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ABSTRACT

Mixture of Experts (MoE) models enable parameter-efficient scaling through
sparse expert activations, yet optimizing their inference and memory costs re-
mains challenging due to limited understanding of their specialization behavior.
We present a systematic analysis of expert specialization in MoEs through two
complementary approaches: domain-specific routing patterns and an early de-
coding framework that tracks expert contributions to output representations. Our
analysis of the DeepSeekMoE model reveals that despite having 64 routed experts
with 6 active for each layer’s computation, the model predominantly relies on
a few specialized experts, with the top-weighted expert’s output closely approx-
imating the full ensemble prediction. We quantitatively validate these findings
through a systematic analysis of the token routing distribution, demonstrating that
very few experts handle over 50% of routing decisions across different specialized
domains. Hidden state similarity between single and ensemble experts for every
layer is extremely high, with some layers having cosine similarity as high as 0.95
and perplexity increasing by only 5% when using a single expert across all three
domains. Our results indicate that Mixture of Experts models exhibit concentrated
expertise highlighting potential opportunities for inference optimization through
targeted expert pruning while maintaining model performance and opening av-
enues towards studying localization of learned knowledge in these models.

1 INTRODUCTION

Mixture of Experts (MoE) (Shazeer et al., 2017) models offer an efficient way to scale large language
models by activating only a subset of model parameters for each input. However, MoE architectures
face challenges spanning from training complexity and load balancing to routing inefficiencies and
memory constraints (Liu et al., 2025), with many issues arising from how inputs are routed to ex-
perts and how specialization emerges. Recent architectures like DeepSeekMoE (Dai et al., 2024)
have improved expert specialization and load balancing (Wang et al., 2024), demonstrating progress
in mitigating some of these challenges but fundamental questions about the expert behavior like
specialization and knowledge redundancy in a MoE still remain unanswered.

Expert specialization is an emergent property first observed in vision models like AlexNet
(Krizhevsky et al., 2012) and InceptionV1 (Szegedy et al., 2014), where different network branches
develop specialized feature representations. Language Models like Monet (Park et al., 2024) have
demonstrated that drastically scaling up the number of experts, individual experts develop special-
ized classes like chemical compounds, electromagnetism and diseases. MoE architectures with
relatively fewer experts exhibit knowledge redundancy (Oldfield et al., 2024) where a few experts
cover the same diverse, unrelated concepts. This raises the question of how to identify and analyze
the experts in a MoE that develop into monosemantic units, each specializing in distinct linguistic
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Figure 1: Expert Specialization in DeepSeekMoE. We visualize the distribution of tokens that are
routed to an expert for our English, French-QA, and GSM8K datasets. The y-axis shows the routing
percentage per expert, with the red dashed line indicating a uniform routing baseline (≈ 9.4%). See
Appendix A.1 for extended plots for other models and layers.

or computational domains, and how to leverage specialized experts to reduce the inference latency
while preserving the knowledge and reasoning capabilities learned by the model during pre-training.

In this paper, we: (1) investigate expert specialization behavior across distinct domains by analyzing
routing distributions and identifying domain-specialized experts across three data domains, (2) use
an early-decoding strategy to interpret how individual experts contribute to residual stream represen-
tations at each layer, and find that a single expert is sufficient to converge to output representations
in next-token prediction tasks, and (3) validate our findings through quantitative measures like co-
sine similarity and perplexity. Our empirical results reveal that while certain MoEs exhibit some
domain specialization, they primarily rely on a small set of experts with other experts providing
minimal contributions to the final predictions building towards an interpretable pruning approach
that preserves the next token prediction accuracy while making the model more sparse.

2 BACKGROUND

MoE Layer. In a Mixture-of-Experts (MoEs) architecture (Muennighoff et al., 2024; Dai et al.,
2024; Xue et al., 2024), the Feed-Forward Network (FFN) in a Transformer is substituted with MoE
layers at specified intervals. The MoE layer consists of set of n experts E1, ..., En, each structurally
identical to a standard FFN, and a learned routing network, r, which assigns routing probabilities
to all n experts for each input token, x. The output of the ℓ-th MoE layer for the t-th token, hℓ

t ,
is a weighted sum of the expert outputs scaled by their corresponding routing probability across all
chosen Top-k experts, Ei where i ∈ top-k. Let uℓ

t denote the hidden state of the t-th token after the
l-th attention module (post-attention residual stream). Mathematically,

hℓ
t =

Top-k(rt(x))∑
i=1

(ri,tEi(x)) + uℓ
t, (1)

To analyze how experts specialize in processing different types of inputs, we define expert spe-
cialization as described in Muennighoff et al. (2024) to be the fraction of tokens from a particular
domain D for which expert Ei is selected as one of the top-k experts.

Expert specialization(Ei, D) =
N

(k)
Ei,D

ND
, (2)

where N
(k)
Ei,D

is the number of tokens from domain D for which Ei is among the top-k selected ex-
perts, and ND is the total number of tokens from domain D. We consider an expert to be specialized
in D if it processes significantly more tokens than the uniform routing baseline of 6/64 ≈ 9.4%.

Shared Experts. Every input token is routed to the Shared Expert in DeepSeekMoE and the output
of the Shared Expert, ES is added to the output hidden state, hℓ

t . We primarily focus on the routed
experts since the shared experts are dedicated to capturing common knowledge across varying con-
texts (Dai et al., 2024)
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Figure 2: An example of early decoding using LogitLens for DeepSeekMoE on an example in-
put: “When datasets are sufficiently large, increasing the capacity (number of parameters) of neural
networks can give much better prediction”. Each cell shows the top-1 token prediction after the
final token “these” across layers (rows) for layer output, routed experts + residual stream for various
top-k values. Color intensity indicates prediction confidence. The expert index is denoted by the
lower-left subscript number and the top-right superscript indicates expert weight. See Appendix A.2
for other domains.

Early decoding using Logit Lens. Early decoding (Schuster et al., 2022) is the analysis of a model’s
intermediate predictions before reaching the final layer. The LogitLens (nostalgebraist, 2021) is an
early decoding technique that directly decodes the hidden states at any intermediate layer ℓ for t-
th token, hℓ

t , using the model’s pretrained unembedding matrix, WU . The resulting distribution of
logits roughly converges toward the model’s final prediction across layers, offering a window into
how the model progressively refines its predictions.

LogitLens(hℓ
t) = LayerNorm(hℓ

t)WU (3)

To understand how expert, Ei, at a particular layer ℓ contributes to the final output representation,
we further extend the LogitLens by adding post-attention residual stream for an expert uℓ

t and then
projecting it to the vocabulary space. The residual stream is analogous to a communication channel
(Elhage et al., 2021) through which the experts incrementally refine the hidden state, hℓ

t . Each ex-
pert’s output can be interpreted as a targeted modification to specific subspaces of the representation.
By using extended LogitLens (Belrose et al., 2023) , we observe how individual experts update the
prediction distribution by writing their specialized knowledge into the residual stream.

LogitLensext(hℓ
t) = LayerNorm(hℓ

t + uℓ
t)WU (4)

Notation. For layer ℓ, we represent the hidden state of the top-weighted expert (top-k = 1) com-
bined with the residual output as Hℓ1

t and the hidden state of the top-k = 6 weighted expert com-
bined with the residual output as Hℓ6

t .

3 EXPERIMENTS

Model. For all experiments, we use DeepSeekMoE (Dai et al., 2024) with 2 shared + 64 routed
experts with top-k = 6. The model is pretrained on cross entropy loss combined with expert-level
and device-level balance loss to prevent a router collapse. We also extended our experiments by
utilizing OLMoE by Allen AI (Muennighoff et al., 2024). See Appendix A.

Datasets. We use curated subsets of seven datasets for our experiments: (1) GitHub code dataset
subset of Paloma (Magnusson et al., 2024), (2) subset of Gutenberg English Dataset (Lahiri, 2014),
a dataset of English books, (3) French-QA subset of French Question Answering Dataset (FQuAD)
(Martin et al., 2020), a dataset on native French reading comprehension, (4) AIME Problem Sets
from 1983 to 2024 (Veeraboina, 2023), (5) Chinese Fineweb Edu (Yu et al., 2025), a high-quality
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Figure 3: (Left) Normalized log perplexity across different values of top-k experts for various do-
mains for next-token prediction task. (Right) Cosine similarity between the hidden states of Hℓ1

t

and Hℓ6
t across all 27 layers shows consistently high alignment.

Chinese pre-training corpus, (6) arXiv Dataset (Clement et al., 2019), a collection of pre-print schol-
arly articles gathered from various scientific fields, and (7) GSM8K (Cobbe et al., 2021), a grade
school math word problems dataset created by OpenAI.

Experiments. Our empirical investigation consists of three experiments: (i) For each input prompt
in domain D ∈ {English, Code, French}, we compute Expert specialization (Ei, D) as defined in
equation 2. (ii) We apply extended LogitLens (equation 4) to analyze components within MoE
layers. We project three distinct hidden states to logits: (1) individual expert outputs, Ei, (2) the
weighted sum of the top-k = 6 expert outputs, and (3) final layer outputs. For each layer ℓ, we
compare the layer output, hℓ

t , and the top-weighted expert output combined with the residual output,
Hℓ1

t , for next-token prediction tasks from each domain, D. (iii) We compute the cosine similarity
between the hidden state of the top weighted expert’s output (expert + residual), Hℓ1

t , and the hidden
state of the top-k = 6 weighted expert outputs combined with residual output, Hℓ6

t , across each
domain dataset to assess the alignment between individual and combined expert contributions in
the hidden space. We also analyze the perplexity of the next token prediction for each domain D
and how it changes with different number of active experts to observe whether using the single
most-activated expert maintains comparable loss and prediction performance to using all 6 routed
experts.

4 RESULTS

The expert specialization results in DeepSeekMoE, shown in figure 1, reveal two key patterns: First,
only a small number of experts show strong specialization (significantly higher than uniform routing
frequency) for any domain. Second, most experts demonstrate minimal domain-specific activity.

The extended LogitLens gives us evidence that solely projecting Hℓ1
t across layers decode to roughly

the same next token prediction as the output at the end of that layer, hℓ
t . Furthermore, Hℓ1

t has nearly
identical next-token distribution as Hℓ6

t .

We also observe very high cosine similarity between Hℓ1
t and Hℓ6

t across all layers and each domain,
D as shown in figure 3 (right) indicating that the top-weighted expert is contributing the most in
shaping final output representation whereas the contributions of other experts are minimal in the
hidden space. Concretely, Hℓ1

t ≈ Hℓ6
t . The perplexity moderately increases when reducing top-

k = 6 to 1 as demonstrated in figure 3 (right) which validates the claim that the top-weighted expert,
when combined with the residual stream, produces representations closely aligned with the layer
output.

5 CONCLUSIONS AND FUTURE WORK

We empirically show that a single top-weighted expert, combined with the residual stream, closely
approximates the full ensemble output for a layer across multiple data domains in DeepSeekMoE.
Such a high degree of specialization suggests a potential for further sparsification during inference.
By activating only the highest-weighted expert instead of all top-k experts and selectively prun-
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ing the non-essential experts, computational costs and memory requirements can be significantly
reduced while maintaining comparable model performance across a variety of tasks.

We demonstrate these findings using DeepSeekMoE as a representative MoE architecture. Examin-
ing additional MoE variants such as OLMoE (Muennighoff et al., 2024), DeepSeek-V2 (DeepSeek-
AI et al., 2024), and DeepSeek-VL2 (Wu et al., 2024) can lead to a broader understanding of spe-
cialization behavior in MoE models. While our analysis uses the LogitLens approach, extending
this work by using TunedLens may provide more robust token decoding through layer-wise learned
transformation between intermediate and prefinal layer representations. Furthermore, these find-
ings open several research directions: developing dynamic expert selection strategies that adapt to
input complexity, analyzing the internal representation sparsity of individual experts to localize fac-
tual knowledge, and examining specialization patterns across different MoE architectures to inform
future training objectives.
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A APPENDIX

A.1 EXPERT SPECIALIZATION

A.1.1 DEEPSEEKMOE

Figure 4: Expert Specialization (Part 1) of DeepSeekMoE for various layers. We visualize how
frequently tokens from different domains are routed to the 64 experts using top-k = 6 routing.
The y-axis shows routing percentage per expert, with the red dashed line indicating uniform routing
baseline (≈ 9.4%).
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Figure 5: Expert Specialization (Part 2) of DeepSeekMoE for various layers. We visualize how
frequently tokens from different domains are routed to the 64 experts using top-k = 6 routing.
The y-axis shows routing percentage per expert, with the red dashed line indicating uniform routing
baseline (≈ 9.4%).
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A.1.2 QWEN 1.5 MOE

Figure 6: Expert Specialization (Part 1) of Qwen 1.5 MoE for various layers. We visualize how
frequently tokens from different domains are routed to the 60 experts using top-k = 4 routing.
The y-axis shows routing percentage per expert, with the red dashed line indicating uniform routing
baseline (≈ 6.67%).

10



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Figure 7: Expert Specialization (Part 2) of Qwen 1.5 MoE for various layers. We visualize how
frequently tokens from different domains are routed to the 60 experts using top-k = 4 routing.
The y-axis shows routing percentage per expert, with the red dashed line indicating uniform routing
baseline (≈ 6.67%).
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A.1.3 OLMOE

Figure 8: Expert Specialization (Part 2) of OLMoE for various layers. We visualize how frequently
tokens from different domains are routed to the 64 experts using top-k = 8 routing. The y-axis
shows routing percentage per expert, with the red dashed line indicating uniform routing baseline
(≈ 12.5%).
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Figure 9: Expert Specialization (Part 2) of OLMoE for various layers. We visualize how frequently
tokens from different domains are routed to the 66 experts using top-k = 8 routing. The y-axis
shows routing percentage per expert, with the red dashed line indicating uniform routing baseline
(≈ 12.5%).
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A.2 LOGIT LENS

Figure 10: LogitLens visualization for DeepSeekMoE on the french input sequence: “Dans le si-
lence feutre de la nuit, les etoiles semblent murmurer d’anciens secrets a ceux qui prennent le”. Each
cell shows the top-1 token prediction after “le” across layers (rows) for layer output, routed experts
with residual stream for various top-k values. Color intensity indicates prediction confidence. The
lower-left subscript indicates expert indices and the top-right superscript indicates expert weight.
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Figure 11: LogitLens visualization for DeepSeekMoE on the english input sequence: “One might
expect language modeling performance to depend on model architecture, the size of neural models,
the computing power used to train them, and the data available for this”. Each cell shows the top-1
token prediction after “this” across layers (rows) for layer output, routed experts with residual stream
for various top-k values. Color intensity indicates prediction confidence. The lower-left subscript
indicates expert indices and the top-right superscript indicates expert weight.
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