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Abstract

OthelloGPT, a transformer trained to predict valid moves in Othello, provides
an ideal testbed for interpretability research. The model is complex enough to
exhibit rich computational patterns, yet grounded in rule-based game logic that
enables meaningful reverse-engineering. We present an automated approach based
on decision trees to identify and interpret MLP neurons that encode rule-based
game logic. Our method trains regression decision trees to map board states to
neuron activations, then extracts decision paths where neurons are highly active to
convert them into human-readable logical forms. These descriptions reveal highly
interpretable patterns; for instance, neurons that specifically detect when diagonal
moves become legal. Our findings suggest that roughly half of the neurons in layer
5 can be accurately described by compact, rule-based decision trees (R2 > 0.7 for
913 of 2,048 neurons), while the remainder likely participate in more distributed or
non-rule-based computations. We verify the causal relevance of patterns identified
by our decision trees through targeted interventions. For a specific square, for
specific game patterns, we ablate neurons corresponding to those patterns and
find an approximately 5-10 fold stronger degradation in the model’s ability to
predict legal moves along those patterns compared to control patterns. To facilitate
future work, we provide a Python tool that maps rule-based game behaviors to their
implementing neurons, serving as a resource for researchers to test whether their
interpretability methods recover meaningful computational structures.

1 Introduction

A long-standing goal of interpretability research is to construct human-interpretable replacement
models that explain model behavior in terms of explicit representations and computations. Prior
work has demonstrated the feasibility of constructing models with fully known internal mechanisms
[Lindner et al., 2023], or has attempted to construct replacement models for modern LLMs [Ameisen
et al., 2025]. However, handcrafting models does not reveal how naturally trained networks develop
to solve tasks, while evaluating replacement models for modern LLMs can be difficult due to a lack
of ground truth features [Karvonen et al., 2024].

We propose using OthelloGPT, a transformer trained to predict valid moves in Othello, as an
interpretability testbed for uncovering ground truth behavior in neural networks. While substantially
more complex than existing toy models [Elhage et al., 2021, 2022, Lindner et al., 2023], OthelloGPT
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remains grounded in rule-based game logic that enables meaningful reverse-engineering. In particular,
prior work [Lin et al., 2024] suggests that certain neurons in OthelloGPT implement rule-based
behavior, such as neurons responding to a specific diagonal pattern, which provides a concrete target
for reverse engineering.
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Figure 1: Overview of neuron interpretation pipeline. Board state features are used as training data
for decision trees to predict neuron activations (A, B). Note: small circles in A and B are all possible
legal moves. High activation decision paths are then extracted to obtain logical rules for each neuron
(C, D). We provide an interactive visualization of decision trees in this Colab Notebook.

We automate the process of finding rule-based neurons in OthelloGPT by training regression decision
trees that map board state features to neuron activations, and then extract decision paths where
neurons are highly active to convert neurons into human-readable logical forms (Figure 1). The result
is a disjunctive normal form (DNF; OR-of-ANDs) description for each neuron, where each AND
corresponds to a high activation decision path of the neuron’s decision tree. We may then specify a
rule-base game query (an AND of features), and automatically surface the implementing neurons by
evaluating if their DNF evaluates to True when given the query.

Through traditional machine learning metrics such as R2 scores, metrics specific to OthelloGPT,
as well as causal interventions, we verify that our decision trees are effective at predicting neuron
activations, that they pick up on the relevant features, and that their decision paths are mechanistically
faithful. To facilitate future work, we provide a Python tool that maps rule-based game behaviors to
their implementing neurons, allowing others to test if their interpretability methods can recover the
same ground truth structure as our decision trees.

Our contributions are summarized as follows:

1. An automatic method for discovering rule-based neurons in OthelloGPT. We validate our
method through traditional machine learning metrics and causal interventions.

2. A Python tool mapping rule-base game behaviors to their implementing neurons.

We release code and decision trees at https://github.com/zihangwen/
OthelloReverseEngineering. The colab is available at https://colab.research.google.
com/drive/1kKLj9c3elB0yjJoBZnkHqFl3ZWygP6zw?usp=sharing.

2 Background

2.1 Othello-GPT

OthelloGPT is a transformer with 25M parameters trained to predict legal moves in the board game
Othello [Li et al., 2023]. By training with the standard autoregressive loss over sequences of random
legal moves, OthelloGPT learns to predict a uniform distribution over legal moves. Although the
model receives no explicit knowledge of game rules, it still achieves over 99% legal move accuracy.
Prior work interpreting OthelloGPT uncovered that the model learns to represent a linear world model
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of the Othello board in its internal states [Li et al., 2023, Nanda et al., 2023]. The model then follows
a two-step procedure for predicting legal moves, whereby it first updates its world model of the board
state, and then uses this world model to predict legal moves [Li et al., 2023, Nanda et al., 2023,
Hazineh et al., 2023, Karvonen et al., 2024, Robert_AIZI, 2024, Lin et al., 2024, Maar, 2025].

2.2 Linear world model

Li et al. [2023] demonstrated that Othello-GPT develops internal world models that track board
states during gameplay. Their initial investigations suggested these representations were non-linear.
When probing for absolute tile colors {BLACK, WHITE, EMPTY}, linear probes achieved poor
performance with error rates of more than 20% across layers, while non-linear probes (2-layer MLPs)
dramatically outperformed them, achieving error rates as low as 1.7-4.6% in deeper layers.

Nanda et al. [2023] extended this finding by shifting to player-relative classification {MINE, YOURS,
EMPTY} and showed that the internal representation could be extracted using linear probes, which
achieved a remarkable accuracy exceeding 99% from the end of layer four onwards. Intervening on
these probe directions led to causal changes in model behavior. In addition to linearly representing
the board state, Nanda et al. [2023] found that Othello-GPT linearly represents which tiles are being
flipped at each timestep by training a probe to classify between FLIPPED vs. NOT-FLIPPED states.
Follow-up work by Hazineh et al. [2023] further validated these findings across different model
scales, showing that linear world representations emerge even in minimal transformers with just one
layer and attention head, and that these representations grow stronger with model depth.

As a way to evaluate if our decision trees are capturing the relevant features, we construct a metric
based on board state probes, flipped probes, as well as our own probes for if a square was just played
(Section 3.3).

2.3 Individual Decision Rules

Analysis in Lin et al. [2024] revealed that many neurons in Othello-GPT follow explicit logical rules
with clear conditional structure. For example, they find the MLP neuron L1N421 represents the
decision rule “If the move A4 was just played AND B4 is occupied AND C4 is occupied ⇒ update
B4+C4+D4 to THEIRS”.

More broadly, Lin et al. [2024] identified specialized MLP neurons in layers 4-6 that act as classifiers
for specific board patterns that make particular moves legal, and verified through causal interventions
that these neurons were reponsible for implementing legal move prediction along these patterns. Our
work can be seen as a direct extension, where we attempt to full reverse-engineer rule-based behavior
in OthelloGPT.

3 Identifying Rule-based Neurons

3.1 Decision Trees

Decision trees present a natural machine learning technique for discovering rule-based neurons, as
they are inherently rule-based themselves. Hence, if a neuron can be well-explained by a decision
tree, this can tell us whether or not a neuron’s firing pattern follows logical rules.

We explore two variants of decision trees: regressor decision trees, which directly predict a neuron’s
activation value, and binary decision trees, which predict whether a neuron is on or off. For binary
decision trees, we define on as the neuron’s activation is greater than 0.1 of its max activation (over
the train set), and off otherwise. In both cases, the input features used to train the trees are as the
MINE/YOURS/EMPTY status of each square on the board (64× 3), the most recent move (64), and
whether a tile has been flipped in the most recent move (64).

We train depth 4 decision trees over 6000 games, regularized with a minimum node split count of
100 and a minimum leaf node count of 50. In addition to using ground truth board state information,
we also explored training regression trees using model internal board state information as inputs.
Specifically projections along probe directions as features, and found them to be similarly performant
to the trees trained on ground truth features. For simplicity, we use the ground truth feature decision
trees for all our following experiments.
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3.2 Baselines

We explore the following simpler alternatives to decision trees for identifying rule-based neurons. In
all cases, the input features are the same game state features as in the training of the decision trees:

1. Lasso (L1) regression. We train linear regression with an L1 penalty on a single layer,
encouraging sparsity so that only a small subset of input features is used to predict each
neuron’s activation. We interpret the top-weighted coefficients as the key features influencing
the neuron’s behavior. We compare lasso regression R2 scores to decision tree regression
R2 scores.

2. RIPPER. We use RIPPER (Repeated Incremental Pruning to Produce Error Reduction), a
classic rule-based learner for binary classification that induces compact conjunctive rules to
predict whether a neuron is on or off (same “on” definition as in the binary decision-tree
experiments). We evaluate each neuron’s classifier by its F1-score on the on class and
compare it with the binary decision-tree F1-scores. For containment analysis, top-k features
are extracted from the learned rules using a scoring-and-filtering procedure detailed in
Appendix C.

3.3 Results

R2 across neurons per layer F1 across neurons per layer

Number of neurons with high R2 per layer Number of neurons with high F1 per layer
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Figure 2: Comparison of decision trees to other baselines. A We evaluate regression methods on
R2 scores and B classification methods on F1 scores. C, D: We show the number of interpretable
rule-based neurons with score cutoffs of 0.7, 0.8, and 0.9

We find that the simpler baselines consistently underperform compared to the decision trees on both
R2 and F1 scores (Figure 2 A, B). We also show the number of interpretable rule-based neurons with
cutoffs of 0.7, 0.8, and 0.9 of the scores (Figure 2 C, D). These show that “valid-move” neurons in
layers 5 and 6 are more interpretable with rules.
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To further assess how well the models recover meaningful input features, we evaluated them using
two contrastive probe metrics: (i) containment, measuring the fraction of each model’s top-ranked
features that overlap with features identified via weight-based direct linear attribution (DLA) using
board-state probes (Appendix B), and (ii) the Jaccard index, quantifying overall similarity between
the top-ranked feature sets and the probe feature set (Figure 3).

Containment metric. Given a method’s selected top-k features Fmethod for each neuron, and the
set of probe-identified features Fprobe, we define

C(Fmethod, Fprobe) =
|Fmethod ∩ Fprobe|

|Fprobe|
(1)

Jaccard index. The Jaccard index measures similarity between finite non-empty sample sets. It is
defined as the size of the intersection divided by the size of the union of the sample sets:

J(Fmethod, Fprobe) =
|Fmethod ∩ Fprobe|
|Fmethod ∪ Fprobe|

(2)

We treat these probe-derived features as a reference ground truth, following prior work and our own
analyses confirming their stability and distinctiveness. The intuition behind these metrics is that we
can “read off” which squares a neuron attends to by examining the linear probe weights; we then
check whether our trained models highlight the same input signals. Across all metrics, including R2,
F1, containment, and Jaccard, we found decision trees to be the most performant.
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Figure 3: We evaluate all methods on two contrastive probe feature metrics. A: containment metric.
B: Jaccard metric.

3.4 Automatically surfacing implementing neurons

Given a rule-based query, such as “C0 is blank AND D1 is theirs AND E2 is mine”, we aim to use
our decision trees to automatically surface neurons that fire for this query.

To do so, we use each neuron’s decision tree to associate it with a disjunctive normal form (DNF),
and then evaluate whether the neuron’s DNF evaluates to True when given the rule-based query. In

5



more detail, for each neuron we first separate out the "on" leaf nodes and "off" leaf nodes. This is
already given for the binary decision trees, while for the regression decision trees we use Otsu’s
threshold, which sorts data into two groups such that the within group variance is minimized. The
decision paths for the "on" leaf nodes then correspond to the AND clauses of the neuron’s DNF.

To make the rules easier to read, we rewrite and simplify them. For example, a decision tree might
separately check “E2 is theirs” and, if not, “E2 is empty,” without ever explicitly concluding “E2 is
mine.” By combining the conditions “NOT E2 is theirs” and “NOT E2 is empty,” we can express the
same logic more clearly as “E2 is mine.” Similarly, when a rule redundantly includes both “E2 is
theirs” and “NOT E2 is empty,” we keep only the stronger positive condition and simplify it to “E2 is
theirs.” This process of merging fragmented conditions into explicit statements transforms messy,
machine-generated decision paths into clear, human-readable rules. Figure 1 B, C shows an example
of a decision tree and its corresponding generated rules.

4 Intervening on Rule-based Game Behaviors

4.1 Layer-wise rule-based neuron intervention

Accuracy with interpretable neurons intervention in layers KL divergence with interpretable neurons intervention in layersA B
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Figure 4: Layer-wise rule-based neuron (cutoff of 0.7) intervention. A: Accuracy of intervention. B:
KL divergence between before and after intervention. The dashed lines show the ablation of board-
state related layers ([0,1,2,3,4]) and valid-move related layers ([5,6]) from the previous literature.

We used a cutoff of 0.7 to select interpretable, rule-based neurons. Our first intervention study
involved replacing MLP neurons with regression decision tree neurons in entire layers (Figure 4).
Specifically, we replaced them in the order of the first N layers and the last N layers. (We excluded
layer 7 because it appears to perform final output cleaning and is not easily explained by simple
rules.) After substituting the selected neurons with the outputs of their corresponding decision tree
models, the network’s valid-move prediction accuracy remained high, and the KL divergence of the
output logits stayed low. These results indicate that the decision trees capture the essential functional
behavior of the original neurons.

In contrast, completely removing these interpretable neurons or replacing them with mean activations
caused a sharp drop in OthelloGPT’s performance. This demonstrates that the identified neurons
carry critical information and are causally important for OthelloGPT’s computation. The degradation
is especially pronounced when intervening on layers 5 and 6, consistent with prior findings that these
layers play a key role in rule-based valid move prediction.
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Figure 5: Fine-grained intervention. A: Intervention pattern example: valid move via diagonal pattern.
B: Control pattern example: valid move via diagonal pattern. Note: small circles in A and B are all
possible legal moves. C, D: Output Probabilities of OthelloGPT output on a game example where
H3 is legal via diagonal pattern. C: Before intervention. D: After intervention, the probability for
the intervened square H3 drops to in between the legal and illegal square probabilities. Run more
interventions in the Colab Notebook.

4.2 Fine-grained interventions

Suppose a decision tree claims that a neuron fires when a particular square is legal along a certain
diagonal. If this is indeed the case, then we should expect that for positions where that move is legal
due to the diagonal, ablating the neuron reduces the model’s probability for that square. Moreover,
this should not greatly reduce the model’s probability for that square when it is legal due to a different
pattern, such as a certain row.

We perform an intervention experiment along these lines for each of the 60 squares that can be played
in OthelloGPT. For each square, we specify an intervention condition and a control condition, both of
which are distinct 3 square patterns that make the given square legal. A visual depiction is shown
in (Figure 5 A, B). We then use our pipeline from Section 3.4 to collect the neurons that respond
to the intervention pattern. Over a 500 game test set, we filter for positions where the intervention
condition is satisfied but not the control condition, as well as for positions where the control condition
is satisfied but not the intervention condition. We then zero ablate the intervention condition neurons
over both sets. Further details about the experimental setup and the steps taken to avoid confounding
are provided in Appendix G.
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4.2.1 Metrics

We include natural metrics such as probability difference and logit difference. While another natural
metric to include would be the change in legal move accuracy (defined as inaccurate if and only if an
illegal square is in the top K logits, where K is the number of legal moves in the given position),
OthelloGPT’s prediction of a uniform distribution over legal moves complicates this metric. In
particular, since each legal move receives probability 1/K (where K is the number of legal moves),
and each illegal move receives probability 0, it is difficult to completely move the intervention legal
square out of the top K. The situation is visually depicted in Figure 5 C, D (observe the shading for
square H3). Hence, we instead include the following three metrics: dropping the intervention square
probability below 1%, 5%, and 10% of its original probability.

4.2.2 Results

Averaging results over all 60 squares, we find that the legal square probability drops nearly twice as
much in the intervention conditions as in the control conditions (Table 1). For the below 1% of its
original probability metric, we find ∼4x greater effect in the intervention than control conditions.

We found that intervention results for the 12 squares adjacent to the middle 2x2 region were subpar,
suggesting that there is greater shared behavior among such squares. Hence, we perform a variant
where we average only over the 48 squares outside the middle 4x4. As shown in Table 1, we find
substantial improvement in our metrics, most notably with a ∼10x greater effect in the intervention
than control conditions for the below 1% of original probability metric (0.077 vs. 0.0076). We
interpret these results as evidence that the neurons causally implement the behaviors their decision
trees describe, but note that the incomplete effect on model behavior suggests that there are other
prediction mechanisms that we are missing.

Table 1: Intervention vs. Control Condition Results
Metric All 60 Squares 48 Squares (excl. middle 4x4)

Intervention Control Intervention Control
Logit Difference 1.612 0.723 1.854 0.682
Probability Difference 0.057 0.031 0.062 0.031
Clean Accuracy 0.99996 0.99999 0.99995 0.99998
Corrupted Accuracy 0.994 0.997 0.998 0.999
Accuracy Difference 0.0059 0.0030 0.0016 0.00065
Below 1% 0.058 0.015 0.077 0.0076
Below 5% 0.191 0.062 0.239 0.040
Below 10% 0.287 0.094 0.344 0.079

5 Discussion

Our results demonstrate that a substantial fraction of neurons in OthelloGPT can be modeled as
rule-based units whose activations follow explicit, human-interpretable logical conditions. Decision
trees proved to be the most performant method across all quantitative metrics, outperforming both
sparse linear models and classical rule learners. This suggests that many neurons in OthelloGPT
implement discrete decision boundaries that are well approximated by a small set of conjunctive
conditions.

Layer-wise dynamics and partial coverage. Consistent with prior work, interpretable rule-based
neurons are concentrated in layers 5–6, while earlier layers (0–4) appear to build distributed board-
state representations. Intervening on layers 5–6 yields the largest causal degradation in valid-move
prediction, and fine-grained ablations show direction-specific drops in probability for the targeted
legal moves. Yet replacing these neurons with their decision-tree surrogates preserves most accuracy,
whereas ablating them harms specific sub-behaviors, indicating that OthelloGPT combines rule-like
components with more continuous, distributed mechanisms that our trees only partially capture.

Conceptually, decision trees provide an advantage over linear probes or direct weight attribution:
rather than assigning scalar importance to individual input features, they capture compositional logic
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“ORs of ANDs” that mirrors the conditional dependencies present in the game’s rules. This structured
representation yields clearer hypotheses for mechanistic testing and helps to explain network behavior.

6 Limitations

We focus only on reverse-engineering rule-based behavior in OthelloGPT, which provides an incom-
plete picture of its internal computation. For example, Maar [2025] identify global “flip” circuits that
propagate ownership changes across timesteps—mechanisms that are explicitly not rule-based and
thus fall outside the scope of our analysis. Our decision trees are also imperfect approximations: a
neuron whose activation depends on long conjunctive dependencies (e.g., a length-5 AND clause) or
on continuous features may not be well captured by the depth-4 trees we train.

Furthermore, our approach assumes that individual neurons are the natural unit of analysis, but
OthelloGPT may implement higher-order computations distributed across neuron groups or attention
heads. In these cases, decision trees trained per neuron may miss relational patterns or mixed features
that only emerge jointly. Extending tree-based analysis to multi-neuron subspaces, deeper logical
dependencies, or time-coupled features could help close these gaps.

7 Conclusion

We introduced a decision-tree–based framework for automatically identifying and interpreting rule-
based neurons in OthelloGPT. Using both predictive metrics and causal interventions, we showed
that many neurons follow compact logical rules that align with game mechanics, and that intervening
on these neurons predictably alters model behavior. These results reinforce the view that OthelloGPT
performs structured, rule-like reasoning grounded in an internal linear world model, while also
revealing that such reasoning coexists with more distributed, continuous computation.

Our open-source tool and neuron–rule mapping provide a reproducible benchmark for testing inter-
pretability methods against a model with known ground-truth structure. We hope this work advances
the broader goal of connecting feature-level analyses, such as decision trees, probes, and sparse
autoencoders, into a framework for mechanistically understanding how transformers implement
reasoning computation.
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A Decision tree scaling law

We trained binary ground-truth classification decision trees on datasets of varying sizes (60, 600,
6,000, 12,000, and 30,000 games) and evaluated them on a 500-game test set. We found that
performance almost stabilized once the training set reached about 6,000 games, with only marginal
gains beyond that point. For computational efficiency, we therefore used the 6,000-game dataset for
more complex decision tree variants, such as regression trees and probe-feature trees.
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Figure 6: Number of interpretable neurons with F1 score > 0.7 for depth 8 binary decision trees
trained with different size of datasets.
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B Probe feature extraction

We computed the cosine similarity between each neuron’s input weights and the five probe directions:
Mine, Empty, Theirs, Flipped, and Just Played. We then identified probe activation features with
notably large or small values by filtering those exceeding two standard deviations from the mean.

Figure 7: Probe features. A. Cosine similarity between neuron input weights and Mine, Empty,
Theirs, Flipped, Just Played probe directions. B. Distribution of the similarity values
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C RIPPER Feature Scoring and Selection

For each neuron, RIPPER produces an ordered list of conjunctive rules. We assign each feature f a
weight

w(f) =
∑

r: f∈r

F
(n)
1,strong ×

1

|r|
× 1

rank(r)ρ
,

where F
(n)
1,strong is the neuron’s F1-score on the positive class, |r| is the rule length, and ρ = 0.7

controls decay with rule rank.

Top RIPPER features are then selected by applying a k-sigma filter (k = 2) on these weights,
retaining only those whose scores exceed the mean by at least two standard deviations. The resulting
feature sets are used in the containment analysis in Sec. 3.3.
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D Changes of logits of valid move neuron zero ablation experiment

We are showing three different possible logit differences before and after ablation. In the first case,
the logit of D1 dropped to 4.0452 from 8.5554 but still significantly higher than the other illegal
tokens (2.1943). In the second case, the logit of D1 dropped to 2.5962 that is close to the other illegal
tokens (2.2567). In these two cases, the logit of D1 is still within the top “valid move number” of
each play. So, we consider these two as accurate prediction. In the third case, the logit of D1 dropped
to 1.6110 which is below some other illegal tokens and also out of 8 (“valid move number” of this
play). So, we consider these scenario as inaccurate prediction.

Figure 8: Output logits of the model with or without ablation.
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E Uniqueness of board state representation

Prior work has shown that OthelloGPT linearly represents board state, and moreover, that this
representation is causal Nanda et al. [2023]. However, this does not answer the question of whether
there exist redundant representations of board state, or if the representation is unique. To test this, we
first train a probe P ∈ Rdmodel×3 for each square on the residual stream at the end of layer 5. We train
over a train set of 50k games, and the probe achieves an accuracy of 99.4% on a test set of 10k games.
We then ablate the probe directions and retrain the probe. Specifically, a three class classification
probe is parameterized by two directions {∆1,∆2} corresponding to any two of the difference
directions of the probe. We zero out the components of the activations in span({∆1,∆2}), and retrain
the probe over the same train set. Evaluated over the same test set, the ablated probe performs as
good as random with 33% accuracy, confirming uniqueness of the board state representation.

Figure 9: Left: Original Probe Accuracy. Right: Ablated Probe Accuracy.
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F G2 was flipped decision tree neurons

While direct probe attribution filters for neurons that actively write out G2 is theirs when G2 is flipped,
sorting decision trees by F1 only biases towards neurons that exclusively fire when G2 is flipped, not
necessarily that they write out G2 is theirs. By visualizing heatmaps of cosine similarities of decoder
weights and probe directions for the top four neurons by F1 (Figure 10), we see that while the first
two write out G2 is theirs, the second two carry out different functions related to G2.

Figure 10: Top neurons by F1 for G2 is flipped

Figure 11: Intersection ratio of top-k neurons between direct probe attribution and decision tree F1
rankings for G2 is flipped.
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G Fine-grained intervention set-up details

To ensure the intervention and control conditions are not confounded, we select the intervention and
control 3 square patterns such that the Manhattan distance of the two patterns to the middle 2x2 are
equal. This corresponds to one diagonal pattern pointing to the middle, and an axial direction (either
row or column), depending on the location of the square on the board. We also randomize assignment
of the diagonal and axial pattern to intervention and control.
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