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Abstract001

Despite accounting for almost half of health002
outcome variance, social determinants of health003
(SDOH), encompassing socioeconomic, envi-004
ronmental, and behavioral factors, remain chal-005
lenging to extract from clinical text. We present006
the first comprehensive survey of LLM-driven007
SDOH extraction, examining how large lan-008
guage models can address this critical extrac-009
tion challenge while introducing new ethical010
considerations. Synthesizing over 80 peer-011
reviewed studies to chart the field’s evolution012
from rule-based systems to modern generative013
models, our analysis reveals that transformer-014
based approaches consistently outperform ear-015
lier machine learning methods, with parameter-016
efficient techniques like prompt tuning and017
retrieval-augmented generation making these018
advances feasible under clinical resource con-019
straints. However, we identify critical gaps:020
most research lacks essential bias audits, pri-021
vacy protections, and hallucination controls re-022
quired for clinical deployment. While emerg-023
ing ethical frameworks show promise, their024
adoption remains limited. We consolidate best025
practices for reproducible SDOH extraction026
and highlight key challenges, including mul-027
tilingual coverage, cross-institutional general-028
ization, and cost-effective deployment. This029
survey provides both a technical road-map and030
an ethical framework for advancing SDOH ex-031
traction toward safe, responsible clinical inte-032
gration.033

1 Introduction034

1.1 The SDOH Extraction Challenge035

Social determinants of health (SDOH), including036

socioeconomic, environmental, and behavioral con-037

ditions, account for 30–55% of morbidity and mor-038

tality variance and up to 80–90% of modifiable risk039

in high-income countries (Bhavnani et al., 2023;040

Magnan, 2017). These factors, education, hous-041

ing, employment, substance use, and neighborhood042

Figure 1: SDOH Event-Based Task Formulation

environment, influence life expectancy and cause 043

tens of thousands of preventable deaths annually 044

in the United States (Magnan, 2017). Since most 045

SDOH signals appear in EHR free-text (Guevara 046

et al., 2024; Hatef et al., 2021), scalable and accu- 047

rate extraction is essential for public health, reim- 048

bursement, and clinical support. However, manual 049

abstraction is costly and error-prone, underscoring 050

the need for automated methods that are both tech- 051

nically robust and ethically responsible. To address 052

these extraction challenges, large language models 053

(LLMs) have transformed clinical NLP by offer- 054

ing unprecedented capabilities for understanding 055

nuanced medical language and complex reason- 056

ing. Yet LLMs introduce critical new challenges 057

around hallucination, bias amplification, and de- 058

ployment complexity that are particularly danger- 059

ous for SDOH extraction, where errors can perpet- 060

uate health disparities. Automation often replicates 061

the same limitations of bias and inaccuracy, high- 062

lighting the need for careful design to solve, rather 063

than merely shift, manual approaches’ challenges. 064
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SDOH Extraction

Future Directions

Deployability
(Abdin et al., 2024)

Phi-3 (3.8 B)

(Dennstädt et al., 2025)
LLMs in Hospitals

Multilingual
(Marimon et al., 2019)

MEDDOCAN (ES)

(Conneau et al.,
2019) XLM-R

Synthetic Data (Woo et al.,
2024) Distillation

Ethical Considerations

Hallucination Control
(Manakul et al.,

2023) SelfCheckGPT

(Bannur et al., 2024) RadFact

Privacy
(Abadi et al., 2016) DP-SGD

(Kaissis et al., 2020)
Federated Learning

Bias & Fairness
(Obermeyer et al.,

2019) Cost Proxy Bias

(Zack et al., 2024)
GPT-4 Audit

Datasets

Fine-grained
(Lybarger et al., 2021) SHAC

(Yetisgen and Vanderwende,
2017) Substance Abuse

Note-level
(Uzuner et al., 2008)

i2b2 Smoking

(Feller et al., 2018)
CUMC (2018)

Approaches

Generative / Prompt
(Romanowski et al.,
2023) T5 Seq2Seq

(Ramachandran et al.,
2023) Few-shot GPT-3

Fine-tuned LMs
(Han et al., 2022) BERT

(Richie et al., 2023)
Multitask BERT

Non-Transformer DL (Rajendran and Topaloglu,
2020) LSTM Smoking

Traditional ML (Lingeman et al.,
2018) Opioid SVM

Rule-based (Uzuner et al., 2008)
i2b2 Smoking Rules

Figure 2: Survey-centric taxonomy: methodological approaches, dataset types, key ethical considerations, and
forward-looking research directions for SDOH extraction.

1.2 Study Selection065

We conducted a PRISMA-inspired review (Hutton066

et al., 2016), querying PubMed, ACL Anthology,067

IEEE Xplore, ACM Digital Library, and Google068

Scholar, which yielded 2,595 articles (See Ap-069

pendix A). After removing duplicates, non-research070

content, and inaccessible papers, 438 remained for071

title and abstract screening. The final set included072

81 peer-reviewed studies covering rule-based to073

modern LLMs for SDOH extraction, including074

works on ethics, bias, and hallucination in clini-075

cal NLP. The literature search, conducted between076

February and June 2025 (covering publications077

up to May 15, 2025), employed Boolean queries078

such as “social determinants of health”079

AND (“NLP” OR “information extraction”),080

“SDOH” AND (“transformer” OR “GPT” OR081

“BERT”), “clinical extraction” AND (“bias”082

OR “privacy” OR “hallucination”), etc. We083

included studies using ML or LLMs for extract-084

ing SDOH from clinical free-text with empirical085

results, excluding those limited to structured data086

or without methodological contributions. While 087

many papers discuss ethics and bias in SDOH, few 088

propose concrete solutions. To address this gap, we 089

also reviewed broader “clinical extraction” 090

research for transferable methodologies. 091

1.3 Related Work 092

Early surveys on SDOH extraction focused on rule- 093

based and classical machine learning methods. Pa- 094

tra et al., Bompelli et al., and Li et al. reviewed 095

foundational NLP techniques and broader extrac- 096

tion efforts, while Rajwal et al. proposed proto- 097

cols for organizing fragmented literature. Disease- 098

specific reviews in orthopedics (Lans et al., 2023), 099

cardiovascular disease (Zhao et al., 2021; McNeill 100

et al., 2023), sickle cell disease (Khan et al., 2023), 101

and mental health (Scherbakov et al., 2025) high- 102

lighted limited attention to SDOH, often reduced 103

to demographic proxies. However, these works 104

largely predate LLMs and overlook key issues such 105

as hallucination control, privacy, fairness, and de- 106

ployment across multilingual or cross-institutional 107

settings. 108
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Task Type Method (Papers) Dataset (Perfor-
mance)

Score Limitations

Note-level
Classification

Rule-based (Uzuner et al., 2008) i2b2 smoking (502
notes)

0.80–0.89 micro-F1 Misses implicit mentions ("quit
ten years ago"); requires exact
keywords

SVM with TF-IDF (Lingeman et al.,
2018)

UMass opioid misuse
notes

0.81 accuracy Poor cross-institutional transfer;
features don’t generalize

LSTM (Rajendran and Topaloglu,
2020)

6,298 progress notes
(smoking)

0.80 F1 (+8% vs SVM) Long document degradation;
struggles with compiled notes

Flan-T5 XL + UMLS (Gong et al.,
2025)

MIMIC-SDoH (5,328
notes)

0.88 macro-F1 Rare categories (<50 examples)
still underperform

Few-shot GPT-3.5 (Consoli et al.,
2024)

MIMIC-SDBH, Sui-
cide/Sleep notes

0.90+ AUROC High lexical diversity categories
need more annotations

LLM pipeline (Gu et al., 2025) Mass General
Brigham EHRs

0.60+ macro-F1 Fails on implicit reasoning;
invalid outputs need post-
processing

Sentence-level Flan-T5 XXL (Guevara et al., 2024) Radiotherapy corpus
(6 SDoH)

0.71 macro-F1 No cross-sentence context; imbal-
anced classes

Sequence
Labeling

Bi-LSTM-CRF (Lybarger et al.,
2021)

SHAC (4,480 sec-
tions)

0.82–0.93 micro-F1 Cannot capture multi-sentence
SDoH mentions

RoBERTa NER (Lituiev et al., 2023) CLBP corpus (626
notes)

0.84 F1 Drops on rare categories; misses
lexical variants

Event-based
Extraction

mSpERT (Lybarger et al., 2023a) SHAC/n2c2 (events) 0.86 F1 overall Heterogeneous status descriptions
cause confusion

T5-Large seq2seq (Romanowski
et al., 2023)

SHAC (12 categories) 0.90 F1 Ambiguous outputs; needs con-
strained decoding

GatorTron-GPT (Peng et al., 2023a,
2024)

n2c2/UW challenge 0.84 F1 20B params infeasible; black-box
for auditing

One-shot GPT-4 (Ramachandran
et al., 2023)

SHAC test set 0.652 F1 High prompt sensitivity; non-
conforming outputs

Table 1: Evolution of SDOH extraction methods: task-specific performance and limitations on benchmark datasets

Problem Definition. Although SDOH are key109

drivers of health outcomes, most remain buried110

in unstructured clinical notes. Manual extraction111

is costly and unreliable, while automated meth-112

ods face technical challenges (e.g., ambiguous lan-113

guage, institutional variation) and ethical concerns114

(e.g., bias, privacy). This gap hinders large-scale115

analysis and reinforces health disparities, calling116

for solutions that are accurate, scalable, and ethi-117

cally sound.118

Contributions and Road-map. To address this119

bottleneck, this survey: (i) synthesizes SDOH ex-120

traction research through an LLM-centric lens,121

mapping model types, prompting strategies, and122

generative paradigms (§2.5, §2.6, §2.7); (ii)123

compares their efficiency, scalability, and cross-124

institutional robustness across datasets (§2.2, §4.3);125

(iii) identifies ethical priorities like bias, fairness,126

privacy, and hallucination control while formal-127

izing best practices for reproducibility and FAIR128

data sharing (§3, §4); and (iv) outlines open chal-129

lenges in multilingual support, data scarcity, and130

cost-aware deployment (§5). By integrating tech-131

nical and ethical insights, we offer a roadmap for132

building responsible, deployable SDOH extraction133

systems. 134

2 Foundational Approaches 135

Figure 2 summarizes the taxonomy of approaches, 136

datasets, ethics, and future directions. Solid boxes 137

indicate SDOH-specific work; dashed boxes show 138

broader ethical and emerging areas. Implementa- 139

tion details appear in Appendix C with a concise 140

overview in Table 1. 141

2.1 Task Formulation and Evaluation 142

Research on SDOH extraction from clinical text 143

has evolved through several task formulations. 144

Early work framed it as note/sentence level clas- 145

sification, assigning binary (presence/absence of 146

a determinant) or multi-label tags to documents 147

or sentences based on the presence of social fac- 148

tors (Afshar et al., 2019; Jonnagaddala et al., 2015; 149

Feller et al., 2018; Stemerman et al., 2021; Han 150

et al., 2022). Later studies shifted to more granular 151

information extraction approaches. In sequence 152

labeling, tokens are tagged using the BIO schema 153

to identify SDOH concepts and attributes (Yu et al., 154

2024). Relation classification then links extracted 155

attributes (e.g., frequency, duration) to core con- 156
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cepts. More recent event-based methods identify157

trigger expressions and extract structured argu-158

ments (e.g., status, temporality) to represent full159

SDOH events as illustrated in Figure 1 (Lybarger160

et al., 2023a; Romanowski et al., 2023). These161

methods enable richer analyses, including temporal162

reasoning and patient-level summarization. SDOH163

extraction systems are typically evaluated using164

standard information-extraction metrics: micro-165

averaged precision, recall, and F1, which reflect166

the effectiveness of these fine-grained approaches.167

2.2 Annotated Corpora for Benchmarking168

Many datasets have supported progress in SDOH169

modeling, though access constraints and skewed170

label distributions persist. Early corpora focused171

on smoking status or phenotype mentions, while172

later datasets added span-level SDOH annotations173

across various domains like social work, chronic174

pain, and COVID-19 case reports (Uzuner et al.,175

2008; Gehrmann et al., 2018; Feller et al., 2020;176

Wang et al., 2015; Lybarger et al., 2023b, 2021;177

Han et al., 2022; Lituiev et al., 2023; Raza et al.,178

2023). However, the under-representation of fac-179

tors like housing and legal needs, along with insti-180

tutional access restrictions, hinders generalizability181

and collaboration. A summary of various SDOH-182

related datasets is presented in the Appendix B.183

2.3 Rule-based and Classical ML Baselines184

Initial SDOH systems relied on rule-based185

pipelines using lexical cues, section headers, and186

negation triggers, achieving strong performance187

for simple detection tasks but struggling with more188

complex attribute extraction (Uzuner et al., 2008;189

Hatef et al., 2019; Bettencourt-Silva et al., 2020;190

Patra et al., 2021; Bejan et al., 2017; Green et al.,191

2019; Mowery et al., 2017). Later, feature-based192

classifiers such as linear SVMs and random forests193

were used with TF-IDF, UMLS concepts, and sen-194

timent features, improving portability while reduc-195

ing manual rules (Topaz et al., 2019; Wang et al.,196

2015; Perron et al., 2019; Badger et al., 2019; Am-197

rit et al., 2017; Erickson et al., 2018; Feller et al.,198

2018). However, these models often overfit and199

perform poorly under domain shifts, motivating the200

shift to deep sequence models.201

2.4 Recurrent and Deep-learning Encoders202

RNN families. The shift to deep learning re-203

placed manual features with automatic represen-204

tation learning. Recurrent neural networks (RNNs),205

particularly LSTMs, enabled token-level model- 206

ing and captured short-range temporal cues missed 207

by rule-based systems. An LSTM classifier outper- 208

formed a TF–IDF SVM by 8 F1 points for smoking- 209

status detection on progress-note snippets (Rajen- 210

dran and Topaloglu, 2020), but standard LSTMs 211

struggled with long documents and label dependen- 212

cies. 213

Bi-LSTM+CRF with pre-trained embeddings. 214

Bi-LSTM+CRF models initialized with domain- 215

specific embeddings showed substantial gains. On 216

the SHAC corpus, such models achieved micro-F1 217

scores of 0.82–0.93 across 12 SDOH categories 218

(Lybarger et al., 2021), outperforming prior SVM 219

and rule-based approaches. Incorporating BIO- 220

CLINICALBERT embeddings (Alsentzer et al., 221

2019) further strengthened the baseline in the 222

2022 n2c2/UW shared task, reducing the gap to 223

transformer-based systems. 224

Despite these gains, RNNs are inherently sequen- 225

tial, limiting GPU parallelism and degrading on 226

long spans typical of discharge summaries (Song 227

et al., 2018). Their fixed context further hinders 228

cross-sentence reasoning, which is critical for cap- 229

turing SDOH mentions spread across multiple sen- 230

tences or paragraphs. These limitations motivated 231

a transition to transformer-based models. 232

2.5 Transformers and Fine-tuned LLMs 233

Domain-adaptive BERT variants. Transformer 234

models pre-trained on biomedical corpora trans- 235

formed SDOH extraction. BIOCLINICALBERT, 236

trained on MIMIC-III and PubMed, improved 237

performance on the SHAC corpus by modeling 238

domain-specific semantics (Alsentzer et al., 2019). 239

Richie et al. (2023) showed that this model outper- 240

formed Bi-LSTM+CRF in 12 of 15 SDOH cate- 241

gories (Lybarger et al., 2021), despite using a sim- 242

pler architecture. BIOBERT, trained on PubMed 243

and PMC, reached F1 = 0.92 on a custom dataset 244

and generalized well across tasks (Lee et al., 2020; 245

Raza et al., 2023). 246

Scaling up to clinical LLMs. Training on 247

billion-token corpora further improved extraction. 248

GATORTRON-MRC and GATORTRONGPT-20B 249

achieved F1 scores of 0.74 and 0.84 respectively 250

on the n2c2/UW dataset using decoder-only ap- 251

proaches (Peng et al., 2023b, 2024). T5-style 252

models, such as constrained-decoding T5-large, 253

reached F1 = 0.90 on SHAC (Romanowski et al., 254

2023). These results reflect transformers’ ability to 255
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model long-range context while leveraging massive256

domain-specific pretraining.257

Transformer encoders surpass RNNs in scalabil-258

ity and contextual comprehension, but their com-259

plexity and resource demands raise challenges in260

deployment, interpretability, and privacy.261

2.6 In-context Prompting and PEFT262

Zero and few-shot prompting. Instruction-263

tuned LLMs demonstrate strong in-context learn-264

ing, enabling information extraction with only265

natural-language instructions and a few examples266

(Brown et al., 2020). On the SHAC test set, a267

one-shot GPT-4 prompt achieved F1 = 0.652,268

matching the 7th-ranked supervised system in the269

n2c2 shared task while requiring no access to pri-270

vate training data (Ramachandran et al., 2023).271

Broader benchmarks confirm that ChatGPT (Ope-272

nAI, 2022), Flan-T5 (Chung et al., 2024), UL2 (Tay273

et al., 2022), Tk-Instruct (Wang et al., 2022), and274

Alpaca (Taori et al., 2023) already approach fine-275

tuned baselines in zero/few-shot settings (Labrak276

et al., 2023).277

Soft prompting and LoRA. Parameter-efficient278

fine-tuning (PEFT) offers a practical middle ground279

for institutional deployment. Instead of updat-280

ing the full model, methods like soft prompting281

and LoRA adapt only a small set of parameters.282

Peng et al. (2024) applied soft prompting to a283

frozen 20B-parameter GATORTRONGPT, achiev-284

ing strong generalization across institutions and285

disease cohorts with minimal tuning overhead.286

Clinical implications. Prompt-only workflows287

keep protected health information within the fire-288

wall, while PEFT enables lightweight, on-prem de-289

ployment under tight resource budgets. Combined290

with RAG (§2.7), these techniques make LLM-291

based SDOH extraction feasible for institutions292

with limited compute capacity. Nevertheless, they293

raise risks around hallucination and bias amplifica-294

tion, further discussed in §3.295

2.7 RAG and Resource Efficiency296

Retrieval-augmented generation (RAG) (Lewis297

et al., 2020) (elaborated in Appendix D) reduces298

hallucinations (see §3.3) and token costs by lim-299

iting model input to relevant snippets from a clin-300

ical corpus. Chunk-based retrieval enables GPT-301

4o (Hurst et al., 2024), Llama-2 (Touvron et al.,302

2023), and Mistral (Jiang et al., 2023) to match full-303

note performance on surgical-complication classi-304

fication with over 50% token savings (Cheetirala 305

et al., 2025; Jiang, 2024). Entity-guided RAG, as 306

in the CLEAR pipeline, improves F1 to 0.90 (vs. 307

0.79–0.86 for baselines) while reducing input size 308

and latency by 5× (Lopez et al., 2025). RAG also 309

benefits SDOH tasks. A GPT-4 pipeline yields 310

up to 0.99 precision and 0.88 recall for substance 311

use mentions (Shah-Mohammadi and Finkelstein, 312

2024). Small models can compete when combined 313

with RAG, e.g., a 2B GEMMA with LoRA matches 314

a 13B Llama-2 on social-note classification when 315

both use CLEAR (Team et al., 2024; Lopez et al., 316

2025). For zero-label settings, synthetic QA gen- 317

eration with Llama-3 (70B) enables an 8B student 318

to reach micro-F1 ≥ 0.94 on clinical tasks (Woo 319

et al., 2024; Grattafiori et al., 2024), while GPT- 320

turbo can produce SDOH-style notes for evalua- 321

tion of rare categories like unstable housing (Gong 322

et al., 2025). Together, these methods support ac- 323

curate, efficient, and privacy-conscious extraction 324

pipelines deployable even under hardware and data- 325

sharing constraints. 326

In summary, (1) RAG reduces cost and halluci- 327

nation by limiting context, (2) retrieval combined 328

with PEFT allows small local models to match large 329

cloud LLMs, and (3) synthetic distillation fills data 330

gaps when HIPAA (U.S. Department of Health & 331

Human Services, 2003) restricts annotation. These 332

methods together enable scalable, ethical SDOH 333

extraction even in low-resource clinical settings. 334

3 Ethical Considerations 335

While LLMs have significantly improved SDOH 336

extraction, these technical advances also introduce 337

critical risks that threaten fair and trustworthy de- 338

ployment. In this section, we discuss three core 339

concerns: bias, privacy, and hallucination. 340

3.1 Bias and Fairness 341

Ensuring fairness across populations is essential 342

for clinical NLP systems. Algorithmic bias is well 343

documented: for example, Obermeyer et al. (2019) 344

found a model that underestimated Black patients’ 345

needs by using healthcare spending as a proxy. 346

LLMs may inherit and amplify such disparities 347

due to skewed training data (Zack et al., 2024). 348

Recent tools like LANGFAIR quantify output-side 349

harms, showing that larger models (7B–70B) gen- 350

erate up to 2-4× more harmful outputs for minori- 351

tized groups (Bouchard, 2024). While few studies 352

explicitly assess bias in SDOH extraction, mitiga- 353
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tion strategies from broader clinical AI, such as354

balanced sampling, adversarial training, and sub-355

group F1 reporting, are applicable. We recommend356

that future work report per-demographic scores and357

release audit scripts to support bias assessment.358

3.2 Privacy-Preserving Techniques359

Because clinical notes are protected health infor-360

mation, direct data sharing is often prohibited. This361

has spurred research into privacy-preserving meth-362

ods for SDOH modeling. Three main approaches363

are emerging. Differential privacy adds noise dur-364

ing training to provide formal guarantees (Abadi365

et al., 2016), with recent work showing F1 ≈ 0.82366

under (ε = 0.5) on clinical text (Henderson and367

Pearson, 2025). Federated learning keeps data368

local while sharing model weights across insti-369

tutions (Kaissis et al., 2020), but its application370

to SDOH remains nascent. Synthetic data from371

generative models like Llama-3.1 can yield strong372

downstream performance without real data, achiev-373

ing up to 0.94 micro-F1 on clinical eligibility tasks374

(Woo et al., 2024).375

3.3 Hallucination Risk and Factuality Control376

The same generative strengths that make LLMs ef-377

fective for SDOH extraction also pose a key risk:378

the tendency to produce plausible but incorrect out-379

puts, or hallucinations, which are dangerous in380

clinical settings. GPT-3.5 and GPT-4 hallucinated381

39.6% and 28.6% of citations, respectively, in a382

systematic review generation task (Chelli et al.,383

2024). In a review of 12,999 LLM-generated clini-384

cal note sentences, 1.47% (191) were hallucinated,385

with 44% deemed major and potentially harmful386

(Asgari et al., 2024). Fabrications were the most387

common (43%), often found in Plan, Assessment,388

and Symptoms sections. Although these studies389

are not specific to SDOH, the risks apply. Systems390

must guard against factual errors using strategies391

outlined in Appendix E.1. For SDOH extraction,392

we recommend: (i) grounding outputs in source393

spans, (ii) validating with factuality scorers (e.g.,394

RADFACT, SelfCheckGPT), and (iii) including a395

lightweight reviewer interface for clinical verifica-396

tion.397

To ensure that such safeguards are reliable across398

settings, we now turn to the broader challenges of399

reproducibility and generalization in SDOH extrac-400

tion.401

4 Reproducibility and Generalization 402

Robust SDOH extraction hinges on reproducibil- 403

ity and generalization, yet most studies overlook 404

them. Drawing on established clinical NLP prac- 405

tices, we outline key strategies here and offer a 406

concise guideline in Appendix F. 407

4.1 Code and Data Availability 408

Reliable SDOH extraction requires technical rigor, 409

ethical safeguards, and transparent, reproducible 410

workflows. Since July 2023, ACL’s ARR mandates 411

a reproducibility checklist including code, seeds, 412

hyperparameters, and environment details.1 Yet 413

clinical NLP often lags behind. An audit of seven 414

frameworks found only two met over 50% of 40 415

criteria; most lacked version control, documenta- 416

tion, or preprocessing metadata (Digan et al., 2021). 417

Similarly, Magnusson et al. (2023) found only 46% 418

of ACL/EMNLP/NAACL 2020–21 papers truly 419

open-sourced their code. 420

Best practices include: (i) open-sourcing full 421

pipelines via Docker or Conda, (ii) documenting 422

data provenance and licenses in README files, (iii) 423

capturing environment details and seed values, and 424

(iv) hosting on GitHub and archival sites like Zen- 425

odo. These practices support replicability and, for 426

SDOH, help validate bias and privacy methods be- 427

fore real-world use. 428

4.2 Dataset Standardization and the FAIR 429

Principles 430

As models advance, data infrastructure must keep 431

pace. EHR heterogeneity hinders cross-site SDOH 432

modeling, since hospitals store social-history notes 433

in incompatible schemas. Two efforts address this 434

issue: 435

Common Data Models. The Observational 436

Medical Outcomes Partnership Common Data 437

Model (OMOP CDM) standardizes health data 438

into uniform tables and vocabularies (Overhage 439

et al., 2012). Mapping EHRs to OMOP en- 440

ables shared analytics and OHDSI toolchain use. 441

Zhou et al. (2025) used sentence-transformer 442

embeddings to map free-text medications to 443

OMOP concepts, outperforming string match- 444

ing. Similar work is now aligning SDOH men- 445

tions (e.g., “LIVES_WITH_MOTHER”, “HOME- 446

LESS_SHELTER”) to SNOMED-CT.2. 447

1See https://aclrollingreview.org/faq
2https://www.snomed.org/
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FAIR Data Stewardship. FAIR principles,448

Findable, Accessible, Interoperable, Reusable,449

complement OMOP (Wilkinson et al., 2016). FAIR450

SDOH corpora should include: persistent IDs451

(e.g., DOIs), rich metadata (e.g., source, note type,452

schema), standard ontologies (e.g., SNOMED-CT,453

LOINC3), and clear data-usage & licensing terms.454

Combining OMOP-like schemas with FAIR455

practices improves transfer learning, supports456

new SDOH categories, and enables robust cross-457

institutional collaboration.458

4.3 Cross-Institutional Generalization and459

Domain Adaptation460

SDOH systems must generalize across institu-461

tions to ensure equitable performance, but mod-462

els trained on one site often fail elsewhere due to463

documentation, terminology, and population differ-464

ences. This fragility risks amplifying healthcare465

disparities. Domain-adaptive pretraining addresses466

this issue. The DRAGON benchmark, covering467

28 tasks across five Dutch hospitals, shows consis-468

tent gains when using clinical-domain pretraining469

over general-domain models (Bosma et al., 2025).470

Effective methods include continued pretraining471

(CPT), invariant representation learning, and472

lightweight meta-learning, detailed in Appendix473

F. A practical pipeline involves CPT on local unla-474

beled notes, LoRA or PEFT fine-tuning on a few475

hundred labeled examples, and validation on a held-476

out site to detect domain shift.477

4.4 Standardized Evaluation Protocols478

Reliable SDOH extraction needs a standardized479

evaluation. Earlier clinical NLP relied on private480

splits and ad-hoc metrics, hindering fair compari-481

son. Three trends address this:482

Shared-task benchmarks. From i2b2 2008 to483

the 2022 n2c2/UW SDOH Shared Task, organizers484

now provide task definitions, fixed train/test splits,485

and official scorers using micro-precision, recall,486

and F1 (Lybarger et al., 2023b), discouraging met-487

ric cherry-picking.488

Multi-site stress tests. DRAGON uses blind489

evaluation on sequestered data from multiple cen-490

ters. Though average scores are high, performance491

varied: 18 of 28 tasks rated excellent/good, 6 mod-492

erate, 4 poor, highlighting domain-shift sensitivity493

(Bosma et al., 2025).494

Reporting guidance. ACL’s reproducibility495

3https://loinc.org/

checklist advises publishing macro and micro F1 496

with 95% CIs via bootstrap. The 2023 n2c2 re- 497

port complies, sharing its bootstrap script (Lybarger 498

et al., 2023b). 499

Future SDOH work should use public splits, re- 500

port macro/micro metrics with CIs, and release 501

scoring code for exact replication. These practices 502

build trust and support fair, ethical innovation. 503

5 Open Challenges and Future Directions 504

Building on the technical, ethical, and deployment 505

challenges outlined above, we highlight open prob- 506

lems and future directions to advance SDOH ex- 507

traction. These reflect persistent gaps in current 508

methods and opportunities for more robust, equi- 509

table, and scalable solutions. 510

5.1 Leveraging LLMs for Data Augmentation 511

and Complex SDOH Representations 512

Synthetic augmentation and parameter-efficient 513

adaptation. Annotated social-history corpora re- 514

main small, limited further by privacy constraints. 515

LLMs offer a way forward by generating synthetic 516

data without exposing protected health information 517

(PHI) as discussed in §2.7. For SDOH, Peng et al. 518

(2024) used prompt-tuning with GatorTronGPT 519

for effective cross-institution and cross-disease 520

transfer, achieving F1 ∼0.84–0.87 with only soft 521

prompts. These results, however, need validation 522

to confirm linguistic and clinical fidelity. 523

MRC and seq2seq for richer outputs. SDOH 524

extraction needs richer outputs than flat spans, like 525

capturing attributes, temporal qualifiers, and cross- 526

sentence links (e.g., lost housing → duration: six 527

months). Machine-reading comprehension (MRC) 528

based methods let models answer targeted ques- 529

tions per facet (presence, status, duration, etc.), 530

producing structured outputs within clinical LLMs 531

(Peng et al., 2024). These methods show promise 532

but require validation across workflows for clinical 533

utility. 534

Next steps. For future SDOH extraction sys- 535

tems, research should pursue: 536

(i) Quality-controlled synthetic pipelines: Use 537

retrieval-conditioned prompts and fact-checkers 538

(e.g., SelfCheckGPT) to ensure clinical authentic- 539

ity and reduce hallucinations and bias. 540

(ii) Unified event–argument schema: Extend 541

SHAC with nested attributes and timelines; train 542

seq2seq or MRC models to generate fully linked 543

SDOH graphs interpretable by clinicians. 544
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These directions tackle data scarcity and oversim-545

plified outputs. But technical advances must be546

paired with fairness, privacy, and utility evaluations547

to ensure trustworthy, actionable deployment.548

5.2 Expanding to Multilingual SDOH549

Extraction550

Despite progress in English SDOH extraction,551

global deployment demands addressing the field’s552

English-only bias. Most shared tasks and bench-553

marks exclude the majority of EHRs written in554

other languages, risking greater inequities. Three555

core challenges stand out, as elaborated in Ap-556

pendix G: lack of non-English annotated cor-557

pora (e.g., MEDDOCAN (Marimon et al., 2019),558

DRAGON (Bosma et al., 2025)), cultural and in-559

stitutional mismatches in SDOH terminology, and560

limited domain-specific LLMs for languages be-561

yond English. Even state-of-the-art English models562

struggle when applied cross-lingually.563

Recent work offers promising directions.564

Translate-train, original-test approaches achieve565

comparable F1 scores of ∼0.78-0.79 with care-566

ful design of translation pipelines (Fontaine et al.,567

2023). Domain-specific pretraining, such as568

MedRoBERTa.nl on Dutch notes (Verkijk and569

Vossen, 2021; Muizelaar et al., 2024), outperforms570

translated English models on substance use cate-571

gories. Synthetic data from French clinical LLMs572

(Hiebel et al., 2023) also yields competitive NER573

performance. These findings underscore the need574

for culturally aligned resources and multilingual575

models. A more detailed analysis of the implemen-576

tation of each of these techniques is provided in577

Appendix G.1.578

Progress depends on community benchmarks579

and FAIR corpora. In the absence of large re-580

sources, multilingual SDOH research must rely581

on small, vetted datasets and integrate data gen-582

eration, language adaptation, and cross-national583

collaboration.584

5.3 Towards Responsible and Deployable585

Clinical LLM Solutions586

Technical progress in SDOH extraction must trans-587

late into systems that are accurate, trustworthy, and588

feasible in real-world settings.589

Compute vs capability. Many high-performing590

models, like GPT-4o and Med-PaLM 2, are too591

large for clinical deployment (≥ 50B parameters).592

Compact models such as Phi-3 (3.8B) (Abdin et al.,593

2024) and Gemma-2B (Team et al., 2024), when594

instruction-tuned (e.g., via LoRA), achieve near- 595

competitive (∼2-3 points) F1 scores within re- 596

source limits. A LoRA-tuned 2B Gemma even 597

matched a 13B Llama-2 on social-work notes (Peng 598

et al., 2024). 599

On-prem & hybrid deployment. Hospitals fa- 600

vor on-prem or hybrid deployment to safeguard 601

privacy. Cloud APIs offer speed but raise con- 602

cerns over vendor dependence and data exposure 603

(Dennstädt et al., 2025). Hybrid systems are lo- 604

cal retrieval with small-model inference that bal- 605

ance performance, cost, and privacy for SDOH use 606

cases. 607

Governance and Oversight. Reliable SDOH 608

deployment demands strong governance to ensure 609

fairness and accountability. Tools like LANGFAIR 610

and SELFCHECKGPT (§3.3) are being integrated 611

into CI/CD workflows to flag bias and factuality 612

issues pre-deployment. Given the equity impli- 613

cations of SDOH systems, the 2024 PrivateNLP 614

workshop (Habernal et al., 2024) proposed a three- 615

tier model: risk assessment, technical guardrails, 616

and ongoing human audit, aligning with FDA soft- 617

ware as a medical device (SaMD) guidance and 618

pointing to potential regulatory pathways. 619

6 Conclusion 620

This survey reveals SDOH extraction at a criti- 621

cal juncture where technical progress must align 622

with ethical imperatives for real-world impact. 623

Our review shows that while transformer-based 624

models have advanced extraction capabilities, a 625

fundamental gap remains between research inno- 626

vation and clinical deployment. Three insights 627

emerge: (i) parameter-efficient LLMs enable ad- 628

vanced methods under clinical constraints; (ii) 629

ethical safeguards are core design requirements, 630

not optional; and (iii) the field’s English-centric, 631

institution-specific focus limits global health eq- 632

uity. Progress requires alignment across technical, 633

ethical, and practical fronts, including multilingual 634

benchmarks, built-in fairness controls, and repro- 635

ducible frameworks for cross-institutional deploy- 636

ment. Ultimately, the value of SDOH extraction 637

will be measured not by F1 scores alone, but by its 638

capacity to reduce disparities and improve clinical 639

decision-making. The goal is to equip clinicians to 640

act on patients’ social context with the same rigor 641

as lab results, demanding a shift from prototypes to 642

responsible, equity-centered systems that transform 643

how healthcare addresses social drivers of health. 644
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7 Limitations645

This survey does not include every existing study646

on SDOH extraction, as some works may fall647

outside the scope of our focus or lack sufficient648

methodological detail for meaningful comparison.649

Instead, we present a curated set of representative650

papers that align with our research questions, cov-651

ering key task formulations, evaluation practices,652

and model innovations. While the survey is not653

exhaustive, it captures the central developments654

and challenges in the field, offering a coherent and655

focused overview to guide future research.656

Grammar checking and LaTeX formatting were657

assisted by automated tools. The authors are solely658

responsible for the final content and analysis.659
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A.1 Search Strategy 1277

We conducted a systematic literature search in- 1278

spired by the PRISMA framework. The search 1279

spanned February to June 2025 and included pub- 1280

lications up to May 15, 2025. Figure 3 illustrates 1281

the article selection flowchart according to the 1282

PRISMA guidelines. 1283

Databases searched and initial results. We con- 1284

structed targeted Boolean queries to identify lit- 1285

erature on SDOH extraction using NLP methods. 1286

For broad-scope databases such as Google Scholar, 1287

more restrictive queries were necessary to filter 1288

out unrelated results. In contrast, domain-specific 1289

repositories like the ACL Anthology, which pri- 1290

marily contain NLP-focused literature, required 1291

minimal filtering. 1292

• Google Scholar: 1,590 results using (SDOH 1293

OR “social determinants of health”) 1294

AND “extraction” AND (EHR OR 1295

“electronic health record”) AND (NLP 1296

OR “natural language processing”) 1297

• PubMed: 65 results using SDOH AND NLP 1298

• IEEE Xplore: 412 results using SDOH AND 1299

NLP 1300

• ACL Anthology: 505 results using SDOH 1301

• ACM Digital Library: 23 results using SDOH 1302

Total initial records: A total of 2,595 papers 1303

were gathered initially from different databases. 1304
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Figure 3: Article selection flowchart following PRISMA guidelines.

A.2 Screening and Eligibility Criteria1305

After removing duplicates and inaccessible records,1306

we retained 438 papers for title and abstract screen-1307

ing. Removing duplicates, studies not focused1308

specifically on SDOH extraction and NLP, or not1309

using clinical text, and studies having insufficient1310

technical content, 143 papers were selected for pri-1311

mary review. A total of 81 papers were finally1312

selected after carefully going through the contents.1313

Venue filter: Only papers published in reputable1314

venues related to clinical NLP with at least 1 cita-1315

tion were included. These included:1316

• Journals: JAMIA, JMIR, BMC, npj Digital1317

Medicine.1318

• Conferences: ACL, AMIA.1319

• Preprints: arXiv, medRxiv, and other widely1320

cited, clinically relevant preprint servers.1321

Inclusion criteria. We included papers that made 1322

methodological contributions to SDOH extraction 1323

using NLP techniques. Eligible studies focused on 1324

unstructured clinical text, such as free-text from 1325

electronic health records. Only those that offered 1326

empirical evaluation or meaningful technical in- 1327

sights were retained. Furthermore, we limited in- 1328

clusion to papers that were either peer-reviewed or 1329

demonstrably cited in the research community. 1330

Exclusion criteria. We excluded studies that re- 1331

lied solely on structured data or did not apply NLP- 1332

based methods. Opinion pieces, narrative reviews 1333

without new technical contributions, and papers 1334

that lacked citations or academic impact were also 1335

omitted. Additionally, we removed papers that 1336

were unrelated to clinical settings or did not explic- 1337

itly address social determinants of health. 1338
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Category Query (Google Scholar) Results
Rule-based methods (SDOH OR “social determinants of health”) AND

extraction AND (EHR OR “electronic health record”)
AND (NLP OR “natural language processing”)
AND (“rule-based” OR “pattern matching” OR
“dictionary-based” OR “regular expressions”)

665

Classical ML methods ... AND (“machine learning”) 1,870
Deep learning methods ... AND (“deep learning” OR “neural network”) 1,490
Transformer methods ... AND (“transformer” OR “pre-trained language

model”)
504

LLMs ... AND (LLM OR “large language model”) 407
SDOH ethics-focused ... AND (Ethics AND Bias AND Privacy) 1,170
Clinical ethics-focused (“clinical extraction” OR “medical extraction”) AND

(NLP OR “natural language processing”) AND (Ethics OR
Bias OR Privacy)

132

Table 2: Refined queries and result counts for methodological coverage.

A.3 Progressive Keyword Refinement1339

To ensure comprehensive methodological coverage,1340

we issued targeted Boolean queries correspond-1341

ing to distinct modeling paradigms for the Google1342

Scholar database, including rule-based systems,1343

classical machine learning, deep learning, trans-1344

former models, large language models, and ethics-1345

related studies, as shown in Table 2. Each category1346

was screened for relevance, technical rigor, and1347

citation impact. After this multi-stage refinement1348

process, we retained a final curated set of 81 peer-1349

reviewed studies for detailed analysis.1350

A.4 Data Extraction and Synthesis1351

From each selected paper, we extracted key meta-1352

data including title, authors, publication venue,1353

and year. We also recorded task formulations and1354

the specific modeling techniques used, along with1355

dataset characteristics and their accessibility. Eval-1356

uation metrics and empirical results were cataloged1357

to enable performance comparison. We addition-1358

ally noted whether papers addressed ethical aspects1359

such as bias, privacy, or hallucination. Lastly, we1360

documented the limitations identified by each study1361

and any proposed directions for future work. The1362

extracted data were then synthesized thematically1363

across modeling paradigms, dataset types, ethical1364

considerations, and deployment practices to iden-1365

tify prevailing trends, challenges, and gaps in the1366

literature.1367

B Dataset Information 1368

Table 3 summarizes key details of existing SDOH 1369

datasets, including year of creation, data source, 1370

annotation granularity, covered SDOH categories, 1371

dataset size and type (e.g., notes, sentences), inter- 1372

annotator agreement (Cohen’s κ), and accessibility. 1373

All datasets are access-controlled due to HIPAA 1374

regulations. Label distributions are skewed toward 1375

tobacco use, with factors like housing, childcare, 1376

and legal needs underrepresented. Inter-annotator 1377

agreement varies by dataset. 1378

C Implementation and Training 1379

Configurations 1380

C.1 Rule-based System Performance. 1381

In the i2b2 2008 Smoking Challenge, rule-based 1382

systems achieved micro-F1 scores ranging from 1383

0.80 to 0.89 (Uzuner et al., 2008). Wang et al. 1384

reported F1 of 0.89 for nicotine use detection using 1385

similar techniques but noted reduced scores for 1386

complex attribute extraction tasks. 1387

C.2 Feature-engineered Classifier 1388

Performance. 1389

Lingeman et al. trained a linear SVM with hand- 1390

crafted and sentiment features, achieving approxi- 1391

mately 81% accuracy for detecting opioid-related 1392

aberrant behavior from notes at the University of 1393

Massachusetts Medical Center. Despite this, such 1394

models still required expert-designed features and 1395

struggled to generalize across institutions or note 1396
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Dataset Yr. Source Gran. SDOH Categories Size IAA Access/Limitations

i2b2 NLP Smoking
Challenge (Uzuner
et al., 2008)

2008 Partners
HealthCare

Note Smoking status (5) 502 notes 0.84 κ Restricted

MIMIC-III (Gehrmann
et al., 2018)

2018 MIMIC-III Note 10 phenotypes (obesity,
chronic pain, etc.)

1 610
notes

0.71–0.95 κ Restricted (MIMIC)

CUMC Corpus (Feller
et al., 2020)

2020 CUMC Note (semi-
sup.)

30+ factors (alcohol,
housing, . . . )

4 663
notes

0.736 κ Restricted

Wang15 (Wang et al.,
2015)

2015 MTSamples,
UPMC

Fine Substance use (alcohol,
drug, tobacco)

691 notes 0.80–0.93 κ Restricted

(Yetisgen and Vander-
wende, 2017)

2017 MTSamples Fine Substance abuse (7
dims.)

516
reports
(1234
sents.)

0.59 F1 (ini-
tial)

Restricted

SHAC (Lybarger et al.,
2021)

2021 MIMIC-III,
UW

Fine 12 cats. (substance, em-
ployment, living, . . . )

4 480 sec-
tions

0.61–0.97 κ Restricted (MIMIC)

(Han et al., 2022) 2022 MIMIC-III
(SW)

Fine 13 cats. (SNOMED-CT
/ DSM-IV)

3504
sents.

0.70 agr. Restricted (MIMIC)

(Lituiev et al., 2023) 2023 Low-back-
pain notes

Fine 7 domains + mental
health, pain

626 notes 0.95 agr. Restricted

(Raza et al., 2023) Raza
et al.

2023 LitCOVID
API

Fine 10 cats. (gender, em-
ployment)

4000
case
reports

0.75 κ Public (LitCOVID)
but Annotation Re-
stricted

Table 3: Key SDOH datasets, their characteristics and accessibility.

structures, motivating the adoption of deep learn-1397

ing.1398

C.3 Bi-LSTM+CRF with Pre-trained1399

Embeddings.1400

In the 2022 n2c2/UW shared task, BIOCLINI-1401

CALBERT embeddings were integrated into Bi-1402

LSTM+CRF pipelines to strengthen performance.1403

These embeddings, derived from MIMIC-III dis-1404

charge summaries and PubMed abstracts, provided1405

contextualized representations tailored to the clin-1406

ical domain. The resulting system reduced the1407

performance gap to transformers to under five F11408

points while maintaining interpretability.1409

C.4 GatorTron Variants.1410

GATORTRON-MRC (345M parameters) framed1411

SDOH extraction as a machine reading compre-1412

hension (MRC) task, using clinical prompts for1413

question-style information retrieval. In contrast,1414

GATORTRONGPT-20B adopted a decoder-only ar-1415

chitecture with prompt tuning, allowing adaptation1416

without full fine-tuning. Both models were trained1417

on multi-billion-token clinical corpora.1418

C.5 T5-style Architectures.1419

T5-LARGE, used with constrained decoding,1420

adopted a sequence-to-sequence format where1421

the model generates structured output directly1422

from the input transcript. This approach reduced1423

post-processing and improved accuracy on SHAC, 1424

reaching F1 = 0.90 (Romanowski et al., 2023). 1425

C.6 PEFT Mechanisms. 1426

Soft prompting or P-tuning modifies only the 1427

prompt embeddings while freezing the model back- 1428

bone, minimizing the number of tunable parame- 1429

ters (Lester et al., 2021). LoRA (Low-Rank Adap- 1430

tation) inserts rank-decomposed trainable matri- 1431

ces into transformer layers to adapt the model 1432

efficiently (Hu et al., 2022). These methods re- 1433

quire orders-of-magnitude fewer resources than 1434

full-model fine-tuning, making them appealing for 1435

privacy-preserving clinical adaptation. 1436

D Retrieval Augmented Generation 1437

(RAG) 1438

Generative LLMs can hallucinate clinical facts, and 1439

they become expensive when a long note (often 1440

10,000+ tokens) is fed in verbatim. Retrieval- 1441

augmented generation (RAG) tackles both prob- 1442

lems. It first fetches the most relevant snippets 1443

from a vetted corpus (the patient’s own record or 1444

an external Knowledge Base (KB)) and lets the 1445

LLM read only that compact context (Lewis et al., 1446

2020). 1447

D.1 Clinical performance 1448

Cheetirala et al. (2025) and Jiang (2024) show that 1449

chunk level retrieval (top 4000 tokens) allows GPT 1450
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4o, Llama 2, and Mistral to match full note perfor-1451

mance in surgical complication classification, with1452

no significant drop in AUC, precision, recall, or1453

F1. The CLEAR pipeline (Lopez et al., 2025), a1454

clinically guided retrieval method that filters notes1455

using structured patient context and task specific1456

cues, outperforms both embedding based retrieval1457

and full note baselines. It achieves an F1 of 0.901458

while reducing input size from 6.1k to 1.1k tokens1459

and inference time from 20.1 seconds to 4.9 sec-1460

onds.1461

D.2 Synthetic supervision1462

RAG is still useless if you have zero labeled data.1463

Woo et al. (2024) demonstrate that a 70B Llama-1464

3 (Grattafiori et al., 2024) teacher can generate1465

question–answer pairs that drive an 8B student to1466

micro-F1≥0.94 on three clinical extraction tasks,1467

all without exposing any protected text. Building1468

on this approach for SDOH applications, Gong1469

et al. (2025) demonstrate the value of synthetic1470

data generation, using GPT turbo-0301 to create1471

2,280 synthetic clinical notes following domain ex-1472

pert annotation guidelines for SDOH categories,1473

enabling robust evaluation across underrepresented1474

social determinants like unstable housing. These1475

approaches suggest a privacy-preserving path for1476

SDOH extraction: large, cloud-only models can1477

supply synthetic labels for social determinants;1478

small, locally hosted models can then perform in-1479

ference on real patient data.1480

E Bias, Fairness, Privacy, &1481

Hallucination1482

We outline key ethical concerns for clinical LLMs1483

(bias, privacy, and hallucination) along with real-1484

world manifestations, potential harms, and com-1485

mon mitigation strategies in §3. Specific halluci-1486

nation mitigation techniques are further described1487

below.1488

E.1 Hallucination Mitigation Strategies1489

A number of techniques can be adopted to mitigate1490

the risk of hallucinations by large language models.1491

(i) Grounding via retrieval. Conditioning the1492

LLM on retrieved passages, RAG halved token us-1493

age with almost no loss in accuracy (Cheetirala1494

et al., 2025). In another medical-QA scenario,1495

RAG increased correct references from 20% to1496

55%, substantially reducing hallucinated evidence1497

(Gilson et al., 2024).1498

(ii) Domain-specific tuning and calibrated de- 1499

coding. Recent research in medical LLMs shows 1500

that domain-specific fine-tuning and calibrated de- 1501

coding can significantly reduce hallucinations. For 1502

example, Xu et al. (2024) introduced Alternate Con- 1503

trastive Decoding (ALCD) in medical information 1504

extraction tasks. ALCD applies contrastive decod- 1505

ing during inference, alternating between identi- 1506

fication and classification objectives to suppress 1507

spurious token generations, substantially reducing 1508

factual errors compared to standard decoding meth- 1509

ods. Similarly, Mehenni and Zouaq (2024) pro- 1510

posed an ontology-constrained decoding approach 1511

for clinical summarization. By integrating domain 1512

ontologies to guide the decoding process, the model 1513

restricts output to medically valid terms and rela- 1514

tions, yielding more accurate and hallucination-free 1515

summaries on MIMIC-III. 1516

(iii) Human-in-the-loop fact-checking. Wang 1517

et al. (2023) introduced Factcheck-GPT, a struc- 1518

tured fact-checking pipeline following their own 1519

multi-stage Factcheck-Bench framework. The 1520

system decomposes LLM-generated text into 1521

atomic claims, retrieves supporting evidence, as- 1522

sesses stances, and produces verified responses. 1523

Factcheck-GPT achieved superior performance 1524

compared to existing tools like FacTool and 1525

FactScore on their benchmark, recording an F1 1526

score of 0.63 for claim-level verification and 1527

demonstrating broad improvements across sentence 1528

and document-level accuracy. Its fine-grained eval- 1529

uation allowed tracing and correcting errors at each 1530

intermediate stage, significantly improving reliabil- 1531

ity over previous black-box approaches. 1532

F Cross-Institutional Generalization 1533

Techniques 1534

A few techniques have been adopted by recent 1535

clinical NLP extraction tasks. These techniques 1536

have proven to be effective and, therefore, can be 1537

adopted by future SDOH extraction works. 1538

(i) Continued pre-training (CPT). Continued 1539

pretraining refers to further training a general 1540

biomedical language model on target domain text 1541

using masked language modeling. This includes 1542

Domain Adaptive Pretraining (DAPT), which uses 1543

unlabeled text from the target domain, and Task 1544

Adaptive Pretraining (TAPT), which uses unlabeled 1545

task-specific data. These approaches require no 1546

new annotations but significantly improve down- 1547
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stream performance by aligning the model more1548

closely with the linguistic patterns of the deploy-1549

ment setting.1550

In cross-institutional SOAP section classifica-1551

tion, Zhou et al. (2024) showed that applying both1552

DAPT and TAPT raised the micro F1 score from1553

0.756 to 0.808 across three datasets. Similarly,1554

Gururangan et al. (2020) demonstrated that DAPT1555

alone improved biomedical information extraction,1556

increasing micro F1 from 0.819 to 0.842 on the1557

CHEMPROT dataset and from 0.872 to 0.876 on1558

the RCT dataset. These results highlight the ef-1559

fectiveness of continued pretraining in modeling1560

domain-specific language with minimal supervi-1561

sion.1562

(ii) Invariant-representation learning. Adver-1563

sarial training can enforce invariant representations1564

in biomedical NLP by exposing models to input per-1565

turbations such as typos, character swaps, and syn-1566

onym substitutions. Araujo et al. (2020) show that1567

fine-tuning BERT on both clean and adversarially1568

modified data restores up to 20–23% performance1569

lost to these perturbations, indicating improved ro-1570

bustness to superficial variations in medical text.1571

(iii) Lightweight meta-learning. Meta-learning1572

techniques adapted for medical text classification1573

can achieve data-efficient adaptation with limited1574

examples. Sharma et al. (2022) report that their1575

meta-learning model, combined with distribution-1576

ally robust optimization, improves worst-case loss1577

across disease codes and achieves performance1578

comparable to few-shot language models when1579

trained on medical note data. Meanwhile, Roha-1580

nian et al. (2024) present compact transformers1581

(15–65M parameters) built via knowledge distil-1582

lation and continual learning. These models per-1583

form on par with larger BIOBERT and CLINICAL-1584

BIOBERT models and significantly outperform1585

other small models on tasks such as named entity1586

recognition (NER), relation extraction, inference,1587

and sequence classification.1588

G Expanding to Multilingual SDOH1589

Extraction1590

Technical advances in English SDOH extraction1591

do not generalize globally. Nearly all benchmarks1592

are English-only, even though over half of EHRs1593

worldwide are not. This language imbalance risks1594

reinforcing disparities in care delivery and data-1595

driven tools.1596

(i) Data scarcity outside English. Non-English 1597

clinical corpora with SDOH labels are rare. MED- 1598

DOCAN (Spanish) (Marimon et al., 2019) and 1599

DRAGON (Dutch) (Bosma et al., 2025) include 1600

some de-identification and clinical annotations but 1601

lack social-history categories, making them unsuit- 1602

able for supervised SDOH tasks. Researchers often 1603

resort to machine translation or cross-lingual trans- 1604

fer, which may compound biases. 1605

(ii) Vocabulary and template mismatch. Many 1606

SDOH terms reflect US-specific institutions (e.g., 1607

“FOOD_STAMPS”, “HOUSING”). These do not 1608

translate directly and often result in incoherent map- 1609

pings in other languages. Label taxonomies built 1610

around English contexts fail under naive translation, 1611

requiring culturally aligned adaptation. 1612

(iii) Limited language coverage in domain 1613

LLMs. Most domain-specific LLMs are English- 1614

based. Naguib et al. (2024) show that French 1615

and Spanish models trained on native data con- 1616

sistently outperform cross-lingual and zero-shot 1617

English models, indicating that language-specific 1618

modeling is necessary. 1619

G.1 Approaches 1620

A few solutions to these problems have been ex- 1621

plored for other similar clinical NLP tasks. These 1622

are highlighted here: 1623

(i) Translate-train → original-test. Fontaine 1624

et al. compare two cross-lingual approaches 1625

for clinical NER in French and German: 1626

(i) cross-lingual transfer using a multilingual 1627

model fine-tuned on English data, and (ii) 1628

translation-based methods, which either translate 1629

English training data into the target language 1630

(“translate-train”) or translate target-language text 1631

into English (“translate-test”) before extraction. 1632

They release a new French clinical NER test 1633

set (MedNERF) and show that both approaches 1634

achieve comparable F1 scores ∼ (0.78 − 0.79), 1635

with careful design of translation pipelines. 1636

(ii) Continued pretraining on local notes. 1637

MedRoBERTa.nl (Verkijk and Vossen, 2021), fur- 1638

ther pre-trained on Dutch clinical data, achieves 1639

strong macro-F1 scores: 0.93 (smoking), 0.79 (al- 1640

cohol), and 0.77 (drugs). These outperform Clin- 1641

icalBERT translated to Dutch, which scored 0.92, 1642

0.80, and 0.61, respectively (Muizelaar et al., 2024). 1643

Results, however, come from a single institution 1644

and need broader evaluation. 1645
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(iii) Multilingual synthetic data. Hiebel et al.1646

(2023) trained NER models on French EHR1647

cases generated using GPT-style clinical models.1648

These models matched the performance of real-1649

data–trained models, suggesting that synthetic data1650

may help bootstrapping in low-resource settings,1651

though cultural and linguistic alignment must be1652

verified.1653
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