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Abstract
Within a prediction task, Graph Neural Networks
(GNNs) use relational information as an induc-
tive bias to enhance the model’s accuracy. As
task-relevant relations might be unknown, graph
structure learning approaches have been proposed
to learn them while solving the downstream pre-
diction task. In this paper, we demonstrate that
minimization of a point-prediction loss function,
e.g., the mean absolute error, does not guarantee
proper learning of the latent relational informa-
tion and its associated uncertainty. Conversely, we
prove that a suitable loss function on the stochas-
tic model outputs simultaneously grants (i) the
unknown adjacency matrix latent distribution and
(ii) optimal performance on the prediction task.
Finally, we propose a sampling-based method that
solves this joint learning task. Empirical results
validate our theoretical claims and demonstrate
the effectiveness of the proposed approach.

1. Introduction
Relational information processing has provided break-
throughs in the analysis of rich and complex data coming
from, e.g., social networks, natural language, and biology.
This side information takes various forms, from structur-
ing the data into clusters, to defining causal relations and
hierarchies, and enables machine learning models to condi-
tion their predictions on dependency-related observations.
In this context, predictive models y = fψ(x,A) condition
the input-output relation x 7→ y – modeled by fψ and its
parameters in ψ – on the relational information encoded in
variable A. This paper focuses on Graph Neural Networks
(GNNs) [Scarselli et al., 2008], a successful example of
models that rely on a graph structure represented as an ad-
jacency matrix A, e.g., see [Fout et al., 2017; Shlomi et al.,
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2020].

Not rarely, such topological information is inadequate to
address the problem at hand or even completely unavail-
able. Therefore, Graph Structure Learning (GSL) emerges
as an approach for learning the graph topology alongside the
predictive model fψ. This entails formulating a joint learn-
ing process that learns a parametrization of A altogether
with the predictor’s parameters ψ. Examples of GSL appear
within graph deep learning methods for both static [Jiang
et al., 2019; Yu et al., 2021; Kazi et al., 2022] and temporal
data [Wu et al., 2019; 2020; Cini et al., 2023; De Felice et al.,
2024]; a recent review is provided by Zhu et al. [2021].

Different sources of uncertainty affect the GSL process,
including epistemic uncertainty in the data and variability
inherent in the data-generating process. To capture it, prob-
abilistic approaches have been devised and model A ∼ P θ

as a random variable with parametric distribution P θ [Kipf
et al., 2018; Franceschi et al., 2019; Elinas et al., 2020;
Shang et al., 2021; Niepert et al., 2021; Cini et al., 2023].

In this paper, we address the joint problem of learning a
predictive model yielding optimal point predictions of the
outputs y and, contextually, a calibrated distribution for the
latent adjacency matrix A; to the best of our knowledge, no
prior work on GSL has studied such joint problem before.
The novel contributions can be summarized as:

1. We demonstrate that models trained to achieve optimal
point predictions do not guarantee calibration of the
adjacency matrix distribution [Section 3].

2. We provide theoretical conditions on the predictive
model and loss function that guarantee both distribu-
tion calibration and optimal point-predictions [Sec-
tion 4].

3. We propose a theoretically-grounded sampling-based
learning method to address the joint learning problem
[Section 4].

4. We empirically validate major paper’s theoretical de-
velopments and claims and show that the proposed
method is indeed able to solve the joint learning task
[Section 5].
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2. Problem formulation
Consider a set of N interacting entities and the data-
generating process {

y = f∗(x,A)

A ∼ P ∗
A

(1)

where y ∈ Y ⊆ RN×dout is the system output obtained
from input x ∈ X ⊆ RN×din through function f∗ and
conditioned on a realization of the latent adjacency matrix
A ∈ A ⊆ {0, 1}N×N drawn from P ∗

A; superscript ∗ refers
to unknown entities. Each entry of the adjacency matrix
A is a binary value encoding the existence of a pairwise
relation between two nodes.

Given a training dataset D = {(xi, yi)}ni=1 of n input-
output observations from (1), we aim at learning a prob-
abilistic predictive model{

ŷ = fψ(x,A)

A ∼ P θA
(2)

from D, while learning at the same time distribution P θA
approximating P ∗

A. The two parameter vectors θ and ψ
approximate distribution P ∗

A and function f∗, respectively.
We assume
Assumption 2.1. The family {P θA} of probability distribu-
tions P θA parametrized by θ and the family of predictive
functions {fψ} are expressive enough to contain the true
latent distribution P ∗

A and function f∗, respectively.

Assumption 2.1 implies that f∗ ∈ {fψ} and P ∗
A ∈ {P θA}.

Under such assumption the minimum function approxima-
tion error is null and we can focus on the theoretical con-
ditions requested to guarantee a successful learning, i.e.,
achieving both optimal point predictions and latent distribu-
tion calibration.

Optimal point predictions Outputs y and ŷ of proba-
bilistic model (1) and (2) are random variables following
push-forward distributions1 P ∗

y|x and P θ,ψy|x , respectively. A
single point prediction yPP ∈ Y can be obtained through
an appropriate functional T [·] as

yPP = yPP (x, θ, ψ) ≡ T
[
P θ,ψy|x

]
. (3)

For example, T can be the expected value or the value at
a specific quantile. We then define an optimal predictor
as one whose parameters θ and ψ minimize the expected
point-prediction loss

Lpoint(θ, ψ) = Ex∼P∗
x

[
Ey∼P∗

y|x

[
ℓ
(
y, yPP (x, θ, ψ)

)]]
(4)

1The distribution of y = f∗(x,A) originated from P ∗
A and of

ŷ = fψ(x,A) originated from P θA.

between the system output y and the point-prediction yPP ,
as measured by of a loss function ℓ : Y × Y → R+.

Statistical functional T is coupled with the loss ℓ as the
optimal functional T to employ given a specific loss ℓ is
often known [Berger, 1990; Gneiting, 2011], when P θ,ψy|x
approximates well P ∗

y|x. For instance, if ℓ is the Mean
Absolute Error (MAE) the associated functional T is the
median, if ℓ is the Mean Squared Error (MSE) the associated
functional is the expected value.

Latent distribution calibration Calibration of a
parametrized distribution requires learning parameters θ,
so that distribution P θA aligns with P ∗

A. Quantitatively, a
dissimilarity measure ∆cal : PA × PA → R+, defined
over a set PA of distributions on A, assesses how close
two distributions are. The family of f -divergences [Rényi,
1961] and the integral probability metrics [Müller, 1997]
are examples of such dissimilarity measures. In this
paper, we are interested in those discrepancies for which
∆cal(P1, P2) = 0 ⇐⇒ P1 = P2 holds. It follows that the
latent distribution P θA is calibrated on P ∗

A if it minimizes
the latent distribution loss

Lcal = Ex∼P∗
x

[
∆cal

(
P ∗
A, P

θ
A

)]
, (5)

The problem of designing a predictive model (2) that both
yields optimal point predictions and calibrates the latent
distribution is non-trivial

3. Limitations of point-prediction optimization
In this section, we demonstrate that the optimization of a
point prediction loss Equation (4) does not generally grant
calibration of the latent random variable.
Proposition 3.1. Consider Assumption 2.1. Loss func-
tion Lpoint(θ, ψ) in (4) is minimized by all θ and ψ s.t.

T
[
P θ,ψy|x

]
= T

[
P ∗
y|x

]
almost surely on x and, in particular,

Lpoint(θ, ψ) is minimal
⇐=
≠⇒ P θ,ψy|x = P ∗

y|x.

The proof of the proposition is given in Appendix A.1;
we provide a counterexample for which calibration is not
granted even when the processing function fψ is equal to
f∗ in Appendix A.2. Figure 1 supports the proposition’s
claim by showing a view of the optimization landscape of
Lpoint with MAE as ℓ that is flatter than the proposed Ldist
discussed in Section 4.

Given the provided negative result and the impossibility of
assessing loss Lcal in (5), in the next section, we propose
another optimization objective that, as we will prove, allows
us to both calibrate the latent random variable and to have
optimal point predictions.
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Figure 1: Comparison of the landscape of loss Lpoint in (4)
with MAE as ℓ (red) and loss Ldist in (6) with MMD as
∆ (blue). The losses are evaluated for different values of
θ on the data generated from parameter θ∗ = 3/4. Further
details are in Appendix C.2.

4. Predictive distribution optimization: two
birds with one stone

Optimal point predictions (2) and latent distribution cali-
bration can be achieved by comparing push-forward distri-
butions P ∗

y|x and P θ,ψy|x . In particular, Theorem 4.2 below
proves that, under appropriate conditions, minimization of
the output distribution loss

Ldist(θ, ψ) = Ex∼P∗
x

[
∆(P ∗

y|x, P
θ,ψ
y|x )

]
(6)

provides calibrated P θA, even when P ∗
A is not available;

∆ : Py × Py → R+ is a dissimilarity measure between
distributions over space Y . We assume the following on ∆.
Assumption 4.1. ∆(P1, P2) ≥ 0 for all distributions P1

and P2 in Py and ∆(P1, P2) = 0 if and only if P1 = P2.

Several choices of ∆ meet Assumption 4.1. As detailed
below, we propose considering the Maximum Mean Dis-
crepancy (MMD) [Gretton et al., 2012].
Theorem 4.2. Let I = {x : A 7→ f∗(x,A) is injective} ⊆
X be the set of points x ∈ X such that map A 7→ f∗(x,A)
is injective. Under Assumptions 2.1 and 4.1, if Px∼P∗

x
(I) >

0, then

Ldist(θ, ψ∗) = 0 =⇒

{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0,

where ψ∗ is such that fψ∗ = f∗.

Theorem 4.2 is proven in Appendix A.3. Under the theo-
rem’s hypotheses, a predictor that minimizes Ldist is both
calibrated on the latent random distribution and provides
optimal point predictions. This overcomes limits of Proposi-
tion 3.1 where optimization of Lpoint(θ, ψ∗) does not grant
Lcal(θ) = 0.

The hypotheses under which Theorem 4.2 holds are rather
mild. In fact, condition Px∼P∗

x
(I) > 0 pertains to the data-

generating process. Instead, condition fψ = f∗ is set to
avoid scenarios of different, yet equivalent,2 representations
of the latent distribution. Assumptions 2.1 and 4.1 can be
met with an appropriate choice of model (2) and measure
∆; as such they are controllable by the designer.

Maximum mean discrepancy Given two distributions
P1, P2 ∈ Py, the MMD can be defined from a kernel func-
tion κ(·, ·) : Y × Y → R as

MMD2
κ[P1, P2] = E

y1,y′1∼P1

[
κ(y1, y

′
1)
]
+

− 2 E
y1∼P1
y2∼P2

[
κ(y1, y2)

]
+ E
y2,y′2∼P2

[
κ(y2, y

′
2)
]

(7)

and provides a versatile choice of ∆ that allows Monte
Carlo (MC) computation without requiring evaluations of
the likelihood w.r.t. the output distributions P ∗

y|x and P θ,ψy|x .
In particular, when universal kernels are considered (e.g.,
the Gaussian one), then Assumption 4.1 is fulfilled [Gretton
et al., 2012].

Finite-sample loss optimization To compute the gradi-
ents of Ldist(θ, ψ) w.r.t. parameter vectors ψ and θ, we rely
on MC sampling, obtaining

∑
(x,y)∈B

(
2
∑Nadj
i=1

∑i−1
j=1 κ(ŷi, ŷj)

Nadj(Nadj − 1)
− 2

∑Nadj
i=1 κ(y, ŷi)

Nadj

)
(8)

as an approximation of Ldist, whereNadj > 1 is the number
of adjacency matrices sampled from P θA to obtain output
samples ŷi = fψ(x,Ai) ∼ P θ,ψy|x , whereas the pairs (x, y)
are from a mini-batch B of the training set D. Note that the
third term of (7) is dropped as it is independent of ψ and θ.

While gradient ∇ψLdist(θ, ψ) is computed directly via au-
tomatic differentiation, ∇θLdist(θ, ψ) special care, the gra-
dient is computed with respect to the same parameter vector
θ that defines the integrated distribution. Here, we rely on
a score-function gradient estimator (SFE) [Williams, 1992;
Mohamed et al., 2020] as in [Cini et al., 2023]. A ver-
sion of the algorithm with reduced variance is detailed in
Appendix B.

5. Experiments
Experiments employ a synthetic dataset to evaluate the dis-
crepancy between the true latent distribution and the learned
one. We remark that the latent distribution P ∗

A is used only

2E.g., fψ(A, x) = f∗(1−A, x) and P θA encoding the absence
of edges instead of their presence as in P ∗

A.
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Figure 2: Validation losses Ldist, Lcal and Lpoint during training. At epoch 5, the learning rate is decreased to ensure
convergence. Results are averaged over 20 model initializations and shaded areas indicate ±1 standard deviation from the
mean. Results are reported with and without applying the variance reduction technique (see Appendix B), by training only
parameters θ while freezing ψ to ψ∗ (same setting of Theorem 4.2), and by joint training of both ψ and θ.

to assess performance and does not drive the model training
in any way.

Dataset and models Consider data-generating process
(1) with latent distribution P ∗

A = P θ
∗

A producing N -node
adjacency matrices. P ∗

A is defined by a set of N × N
independent Bernoulli distributions, each of which corre-
sponds to the sampling probability of an edge. Function
f∗ = fψ∗ is a generic GNN with node-level readout, i.e.,
fψ∗(·, A) : RN×din → RN×dout . As predictive model fam-
ily (2), we follow the same architecture of fψ∗ and P θ

∗

A

ensuring that during all the experiments Assumption 2.1 is
fulfilled. Additional specifics are detailed in Appendix C.

Solving the joint learning problem The left panel of Fig-
ure 2 shows that the training succeeded and the MMD loss
Ldist approached its minimum (dotted line). Once Ldist
reaches its minimum, also the calibration of latent distribu-
tion P θA is successful. Specifically, the central panel shows
that the validation MAE (N−2∥θ∗−θ∥1) approaches zero as
training proceeds (MAE < 0.04). Regarding the point pre-
dictions, the right-hand side of Figure 2 confirms that Lpoint
reached its minimum value; recall that optimal prediction
MAE is not 0, as the target variable y is random, and note
that a learning rate reduction is applied at epoch number 5.
Moreover, we observe that calibration is achieved regard-
less of the variance reduction (see Appendix B), although
variance reduction increases convergence speed.

Optimization landscape of Lpoint and Ldist In this
experiment, we analyze the values of Lpoint(θ, ψ∗) and
Ldist(θ, ψ∗) for different values of θ. Lpoint is computed
employing MAE as loss function ℓ. Specifically, we let
a scalar p vary from 1/2 to 1 and set θij = p for all i, j
where θ∗ij = 3/4. Figure 1 reports the obtained results,
highlighting an almost flat Lpoint for values p ≥ 0.725. In
contrast, Ldist displays a pronounced concave shape with a
clear minimum around θ∗ which suggests that calibration is
easier when we minimize Ldist instead of Lpoint.

Overall, we conclude that our approach is effective in solv-
ing the joint learning problem of calibrating the latent vari-
able while producing optimal point predictions.

6. Conclusions
Graph structure learning has emerged as a research field
focused on learning graph topologies in support of solving
downstream predictive tasks. Assuming stochastic latent
graph structures, we are led to a joint optimization objective:
(i) learning the correct distribution of the latent topology
while (ii) achieving optimal point predictions on the down-
stream task. In this paper, at first, we prove both positive and
negative theoretical results to demonstrate that appropriate
loss functions must be chosen to solve this joint learning
problem. Second, we propose a sampling-based learning
method that does not require the computation of the predic-
tive likelihood. Our empirical results demonstrate that this
approach achieves optimal point predictions on the consid-
ered downstream task while also yielding calibrated latent
graph distributions.

Finally, we acknowledge that the proposed method requires
sampling and processing multiple adjacency matrices for
each input and, although the model and prediction accuracy
is enhanced, a computation overhead is requested. We plan
future research to explore the applicability of this method to
real-world datasets and to other classes of neural networks
beyond GNNs; the current study, in fact, focuses on a set of
controlled experiments on synthetic data to validate all the
theoretical claims.
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A. Proofs of the theoretical results
A.1. Minimizing Lpoint does not guarantee calibration

Proof of Proposition 3.1.

Proof. Recall the definition of Lpoint in (4) using (3)

Lpoint(ψ, θ) = Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
P θ,ψy|x

])]]
Given loss function ℓ, T is, by definition [Berger, 1990; Gneiting, 2011], the functional that minimizes

Ey∗∼P∗
y|x

[
ℓ
(
y∗, T

[
P ∗
y|x
])]

Therefore, if P θ,ψy|x = P ∗
y|x =⇒ Lpoint is minimal. If another distribution over y, namely, Pψ

′,θ′

y|x parametrized by θ′ and ψ′

satisfies:
T
[
Pψ

′,θ′

y|x

]
= T

[
P ∗
y|x

]
almost surely on x, then,

Lpoint(θ′, ψ′) = Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
Pψ

′,θ′

y|x
])]]

= Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
P ∗
y|x
])]]

Thus, Pψ
′,θ′

y|x minimizes Lpoint.

Appendix A.2 discusses graph distributions where T
[
Pψ

′,θ′

y|x
]
= T

[
P ∗
y|x
]

but Pψ
′,θ′

y|x ̸= P ∗
y|x. We conclude that reaching the

minimum of Lpoint(ψ, θ) does not imply Pψ,θy|x = P ∗
y|x.

A.2. Minimizing Lpoint does not guarantee calibration: an example with MAE

In this section, we show that Lpoint equipped with MAE as ℓ admits multiple global minima for different parameters θ, even
for simple models and fψ = f∗.

Consider a single Bernoulli of parameter θ∗ > 1/2 as latent variable A and a scalar function f∗(x,A) such that f∗(x, 1) >
f∗(x, 0) for all x. Given input x the value of functional T (P ∗

y|x) that minimizes

Ey∼P∗
y|x

[ ∣∣∣y − T
[
P ∗
y|x
]∣∣∣ ] = θ∗

∣∣∣f∗(x, 1)− T
[
P ∗
y|x
]∣∣∣+ (1− θ∗)

∣∣∣f∗(x, 0)− T
[
P ∗
y|x
]∣∣∣

is T (P ∗
y|x) = f∗(x, 1); this derives from the fact that range of f∗ is {f∗(x, 0), f∗(x, 1)} and the likelihood of f∗(x, 1) is

larger than that of f∗(x, 0).

Note that T
[
P ∗
y|x
]
= f∗(x, 1) for all x, therefore also Lpoint is minimized by such T . Moreover, T

[
P ∗
y|x
]

is function of θ∗

and equal to f∗(x, 1) for all θ > 1/2. We conclude that for any θ ̸= θ∗ distributions P θ,ψy|x and P ∗
y|x are different, yet both of

them minimize Lpoint if θ > 1/2.

A similar reasoning applies for θ∗ < 1/2.

A.3. Minimizing Ldist guarantees calibration and optimal point predictions.

Proof of Theorem 4.2

Proof. Recall from Equation (6) that
Ldist(θ) = Ex

[
∆(P ∗

y|x, P
θ
y|x)
]

We start by proving that if Ldist(θ, ψ) = 0 =⇒ Lpoint(θ, ψ) is minimal.

7
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Note that Ldist(θ, ψ) = 0 implies that ∆(P ∗
y|x, P

θ
y|x) = 0 almost surely in x. Then, by Assumption 4.1, P ∗

y|x = Pψ,θy|x

almost surely on x and, in particular, T [P ∗
y|x] = T [Pψ,θy|x ], which leads to Lpoint(ψ, θ) being minimal (Proposition 3.1).

We now prove that if Ldist(θ, ψ∗) = 0 =⇒ Lcal(θ) = 0.

From the previous step, we have that Ldist(θ, ψ) = 0 implies P ∗
y|x = Pψ,θy|x almost surely for x ∈ I . Under the assumption

that fψ = f∗ and the injectivity of f∗ in such x ∈ I , for any output y a single A exists such that f∗(x,A) = y. Therefore,
the probability mass function of y equals that of A. Accordingly, P ∗

y|x = Pψ,θy|x implies P ∗
A = P θA.

Here, we also prove a corollary of Theorem 4.2.

Corollary A.1. Under Assumptions 2.1 and 4.1, if

1. ∃x̄ ∈ Supp(P ∗
x ) ⊆ X such that f∗(x̄; ·) is injective,

2. f∗(x,A) is continuous in x̄ ∀A ∈ A,

then

Ldist(θ, ψ∗) = 0 =⇒

{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0,

The corollary shows that it is sufficient that f∗ is continuous in x and there exists one point x̄ where f∗(x̄, · ) is injective to
meet theorem’s hypothesis Px∼P∗

x
(I) > 0; we observe that, as A is discrete, the injectivity assumption is not as restrictive

as if the domain were continuous.

Proof. As A is a finite set, the minimum ϵ̄ = minA,A′∈A∥f∗(x̄, A) − f∗(x̄, A′)∥ > 0 exists and, by the injectivity
assumption, is strictly positive.

By continuity of f∗( · , A), for every ϵ < 1
2 ϵ̄ there exists δ, such that for all x ∈ B(x̄, δ) we have ∥f∗(x̄, A)−f∗(x,A)∥ < ϵ.

It follows that, ∀x ∈ B,

∥f∗(x,A)− f∗(x,A′)∥
≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − ∥f∗(x̄, A)− f∗(x,A)∥ − ∥f∗(x̄, A′)− f∗(x,A′)∥
≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − 2ϵ

≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − ϵ̄ > 0

Finally, as x̄ ∈ Supp(P ∗
x ) and B(x̄, δ) ⊆ I , we conclude that

Px(I) ≥ Px(B(x̄, δ)) > 0,

therefore, we are in the hypothesis of Theorem 4.2 and can conclude that

Ldist(θ, ψ∗) = 0 =⇒

{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0,

B. Reducing the variance of the gradient estimator
B.1. Score-function gradient estimator

For computing ∇θLdist(θ, ψ), we rely on a score-function gradient estimator (SFE) [Williams, 1992; Mohamed
et al., 2020] which uses the log derivative trick to rewrite the gradient of an expected loss L as ∇θEA∼P θ [L(A)] =

8
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EA∼P θ [L(A)∇θ logP
θ(A)], with P θ(A) denoting the likelihood of A ∼ P θ. Applying the SFE to our problem the

gradient of the loss function w.r.t. θ reads:

∇θLdist(ψ, θ) = E
(x,y∗)∼P∗

x,y

[
E

ŷ1,ŷ2∼P θ,ψy|x

[
κ(ŷ1, ŷ2)∇θ log

(
P θ,ψy|x (ŷ1)P

θ,ψ
y|x (ŷ2)

)]
− 2 E

ŷ∼P θ,ψ
y|x

[
κ(y∗, ŷ)∇θ logP

θ,ψ
y|x (ŷ)

] ]
(9)

SFEs are known to suffer of high variance [Mohamed et al., 2020]. Following Section B.2 derives a variance-reduction
technique based on control variates that requires negligible computational overhead.

B.2. Variance-reduced loss for SFE

Two natural approaches to reduce the variance of MC estimates of (9) involve (i) increasing the number B of training data
points in the mini-batch used for each gradient estimate and (ii) increasing the number Nadj of adjacency matrices sampled
for each data point in (7). These techniques act on two different sources of noise. Increasing B decreases the variance
coming from the data-generating process, whereas increasing Nadj improves the approximation of the predictive distribution
P θ,ψy|x . Nonetheless, by fixing B and Nadj , it is possible to further reduce the latter source of variance by employing the
control variates method [Mohamed et al., 2020] that, in our case, requires only a negligible computational overhead but
sensibly improves the training speed (see Section 5).

Consider the expectation EA∼P θ [L(A)∇θ logP
θ(A)] of the SFE – both terms in (9) can be cast into that form. With the

control variates method, L(A) is replaced by a surrogate function

L̃(A) = L(A)− β
(
h(A)− EA∼P θ [h(A)]

)
(10)

that leads to a reduced variance in MC estimator while maintaining it unbiased. In this paper, we set function h(A) to
∇θ logP

θ(A) and show how to compute a near-optimal choice for scalar value β, often called baseline in the literature. As
the expected value of ∇θ logP

θ(A) is zero, gradient (9) rewrites as

∇θLdist = E
(x,y∗)∼P∗

x,y

[
E

A1,A2∼P θA

[
(κ(fψ(x,A1), fψ(x,A2))− β1) ∇θ log

(
P θA(A1)P

θ
A(A2)

)]
− 2 E

A∼P θA

[
(κ(y∗, fψ(x,A))− β2) ∇θ logP

θ
A(A)

] ]
. (11)

In Appendix B.3, we show that in our setup the best values of β1 and β2 are approximated by

β̃1 = E
x∼P∗

x

A1,A2∼P θA

[
κ
(
fψ(x,A1), fψ(x,A2)

)]
, β̃2 = E

(x,y∗)∼P∗
x,y

A∼P θA

[
κ
(
y∗, fψ(x,A)

)]
, (12)

which can be efficiently computed via MC, as kernel values in (12) are already computed to estimate (11).

B.3. Estimation of optimal β1 and β2

Here we show that, when reducing the variance of the SFE via control variates in (11), the best β1 and β2 can be approximated
by

β̃1 = E
x∼P∗

x

A1,A2∼P θA

[
κ (fψ(x,A1), fψ(x,A2))

]
, β̃2 = E

(x,y∗)∼P∗
x,y

A∼P θA

[
κ (y∗, fψ(x,A))

]
, (13)

Consider generic function L(A) depending on a sample A of a parametric distribution P θA(A) and the surrogate loss L̃(A)
in (10), i.e.,

L̃(A) = L(A)− β
(
h(A)− EA∼P θ [h(A)]

)
; (14)

9
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Figure 3: The adjacency matrices used in this paper are sampled from this graph. Each edge in orange is independently
sampled with probability θ∗. In the picture 3 communities of an arbitrarly large graph are shown.

This choice is not new in the literature [Sutton et al., 1999; Mnih et al., 2016] where β is often referred to as baseline. The
1-sample MC approximation of the loss becomes

∇θEA∼P θ [L(A)] ≈ L̃(A′)∇θ logP
θ(A′) = (L(A′)− β)∇θ logP

θ(A′), (15)

with A′ sampled from P θA. The variance of the estimator is

VA∼P θ
[
(L(A)− β)∇θ logP

θ(A)
]
= VA∼P θ

[
L(A)∇θ logP

θ(A)
]
+

+ β2 EA∼P θ
[(
∇θ logP

θ(A)
)2]− 2β EA∼P θ

[
L(A)

(
∇θ logP

θ(A)
)2]

(16)

and the optimal value β that minimizes it is

β̃ =
EA∼P θ

[
L(A)

(
∇θ logP

θ(A)
)2]

EA∼P θ
[
(∇θ logP θ(A))

2
] (17)

If we approximate the numerator with E[L(A)]E[(∇θ logP
θ(A))2], we obtain that β̃ ≈ E[L(A)]. By substituting L(A)

with the two terms of (9) we get the values of β1 and β2 in (13).

We experimentally validate the effectiveness of this choice of β in Section 5.

C. Further experimental details
C.1. Dataset description and models

In this section, we describe the considered synthetic dataset, generated from the system model (1). The latent graph
distribution P ∗

A is a multivariate Bernoulli distribution of parameters θ∗ij : P
∗
A ≡ Pθ∗(A) =

∏
ij θ

∗Aij
ij (1− θ∗ij)

(1−Aij). The
components of θ∗ are all null, except for the edges of the graph depicted in Figure 3 which are set to 3/4. A heatmap of the
adjacency matrix can be found in Figure 4.

Regarding the GNN function f∗, we use the following system model:
y = fψ∗(A, x) = tanh

(
L∑
l=1

1[Al ̸= 0]xψ∗
l

)
A ∼ Pθ∗(A)

(18)

Where 1[·] is the element-wise indicator function: 1[a] = 1 ⇐⇒ a is true. x ∈ RN x din are randomly generated inputs:
x ∼ N (0, σ2

xI). ψ∗
l ∈ Rdout x din are part of the system model parameters. We summarize the parameters considered in our

experiment in Table 1.

The approximating model family (2) used in the experiment is the same as the data-generating process, with all components
of parameter vectors θ and ψ being trainable. The squared MMD discrepancy is defined over Rational Quadratic kernel

10
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Figure 4: θ∗ij parameters for each edge of the latent adjacency matrix. Each square corresponds to an edge, the number
inside is the probability of sampling that edge for each prediction.

θ∗ 0.75

σx 1.5

N 12

din 4

dout 1

ψ∗
1 [−0.2, 0.4, −0.8, 0.6]

ψ∗
2 [−0.3, 0.8, 0.2, −0.7]

Table 1: Table of the parameters used to generate the synthetic dataset.
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[Bińkowski et al., 2018]

κ(y′, y′′) =

(
1 +

∥y′ − y′′∥22
2ασ2

)−α

of parameters σ = 0.7 and α = 0.02.

The model is trained using Adam optimizer [Kingma & Ba, 2014] with parameters β1 = 0.6, β2 = 0.95. Where not
specified, the learning rate is set to 0.1 and decreased to 0.01 after 5 epochs. We grouped data points into batches of size
128. Initial values of θ are independently sampled from the U(0.25, 0.35) uniform distribution.

C.2. Description of the experiment in Section 3

In this experiment, we generate 512 data points using the system model described in Appendix C.1. We construct a model
identical to the system model, except that θij = p for all i, j where θ∗i,j = 0.75 and 0 elsewhere. We vary scalar p from 0.5
to 1 with steps of 0.025. Therefore, only the model with p = 0.75 is identical to the data-generating model.

For each input x in the dataset, a point prediction is produced by sampling Nadj = 32 adjacency matrices and computing
the median. This approach allows to estimate Lpoint using the MAE as loss function ℓ, as depicted by the red points in
Figure 1, for different values of θ. For comparison purposes, we estimate Ldist using the maximum mean discrepancy as
proposed in Section 4.

C.3. Compute resources and open-source software

The paper’s experiments were run on a workstation with AMD EPYC 7513 processors and NVIDIA RTX A5000 GPUs; on
average, a single model training terminates in a few tens of minutes with a memory usage of about 2GB.

The developed code relies on PyTorch [Paszke et al., 2019] and the following additional open-source libraries: PyTorch
Geometric [Fey & Lenssen, 2019], NumPy [Harris et al., 2020] and Matplotlib [Hunter, 2007].
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