplace operator (trace of the Hes- 113

sian). Using the chain rule, this term expands to: 114

∆xL (x) =

N∑
n=1

∥∇xfθ(xn)∥2 (3) 115

+
1

2

N∑
n=1

(fθ(xn)− yn)∆xfθ(xn). 116

when choosing ℓ to be the MSE. When the func- 117

tion interpolates the training data points, that is, 118

fθ(xn) ≈ yn, the second summand in Equation 3 119

vanishes. Thus, after plugging this back into Equa- 120

tion 2, we see that adding input noise is equivalent 121

(in expectation) to optimising a regularised loss on 122

the form L (x) + R (x,θ) , with R being the Tiko- 123

honov regulariser 124

R (x,θ) =
σ2

2

N∑
n=1

∥∇xfθ(xn)∥2. (4) 125

Thus, a small gradient is incentivised at each training 126

point, which implies that the optimisation process 127

will converge to parameters θ∗ for which the function 128

fθ∗ is flat in the neighbourhood of the given data. 129

2.2 Riemannian Geometry 130

In this section, we give a brief introduction to the 131

tools we use from Riemannian geometry [14]. The 132

reader who is already familiar with Riemannian 133

geometry may skip this section. 134

Local charts. Plainly speaking, a manifold can be 135

seen as a d-dimensional generalisation of a surface. 136

It locally resembles the Euclidean space Rd, meaning 137

that for every point x ∈ M, we can find an open 138

neighbourhood around x which can be smoothly 139

mapped to an open set of Rn. For completeness, we 140

include a more rigorous mathematical definition. 141

Definition 2.1 A manifold M is a Hausdorff space
such that for every x ∈ M there exists a homeomor-
phism X : U → V from a neighbourhood U ∋ x
to an open set V ⊆ Rd. Further, we require these
charts to be compatible on the intersection of their
domains, i.e.

X1 ◦X−1
2 |X2(U1

⋂
U2) : X2(U1 ∩ U2) ⊆ Rd → Rd

is a smooth map. 142

2



NLDL
#41

NLDL
#41

NLDL 2026 Full Paper Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

The tangent space. In R3, the tangent plane of a
manifold is easy to picture: each point of the surface
is approximated with a plane in which the tangent
vectors live. In higher dimensions, we say that the
tangent space TxM of M at a point x consists of
the velocities of all curves on M passing through x,
that is, if γ is a smooth curve on M parametrised
by time t with

γ(0) = x,

then
v = γ̇(0) ∈ TxM.

Assume we have a smooth parametrisationX : Rd →
RD. Then the Jacobian

JX =

[
∂X

∂u1
, . . . ,

∂X

∂ud

]
is a function from Rd to RD×d and the tangent space
at each point is spanned by the columns of JX . At
every point x ∈ M, any vector v ∈ RD can be
orthogonally decomposed into a tangential and a
normal component as

v = v⊤ + v⊥.

In Figure 2, we can see a manifold (the sphere)143

embedded in R3, and the tangent space at a point.144

Riemannian metrics. A Riemannian manifold145

(M, g) is a smooth manifold equipped with a Rie-146

mannian metric. A metric g of M equips each point147

x ∈ M with an inner product gx on TxM. This con-148

tinuous tensor field allows us to measure distances149

and angles, and define geodesics along the manifold.150

Assume we have a smooth parametrisation X :
R2 → R3. Then the matrix valued function

J⊤
X · JX : R2 → R2×2

induces a metric. For X(u) = x ∈ M and v,w ∈
TxM, let ṽ, w̃ ∈ TuRd be such that JX ṽ = v and
JXw̃ = w. Then

gx(v,w) = v⊤J⊤
XJXw

is the induced metric. By abuse of notation, we will151

often write g to denote the matrix J⊤
XJX .152

Geodesics. A geodesic is locally the shortest path
on a manifold. We can rewrite a curve

γ : I ⊆ R → M

onM as γ(t) = X◦α(t), where α : I → Rd is a curve153

in the parameter space. Then γ is a geodesic if and154

only if α satisfies the following ordinary differential155

equation (ODE) for all k = 1, . . . , d:156

α̈k(t) = −
n∑

i,j=1

α̇i(t)α̇j(t) · Γk
ij(α(t)), (5)157

where Γk
ij denote the so-called Christoffel symbols.

It can be shown that if M is a Riemannian manifold,
then for every x ∈ M and every unit vector e ∈
TxM there exists a unique geodesic γe such that

γe(0) = x, γ̇e(0) = e.

The exponential map. Intuitively, one can 158

imagine the exponential map like a function which 159

wraps aluminium foil (the tangent plane) around, 160

say, a bagel (the manifold). Despite the manifold 161

being curved and the tangent space being flat, at 162

any chosen point we can wrap a small part of the 163

tangent plane around a neighbourhood of this point 164

without folding it. 165

166

Using geodesics, for each x ∈ M we can define a map
from an open ball Bδ(0) ⊆ TxM to a neighbourhood
x ∈ U ⊆ M on the manifold. We will call this map
the exponential map:1

Expx : Bδ(0) ⊆ TxM → U ⊆ M,

167

Expx(v) =

{
γ v

∥v∥
(∥v∥) if v ∈ Bδ(0)\{0},

x if v = 0.
168

In other words, the exponential map maps a vector 169

v ∈ TxM from the tangent space to the endpoint 170

of a curve on the manifold, γ v
∥v∥

(∥v∥), and the zero 171

vector to x. 172

3 Noise Injection Strategies 173

We consider three strategies of increasing complexity 174

for geometry-aware input noise: tangential noise, 175

geodesic noise and Brownian motion noise. The goal 176

was to create noise injection techniques which either 177

stay close to the manifold or, better, stay on the 178

manifold. 179

3.1 Projected Tangent Space Noise 180

The simplest method we will try is Gaussian noise 181

projected to the tangent space. Intuitively, this 182

takes a noise sample in the ambient space, ϵ ∼ 183

N
(
0, σ2ID

)
, and pulls it closer to the manifold. 184

To isolate the tangential component ϵ⊤, we sub-
tracting the component ϵ⊥:

ϵ⊤ = ϵ−
∑
i

⟨ϵ,ni⟩ · ni,

where {ni} is a set of unit vectors spanning the nor-
mal space of M. For more details we recommend

1Here, δ ∈ R+ ensures that the exponential map is a well
defined diffeomorphism. Loosely speaking, it is the largest
radius we can choose while guaranteeing that the geodesics
are well defined and do not overlap.

3



NLDL
#41

NLDL
#41

NLDL 2026 Full Paper Submission #41. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. Noise injection strategies with increasing
level of conceptual complexity, i.e. ambient space noise
( ), tangent space noise ( ) and geodesic noise ( ). The
Brownian motion strategy is visualised in Figure 3.

the classic textbook [15]. Equivalently, the tangen-
tial noise can be defined with projection matrix,
P = ID −

∑
i nin

⊤
i , as

ϵ⊤ = Pϵ, ϵ ∼ N
(
0, σ2ID

)
.

This allows for directly sampling tangent noise as

ϵ⊤ ∼ N
(
0, σ2P

)
.

Regularisation perspective: We now analyse185

how adding tangential noise ϵ⊤ affects the model fθ.186

We proceed as in Subsection 2.1.187

E[ϵ⊤⊤HLϵ⊤] =

N∑
n=1

E
[
ϵ⊤⊤∇xfθ(xn)∇xfθ(xn)

⊤ϵ⊤
]

188

+
1

2

N∑
n=1

E
[
ϵ⊤⊤ (fθ(xn)− yn)∆xfθ(xn)ϵ⊤

]
189

=

N∑
n=1

∥∇xfθ(x)⊤∥2.190

The second summand again vanishes if we assume191

that the model fθ interpolates the target values192

perfectly, that is, fθ(xn) = yn for all n = 1, . . . , N .193

When evaluating the first summand, we see that194

ϵ⊤⊤∇xfθ(xn) = ϵ⊤⊤∇xfθ(xn)⊤ + ϵ⊤⊤∇xfθ(xn)⊥︸ ︷︷ ︸
=0

. (6)195

Combining our results, we obtain the regulariser

R(x,θ) =
σ2

2

N∑
n=1

||∇xfθ(xn)⊤||2.

This shows that the addition of tangential noise only196

regularises the tangential component of fθ.197

3.2 Geodesic Noise 198

As explained in Subsection 2.2, at every x ∈ M, 199

and for every v ∈ TxM there exists a geodesic 200

γ : I → M such that γ(0) = x, and γ̇(0) = v. 201

All manifolds in our paper are complete, and hence 202

I = R, and γ can be extended to the whole of R. This 203

allows us to generate points x̃ near x by sampling 204

initial velocities and mapping them to the manifold 205

via the exponential map. We proceed as follows: 206

1. sample ϵ ∼ N (0, σ2ID), 207

2. project ϵ into the tangent space TxM as ex-
plained in Subsection 3.1, let

ϵ⊤ = Pϵ,

3. evaluate γ at ||ϵ⊤||, the new point is now

x̃ = Expx(ϵ⊤) = γ(||ϵ⊤||).

For a small step size σ, we expect this to have a 208

similar effect as the tangential noise but may improve 209

robustness for increased step sizes. Details about 210

the implementation of this method can be found in 211

Appendix B. 212

3.3 Intrinsic Brownian Motion 213

Brownian motion (BM) is a stochastic process, which 214

has first been used to describe the random move- 215

ment of particles suspended in a fluid. Due to its 216

occurrence in nature, this provides a realistic way 217

of modelling how data points might move along a 218

manifold. In the parameter space of a Riemannian 219

manifold, the Brownian motion is defined by the 220

following stochastic process [16]: 221

duk(t) =
1

2

1√
det g

d∑
l=1

∂

∂ul

(√
det g · gkl

)
dt (7) 222

+
(√

g−1dB(t)
)
k
. 223

where dB(t) is the standard Euclidean BM and t 224

is the time. The summands are referred to as the 225

drift term and noise term, respectively. Since the 226

Brownian motion on a manifold is generated by the 227

Laplace-Beltrami operator [17], which is intrinsic, it 228

is independent of the local charts [18]. 229

3.4 Example: the Swiss roll 230

In this subsection, we will go through the computa-
tions for one example manifold, namely the Swiss
roll. The derivations for the other manifolds follow
a similarly approach. The Swiss roll is parametrised
as follows:

X : R2 → R3, X(u1, u2) = (au sinu1, au1 cosu1, u2).

4
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Here, a ∈ R+ is a positive coefficient which deter-
mines how tightly the manifold is rolled. The metric
is then given by (

a2(1 + u2
1) 0

0 1

)
.

Tangent space noise. The unit normal vector at
each point (u, v) is given by

n =
1√

1 + u2
1

·

 cosu1 − u1 sinu1

− sinu1 − u1 cosu1

0

 .

To get tangential noise, we subtract the normal
component from the Gaussian ambient noise, i.e.

ϵ⊤ = ϵ− ⟨ϵ,n⟩ · n.

Geodesic noise. A curve on the manifold can231

be obtained by taking a curve α : I → R2 in R2
232

and mapping it on the manifold through X. Let233

γ : I → M be given by γ(t) = X ◦ α(t).234

α̈1(t) = − α1(t)

1 + α1(t)2
α̇1(t)

2,235

α2(t) = α2(0) + tα̇2(0).236

Brownian motion. We start with a few pre-237

computations. It is clear that238

det(g) = a2(1 + u2),239

g−1 =

(
1

a2(1+u2
1)

0

0 1

)
.240

Plugging it into Equation 7, we get:241 [
du1

du2

]
= −dt

2

( u
(1+u2)2

0

)
+
√
dt

(
1√

a2(1+u2)
0

0 1

)
ϵ̃.242

We remark that dB(t) =
√
dt · ϵ̃ where ϵ̃ ∼ N (0, Id)243

is a noise sample in the parameter space.244

4 Deformation of a Manifold245

In the following, we briefly elaborate on the246

underlying approach to constructing deformations247

of manifolds which we will use in Section 5.248

249

We consider a vector field v for defining a time-250

dependent diffeomorphism, ϕ : M × [0, T ] → RD
251

that maps points from a parametrised manifold to252

a deformed version of the manifold, M̃. This is also253

known as a flow. The vector field induces the flow254

through an ordinary differential equation:255

d

dt
ϕt (x) = vt (ϕt (x)) , (8)256

ϕ0 (0) = x,257

Figure 3. Brownian motion is computed from an initial
point ( ) in the parameter space (left), then mapped to
the manifold (right) via the chart X. The endpoint of
the Brownian motion on the manifold ( ) acts as the
noisy observation.

where x ∈ M is a point on the parametrised man-
ifold. As our manifold is defined through local co-
ordinates, we can express points on the deformed
manifold as

x̃ = ϕT (X (u)) ∈ M̃,

which is obtained by integrating the ODE (8) up
to time T . The Jacobian of ϕt with respect to u at
u = X−1(x) is given by

Ju (t) :=
∂ϕt (X (u))

∂u
=

∂ϕt (x)

∂x

∂X (u)

∂u
.

It can be computed by solving another ODE: 258

d

dt
Ju (t) = Jv (t)Ju (t) , 259

Ju (0) =
∂X (u)

∂u
, 260

where Jv (t) =
∂vt(ϕt(x))

∂ϕt
is the Jacobian of the ve-

locity field function. Thus, the metric g̃ of M̃ is

g̃ = Ju (T )
⊤
Ju (T ) .

We can now sample initial velocities on the tangent 261

space Tx̃M̃ at x̃, using (9) and generate geodesics 262

on the deformed manifold M̃ . 263

264

This framework allows for highly expressive and 265

flexible deformations of any parametrised manifold 266

while ensuring invertibility. Previous research [19, 267

20] parametrise vt,θ with a neural network. Though 268

we in practice only consider a fixed parametrisa- 269

tion of such a network to generate diffeomorphic 270

deformations, our framework works for any map vt. 271

This opens new pathways to neural network settings 272

where a learned flow approximates the underlying 273

data manifold from which we can compute intrinsic 274

geometric quantities, which we leave for future work. 275
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Figure 4. Illustrations of the manifolds and functions on manifolds that we consider. From left: Sphere,
SqueezedSphere, DeformedSphere, Bead, OnionRing and SwissRoll. Specifically, we use the deformation approach
described in Section 4 to construct the DeformedSphere from a parametrised unit sphere in R3.

Implementation details. The Jacobian of the276

vector field, vt, rarely has a closed form, however277

we can compute it efficiently using automatic dif-278

ferentiation. In practice, this allows us to evaluate279

derivatives of deformed manifolds with respect to the280

local coordinates of points on the manifold, without281

manually deriving the expressions. This algorithmic282

framework allows us to apply the technique to any283

manifold as long as some parametrisation is available284

and we have a differentiable ODE solver. In prac-285

tice, we solve the flow equation numerically using an286

explicit Euler scheme and compute Jacobians and287

induced metrics with automatic differentiation. We288

remark that higher-order ODE solvers could be used289

for improved accuracy, yet the choice of the Euler290

scheme is based on practical challenges with existing291

toolboxes, for instance current incompatibility issues292

between existing libraries.293

5 Experimental validation294

We test our hypothesis on a range of manifolds295

visualised in Figure 4. We generate N = 200296

training points on each manifold and train an297

overparametrised 3-layer neural network with 64298

nodes per layer to learn a specific function for299

each manifold. We train for 500 epochs using a300

learning rate of 10−3 with a MSE objective. For301

each training step, we add either ambient space302

noise, tangential noise, geodesic noise or Brownian303

motion noise and compare to a baseline network304

trained without adding input noise. We treat the305

noise covariance σ2 as a hyperparameter, and,306

in the Brownian motion setting, interpret it as307

the total time of the process, i.e. T = σ2. We308

provide the average error per method relative to309

the baseline’s MSE in Table 1 with uncertainties310

given by the standard error of the mean computed311

from 5 independent runs. We provide computations312

for the geodesic equations and Brownian motion313

along with the target functions for the parametrised314

manifolds in Appendix A.315

316

Our results show that geometry-aware noise317

injection provides advantages to ambient space318

noise on complex manifolds. In particular, geodesic 319

and Brownian motion noise not only yield lower 320

errors on ”wigglier” geometries - such as the 321

SwissRoll and DeformedSphere - but they also 322

exhibit greater robustness to the noise intensity 323

hyperparameter (Figure 5). This indicates that geo- 324

metric approaches can both improve generalisation 325

and reduce sensitivity to hyperparameter choices. 326

327

At the same time, performance never significantly de- 328

teriorates when using any noise strategy, compared 329

to the baseline trained without noise (Table 1). For 330

some manifolds simple ambient Gaussian noise can 331

suffice: we observe this particularly for manifolds 332

of which only a small part is problematic, such as 333

the Bead (the fat torus). Here, Gaussian noise only 334

leads to misleading samples near the genus. Since 335

the surface area of the genus is proportionally small, 336

the overall error remains low. The SwissRoll, on 337

the other hand, is sensitive to Gaussian noise ev- 338

erywhere, and hence our methods work better. For 339

completeness, we report results across all tested 340

manifolds, even when geometry-aware strategies do 341

not provide measurable gains. 342

6 Related Work 343

A recent work [3] surveys classical perspectives and 344

modern advances for how noise injection influences 345

learning . Bishop’s analysis [4] of Gaussian input 346

noise is restricted to considering the Gauss-Newton 347

part of the Hessian with the argument that the 348

non-linear modelling error (NME) vanishes at an 349

optimum [4]. The implications of this were recently 350

discussed in the paper [21], with the conclusion that 351

the neglected Hessian component can play a crucial 352

role in shaping the geometry of the loss surface. 353

354

Instead of assuming that the input points live on a 355

manifold, we can also enforce that the parameters 356

of the model belong to a manifold. A previous work 357

[5] analyses the impact of adding Gaussian noise 358

to weights of a parametric model . Other works 359

[22, 23] study orthogonal regularisers on the weight 360

matrices, promoting the columns to be orthonormal. 361

6
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Table 1. Relative mean squared error to the baseline (B) model trained without adding noise. We report results
for the optimal hyperparameter σ2 for each strategy and manifold. We compare with ambient noise (A), tangent
noise (T), geodesic noise (G) and Brownian motion noise (BM). We highlight the best strategy per manifold in
bold. Adding noise does not improve performance for some manifolds, but results are included for completeness.

Sphere SqueezedSphere DeformedSphere Bead OnionRing SwissRoll

B 1.00 ± 0.20 1.00 ± 0.14 1.00 ± 0.16 1.00 ± 0.12 1.00 ± 0.16 1.00 ± 0.05

A 1.00 ± 0.19 0.99 ± 0.13 0.33 ± 0.07 0.70 ± 0.13 1.00 ± 0.17 0.93 ± 0.09
T 0.98 ± 0.19 1.00 ± 0.14 0.29 ± 0.06 0.77 ± 0.15 1.00 ± 0.16 0.93 ± 0.09
G 0.93 ± 0.16 0.99 ± 0.14 0.27 ± 0.06 0.81 ± 0.13 1.01 ± 0.17 0.43 ± 0.01
BM 0.93 ± 0.16 0.98 ± 0.13 0.26 ± 0.05 0.81 ± 0.13 0.98 ± 0.16 0.44 ± 0.02

These constraints restrict the parameter space to362

the Stiefel or Grassmann manifolds, which improves363

numerical stability. This line of work highlights that364

geometry can be injected not only through noise in365

the input space but also by shaping the structure366

of the model’s parameters. Another approach367

to noise injection considers adding structured368

noise to the gradient during training with gradient-369

based optimisers for improved generalisation [24, 25].370

371

In the context of Riemannian representation372

learning, adding noise according to the structure of373

the manifold stabilises results in the recent paper374

[26]. This approach replaces the traditional en-375

coder–decoder setup with a Riemannian generative376

decoder. It directly optimises manifold-valued377

latent variables via a Riemannian optimiser,378

thereby avoiding the difficulties of approximating379

densities on complex manifolds. By enforcing the380

manifold structure during training, the learnt latent381

representations remain aligned with the intrinsic382

geometry of the data, leading to more interpretable383

models and stable training dynamics.384

385

The tangent plane of a data manifold is approx-386

imated through singular value decomposition and387

used for sampling points in alignment with the data’s388

structure in a recent work [27]. This resembles our389

tangent space projected noise. For the methodology390

of the geodesic noise, a closely related idea has been391

explored in the context of Riemannian Laplace ap-392

proximations for Bayesian inference in deep neural393

networks [28, 29].394

7 Conclusion395

We have established several geometry-aware noise396

injection strategies and demonstrated their need397

through theoretical and experimental contributions.398

Further, we have shown their qualities and short-399

comings. In particular, we find that while ambi-400

ent Gaussian noise is simple and may improve per-401

formance on nearly Euclidean manifolds, it falls402

short on more curved or ”wiggly” manifolds, where403

geodesic and Brownian motion noise provide clear404

Figure 5. Test loss as a function of noise intensity σ2

for different noise injection strategies. The geometry-
aware noise strategies that stay on the manifold, i.e.
geodesic noise and Brownian motion noise, show greater
robustness to the noise intensity compared to ambient
or tangential noise. All methods perform at least as well
as training without noise (dashed line).
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advantages. These geometry-aware strategies not405

only improve generalisation, but are also more ro-406

bust to the noise intensity. The latter reduces the407

burden of hyperparameter tuning. Additionally, we408

proposed a framework for deforming parametrised409

manifolds to arbitrary manifolds, which extends the410

use of our methods beyond standard benchmark411

geometries. However, we remark that this added412

flexibility currently comes with increased computa-413

tional cost.414

Limitations and future work. We expect415

our approach to extend to higher dimensions. As416

explained in the introduction, a large difference417

between the dimensions of the ambient space and418

the data manifold could lead to more dramatic419

results as Gaussian noise samples will with high420

probability be normal to the manifold. However,421

this increases the computational complexity.422

423

One direction we hope to explore is to consider424

manifolds of which we have no explicit parametri-425

sation. One approach is to approximate the data426

manifold with a generative model, e.g. as previously427

done with variational autoencoders [30] or explore428

flow matching techniques as established in Section429

4. Another promising direction for geometry-aware430

noise for point clouds is topological data analysis431

[31]. Lastly, an idea is to approximate the tangent432

plane of a data manifold as in [27] and use it for433

generating geodesics.434
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A Computations on the exam-570

ple manifolds571

A.1 Biconcave disc572

The biconcave disc yields an approximation of hu-
man erythrocytes, as shown in [9]. Letting r =√
u2 + v2, and let a, b, c, d be parameters, then the

height function for the upper half is given by

z(r) = d

√
1− 4r2

d2
·
(
a+

br2

d2
+

cr4

d4

)
.

Here, d describes the diameter, a the height at the573

centre, b the height of the highest point, and c the574

flatness in the centre. A parametrisation of the575

upper half of this surface of rotation is given by576

X(r, θ) = (r cos θ, r sin θ, z(r)) .577

A.1.1 Tangential noise on the biconcave disc578

The tangent space is then spanned by579

Xr =

[
cos θ, sin θ,

∂z

∂r

]
,580

Xθ = [−r sin θ, r cos θ, 0] .581

An standard computation shows that582

∂z

∂r
=

−8r

d
√
1− 4r2

d2

·
(
a+

br2

d2
+

cr4

d4

)
583

+

√
1− 4r2

d2
·
(
2br

d
+

4cr3

d3

)
,584

and clearly

∂r

∂u
=

2u

r
,

∂r

∂v
=

2v

r
.

The unit normal vector is now given by585

n =

[
∂z
∂r

r cos θ,− ∂z
∂r

r sin θ, r
]

r
(

∂z
∂r

2
+ 1
) .586

A.1.2 Geodesics on the biconcave disc587

We obtain588

g(r, θ) =

(
1 + ∂z

∂r

2
0

0 r2

)
.589

A computation shows that590

r̈(t) = −
∂z
∂r

∂2z
∂r2

1 + ∂z
∂r

2 · ṙ(t)2 + r(t)

1 + ∂z
∂r

2 · θ̇(t)2,591

θ̈(t) = −2ṙ(t)

r(t)
· θ̇(t).592

The second derivative of z is given by the following: 593

∂2z

∂r2
=

−4

d

(
1− 4r2

d2

)− 3
2
(
a+

br2

d2
+

cr4

d4

)
594

−16r

d
·
(
1− 4r2

d2

)− 1
2

·
(
br

d2
+

2cr3

d4

)
595

+2

√
1− 4r2

d2
·
(

b

d2
+

6cr2

d4

)
. 596

A.1.3 Brownian motion on the biconcave 597

disc 598

For the Brownian motion, we yield 599

dr(t) =
1

2
·

(
1 + ∂z

∂r

2 − ∂z
∂r

∂2z
∂r2

(1 + ∂z
∂r

2
)2

)
dt 600

+
1√

1 + ∂z
∂r

2
dB(t)1 601

dθ(t) =
1

2
·

(
r ∂z
∂r

∂2z
∂r2

− 1− ∂z
∂r

2

r3(1 + ∂z
∂r

2
)

)
dt+

1

r
dB(t)2, 602

for all r > 0. 603

A.2 Spheroids 604

We consider manifolds which are squeezed spheres. For 605

a, c ∈ R+, consider the parametrisation X : R2 → R3
606

given by 607

X(u, v) = (a sinu sin v, a sinu cos v, c cosu). 608

If a = c, then this gives the usual sphere. If a > c, then 609

the manifold is a sphere squished along the z-axis. The 610

tangent plane is spanned by 611

Xu = [a cosu sin v, a cosu cos v,−c sinu] , 612

Xv = [a sinu cos v,−a sinu sin v, 0] . 613

We then obtain the metric(
a2 cos2 u+ c2 sin2 u 0

0 a2 sin2 u

)
.

A.2.1 Tangential noise on the spheroid 614

To obtain tangential noise, we note that the unit normal
is given by

n =
[c sinu sin v, c sinu cos v, a cosu]√

c2 sin2 u+ a2 cos2 u
.

A.2.2 Geodesics on the spheroid 615

A curve γ = X ◦ α is a geodesic on the spheroid if and 616

only if α : I → R2 satisfies 617

α̈1(t) =
(a2 − c2) sinα1(t) cosα1(t)

a2 cos2 α1(t) + c2 sin2 α1(t)
· α̇1(t)

2
618

+
a2 sinα1(t) cosα1(t)

a2 cos2 α1(t) + c2 sin2 α1(t)
· α̇2(t)

2, 619

α̈2(t) = −2 · cosα1(t)

sinα1(t)
α̇1(t)α̇2(t). 620
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A.2.3 Brownian motion on the spheroid621

A computation yields the following result for the Brow-622

nian motion.623

duk(t) =

[
a2 cosu

2 sinu(a2 cos2 u+c2 sin2 u)2

0

]
k

dt624

+

[(
1√

a2 cos2 u+c2 sin2 u
0

0 1
a sinu

)
dB(t)

]
k

.625

A.3 Tori626

We also investigate different tori, some more like onion
rings, others more like beads. For coefficients a, c ∈ R+,
they can be parametrised by X : R2 → R3,

X(u, v) = ((a+ c sinu) sin v, (a+ c sinu) cos v, c cosu).

Here, c describes the thickness of the handle and a the627

size of the torus. To avoid self-intersection, c is bounded628

by a. Further, if c << a, we have an onion ring, and if629

c ↑ a we have a rounded torus with a very thin hole.630

A.3.1 Tangential noise on tori631

The tangent plane is spanned by632

Xu = [c cosu sin v, c cosu cos v,−c sinu] ,633

Xv = [(a+ c sinu) cos v,−(a+ c sinu) sin v, 0] .634

This yields the metric

g =

(
c2 0
0 (a+ c sinu)2

)
.

The unit normal is given by

n =
[sinu sin v, sinu cos v, cosu sin2 v]√

sin2 u+ cos2 u sin2 u
.

A.3.2 Geodesic noise on tori635

A curve γ = X ◦ α on the torus is a geodesic if and only636

if α satisfies637

α̈1(t) =
(a+ c sinα1(t)) cosα1(t)

c
· α̇2(t)

2
638

α̈2(t) = 2
c cosα1(t)

a+ c sinα1(t)
· α̇1(t)α̇2(t).639

A.3.3 Brownian motion on tori640

We obtain the Brownian motion terms641

duk(t) =

[ cosu
2c(a+c sinu)

0

]
k

dt,642

+

[(
1
c

0
0 1

a+c sinu

)
dB(t)

]
k

643

B Implementation details644

B.1 Geodesic noise645

To simplify our computations, instead of sampling a
vector ϵ⊤ ∼ N

(
0, σ2P

)
in the tangent space, we can

also sample a vector ϵ̃ in the parameter space Rd from

an adjusted distribution. In the following assume that
u ∈ Rd, X(u) = x ∈ M, where X is a smooth
parametrisation of a regular manifold M. As previously
described, the Jacobian transforms vectors in the pa-
rameter space to the tangent space, i.e. for a vector
ϵ ∈ TuRd, we have that

ϵ = JX ϵ̃ ∈ TxM

For the inverse relation, we obtain

ϵ̃ = g−1J⊤
Xϵ.

Consequently, if

ϵ ∼ N (0, σ2ID),

then for its tangential component it holds that

ϵ⊤ ∼ N (0, σ2P),

and for the pull-back it holds that 646

ϵ̃⊤ ∼ N
(
0, σ2g−1J⊤

XPJXg−1
)
, (9) 647

which follows from affine transformation properties of 648

the multivariate Gaussian distribution. 649

We now can find the curve α : R → Rd such that

α(0) = X−1(x), α̇(0) = ϵ̃⊤.

Our new sample point is then

x̃ = X (α(∥ϵ̃⊤∥)) .

This method is equivalent to the one described in Sub- 650

section 3.2. For simplicity, we ignore the injectivity 651

radius of the domain of the exponential map. This is 652

not a problem since we do not require injectivity for our 653

purposes and the manifolds we consider are complete. 654

B.2 Functions on the manifolds 655

For the Sphere, SqueezedSphere and DeformedSphere,
we select the target function as:

y = v

i.e. the second local coordinate. 656

657

For the Bead we select the target function as:

y = sin v

i.e. a periodic function of the second local coordinate. 658

659

For the OnionRing we select the target function as:

y = 100 · c · cosu = 100 · z

i.e. the scaled height of the manifold. 660

661

For the SwissRoll we select the target function as:

y = u

i.e. the first local coordinate, which is a linearly increas- 662

ing function along the roll. 663
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C Details on manifold defor-664

mations665

Recall the definition of the flow field from Equation 8:

d

dt
ϕt (X (u)) = vt (ϕt (X (u))) .

We take the derivative with respect to the local coor-
dinates u and get

∂

∂u

(
d

dt
ϕt (X (u))

)
=

∂

∂u
vt (ϕt (X (u))) ,

which is equivalent to

d

dt

∂

∂u
ϕt (X (u)) =

∂

∂u
vt (ϕt (X (u))) .

By using the chain rule on the right hand side, we get

d

dt

∂

∂u
ϕt (X (u)) =

∂vt (ϕt (x))

∂ϕt

∣∣∣∣
x=X(u)

∂

∂u
ϕt (X (u)) .

We get the Jacobian ODE by setting666

Ju (t) :=
∂ϕt (X (u))

∂u
,667

Jv (t) :=
∂vt (ϕt (x))

∂ϕt

∣∣∣∣
x=X(u)

.668
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