
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TAMING MASKED DIFFUSION LANGUAGE MODELS VIA
CONSISTENCY TRAJECTORY REINFORCEMENT LEARN-
ING WITH FEWER DECODING STEP

Anonymous authors

Paper under double-blind review

ABSTRACT

Masked diffusion language models (MDLMs) have recently emerged as a promising
alternative to autoregressive (AR) language models, offering properties such as
parallel decoding, flexible generation orders, and the potential for fewer inference
steps. Despite these advantages, decoding strategies and reinforcement learning
(RL) algorithms tailored for MDLMs remain underexplored. A naive approach is to
directly transfer techniques well-established for AR models to MDLMs. However,
this raises an immediate question: Is such a naive transfer truly optimal? For
example, 1) Block-wise and semi-AR decoding strategies are not employed during
the training of MDLMs—so why do they outperform full diffusion-style decoding
during inference? 2) Applying RL algorithms designed for AR models directly to
MDLMs exhibits a training-inference inconsistency, since MDLM decoding are
non-causal (parallel). This results in inconsistencies between the rollout trajectory
and the optimization trajectory. To address these challenges, we propose EOS
Early Rejection (EOSER) and Ascending Step-Size (ASS) decoding scheduler,
which unlock the potential of MDLMs to perform full diffusion-style decoding,
achieving competitive performance with fewer decoding steps. Additionally, we
introduce Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO)
for taming MDLMs, which emphasizes the consistency between rollout trajectory
and optimization trajectory, and reduces the optimization errors caused by skip-
step optimization. We conduct extensive experiments on reasoning tasks, such as
mathematical and planning benchmarks, using LLaDA-8B-Instruct. The results
demonstrate that the proposed EOSER and ASS mechanisms, together with CJ-
GRPO, hold significant promise for effectively and efficiently taming MDLMs.

1 INTRODUCTION

Autoregressive (AR) large language models Brown et al. (2020); Bai et al. (2023); Touvron et al.
(2023); Grattafiori et al. (2024); Guo et al. (2025); Yang et al. (2025) have demonstrated compelling
scaling laws in general capabilities, alignment, and reasoning. Their success suggests that scaling up
the model size, training corpora and computational resources can yield models capable of solving
a broad spectrum of tasks. However, beyond sheer scale, there is no evidence indicating that
autoregressive modeling is the inevitable or optimal foundational paradigm for language modeling.
Diffusion language models (DLMs) Khanna et al. (2025); DeepMind (2025); Song et al. (2025)
have recently emerged as a promising competitor, exhibiting parallel decoding (non-causal, high
throughput), flexible orders, and potential for fewer inference steps. Built upon prior theoretical and
empirical work Austin et al. (2021); Lou et al. (2023); Nie et al. (2024), masked diffusion language
models (MDLMs) have stood out from counterparts (i.e., DLMs) and established a dominant position.

A representative train-from-scratch MDLM—LLaDA Nie et al. (2025) demonstrates competitive
performance compared to similarly sized AR models. Beyond the promising results, two problems
regarding MDLMs remain underexplored: (1) Decoding Strategy, as shown in the (d) of Fig. 1,
why does semi-AR (i.e., block-wise) decoding outperform full diffusion (without block constraint)
decoding without specifically training for this strategy? The (a), (b) and (c) of Fig. 1 may unveil the
reason behind this behavior. In particular, (c.1) and (c.2) indicate two key characteristics: 1) The

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: (a) and (b) illustrate the vertical and front view of Step-Position Heatmap of Token
Probability, showing the frequency of <EOS> appearing at each position per step. (c) depicts the
performance comparison of semi-AR and full-diffusion decoding strategies. (d) shows the average
confidence of tokens as denoising progresses.

average tokens confidence is lower in the initial denoising steps but increases sharply as denoising
progresses. 2) The average confidence of <EOS> is significantly higher than that of <non-EOS> .
These characteristics explain the phenomena observed in (a) and (b). The block constraint avoids
decoding the <EOS> at the end of sequence in early steps, whereas full diffusion decoding lacks such
constraint. Consequently, when employing full diffusion decoding, few semantically informative
tokens are decoded in the initial low-confidence phase, potentially causing derailment—the model
deviates from the correct denoising trajectory. We refer to this phenomenon the ’<EOS> Trap! ’ of full
diffusion decoding. Furthermore, characteristic 1) suggests that uniform step-size decoding scheduler
may be suboptimal. An intuitive approach is to decode cautiously in the early low-confidence
phase and more aggressively in the later steps. (2) Online Reinforcement Learning, several recent
studies attempt to replicate the success of online reinforcement learning (RL) in AR models to
MDLMs. For example, d1 Zhao et al. (2025) directly applies GRPO Shao et al. (2024); Guo et al.
(2025) to LLaDA Nie et al. (2025), which overlooks the inconsistency between rollout trajectory and
optimization trajectory. While LLaDOU Huang et al. (2025) recognizes this issue and introduces an
unmasking policy module to assist low confidence remasking, then combines it with RL to improve
performance, this module requires training from scratch and often needs customized training for
different model sizes and architectures, which is neither elegant nor scalable. Moreover, even when
trajectory consistency considered, hardware memory confronts a significant bottleneck in online
reinforcement learning. As maintaining consistency between rollout and optimization trajectories
necessitates storing intermediate states throughout the denoising process, memory consumption
drastically increases and becomes prohibitive as the number of denoising steps grows.

To this end, we propose approaches from the three perspectives, including decoding strategy, denoising
step-size scheduler and reinforcement learning algorithm to alleviate the above problems. In summary,
our contributions are three-fold:

• EOS Early Rejection (EOSER): We introduce EOS early rejection (EOSER) for full
diffusion decoding, which excessively suppress the confidence of <EOS> in early steps
and gradually restores it as denoising progresses, thereby alleviating the <EOS> Trap!
. Experimental results show that EOSER significantly improves the performance of full
diffusion decoding.

• Ascending Step-Size (ASS) Decoding Scheduler: Based on the observation that average
token confidence evolves from low to a sharply increasing during denoising, we propose an
ascending step-size decoding scheduler instead of uniform step-size ones. This scheduler
decodes fewer tokens cautiously in early steps and more tokens aggressively in later steps,
substantially reducing the number of decoding steps (e.g., from L

2 to log2 L).

• Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO): We propose
Consistency Trajectory GRPO (CJ-GRPO) to align the denoising trajectories of rollout and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

optimization. It considers the non-causal nature of full diffusion decoding and effectively
reduces the optimization errors caused by skip-step optimization. When combined with
the EOSER and ASS scheduler, CJ-GRPO exhibits the potential to achieve considerable
performance with fewer decoding steps.

2 RELATED WORK

2.1 MASKED DIFFUSION LANGUAGE MODELS

Recently, utilizing diffusion models to construct large language models (DLMs) Nie et al. (2025); Ye
et al. (2025) has emerged as a promising trend. Many works Nie et al. (2025); Ye et al. (2025); Austin
et al. (2021); Wu et al. (2023); Sahoo et al. (2024); Lou et al. (2023); Zheng et al. (2024); Gong et al.
(2024); Ou et al. (2024); Nie et al. (2024); Arriola et al. (2025) are obsessed with the parallel decoding,
flexible order, and potential fewer inference steps of DLMs, considering them a strong competitor to
autoregressive models. D3PM Austin et al. (2021) initiates the discrete probability diffusion model,
proposing four commonly used corruption approaches to damage sentences in the forward process:
uniform, absorbing state (mask), discrete Gaussian, and token embedding distance. Among these,
masked diffusion language models (MDLMs) have stood out and established a dominant position
among the counterparts. Recent research has scale MDLMs to the billion-parameter regime, achieving
performance comparable to similarly sized autoregressive LLMs (e.g., SMDM Gong et al. (2024),
LLaDA Nie et al. (2025), Dream Ye et al. (2025), DiffuLLaMA Nie et al. (2024)), significantly
scaling their capabilities. Other notable works include Diffusion-LM Li et al. (2022) and simple
guidance Schiff et al. (2024) explore controllable text generation for DLMs. Block Diffusion Arriola
et al. (2025) introduces semi-autoregressive training-inference paradigm, combining intra-block
diffusion, inter-block autoregression to enable variable-length generation.

2.2 ONLINE REINFORCEMENT LEARNING FOR DIFFUSION LANGUAGE MODELS

Reinforcement learning (RL) has been extensively explored to align autoregressive (AR) LLMs
on human preference and enhancing their reasoning capabilities Schulman et al. (2017); Rafailov
et al. (2023); Shao et al. (2024). More recently, MDLMs Ye et al. (2024); Huang et al. (2025); Zhu
et al. (2025); Zhao et al. (2025) have shown promise in reasoning tasks (e.g., math, game). For
instance, DoT Ye et al. (2024) demonstrates that DLMs are effective in producing chain-of-thought
reasoning and addressing reasoning tasks. d1 Zhao et al. (2025) directly adopts the representative
online reinforcement learning algorithm (i.e., GRPO Shao et al. (2024); Guo et al. (2025)) to adapt
MDLMs, while LLaDOU Huang et al. (2025) explores online reinforcement learning algorithms
more suitable for DLMs/MDLMs. So far, most policy gradient-based RL algorithms Shao et al.
(2024); Guo et al. (2025); Zeng et al. (2025); Yu et al. (2025); Hu et al. (2025) have been tailored
for autoregressive LLMs, which perform with causal mask and token-by-token generation. These
algorithms are seamlessly compatible with sequential modeling and decision making. However, the
non-causal attention nature of MDLMs prevents RL algorithms designed for AR models from being
directly applied to MDLMs.

3 METHODOLOGY

3.1 MASKED DIFFUSION LARGE LANGUAGE MODELS

Similar to typical diffusion models Ho et al. (2020); Song et al. (2020), MDLMs (Austin et al., 2021;
Lou et al., 2023; Shi et al., 2024) model a distribution pθ(x0) through a discrete forward and reverse
process defined by q(xt+τ |xt) and pθ(xt|xt+τ), respectively. The forward process gradually corrupts
a sequence x0 by replacing tokens with <MASK> according to a time index t ∈ [0, 1]. At t = 0, the
sequence x0 is clean and unmasked. The intermediate state xt is partially masked and each token is
masked with the probability t or unmasked with 1− t at time tick t. The reverse process recovers
the original sequence x0 from the fully masked state x1. During the pre-training, the model learns
a mask predictor pθ(·|xt) that takes xt as input and predicts all <MASK> . The training objective
minimizes the negative evidence lower bound, which upper-bounds the negative log-likelihood of the
model distribution:

−Epdata(x0) [log pθ(x0)] ≤ Lθ, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: (a) EOS Early Rejection. (b) Ascending Step-Size Scheduler for fewer inference steps.

Lθ = −Et∼U(0,1], x0∼pdata, xt∼qt|0(xt|x0)

1

t

|xt|∑
i

I[xi
t = <MASK>] log pθ(x

i
0 | xt)

 , (2)

where |xt| is the sequence length of x, k means the k-th position, I denotes the indicator function that
ensures the loss is computed only for masked tokens. Instruction tuning follows a similar procedure:
the prompt p0 remains unchanged, while the response r0 is partially masked. The model takes the
prompt p0 and masked response rt as input and is trained to predict the clean response r0:

L′
θ = −Et∼U(0,1], p0∼pdata, rt∼qt|0(rt|p0,r0)

1

t

|rt|∑
i=1

I[rit = <MASK>] log pθ(r
i
0 | p0, rt)

 , (3)

where |rt| is the generation length of response. In practice, the continuous time variable t ∈ (0, 1] is
discretized into the step s̃ with interval ∆t = 1

S , such that t = s̃ ·∆t, s̃ ∈ {0, 1, · · · , S − 1}. The
denoising step s is defined as s = S − s̃, s ∈ {1, 0, · · · , S − 1}, implying xs = xS−s̃ = xS−S·t =
x1−t. For ease of description, we will use s in the remainder of this paper.

3.2 EOS EARLY REJECTION

As illustrated in Fig. 1 (Sec. 1), the performance of full diffusion-style decoding significantly lags
behind that of semi-autoregressive (block-wise) decoding. This issue arises because LLaDA Nie et al.
(2025) replaces <PAD> with <EOS> during pre-training, resulting the training sequences include
a large number of <EOS> , and enabling the model to learn such bias from data. Consequently,
during the early steps of full diffusion decoding—when the average token confidence is low—the
model exhibits disproportionately high confidence in <EOS> compared to <non-EOS> , leading
it prematurely generate <EOS> at the end of sequence in early steps. In contrast, commonly used
block-wise decoding avoids the <EOS> Trap! by isolating later blocks. However, it introduces several
limitations: (1) The block boundaries restricts decoding flexibility. Tokens in later blocks that may
have high confidence and should be decoded earlier are forcibly delayed, potentially constraining the
optimal decoding trajectory. (2) Block length may be a sensitive hyperparameter that requires careful
tuning. In comparison, full diffusion-style decoding is free from such constraints.

To alleviate the <EOS> Trap! associated with full diffusion-style decoding, we introduce a attenuation
coefficient γ for <EOS> ’s confidence that varies with the denoising steps s:

γ = γmin + (γmax − γmin)
s

S − 1
, (4)

p̂θ(x
i
s|xs−1) =

{
γ · pθ(xi

s|xs−1), if decode(xi
s) = EOS

pθ(x
i
s|xs−1), otherwise

, (5)

here, γmin and γmax represent the lower and upper bound, respectively, s is the current step, and S is
the total number of steps. The attenuation coefficient γ is used for early rejection mechanism. This
mechanism suppresses the occurrence of <EOS> in the early steps by multiplying the confidence
corresponding to early <EOS> by the attenuation coefficient γ, as shown in Eqn. 5 and Fig. 2 (a),
while restoring its probability in the later steps to allow for sentence termination. Empirically, we set
γmax = 1.0 and γmin ∈ [0.4, 0.6] for uniform step-size decoding scheduler.

3.3 ASCENDING STEP-SIZE SCHEDULER FOR FEWER STEPS INFERENCE

As shown in Fig. 1 and discussed in Sec. 1, the average token confidence remains low in early
denoising steps and increases sharply in later steps. This observation suggests that a cautious

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: (a) The causality gurarantee the consistency between AR LLMs’ rollout and optimization.
(b) Two inconsistency trajectories RL training for MDLMs, we refer to 1⃝ as one-step x′

S → xS and
2⃝ as one-step x0 → xS . (c) Consistency Trajectory Group Relative Policy Optimization.

decoding strategy—denoising fewer tokens—is preferable initially, while a more aggressive ap-
proach—denoising more tokens—can be adopted later. To leverage this phenomenon, we propose an
ascending step-size decoding scheduler that adapts to the confidence trend, significantly reducing the
number of denoising steps required. As illustrated in Fig. 2 (b), we replace the fixed step-size of L

S
with a power-of-2 schedule to determine the number of tokens decoded at each step s. Specifically, at
decoding step s ∈ {0, · · · , s, · · · , S − 1}, the number of tokens decoded is 2s, and the cumulative
number of tokens decoded up to step s is 2s+1 − 1. The current and cumulative token counts are thus
defined as: cur tokens = {1, · · · , 2s, · · · , 2S−1}, cum tokens = {1, · · · , 2s+1 − 1, · · · , 2S − 1}.
Since the sum of the first S terms of a geometric progression with a common ratio of 2 is 2S − 1, but
considering that the target generation length L is typically set to a power of 2, we adjust the final step
to decode one additional token. Thus the ascending step-size scheduler is defined as follows:

Ascending Step-Size Scheduler(s) =
{
2s + 1, if s = S − 1

2s, otherwise
. (6)

To avoid the <EOS> Trap! when using Ascending Step-Size (ASS) scheduler with full diffusion
decoding, we integrate the EOSER. Given that the step-sizes are non-uniform, we adjust the γ to
account for the progressive increase in power-of-2. Specifically, the γASS is defined as follows:

γASS =


γmin + (γmax − γmin)

2s + 1

2S
, if s = S − 1

γmin + (γmax − γmin)
2s

2S
, otherwise

. (7)

Empirically, we set γmax = 1.0 and γmin = 0.01. The ASS scheduler can also be extended to
block-wise decoding. For example, multiple power-of-2 step groups can be combined into a single
block. An example is as follows:

Blocks = { 20, 21, 22, 23, 24,︸ ︷︷ ︸
block 1, block length=25 − 1

· · · , 2s, 2s+1, 2s+2, 2s+3, 2s+4︸ ︷︷ ︸
block n, block length=2s · (25 − 1)

, · · ·}. (8)

The ASS decoding significantly reduces the inference steps (time) of MDLMs. Several studies Nie
et al. (2025); Zhao et al. (2025) demonstrate that the empirically optimal uniform steps for MDLMs
are often half the generation length L

2 . The ASS decoding scheduler reduce this from L
2 to log2 L,

thereby lowering the time complexity from O(L) to O(log2 L). This exhibits significantly potential
for accelerating inference.

3.4 CONSISTENCY TRAJECTORY GROUP RELATIVE POLICY OPTIMIZATION

GRPO Shao et al. (2024); Guo et al. (2025) is a widely used and cost-effective online reinforcement
learning algorithm for training autoregressive (AR) models. However, directly applying GRPO to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

masked diffusion language models (MDLMs) may lead to a fundamental mismatch. Unlike AR
decoding, Semi-AR and full diffusion-style decoding in MDLM lacks the causality guarantee (i.e.,
causal attention). As depicted in (a) of Fig. 3, in AR models, the predicted confidence of each
token depends only on previously decoded tokens, and token confidences obtained during rollout are
completely consistent with the confidences computed on final prompt-completion pairs.

In contrast, MDLMs employ bidirectional attention, leading to non-causal (diffusion-style) rollout
trajectories. The predicted token confidences during rollout which are estimated in the presence of
<MASK> , differ from the confidences computed on final prompt-completion pair (p0, r0 in Eqn.3).
This discrepancy arises because the model’s predictions at intermediate steps are conditioned on
partially masked sequences, unlike the autoregressive paradigm, as illustrated in Fig. 3 (a). To address
the issue posed by non-causal rollout trajectories in MDLMs, there are two compromise inconsistency
trajectory GRPO algorithm (we refer to them as iCJ-GRPO) in Fig.3 (b). 1⃝ involves calculating
confidence from prompt-completion pairs with slightly perturbed prompts (as in d1 Zhao et al. (2025)).
This method can be seen as a one-step denoising optimization from a starting point x′

S near the final
state xS , or 2⃝ directly computes confidence from fully masked responses r1(x0), and optimizing
to reach the final answers r0(xS), equivalent to performing the one-step denoising optimization
from initial state x0 to the final state xS . Both of them may bring significant optimization errors of
trajectory and may degrade performance. To ensure consistency between rollout and optimization
trajectories, we propose the Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO),
as illustrated in Fig. 3 (c). During the rollout phase, we record intermediate states at each denoising
step s in two queues: one for storing token confidences πθ(·|xg

s−1), and the other for storing the
position posgs of the token decoded at each step, which exhibit the following relationship:

pθ(x
g
s |x

g
s−1) = πθ(·|xg

s−1) · posgs , (9)

where pθ(x
g
s |x

g
s−1) represents token confidences (probabilities) corresponding to the decoding

positions posgs at step s− 1, and g denotes the group ID in GRPO. These intermediate states are then
utilized to guide the optimization trajectory. The loss between adjacent steps s− 1 → s is as follow:

Lθ,s−1 = − 1

G

G∑
g=1

pθ(x
g
s |x

g
s−1)

pθold(x
g
s |xg

s−1)
Ag + βKL(πθ∥πθref). (10)

The sample-wise trajectory loss and the corresponding batched trajectory loss are:

Lb
θ =

1

S

S∑
s=1

Lθ,s−1, Lθ =
1

B

B∑
b=1

Lb
θ. (11)

The detailed optimization pipeline is depicted in Algo. 1. However, a limitation of consistency trajec-
tory GRPO algorithm is that storing intermediate states increases memory overhead proportionally
with the number of denoising steps S. To address this issue, we naturally consider employing ASS
scheduler during rollout. This not only reduces the time complexity from O(L) to O(log2 L), but
also the space complexity from O(L) to O(log2 L). Furthermore, models trained in this manner
exhibit improved fewer-step generation capability. The combination of CJ-GRPO and ASS scheduler
brings multiple advantages simultaneously, embodying the ’Kill three birds with one stone’.

4 EXPERIMENTS

Following previous work d1 Zhao et al. (2025), we evaluate LLaDA Nie et al. (2025) after reinforce-
ment learning on mathematical, planning, and coding tasks to assess how our proposed decoding
strategies and reinforcement learning algorithm improve reasoning capabilities.

4.1 IMPLEMENTATION DETAILS

Datasets and Benchmarks We evaluate our method on following domains, (1) Mathematics:
The mathematical problems which can be verified the correctness between model’s response and
ground truth answer with robust regular expressions. We utilize GSM8K Cobbe et al. (2021), a high-
quality dataset of linguistically diverse grade school math word problems, and MATH500 Lightman
et al. (2023), a curated subset of 500 problems filtered from the MATH Hendrycks et al. (2021).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 CJ-GRPO training with ASS and EOSER
Input Unmasking policy πθ , training dataset D, reward verifier R(x, a), and queue of denoising trajectory
Q(xs,poss) for recording intermediate states and unmasking positions.
1: while πθ not converged or max epochs unreached do
2: Sample a batch of question-answer pair (q, a) ∈ D
3: for g in 1, ..., G do ▷ G denotes the number of groups per question
4: Initialize xg

0 with q and mask tokens
5: for s in 1, ..., S do ▷ S denotes the number of denoising steps
6: Decoding xg

s ∼ πθ(·|xg
s−1) with ASS & EOSER

7: Enqueue Q(xg
s−1, pos

g
s)

8: end for
9: rg = R(xg

S , a) ▷ Compute the rewards
10: end for
11: Ag = rg−mean(r1:G)

std(r1:G)
▷ Compute the advantages

12: for i in 1, ..., µ do ▷ µ denotes the number of GRPO iterations
13: for s in 1, ..., S do ▷ Compute denoising trajectory loss
14: Dequeue Q(xg

s−1, pos
g
s)

15: pθ(x
g
s |xg

s−1) = πθ(·|xg
s−1) · posgs , pθold(x

g
s |xg

s−1) = πθold(·|x
g
s−1) · posgs

16: Lθ,s−1 = − 1
G

∑G
g=1

pθ(x
g
s |x

g
s−1)

pθold
(x

g
s |x

g
s−1)

Ag + βKL(πθ∥πθref) ▷ see Eqn. 10

17: end for
18: Lb

θ = 1
S

∑S
s=1 Lθ,s−1, calculate the gradient Lθ = 1

B

∑B
b=1 L

b
θ ▷ see Eqn. 11

19: Update θ of πθ with ∇θLθ = 1
B

∑B
b=1 ∇θLb

θ

20: end for
21: end while
Output Unmask policy πθ .

(2) Planning: Involving two categories of tasks: 4x4 Sudoku puzzles, which require constraint
satisfaction and systematic elimination to fill a grid with numbers, and Countdown with 3 numbers,
a combinatorial arithmetic game where models must reach a target number using basic arithmetic
operations on a given set of numbers.

Model and Training We utilize LLaDA-8B-Instruct Nie et al. (2025) as the base model. To ensure
a fair comparison, we share the same configuration as diffu-GRPO Zhao et al. (2025). For both
diffu-GRPO and our CJ-GRPO, the group size for group-relative advantage estimation is 6, the KL-
divergence coefficient β is 0.04. For supervised fine-tuning (SFT), we train on the s1k Muennighoff
et al. (2025) dataset for 20 epochs iteration, and the maximum sequence length of 4096. The
importance sampling parameter ϵ is set to 0.5, and the temperature of Gumbel noise sampling Zheng
et al. (2024) during rollout is set to 1.0. The number of GRPO iterations µ is set to 12 for math
tasks and 8 for planning tasks. We set the γmax = 1.0 for uniform and ASS decoding. For uniform
decoding, γmin ∈ [0.4, 0.6], while for ASS scheduler, γmin = 0.01. All baseline methods (SFT,
diffu-GRPO) and CJ-GRPO are trained with a batch size of 48 and 2 gradient accumulation steps.

Evaluation and metric We compare our methods against SFT and diffu-GRPO Zhao et al. (2025)
across all benchmarks. Evaluation is performed using 0-shot prompting and greedy decoding. The
generation lengths are set to 128 and 256, with corresponding block lengths of 64 and 128 (i.e.,
half the generation length). The number of denoising steps is set to 7/8, 32/64, and 64/128 for the
respective configurations.

4.2 MAIN RESULTS

We report the performance of baseline LLaDA-8B-Instruct Nie et al. (2025) equipped with different
decoding strategies —training-free comparison—in the upper part of Tab. 1 and Tab. 2. The lower
sections of the same tables show the results on various post-training recipes across four tasks,
evaluated in a zero-shot setting where each model is trained specifically for each task.

Training-free Setting Comparison Among Decoding Strategies. We compare the performance of
three decoding strategies under the training-free setting: semi-autoregressive (AR), full diffusion and
EOSER. For semi-AR decoding, the block length is set to half the generation length, L

2 , based on
empirical studies that show this configuration yields better performance. In contrast, for full diffusion

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on Countdown, GSM8K, MATH500 and Sudoku: We report
results under different decoding strategies and training algorithms, with generation lengths L of 128
and 256 across denoising steps S=L

4 and L
2 with uniform step-size. The notation ’+’ indicates a

combination of decoding strategies and algorithms, ’*’ denotes training-free, and gray cell represents
our methods. Bold font indicates the optimal while underline is the suboptimal performance.

Countdown GSM8K MATH500 Sudoku

Generation Length L 128 256 128 256 128 256 128 256

Methods / Steps S 32 64 64 128 32 64 64 128 32 64 64 128 32 64 64 128

Semi-AR* 26.56 30.08 30.47 19.92 65.58 70.20 63.31 76.65 26.20 26.60 30.00 31.20 6.88 11.62 9.42 2.64

Full Diffusion* 35.94 5.08 0.00 0.00 56.94 51.86 34.87 22.97 22.20 20.40 19.60 15.60 5.76 8.98 0.00 0.83

EOSER* 44.14 46.88 41.80 39.45 60.73 63.15 58.45 61.33 22.20 24.60 22.40 24.20 13.18 13.92 2.69 1.42

SFT 23.83 30.47 18.36 24.22 61.49 68.39 61.87 77.48 23.80 27.40 23.00 31.40 6.54 8.84 11.82 4.44

diffu-GRPO 35.16 28.52 24.22 28.52 64.59 71.72 65.58 79.91 28.20 31.20 30.40 33.80 24.41 22.66 19.04 18.85

CJ-GRPO + Semi-AR 58.20 61.33 63.52 67.81 77.48 78.39 80.41 84.29 28.80 33.20 33.40 38.00 27.83 54.10 47.90 57.80

CJ-GRPO + EOSER 66.02 70.80 69.34 75.59 62.85 67.10 71.72 77.75 23.60 23.20 26.60 28.40 85.25 85.69 85.96 85.37

Table 2: Performance of fewer decoding steps on Countdown,
GSM8K, MATH500 and Sudoku: We report results under various
decoding strategies and training algorithms when the decoding steps
are set to log2 L. For ascending step-size scheduler, the steps are
set to log2 L, whereas for uniform step-size ones, we fix the steps at
8 to ensure divisibility with both 128 and 256.

Countdown GSM8K MATH500 Sudoku

Generation Length L 128 256 128 256 128 256 128 256

Methods / Steps S 7/8 8 7/8 8 7/8 8 7/8 8

Semi-AR* + Uniform (S = 8) 18.75 4.69 42.15 26.61 17.20 13.20 6.05 0.59

Full Diffusion* + Uniform (S = 8) 11.33 0.00 44.12 12.74 17.00 9.20 0.00 0.44

EOSER* + Uniform (S = 8) 5.86 22.27 43.44 29.42 16.20 14.20 0.05 0.20

Semi-AR* + ASS (S = log2 L) 2.34 0.00 35.10 9.40 12.80 14.00 4.44 1.03

Full Diffusion* + ASS (S = log2 L) 19.14 0.00 46.55 17.97 19.20 12.20 3.22 0.00

EOSER* + ASS (S = log2 L) 29.30 51.17 48.14 50.80 20.00 19.60 3.17 18.26

SFT + Semi-AR + Uniform (S = 8) 28.91 22.66 25.25 12.28 12.00 6.40 8.64 0.73

diffu-GRPO + Semi-AR + Uniform (S = 8) 30.08 26.56 32.83 20.32 12.00 18.40 21.09 7.03

CJ-GRPO + Semi-AR + ASS (S = log2 L) 3.12 1.95 38.44 5.53 16.40 19.20 24.95 19.04

CJ-GRPO + EOSER + ASS (S = log2 L) 53.91 55.31 55.57 53.22 21.20 22.20 43.31 50.32
Figure 4: The Step-Position
Heatmap of EOSER.

and EOSER, the block length is equal to the generation length, L. The results are illustrated in the
upper part of Tab. 1 and the Fig. 4. Our findings are as follows: (1) Full diffusion decoding performs
significantly worse than the other two strategies across all tasks. In the planning tasks, EOSER
outperforms semi-AR, particularly on the Countdown task. However, in mathematics questions,
EOSER is inferior to semi-AR. We provide a detailed analysis of this in Sec. 4.4. (2) EOSER
effectively mitigates the <EOS> Trap! (i.e., <EOS> are not decoded per step, leading to a large
number of <EOS> being ejected in the sequence) and significantly improve the performance of
full diffusion. Fig. 4 indicates that the arrival of <EOS> is delayed both spatially (in position) and
temporally (in step).

CJ-GRPO Combined with Semi-AR and EOSER Compared to SFT and diffu-GRPO. We
evaluate the performance of CJ-GRPO combined with semi-AR and EOSER decoding separately,
as shown in Tab. 1. We can observe that CJ-GRPO+Semi-AR outperforms both SFT and diffu-
GRPO across all tasks and 16 settings. Specifically, for planning tasks, Countdown and Sudoku,
CJ-GRPO+Semi-AR achieves performance levels that are twice as high as those of diffu-GRPO in
several configurations. Moreover, CJ-GRPO+EOSER significantly surpasses SFT, diffu-GRPO, and
even CJ-GRPO+Semi-AR on planning tasks. The improvements are particularly notable on Sudoku,
where CJ-GRPO+EOSER achieves performance that is approximately twice that of CJ-GRPO+Semi-
AR and four times that of diffu-GRPO. Interestingly, on the mathematics tasks, CJ-GRPO+EOSER
underperforms compared to diffu-GRPO and is significantly lower than CJ-GRPO+Semi-AR. This
finding is consistent with the results observed in the training-free settings. We provide a detailed
analysis of these findings in Sec. 4.4.

Fewer Decoding Steps Potential of Ascending Step-Size (ASS) Scheduler and CJ-GRPO Com-
bined with ASS. We evaluate the performance of SFT, diffu-GRPO, and CJ-GRPO using fewer

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

decoding steps, specifically log2 L, as depicted in Tab. 2. Under the training-free settings, the com-
bination of EOSER+ASS demonstrates optimal performance across almost all benchmarks on 7
settings, outperforming various decoding methods and step-size schedulers. This result indicates
that EOSER+ASS holds significant potential for reducing the number of decoding steps. Next,
we train the model using CJ-GRPO combined with EOSER and Semi-AR (note that Semi-AR is
also compatible with ASS scheduler as mentioned in Sec. 3.3). We found that even with only 7/8
(log2 L) steps compared to original 32/64/128 (L2), EOSER+ASS achieves considerable performance,
significantly surpassing other methods using either uniform step-size or the ASS scheduler in all
settings. Regarding planning tasks, CJ-GRPO+EOSER+ASS even surpasses the original diffu-GRPO
which using L

2 denoising steps. Please refer to the Appendix for more discussion.

4.3 ABLATION STUDY

Table 3: Ablation on denoising trajectory optimiza-
tions.

Countdown GSM8K MATH500 Sudoku

1⃝ One-step x′
S to xS 35.16 64.59 28.20 24.41

2⃝ One-step x0 to xS 45.31 68.76 25.00 25.68

Consistency Trajectory
[x0, · · · , xs, · · · , xS]

58.20 77.48 28.80 27.83

Ablation on Consistency v.s. Inconsis-
tency in Trajectory Optimization. We con-
duct an ablation study to evaluate the two
trajectory optimization methods introduced
in Sec. 3.4 to clarify the effect of consistent
versus inconsistent trajectory optimization.
Experiments are conducted with a genera-
tion length 128 (L), a block length 64 (L2),
and 32 denoising steps (L4). We refer to 1⃝ as one-step from x′

S to xS (prompt masking as used in
d1 Zhao et al. (2025)), and 2⃝ as one-step from x0 to xS , and ours as consistency trajectory opti-
mization over [x0, · · · , xs, · · · , xS]. Results show that optimizing over each intermediate denoising
step leads to significantly better performance. Skipping intermediate steps and implementing 2⃝
introduces substantial optimization errors of the actual rollout trajectory which leads to optimization
biases to some extent. Moreover, implementing 2⃝ is equivalent to optimize from a point x′

S near the
final solution xS , represents a compromised alternative and yields the worst performance.

4.4 ANALYSIS

Analyzing of Characteristics of MDLMs on Reasoning Tasks. As noted in Sec. 4.2, training-free
and training-based (CJ-GRPO) EOSER decoding significantly outperforms Semi-AR decoding on
planning tasks, yet slightly underperforms on mathematical tasks. We attribute this discrepancy
to the inherent pattern differences between two types of reasoning tasks, namely planning and
math. Specifically, Countdown and planning exhibit a clear bidirectional reasoning pattern, while
math have unidirectional pattern. For example, Countdown requires inferring missing operators
sandwiched between given operands and target values, while Sudoku demands reasoning over both
row and column constraints (2D grid), or thinking forward and backward from the unfilled space (1D
sequence) simultaneously. In contrast, math problems in GSM8k and MATH500 typically follow
a sequential, unidirectional reasoning process, where each step builds directly on the previous one.
This pattern makes semi-AR decoding more suitable for mathematics. These observations suggest the
value of future work that hybridizes diffusion-style (bidirectional) and autoregressive (unidirectional)
reasoning to better adapt MDLMs to tasks with diverse reasoning patterns.

5 CONCLUSION

This paper introduces a reinforcement learning algorithm for MDLMS combined with a full diffusion-
style decoding strategy and variable step-size scheduler. The goal is to tame MDLMs via reinforce-
ment learning with fewer decoding steps. We propose three key components: (1) EOS Early Rejection
(EOSER), which alleviates the <EOS> Trap! in full diffusion-style decoding by suppressing early
<EOS> generation, (2) Ascending Step-Size (ASS) Decoding Scheduler, which reduces decoding
steps while maintaining performance by adapting to the change trend of token confidence—low
in early steps and sharply increasing later, and (3) Consistency Trajectory Group Relative Policy
Optimization (CJ-GRPO), which aligns rollout and optimization trajectories to ensure the consistency.
Experimental results on reasoning tasks demonstrate that CJ-GRPO is particularly effective and
efficient for taming MDLMs. When combined with EOSER decoding and ASS scheduler, it achieves
comparable performance to L

2 steps using only log2 L steps.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Our research focuses on reinforcement learning and decoding strategies for diffusion large language
models. We do not involve human subjects in our study. The datasets used in our research are publicly
available and do not contain any sensitive or private information. We have ensured that our research
practices comply with all relevant legal regulations. We have no conflicts of interest or sponsorship to
disclose. Our research aims to improve the performance and efficiency of diffusion large language
models, and we believe that our methods and findings are ethical and do not raise any concerns
regarding discrimination, bias, fairness, privacy, security, or research integrity.

7 REPRODUCIBILITY STATEMENT

Ensuring the reproducibility of our work is a priority. In the experimental section of our paper,
we provide detailed descriptions of the parameter settings and experimental configurations for
the reinforcement learning and decoding strategies applied to masked diffusion large language
models—LLaDA-8B-Instruct. To further support reproducibility, we have open-sourced our codebase
to the community. This codebase includes all necessary scripts and instructions for reproducing our
results. Additionally, any datasets used in our experiments are publicly accessible. We believe that
these efforts will enable other researchers to replicate our findings and build upon our work.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Google DeepMind. Gemini diffusion: our state-of-the-art experimental text diffusion model. URL
https://deepmind.google/models/gemini-diffusion/, 2025.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion
chain of lateral thought with diffusion language models. arXiv preprint arXiv:2505.10446, 2025.

Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum,
Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
improves controllable text generation. Advances in neural information processing systems, 35:
4328–4343, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. arXiv preprint arXiv:2412.10193, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo, Nan
Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text generation.
Advances in Neural Information Processing Systems, 36:39957–39974, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang,
Zhenguo Li, Wei Bi, et al. Diffusion of thought: Chain-of-thought reasoning in diffusion language
models. Advances in Neural Information Processing Systems, 37:105345–105374, 2024.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

8 APPENDIX

Roadmap

In the Appendix, we present the supplementray experiments and discussions in App. A, the limitations
in App. B, and the use of Large Language Models (LLMs) statement in App. C.

A SUPPLEMENTARY EXPERIMENTS AND DISCUSSIONS

Table 4: Ablation study on the denoising steps: Countdown. We report the performance changes
as denoising steps varies from 1 to 256, 2s, across decoding strategies. ’*’ denotes training-free.

Gen Len L = 256 Countdown

Denoising Steps 1 2 4 8 16 32 64 128 256

Semi-AR* (Block Len N = 64) - - 0.00 4.69 23.83 16.02 15.62 27.34 21.09

Full-Diffusion* 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.00

EOSER* 0.00 0.00 8.98 22.27 21.48 23.83 38.67 41.80 39.45

Table 5: Ablation study on the denoising steps: GSM8K. We report the performance changes as
denoising steps varies from 1 to 256, 2s, across decoding strategies. ’*’ denotes training-free.

Gen Len L = 256 GSM8K

Denoising Steps 1 2 4 8 16 32 64 128 256

Semi-AR* (Block Len N = 64) - - 16.76 26.61 30.78 48.14 71.27 77.71 79.98

Full-Diffusion* 3.11 3.49 3.94 12.74 36.85 42.46 34.34 34.87 22.97

EOSER* 3.11 16.22 23.28 29.42 38.59 47.76 52.08 58.45 61.33

Table 6: Ablation study on the denoising steps: MATH500. We report the performance changes as
denoising steps varies from 1 to 256, 2s, across decoding strategies. ’*’ denotes training-free.

Gen Len L = 256 MATH500

Denoising Steps 1 2 4 8 16 32 64 128 256

Semi-AR* (Block Len N = 64) - - 6.40 13.20 18.60 22.40 27.60 33.20 37.80

Full-Diffusion* 6.00 6.00 6.40 9.20 16.40 19.80 21.20 17.80 17.20

EOSER* 6.00 9.60 12.20 14.20 18.20 20.20 22.40 24.20 22.67

Table 7: Ablation study on the denoising steps: Sudoku. We report the performance changes as
denoising steps varies from 1 to 256, 2s, across decoding strategies. ’*’ denotes training-free.

Gen Len L = 256 Sudoku

Denoising Steps 1 2 4 8 16 32 64 128 256

Semi-AR* (Block Len N = 64) - - 0.05 0.59 2.44 5.22 10.84 5.42 5.66

Full-Diffusion* 0.00 0.00 0.00 0.44 8.20 8.54 3.96 0.68 0.44

EOSER* 0.00 0.15 0.15 0.20 0.10 2.10 2.64 2.69 1.42

Ablation on Denoising Steps. As depicted in Tab. 4, 5, 6, 7. We conduct ablation studies on the
number steps S using different decoding strategies across four benchmarks. We observe a common

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

trend: for Semi-AR and EOSER, the best performance is often achieved when the number of denoising
steps is half the generation length L

2 . Regarding the full diffusion-style decoding strategy, the optimal
number of steps is usually smaller than L

2 , additionally, while for EOSER (also full diffusion-style),
although its optimal number of step is L

2 , the performance difference across denoising steps such as
64, 128, and 256 is relatively small, however, for Semi-AR decoding strategy, block length may be a
sensitive hyperparameter, which may result in a large performance variance obtained. This indicates
that full diffusion-style decoding has greater potential for fast generation (fewer decoding steps).
Specifically, when the generation length is L and the number of denoising step L

2 , two tokens are
generated at each decoding step. This does not significantly increase the token throughput compared
to the next-token prediction of AR models (one-by-one). Moreover, the presence of fixed-length
<MASK> means that the generation speed of MDLMs with more decoding steps (e.g. uniform step-
size scheduler) may not surpass that of AR models with the same software and hardware infrastructure.
Our findings indicate that exploring few-step generation for full diffusion-style decoding in MDLMs
is meaningful. Semi-AR, while effective, is not the ultimate solution. Finally, this exploration may
truly reveal the speed advantages of MDLMs compared to AR LLMs. Currently, the performance
improvements are not significant, and the speed advantages are not fully realized.

B LIMITATIONS

In Sec.3.4, we discussed a limitation faced by CJ-GRPO: as the number of steps increases, so does
the amount of memory required, because storing intermediate states increases memory overhead
proportionally with the number of denoising steps S. This constraint greatly affects the training
speed. To mitigate this issue, we already have proposed the Ascending Step Size (ASS) scheduler. In
planning tasks, the combination of CJ-GRPO with EOSER and ASS, which generates fewer steps
(log2 L), has proven to be even more effective than the previous uniform step-size method that relies
on more denoising steps (L2). This not only reduces the time complexity from O(L) to O(log2 L),
but also the space complexity from O(L) to O(log2 L). However, when it comes to mathematical
tasks, this approach still falls short compared to diffu GRPO+Semi-AR and CJ-GRPO+Semi-AR.
Given these observations, we believe that exploring better fewer-step full diffusion-style decoding
strategies in the future holds great promise. Such methods could potentially resolve the memory
issues associated with CJ-GRPO and enhance its mathematical reasoning capabilities. This area of
research is well worth exploring.

C THE USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

In the process of drafting this paper, we utilized large language models (LLMs) as a general-purpose
assist tool. Specifically, the LLM was employed to enhance the clarity and coherence of the content,
refine the logical structure of the arguments, and improve the grammatical accuracy of the text. The
LLM provided suggestions and revisions that helped in polishing the overall quality of the manuscript.
However, it is important to note that the LLM did not play a significant role in the research ideation
or the core writing of the scientific content. The ideas, methodologies, and conclusions presented
in this paper are the original work of the authors. We take full responsibility for the content of this
paper, including any text that has been refined using the LLM.

14

	Introduction
	Related Work
	Masked Diffusion Language Models
	Online Reinforcement Learning for Diffusion Language Models

	Methodology
	Masked Diffusion Large Language Models
	EOS Early Rejection
	Ascending Step-Size Scheduler for Fewer Steps Inference
	Consistency Trajectory Group Relative Policy Optimization

	Experiments
	Implementation Details
	Main Results
	Ablation Study
	Analysis

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Supplementary Experiments and Discussions
	Limitations
	The Use of Large Language Models (LLMs) Statement

