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Abstract: Deformable objects manipulation can benefit from representations that
seamlessly integrate vision and touch while handling occlusions. In this work, we
present a novel approach for, and real-world demonstration of, multimodal visuo-
tactile state-estimation and dynamics prediction for deformable objects. Our ap-
proach, VIRDO++, builds on recent progress in multimodal neural implicit rep-
resentations for deformable object state-estimation [1] via a new formulation for
deformation dynamics and a complementary state-estimation algorithm that (i)
maintains a belief distribution of deformation within a trajectory, and (ii) enables
practical real-world application by removing the need for contact patches. In the
context of two real-world robotic tasks, we show: (i) high-fidelity cross-modal
state-estimation and prediction of deformable objects from partial visuo-tactile
feedback, and (ii) generalization to unseen objects and contact formations.

Keywords: Deformable Object Manipulation, Multimodal Representation Learning

Fig. 1: Given partial point cloud observations (left), and multimodal sensor measurements (end effector wrist
reaction wrench and pose), VIRDO++ can accurately predict the 3D geometry (magenta) and reaction forces of
deformable objects such as spatulas (top) and bike chains (bottom) conditioned on the next robot action under
severe occlusions – which can be artificial (red dotted box) or natural due to obstacles (e.g., from other objects).

1 Introduction
Deformable objects are ubiquitous in our everyday lives – the clothes we wear, the food we eat, and
many of the tools we use are just a few examples. As such, helpful robots of the future may benefit
from the ability to master dexterous manipulation of deformable objects. At the heart of this mastery
is the interplay between object geometry and force transmission, perceived by vision and touch.
Deformable object manipulation is difficult due to the complexity of this interplay (e.g., infinite
dimensional state-spaces and nonlinearity) and the ensuing challenges in perception (e.g., partial
observability and occlusion) and controls [2, 3, 4, 5]. Multimodal visuo-tactile representations can
help address many of these challenges by exploiting mutual information and complementary cues.
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Existing deformable object manipulation approaches typically use one modality (mostly vision) and
rely on finite element/particle-based techniques [6, 7, 8, 9, 10, 11, 12, 13] or leverage deep learning
for visual affordance/latent dynamics learning [14, 15, 16, 17, 18, 19]. The former methods typically
rely on privileged knowledge (e.g., occluded or unknown boundary conditions) and stop at system
identification, limiting their ability to refine the underlying physics model by learning from data.
Latter methods lack (i) tactile feedback which is far more informative of contact than vision, and (ii)
structured representations which can limit generalization and increase sample-complexity.

Here, we build on recent work [1] that provides a framework for visuo-tactile state estimation using
multimodal implicit neural representations. This approach offers a number of advantages including
multimodal sensory fusion, direct integration with raw sensory feedback, and computational speed.
However, [1] does not address (i) deformation predictions (dynamics) and (ii) is not directly appli-
cable to real-world robotics settings. The first limitation is due to the lack of a dynamics module and
an emphasis on static scenes. The second limitation is due to the need for the contact patch which
are typically impractical to measure in real-world robotic settings.

The primary contribution of this work is (i) a novel approach to, and (ii) real-world demonstration
of, performing multi-modal visuo-tactile state estimation and dynamics prediction for deformable
objects. Fig. 1 shows how our proposed approach uses partial views and tactile feedback for defor-
mation prediction and state-estimation in real-world applications. Our contributions are:

1. Representation of deformable object dynamics conditioned on actions: Multimodal neural
implicit representation with action-conditioned dynamics to predict future deformations. To demon-
strate the utility of the dynamics model, we introduce a state estimation algorithm based on particle
filtering to maintain a belief distribution over object deformations.

2. Real-world demonstrations on two challenging tasks: Scraping with a spatula and chain ma-
nipulation. We demonstrate both 3D geometry estimation in heavy occlusion and action-conditioned
deformation/reaction wrench prediction. This is enabled by introducing a novel contact latent vec-
tor that eliminates the need for explicit contact patch information used in [1]. We use these tasks to
demonstrate generalization to unseen objects and novel environments.

2 Related Work
Deformable object modeling. Recent studies have attempted to address challenges in system identi-
fication and high computation costs in conventional continuum mechanics [6, 7, 8, 9, 10, 11, 12, 13].
To ease the burden of system identification, prior studies infer the physics models’ parameters
based on high-fidelity physics engines [20, 21, 22] and simple force-deformation relationship (e.g.
Hooke’s law) [23]. The inherent limitations of these approaches are (i) that performance is con-
fined to the underlying physics model, often with strong assumptions on the objects (uniform den-
sity/elasticity) and the force-deformation relationship (linearity), and (ii) relies on access to privi-
leged information such as occluded or unknown boundary conditions. More recent approaches pro-
pose computationally efficient elastic object modeling with minimum system identification using,
for example, a potential energy propagation [24] and geometric motion estimates [25]. However,
these methods suffer from balancing between model approximation and computation cost as well as
maintaining seamless integration with robotic sensing modalities (RGB-D cameras and F/T sensors).
In this study, we adopt a data-driven approach using neural networks [1, 26, 27]. Learning directly
from observation, our approach does not require object parameters (Young’s modulus, Poisson’s ra-
tio) or a strong assumption of object composition. Even so, it can capture complex non-linear elastic
behaviors and exhibit fast computation times due to the architecture of the neural networks.

3D geometric representation of deformable objects. Most recent studies have adopted discrete
geometry representation for deformable objects with finite resolution such as meshes [7, 10, 28] and
key points [15, 21], sometimes accompanied with graph neural networks [29, 27]. These approaches
have been used largely for 1D and 2D objects (rope, cloth, top view of cylindrical objects). Among
them, structured representations (e.g., Mesh or GNN) are advantageous at tracking connectivity,
mainly used for deformable objects with large self-occlusions (e.g. folded cloth or knot) [30, 31]. On
the other hand, we address general 3D geometry representations which are not confined to specific
types of objects and can work with large occlusions (e.g., wok-scraping). Our work builds on dense
implicit geometric representation which include signed distances fields [1, 26, 32], occupancy [33],
volume density [34], and dense descriptors [35]. These approaches have several advantages over
their discrete counterparts in dealing with large occlusion, high resolution surface representation
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Fig. 2: Overview. VIRDO++ is composed of an implicit signed-distance field representation of geometry
(left), informed by a deformation dynamics model (right), where dotted lines indicate hyper networks that
decode embeddings into network weights.

[36], parameterization of 3D geometries [37, 38], and are useful for downstream tasks (e.g., contact
location detection similar to Sec. 4.5). We extend these representations to real-world multimodal
deformable object dynamics and perception by integrating touch and robot actions.

3 Methodology

Our approach, shown schematically in Fig. 2, is composed of a latent deformation dynamics model
and an implicit dense geometric representation. Using Hidden Markov Models as an analogy, the
former component plays the role of the hidden state transition, and the latter is the observation
model. We expand on the latent deformation dynamics in Sec. 3.1 and discuss the implicit geometric
representation in Sec. 3.2.

3.1 Deformable Object Dynamics

VIRDO++ represents deformable object states using latent object (α) and force (zt) codes. The
object code condenses the undeformed shape information into a feature representation that can in-
terpolate to unseen object variants. The force code is generated by the Force Module (F) which
encodes boundary conditions as zt = F(ft, ct,pt) where ft ∈ R6 is the reaction wrench at the
wrist, pt ∈ R6 is robot end-effector pose, and ct ∈ Rlc is the contact latent vector, where lc is
the dimension of the contact latent vector. The contact latent vector ct is a learnable latent vector
that can change over time whose primary role is to store contact information. However, it can also
implicitly integrate information about the object’s physical properties (e.g., stiffness) and historical
information about the object’s states and deformations. This embedding generalizes the original
VIRDO [1] in terms of both (i) no longer needing known contact patch locations, unlocking the ca-
pability to run VIRDO in the real-world, and (ii) representing additional useful information beyond
just the contact location as was the case in VIRDO. In more detail, VIRDO [1] uses ground truth
contact patches encoded by a PointNet encoder [39] directly which required access to this privileged
information. Here, the contact patch and encoder are replaced by the learnable contact latent vector.

The Action Module (A) predicts the next step’s boundary conditions given the current (latent) state
and robot action: A(α, zt,at) = f̂t+1, ĉt+1 where f̂t+1 ∈ R6 is the predicted reaction wrench
at the wrist, ĉt+1 is the predicted contact latent vector, and at ∈ R6 is the robot action (Carte-
sian displacement). This predictive capability enables state-estimation and downstream tasks such
as contact location detection crucial for deformable object manipulation. Though we did not in-
clude in this paper, the predictive ability of VIRDO++ also enables planning for deformable object
manipulation. VIRDO lacked this functionality and could only infer the object geometry statically.

3.2 Geometry Representation

VIRDO++ decouples the 3D geometric representation of deformable objects into an undeformed
(nominal) shape signed-distance field (SDF) and a set of deformation fields, similar to [1, 38]. The
deformation field is a 3D vector field that, when summed with the deformed object SDF, results in
the nominal shape SDF. More precisely, any query point x ∈ R3 in the robot wrist frame belonging
to the deformed shape SDF can be mapped back to the corresponding point x′ of the nominal shape
SDF by applying the point-wise deformation field ∆x as x+ ∆x = x′.

Nominal Shape Representation: The Object Module O(x′) is the parametric representation of the
nominal shape SDF – the object shape with no external contacts corresponding to ∆x = 0. Here, we
use a feedforward neural network to parameterize the SDF [37] and write O(x′|Ψo(α)) = s where
s is the signed-distance at query point x′ and Ψo(α) is a hyper-network that predicts the weights
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of O conditioned on the object code α. The object code and hyper-network weights are learned
end-to-end in an auto-decoder approach [37]. We simplify our notation to O(x′) for the remainder.

Deformation Field Representation: The generalized geometric representation of a deformable
object is given by SDF(x) = OΦo

(
x + D(x|Ψd(zt,αt))

)
= s. Here, the Deformation Module

D(x|Ψd(zt,αt)) = ∆x produces an object’s deformation field given force and object code pairs.
Similar to the Object Module, Deformation Module’s weights are given by the hyper-network Ψd.

3.3 Training and Loss Formulation
The training dataset for VIRDO++ is a set of trajectories S = {T1, T2, ..., TN}, where each tra-
jectory Tj = {(p0,f0,P0,a0), (p1,f1,P1,a1), ..., (pk,fk,Pk,ak)} has k sequential observa-
tion and action tuples. Here Pj is a partial point cloud. Our first step is to pretrain a nominal
shape representation (i.e., hyper-network Ψo and object code α). The loss for training m nomi-
nal shapes is Lnominal = Lsdf + λ1Llatent + λ2Lhyper as in [1], where Llatent =

∑m
i=1 ‖αi‖2,

Lhyper =
∑m

i=1 ‖Ψo(αi)‖2, and:

Lsdf =

m∑
i=1

(∑
x̄∈Ω

|clamp(Oi(x), δ)− clamp(s∗, δ)|+ λ
∑
x̄∈Ω0

(1− 〈∇Oi(x),n∗〉)
)
.

n∗ is the ground truth normal vector, δ is a parameter that clips SDF predictions, and s∗ is the
ground truth signed distance.

After the pretraining, we train the rest of the modules using the three losses Lgeo,Lpred and Lreg

summed over a fixed horizon (w) while freezing Ψo and the object code α:

Ltot =

t0+w−1∑
t=t0

(Lgeo
t + λ3Lpred

t + λ4Lreg
t ). (1)

The geometry representation loss is defined as:

Lgeo = λ5

∑
x∈Ω

‖DΨd
(x)‖2︸ ︷︷ ︸

minimum correction

+ λ6 CD(P + DΨd
(P ), P̄ ∗)︸ ︷︷ ︸

correspondence

+λ7

∑
x∈Ω0

(1− 〈∇xOΨo
(x′),n∗〉︸ ︷︷ ︸

normal aligning

+ λ8

∑
x∈Ω

|clip(OΨo

(
x+ DΨd

(x), δ
)
− clip(s∗, δ)|︸ ︷︷ ︸

signed distance regression

.
(2)

wherex′ = x+DΨd
(x), Ω is the 3D querying space, Ω0 ⊂ Ω is the on-surface region, P := {p|p ∈

Ω0} is an unordered set of the on-surface points, and P̄ ∗ is the ground truth nominal shape point
cloud. Next, we add a reaction wrench prediction loss asLpred = ‖ft+1−f̂t+1‖. The prediction loss
for ĉt+1 is implicitly handled by Eq. 2 because the contact latent vector prediction is recursively
used as next step’s input during training. In contrast, we do replace f̂t+1 with real measurement
in Eq. 2. Finally, regularization losses Lreg

t = λ9‖zt‖2 + λ10‖ct‖2 + λ11‖Ψd(α, zt)‖2, which
regularize the force codes, contact latent vector, and the weights of DΨd

(x) respectively.

3.4 Inference and State-estimation Algorithm
To maintain a belief distribution over the object deformation, we develop a particle filter-based
inference algorithm, Alg. 1. Each particle represents a contact latent vector which can be used to
reconstruct the full 3D object geometry. The Refine step updates the particle set by performing
gradient descent on minĈt

Lgeo(Pt, Ĉt,ft,pt) with the visible object point cloud. The particles
are then weighted according to their wrench error prediction with Weight-Function defined as
wi

t = exp(−γ(f̂ i
t − ft)) and resampled with probability proportional to this weight vector. Here,

f̂ i
t is the reaction wrench prediction of the ith particle and ft is a ground truth measurement. Finally,

the particles are propagated through the Force and Action Modules, a small amount of uncertainties
is applied ∼ N (0, 0.01) to the particles and the algorithm is repeated. (see algorithm variations in
Appendix Sec. A.2.2)
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Algorithm 1 Particle Filter based Inference Algorithm

1: procedure
2: Ĉ0 ← {ĉ0

0, ĉ
1
0, ..., ĉ

n−1
0 } ∼ N (0, 0.01) . Init Particles

3: for each scan in Trajectory Length do
4: Ct ← Refine(Pt, Ĉt,ft,pt)

5: wt ← Weight-Function(ft, f̂
0
t , f̂

1
t , ..., f̂

n−1
t )

6: C̄t ← Re-sampling(wt,Ct)
7: Zt ← Force-Module(C̄t, ft, pt, α)

8: {(f̂0
t+1, ĉ

0
t+1), (f̂1

t+1, ĉ
1
t+1), ..., (f̂n−1

t+1 , ĉ
n−1
t+1 )} ← Action-Module (Zt,α,at)

9: t← t+ 1
10: end for
11: end procedure

4 Experiments
For real robot experiments, we investigate two classes of objects: spatulas and bike chains. These
objects exhibit different deformation behaviors: (i) spatulas are representative of bendable elastic
objects that retain their shape when external forces are removed, whereas (ii) bike chains (with
the 2 end points controlled by a bi-manual manipulator) can undergo significantly larger deforma-
tions (e.g., from gravity) – requiring algorithms that can reason over free-space while estimating in-
contact shapes and forces. Spatula deformations are generally local and experience significant reac-
tion wrenches, while chain deformations are much larger but with much smaller reaction wrenches.

4.1 Spatula Manipulation Dataset

Train Objects Test Objects

Fig. 3: Train and test
objects differ in terms
of (i) geometry, and
(ii) how they react un-
der wrench.

Train and test objects are shown in Fig. 3. The training set consists of 4 spat-
ulas, each with 672 samples (N = 28, k = 24), using 9:1 train/test split (25
train and 3 test trajectories) for representation learning. The test dataset con-
sists of 2 held-out spatulas, each with 72 samples (N = 3, k = 24), and is
used to evaluate zero-shot transfer and not used for representation learning.
At the beginning of each trajectory (t = 0), the end-effector moves to a ran-
dom world Cartesian position in a bounding box of size (0.1 × 0.24 × 0.06)
meters and the tool is brought into contact with the table. Within a tra-
jectory, the tool maintains contact while sampling a random action from
(x, y, z, r, p, y) = ±(0.02, 0.02, 0.01, 0.06, 0.025, 0.04) where translations
are in meters and rotations in radians. Wrench measurements are averaged
over 0.05 [s] and the point cloud is registered to the wrist frame. The method
only requires a full point cloud from the nominal geometry of the object. This is collected by hold-
ing the object in front of the camera and rotating. Deformed object geometries are collected from
a single camera viewing the front side of the spatulas without occlusions and are all partial. P is
then the result of segmenting the object pointcloud and normalizing the scale into a bounding box
of size 2× 2× 2[m] centered around (0, 0, 0). The test dataset point clouds P contain occlusions at
the bottom 0.15× spatula-height as shown in the top observation panel in Fig. 1. For hardware,
we use Franka Emika’s Panda, wrist mounted ATI Gamma F/T sensor, and Photoneo PhoXi 3D L.

4.2 State Estimation and Predictions

CD (×103) Spatula w/ table Bike Chain

Train Est. 0.777 (0.215) 0.708 (0.331)
Train Pred. 0.830 (0.330) 0.762 (0.224)

Test Est. 0.934 (0.210) 0.760 (0.234)
Test Pred. 1.041 (0.348) 1.247 (0.391)

Table. 1: VIRDO++ can accurately estimate object ge-
ometry deformations under significant occlusions, mea-
sured in terms of mean Chamfer distances (CD) (std.)
[m2] scaled as (×103) across 5600 on-surface points
between predicted and ground truth reconstructions.

Here, we evaluate the deformation prediction
(Sec. 3.1) and state-estimation (Alg. 1) accu-
racy of VIRDO++ on training and test tra-
jectories. Fig. 4 shows an example of state-
estimation for a test trajectory where the ground
truth (black) and reconstruction (magenta) are
overlaid. We note the high state-estimation
accuracy indicated by the overlay agreement,
where the average distance between the mea-
sured points and reconstructions is within
0.03[m] of normalized scale, just 1% of the ob-
ject length.
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The quantitative results, Tab. 1, show VIRDO++ is able to faithfully predict and estimate object
deformations and reaction forces despite significant occlusions. Force and torque norm errors are
less than 0.567 [N], 0.106 [Nm] (train) and 1.130 [N], 0.135 [Nm] (test) respectively (see Appendix
Sec. A.3.3 and Sec. A.3.4 for details).

Our ablation study, Tab. 3, helps further anchor the scale of these state-estimation and dynamics
prediction errors. On state estimation, for example, our full VIRDO++ method achieves a Chamfer
distance (×103) of normalized geometry as 0.93 [m2]. The baseline model without a novel contact
latent vector input has 27% increased chamfer distance error as 1.18 [m2] for geometry estimation.
Without ct, the baseline does not reason about contact during inference, resulting in larger errors
during state-estimation. Further if we assume the object is rigid and reduce our state estimation to a
“rigid pose estimation” pipeline, the Chamfer distance (×103) increases considerably to 16.19 [m2].

The geometry predictions are slightly less accurate than state-estimation because the geometry pre-
dictions are computed by the learned dynamics using previous observation and action, while state-
estimations use the current measurement to update the prediction. Despite this, the prediction Cham-
fer distances are within 14% of the state estimation results. Moreover, the train and test trajectories
results show 25% difference in Chamfer distance. This is interesting because the test trajectories are
not only from unseen tool configurations but also with occlusions (see Dataset). This suggests that
learned dynamics of VIRDO++ generalize effectively to unseen contact formations with occlusions.

      t = 0                    t = 1 t = 2     t = 3              t = 4      t = 5       t = 6

       G.T. State Estimation G.T.

Fig. 4: Even under occlusions (generated by cropping out data within the red dotted box), our approach can
accurately infer the how the geometry of a test spatula deforms over time (t = 0 to 6), indicated by high overlap
agreement between the prediction (magenta) overlaid on the ground truth (black).

4.3 Evaluation on a Downstream Manipulation Task - Extrinsic Contact Detection
Central to compliant tool manipulation is estimating and controlling the contact between the tool
and environment. For example, when scraping a wok with a spatula, the robot must reason over the
contact formation (e.g., point, line, or patch) to ensure the spatula is scraping properly at the desired
region on the wok. In this section, we evaluate VIRDO++ ability to estimate extrinsic contact
features; specifically, the contact line created as the spatula is brought into contact with the table. To
this end, we compute the signed distance values of the tables surface (z = 0) to compute a contact
cluster. This requires only a single feed-forward path where the input is an N × 3 matrix, where N
is the number of query points. From the contact cluster, we extract a contact line by selecting the
two points furthest apart similar to [40, 41, 42]. The evaluation metrics are the average Euclidean
distance 1

2Σ1
i=0||li − l∗i ||, where li is the detected contact lines, l∗i is the ground truth contact lines,

and i = 0, 1 refers to right and left ends of each contact line respectively. Ground truth contact
lines were obtained from ground truth pointcloud without occlusions by applying a contact mask
z ≤ ε. This contact feature estimation task is particularly interesting as it is the inverse problem of
[1]; estimating [1]’s privileged input (i.e., contact location) by inferring ct.

As shown in Tab. 2 and Fig. 5, VIRDO++ can accurately detect contact locations with less than 8
mm error on a flat table for the current and the following time step regardless of occlusions at the
tip. As in Sec.4.2, test trajectories from 4 spatulas with 15% occlusion were used for the evaluation.
Tab.2 shows that the average contact line detection errors from all 4 spatulas are less than 7 [mm]
during estimation and are less than 8 [mm] for predictions in Euclidean error. Similar to the result
in Sec. 4.2, estimations are 1 [mm] more precise than predictions because they are optimized using
the sensor measurements. Considering that the total length of the spatulas are about 200 [mm], this
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Fig. 5: VIRDO++ detects the line of contact throughout an alternating sequence of “estimation−→ prediction−→
estimation−→ ...”. Bayesian filtering increase the accuracy of contact location detection as the red lines (detected
contact line) gets closer to the dotted blue lines (ground truth) following the green arrow. In each figure, yellow
plane: table location, magenta spatula: reconstructed geometry from VIRDO++ , red line: detected contact
line, blue: ground truth contact line. All axis are in [m] scale in world coordinate.

L2 Error [mm] VIRDO++ w/o ct Rigid body asmp.

Contact Est. 6.647 (4.806) 9.872 (5.725) 21.203 (7.031)
Contact Pred. 7.198 (4.439) 9.356 (5.978) 22.572 (6.990)

Table. 2: Having latent embedding ct as an input, VIRDO++ can decrease about 33 % of error for estimations
and 23 % for predictions. Moreover, rigid body assumption is a worst case scenario producing ×3 error.

is less than 4% of error in total length. Estimating extrinsic contacts is a challenging task for rigid
object [43] and is further complicated by object compliance; however, our approach proves effective
due to its high-quality 3D reconstructions (details of error distribution in Appendix Fig. 12). Tab. 2
also quantifies performance against ablations (without ct and Rigid-body assumption) illustrating
the importance of the contact embedding and reasoning over compliance.

4.4 Generalizations Tasks

This section demonstrates VIRDO++ ’s generalization ability to unseen objects and their dynamics.
For each unseen object, the generalization dataset contains 1 nominal point cloud and 3 trajectories,
each with 24 transitions with occlusion. Here, we directly apply the same pre-trained model from
Sec. 4.1 to the generalization test dataset.

4.4.1 Object code inference for Unseen Objects

  

Train Objects Test Objects

Fig. 6: VIRDO++ can reconstruct
train and test objects with high fi-
delity (same order as Fig. 3).

VIRDO++ is able to represent nominal geometries unseen dur-
ing training within distribution. Fig. 6 shows reconstructions of
both seen and unseen object in Fig. 3 using a single pretrained
Object Module. For the unseen objects, we start from a randomly
initialized object code α ∼ N (0, 0.01) and update the code by
gradient descent with Adam. We use the same loss function from
Eq. 1 with pre-trained VIRDO++ while freezing the weights of
the network. The first row of Tab. 3 shows the Chamfer distance
error of the unseen objects alongside training objects, indicat-
ing the relatively small drop in performance. When comparing
Fig. 6 and the ground truth in Fig. 3, we note that the test reconstructions are close to the ground
truth aside from some fine edge details.
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    t = 0                       t = 1         t = 2                    t = 3                   t = 4                t = 5 

       G.T. Geometry Prediction

Fig. 7: VIRDO++ can accurately estimate the bike chain geometry (predictions overlaid in magenta) under
occlusions due to objects at the front. Note that the chain intermittently makes contact and rests on the table,
which is correctly predicted by VIRDO++ despite significant occlusion of where the chain makes contact.

4.4.2 Zero Shot Dynamics Prediction and State-estimation Generalization
With the object codes obtained in Sec. 4.4.1, VIRDO++ is able to predict the unseen object’s dy-
namics based on their nominal shape. Here, we evaluate both prediction and state-estimation per-
formance as in Sec. 4.2. We note that the observations of the unseen objects include occlusions as
discussed in Dataset. Tab. 3 shows comparable performance between training and test objects with
a small drop in accuracy, highlighting our model’s generalization capability. Sec. A.3.6 in Appendix
provides intuition for the Chamfer distance values. Further, we evaluate VIRDO++ ’s ability to per-
form high-fidelity geometry prediction and estimation even in novel environment (Wok scraping)
without 3D model. Details can be found in Appendix Sec. A.4.

CD (×103) VIRDO++ w/o ct Rigid Asm. Test Obj. 1 Test Obj. 2

Geo. – Nom. 0.65 (0.08) - - 1.08 1.29
Geo. – S.E. 0.93 (0.21) 1.18 (0.35) 16.66 (11.51) 1.39 (0.20) 1.56 (0.29)
Geo. – Pred. 1.04 (0.35) 1.09 (0.25) 15.16 (10.57) 1.54 (0.45) 2.40 (1.08)
Wr. – Pred. 1.14 (1.05) 1.04 (1.01) 1.63 (0.89) 1.50 (1.00) 2.14 (1.75)

Table. 3: (Column 1-3) Ablation study using the train object’s unseen trajectories. Numbers indicate mean
(std.) of each error distribution. Chamfer distance used 5600 points and is multiplied by 103. (Column 4-5)
Generalization results to unseen objects using the same pretrained VIRDO++ . Geo. = Geometry, Nom. =
Nominal, S.E. = State Estimation, Pred. = Prediction, Wr. = Wrench calculated as ‖f̂t − ft‖.

4.5 Bike Chain Application
In this experiment, the chain ends are grasped by two arms. One end of the chain is moved ran-
domly through the vertices of an equally-spaced 6 × 6 × 6 grid fitting inside of a 0.1 × 0.18 × 0.2
meter bounding box. The visited vertices of this grid make up the training dataset. The test dataset
is generated by sampling 20 random positions uniformly from the bounding box. The end-effector
orientations were fixed; therefore, pt,at ∈ R3. As shown in Fig. 7, VIRDO++ is able to pre-
dict/estimate both free-space and in-contact chain geometry. The in-contact phase occurs when the
arm moves sufficiently far down such that the chain lays on the table. We report the quantitative
results of geometry estimation and dynamics prediction in Tab. 1 and Appendix Sec. A.3.3. The
empirical results are comparable to spatula experiments despite significantly larger shape variations.
Details on wrench prediction errors in Appendix Sec. A.3.4.

5 Limitations
Our proposed approach has a number of limitations: 1) Non-rigid grasps: VIRDO++ assumes that
the gripper is rigidly holding the object. When it comes to non-rigid grasping, we need to estimate
relative motion of the objects w.r.t the gripper and the force transmission is now a function of this
relative motion. One potential solution is to use collocated tactile sensor feedback [44, 45, 46] with
F/T sensing to reason over reaction forces conditioned on the grasp. 2) Inertial effects: our ap-
proach assumes quasi-static manipulation (negligible accelerations). During fast motions, the tools’
inertial effects may also impact deformations and wrench measurements. When applicable, we sug-
gest supplementing VIRDO++ ’s input with end-effector accelerations. 3) Generalization to novel
environments: While we provide an example of environment generalization (Appendix Sec. A.4),
the performance is lower than our other demonstrated applications. VIRDO++ may benefit from a
3D model of the environment to integrate inter-penetration losses [23] or collision checkers [47].
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[26] P. Palafox, A. Božič, J. Thies, M. Nießner, and A. Dai. Npms: Neural parametric models for 3d de-
formable shapes. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 12695–12705, October 2021.

[27] X. Ma, D. Hsu, and W. S. Lee. Learning latent graph dynamics for deformable object manipulation. arXiv
preprint arXiv:2104.12149, 2021.

[28] I. Santesteban, N. Thuerey, M. A. Otaduy, and D. Casas. Self-supervised collision handling via generative
3d garment models for virtual try-on. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11763–11773, June 2021.

[29] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu. Robocraft: Learning to see, simulate, and shape elasto-plastic
objects with graph networks. arXiv preprint arXiv:2205.02909, 2022.

[30] Z. Huang, X. Lin, and D. Held. Mesh-based dynamics with occlusion reasoning for cloth manipulation.
arXiv preprint arXiv:2206.02881, 2022.

[31] C. Chi and S. Song. Garmentnets: Category-level pose estimation for garments via canonical space shape
completion. In The IEEE International Conference on Computer Vision (ICCV), 2021.

[32] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and M. Mukadam. isdf: Real-time
neural signed distance fields for robot perception. arXiv preprint arXiv:2204.02296, 2022.

[33] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Occupancy flow: 4d reconstruction by learning
particle dynamics. In International Conference on Computer Vision, Oct. 2019.

[34] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla. Nerfies:
Deformable neural radiance fields. ICCV, 2021.

[35] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna, M. Laskey, K. Stone, J. E. Gonzalez, and
K. Goldberg. Learning rope manipulation policies using dense object descriptors trained on synthetic
depth data. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 9411–
9418. IEEE, 2020.

[36] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations with
periodic activation functions. Advances in Neural Information Processing Systems, 33, 2020.

[37] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous signed
distance functions for shape representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 165–174, 2019.

10

http://dx.doi.org/10.1109/LRA.2022.3157377


[38] Y. Deng, J. Yang, and X. Tong. Deformed implicit field: Modeling 3d shapes with learned dense corre-
spondence. CoRR, abs/2011.13650, 2020. URL https://arxiv.org/abs/2011.13650.

[39] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
652–660, 2017.

[40] D. Ma, S. Dong, and A. Rodriguez. Extrinsic contact sensing with relative-motion tracking from dis-
tributed tactile measurements. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 11262–11268, 2021. doi:10.1109/ICRA48506.2021.9561781.
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