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Abstract

Recent results show that modern Large Language Models (LLM) are capable
of understanding and answering questions about structured data such as graphs.
Existing proposals often use some description of the graph to create an “augmented”
prompt fed to the LLM. For a chosen class of graphs, if a well-tailored graph
encoder is deployed to play together with a pre-trained LLM, the model can answer
graph-related questions well. Current solutions to graph-based prompts range from
graph serialization to graph transformers. In this work, we show that the use of
a parameter-free graph encoder based on Fock space representations, a concept
borrowed from physics, is remarkably versatile in this problem setting. The simple
construction, with a few small adjustments, can provide rich and informative graph
encodings, for a wide range of different graphs. We investigate the use of this idea
for prefix-tuned prompts leveraging the capabilities of a pre-trained, frozen LLM.
The modifications lead to a model that can answer graph-related questions – from
simple graphs to proteins to hypergraphs – effectively and with minimal, if any,
adjustments to the architecture. Our work significantly simplifies existing solutions
and generalizes well to multiple different graph-based structures effortlessly.

1 Introduction

Figure 1: Augmenting LLM’s ca-
pabilities by prompting them with
carefully encoded graphs.

Large Language Models (LLMs) excel at tasks like question
answering, sentence completion, translation, and even solving
undergraduate-level math problems [1, 2]. However, they some-
times need additional data unavailable during training. For instance,
a model trained on data up to a specific date may struggle with
the ever-changing news cycle [3, 4]. To prevent responses from
becoming outdated, or to integrate non-public/proprietary data and
domain-specific terminology, models need extra context. Retrieval
Augmented Generation (RAG) describes this process of retrieving
and integrating extra information to an LLM during its generation
process. While multiple different approaches have been proposed
for the retrieval piece, a common solution for integrating additional
information is In-Context Learning (ICL) [5, 6, 7, 8, 9]. ICL allows
additional information to be included with a prompt, guiding the model to generate responses aligned
with the extra context. This method is useful as it does not require retraining the LLM and can be
applied to proprietary models like GPT [10] by adding a text description of the extra information.

ICL-type ideas are also being studied for utilizing not just additional/new data but also novel input
formats/modalities, such as tables and graphs [11, 12, 13, 14]. While specialized models will still
perform better at specific tasks, LLMs can serve as general-purpose reasoning machines, capable of
answering questions about the provided modality beyond the training labels. Several recent results
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have reported success at “serializing” such structured data-types into a text-form description that can
be easily used within ICL. For tables, the serialization is not too complicated [11, 12], but more care
is needed for graphs. While different types of graphs can all be handled by the same pipeline, the
efficacy of the model varies [15, 13, 14]. Further, it has been observed that specific design choices to
“textify” the graph can influence performance and additionally, prompting techniques can have more
than a small impact on results [15]. What will work well in a specific setting depends on both the
question at hand as well as the characteristics of the data [16, 17].

Prefix-tuning. One option to address the issues above is “prefix-tuning” [18]. A specialized graph
encoder translates the underlying graph into embeddings that can be fed directly to an LLM, removing
the need for a text description. Although not training-free, the LLM remains frozen, and only the
relatively smaller graph encoder is trained. This approach works well, often surpassing ICL-based
methods [19, 20, 21]. However, using a specialized graph encoder can be challenging due to the
variety of graph types, and multiple works have proposed modifications of GNNs that suit their needs.
For example, GraphToken [16] can encode only simple graphs, while GNP [22] constructs a complex
pipeline to handle large graphs and extract subgraphs. GraphLLM [17] combines a transformer and a
GNN (about 100M parameters), requiring detailed text descriptions for each node. Adapting these
models to different graph types (e.g., protein-derived graphs or hypergraphs) is difficult; even familiar
graph types need adjustments for new tasks.

Context of this paper. ICL-based approaches for graphs primarily involve converting graphs to text,
while prefix-tuning with graphs uses modules to extract richer, task-relevant structures, requiring
larger sample sizes and more compute. A key question is whether we can achieve powerful, task-
agnostic graph representations that are as easy to obtain as ICL-based methods. Could a lightweight
adapter map these rich (but task-independent) representations into the LLM embedding space, making
prefix-tuning effective for various tasks? Recent results hint that this may be viable [23]. For instance,
a single linear layer can transform an arbitrary image encoder’s outputs to align with CLIP’s text
encoder embeddings [24]. If our graph encoding captures the graph’s information and structure
well enough, a similar adapter could work with a pre-trained LLM to offer good performance. This
approach’s success depends on the quality of the graph representations. We ensure this by invoking a
mature concept from mathematical physics, called Fock Spaces [25], whose practical instantiation
yields almost lossless task-agnostic graph embeddings. Our findings show that a linear adapter with
these representations yields competitive performance, handling complex graph questions and diverse
structures like hypergraphs and proteins. The main contribution of this paper is the Fock-space
inspired encoding of diverse graph-based structures, ranging from simple graphs to those obtained
from proteins. We provide code for grounding LLMs using our graph encodings as prompts and
profile the performance of this pipeline relative to baselines, on diverse datasets.

2 Deriving Fock space based Graph Representations

We will first review notations/results which will together provide the conceptual pipeline. While
graphs serve as representative examples here, the rationale for structured data such as tables is similar.

Figure 2: Single, Bi- and Tri-vectors in Clif-
ford Algebra with wedge products.

Setup/rationale. Consider a graph G = (V,E) with a
vertex set V and an edge set E; | · | denotes set cardinal-
ity. We define the incidence matrix [26], I to be of shape
|V | × |E| where Iij = 1 if edge j ends at vertex i, −1 if
edge j starts at vertex i and 0 elsewhere. Let |V | = n. It is
common to represent graphs via graph spectra derived from
the Laplacian’s eigenvalues. This is effective for studying
global properties of graphs like connectivity/symmetries
[27, 28] but less so for capturing localized relationships
between individual entities (nodes, edges, faces) within the
graph. It turns out that an interesting direction using Clif-
ford Algebra, shown to be effective in geometric problems
in machine learning [29, 30, 29, 31, 32], provides us tools for representing various graph elements
(nodes, edges, faces) in a nice algebraic structure [33] at once. Why? Graphs can be embedded and
manipulated in a geometric space [34], and in principle, their spectral properties can also be studied.
We briefly summarize the concept to assess its benefits and challenges.
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2.1 Clifford Algebra and Graph Representations

Clifford Algebra. We start with a vector space W over a field K (e.g., R or C). Vectors in W
support operations like addition, scalar multiplication, and subtraction. We also equip W with an
inner product ⟨·, ·⟩ that measures relationships between vectors. On top of our vector space W , we
construct the tensor algebra T (W ). We can think of T (W ) as containing all possible ways to multiply
vectors together using the tensor product: it includes the original vectors from W , all pairs of vectors,
all triplets, and so on. It also includes sums and scalar multiples of these products. For creating the
Clifford Algebra, the main step is to modify this tensor algebra by imposing a specific constraint. We
define an ideal I(W )—essentially a special subset that acts as a “filter”—generated by expressions
of the form w ⊗ w + ⟨w,w⟩1. Here, w ⊗ w is a vector multiplied (via tensor product) by itself,
and 1 is the multiplicative identity. This ideal has a closure property: multiplying any element from
I(W ) with any element from T (W ) yields another element in I(W ). This constraint will impose the
algebraic relations (particularly anticommutation) we need for representing graph structures.
Definition 2.1. Let W be a vector space over a field K, equipped with a quadratic form q : W → K.
The Clifford algebra of (W, q), denoted Cl(W, q), is the quotient algebra T (W )/I(W, q).

Essentially, we take T (W ) and “divide out” the ideal I(W ). This filters out redundant information.
More specifically, when we quotient by this ideal, we are asking that all expressions in I(W ) equal
zero, which enforces the constraint w ⊗ w = −⟨w,w⟩1 for all vectors w. From this, we can derive
the anticommutation relations we will use for distinct vectors: uv + vu = −2⟨u, v⟩1 (for basis
elements, this gives ei · ej + ej · ei = −2⟨ei, ej⟩). More details are available in [35, 36].

One choice of Clifford Algebra representation. We have described Clifford algebra as an abstract
object, but we need a way to work with it for graph encoding. A representation of a K-algebra is
a homomorphism that maps algebra elements to linear operators. Such a representation allows us
to work with Clifford algebra elements as concrete matrices rather than abstract objects. For our
practical setup, we will use the formal blueprint this algebra gives, which connects its generators to
creation and annihilation operators.

Practical considerations in Clifford Algebra operations. Following Clifford algebra axioms
exactly allows us to build higher-order elements (like edges, hyperedges) while preserving graph
structure. However, a full implementation faces practical issues: an n-dimensional space requires
a 2n-dimensional Clifford algebra, and this is impractical. Therefore, we make design choices that
balance rigor with computational feasibility.

2.2 From Graphs to Clifford Algebra to Fock Spaces

Figure 3: From graph to Fock space rep-
resentations.

Laplacian and the Dirac operator. For graph G, consider
the Laplacian ∆ = IIT ∈ R|V |×|V |, where I is the incidence
matrix [37]. But ∆ represents only one component of the
Hodge Laplacian L, which acts on the full exterior algebra of
the graph. This captures relations between all grades: scalars
(grade-0), nodes (represented as grade-1 vectors), edges (as
grade-2 bivectors), and so on. Here, the Dirac operator D
serves as a “square root” of the Hodge Laplacian [38], sat-
isfying D2 = L [37]. Because the Dirac operator and the
graph Laplacian are connected through this identity, we can
use the algebraic machinery associated with Dirac operators,
i.e., Clifford algebra, for our graph encoding problem.

Connection to Clifford algebra. The Dirac operator arises naturally from Clifford algebra [39].
Recall that the Clifford algebra is generated by n = |V | abstract basis vectors, which we denote as
{e1, . . . , en}. These are the grade-1 elements of the algebra. The full structure (dimension 2n), is then
built up from these generators through repeated application of the Clifford product, yielding elements
of all grades up to the top grade-n element. One feature of this algebra is the anticommutation
relations that these generators satisfy: eiej + ejei = −2⟨ei, ej⟩1 for basis elements. This algebraic
structure guarantees the D2 = L property holds [40, 36].

Spinors and Fock space. We now need to identify the space on which this algebra acts. For the
complex Clifford algebra, there exists a special irreducible representation on a complex vector space
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S of dimension 2⌊|V |/2⌋, called the Spinor space [40, 36, 41]. This Spinor space is where the abstract
Clifford algebra elements, the generators ek and their products become concrete operators. However,
for graph encoding purposes, we need to handle grades. The Fock space F =

⊕⌊|V |/2⌋
k=0 ∧k(C⌊|V |/2⌋)

provides what we want: a graded structure that holds objects of different types concurrently: scalars
(grade-0), nodes (as grade-1 vectors), edges (as grade-2 bivectors), and so on. The key point is that for
the Spinor space S and the Fock space F, there exists an isomorphism S ∼= F between them [40, 36].
This identification is a link: the Clifford algebra’s action is defined on S, and the isomorphism allows
us to translate this action onto F, which is the graded “container" of our graph elements.

Why is this useful? We can now ask: what do the generators ek of our Clifford algebra look like
when they act on this graded container? When the abstract Clifford generators ek act on the Fock
space, they decompose into two operations: a creation operator τ∗k and an annihilation operator τk.
That is, ek 7→ τk + τ∗k [40]. The creation operator τ∗k increases the grade of an element (e.g., acting
on grade-0 to create a grade-1 vector, or acting on a grade-1 vector to form a grade-2 bivector), while
the annihilation operator τk decreases the grade. Here, the Dirac operator itself is combining all
these creation and annihilation operations: D =

∑
k(τk + τ∗k ) [36]. The main takeaway for our

graph encoding is that the algebraic structure underlying our graph is one of creation and annihilation.
Nodes (grade-1) combine to form edges (grade-2), which in turn can combine to form higher-order
structures. Unfortunately, this is intractable due to 2⌊|V |/2⌋ dimensions.

2.3 Translating Theory to Practice: Instantiating a Graph Representation

The Fock space formulation provides ideas for representing multi-particle systems, viewing particles
as nodes in a graph. As noted above, implementing the full structure, in high dimensions, is
infeasible. Vector Symbolic Architectures (VSA), as explored in recent works [42, 43], offer a
practical approximation of Fock spaces with compute efficiency. In VSA, the binding operation
(circular convolution) approximates the creation/annihilation operators, while the superposition
operation (vector addition) resembles the direct sum in Fock spaces. Although the VSA ↔ quantum
mechanics connection is not new [44], in this context, it provides specific ideas for efficiency.

Representing nodes, sums, and products. In our implementation, we assign a high-dimensional
vector to each concept (node, edge, and so on). These vectors are analogous to the basis elements
above. While ideally, these vectors would be orthogonal, similar to the properties of basis elements in
a Fock space, we simply approximate this by sampling from a normal distribution N (0, 1/d). This
leads to nearly orthogonal vectors, with the maximum absolute cosine similarity between any two
vectors typically below 0.1 [45].

To emulate operations in Fock space, we use dimensionality-preserving operations instead of tensor
products, avoiding exponential growth in dimensionality [44]. This ensures all embeddings maintain
the same dimensionality. We define sum (⊕) as element-wise addition and product (⊗) as circular
convolution, analogous to Fock space’s creation/annihilation operators. Circular convolution is done
via element-wise multiplication in the Fourier domain followed by an inverse Fourier transform. As d
increases, these operations asymptotically satisfy Fock space’s algebraic properties, with complexity
O(d log d). This framework also supports inverse vectors, where a⊗ b = 1. Other properties like
commutation relations, superposition, and self-commutation are mostly satisfied. Note that our
experiments are not tied to this specific implementation (improved choices can be dropped in).

Dealing with infinitely many concepts. In some datasets, vertices include text descriptions, making
random vector initialization unsuitable. To address this, we use text encoders like CLIP [24], BERT
[46], and RoBERTa [47], which map text to vectors that preserve information and place similar
sentences in close proximity. This approach allows us to: (1) generate infinitely many vectors, and
(2) ensure similar vectors represent similar concepts. When dimensionality allows, we retain default
sampling and explicitly note the use of text encoders in our experiments.

Other works using Vector Symbolic Architectures.Vector Symbolic Architecture (VSA), rooted
in symbolic AI, leverages high-dimensional representations alongside logical rules for combining
symbols/vectors [48, 49]. Many studies mechanistically derive ways to construct symbols and im-
plement merge operations. The use of Fock space for symbolic manipulation has been explored,
with applications in trajectory analysis [44]. Additionally, VSAs have been employed for computa-
tional efficiency in self-attention calculations as seen in HRRFormers [50, 42], while a preliminary
investigation of the application of VSAs to graphs can be found in [51].

4



3 Fock Graph Encoder (FoGE)

Figure 4: Graphs, Hypergraphs, Attributed graphs, Proteins. All
these types can be efficiently encoded using FoGE.

Based on the concepts from §2, we
use a parameter-free scheme (denoted
FoGE) to obtain rich graph embed-
dings. Our approach is general and
can handle a large spectrum of differ-
ent graph types, and its extension to
novel graph-types is straightforward.
Diverse graph types such as hyper-
graphs, attributed graphs, as well as
proteins (Figure 4) can all be modeled easily providing an alternative or a good initialization for
more intensive trainable models. This approach translates the concepts of Fock spaces into a prac-
tical/efficient method for graph representation, where graph features obtained by the encoding are
analogous to multi-particle states in a Fock space.

For a graph G = (V,E) we have a set of vectors [pi]
n=|V |
i=1 , using i to index the nodes. We also use

an extra vector s for the graph’s size, a practical design choice we will explain shortly. Then, with
these n+ 1 vectors, we obtain a lossless Fock-space based representation g as:

g =
(
s⊗ pn

)
⊕

⊕
(i,j)∈E

(
pi ⊗ pj

)
(1)

Our formulation follows from §2. Each edge’s endpoints are fused together using ⊗ and then we
aggregate all edges together using ⊕. Finally, the graph’s size is also added using the special vector s.

Lossless representation. The above representation is lossless. Assuming we use Equation (1) to get
a graph’s embedding g. Then, simply by evaluating the expression pT

j (p
−1
i ⊗ g), we can determine

whether the edge (i, j) exists in the edge set of that particular graph. In this way, we can recover, one
by one, all edges of the graph and correctly reconstruct it, if desired. It is instructive to check the
importance of s. By evaluating the expression pT

i (s
−1 ⊗ g), ∀i, we can first obtain the size of the

graph. This can inform the edge retrieval above because an expression of the form pT
n+x(p

−1
i ⊗ g)

could, in practice, produce a number close to 1, although there is no such edge. By first obtaining the
size of the graph, we have a “safeguard” against such phantom edges beyond the real vertex-set.

Vertex attributes. Consider a graph G = (V,E,Attr), where the set Attr (with |Attr| = |V |)
consists of attributes, one for each vertex. There is no restriction on the type of attributes: it can
denote numerical values or text or any other concept. Let ai be the vector associated with the attribute
of vertex i ∈ V (using an appropriate text-encoder if needed). Then, we can augment Equation (1) to
absorb the extra information in the following way:

g =
(
s⊗ pn

)
⊕

⊕
(i,j)∈E

(
pi ⊗ pj

)
⊕
⊕
i∈V

(
pi ⊗ ai

)
(2)

The graph is again, fully reconstructable. We have also encoded each vertex’s attribute (which can
be recovered by the expression aTj (p

−1
i ⊗ g)). We should think of proteins as a graph with vertex

attributes where each vertex is a specific amino acid (possibly with 3-D coordinates).

Hypergraphs (Theory versus Practice). Hypergraphs are generalizations of graphs: each edge is
connected to an arbitrary number of vertices, instead of just 2 (Figure 4). In theory, we can easily
augment Equation (1) so that we can handle hypergraphs as follows:

g =
(
s⊗ pn

)
⊕

⊕
(k1,···km)∈E

m⊗
i=1

pki (3)

In practice, aggregating many multiple vectors together may be unstable. This is true for our particular
design choices for calculations (e.g., circular convolution), so we use an alternative approach. We
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can start by observing that each edge can be interpreted as a unique cluster of vertices, so we simply
assign a unique vector ei, i ∈

[
|E|

]
to each edge in the hypergraph. This modification allows us to

encode the hypergraph similar to how a graph is encoded as a dictionary, in the following way:

g =
(
s⊗ pn

)
⊕

( |E|⊕
i=1

(
ei ⊗

⊕
j∈Ei

pj

))
(4)

3.1 Fock Space-based grounding of LLMs (FoGE-LLM)

Figure 5: FoGE-LLM overview. Using a parameter-free graph
encoder we get graph embeddings for a range of different graphs.
Then, we use linear adapters with a frozen LLM for prefix tuning.

Recent works showed that (a) textu-
alizing a graph and pre-appending it
to a question results in better-than-
random responses from the LLM (al-
though far from perfect), and (b) us-
ing a specialized graph encoder such
as a GNN or a graph transformer and
training along with a frozen LLM re-
sults in a big improvement in perfor-
mance, resulting essentially in LLMs
that can understand, to some extent,
graphical structures. One takeaway is
that we can bypass the most tedious
stage of designing application-specific
graph encoders. Instead, we can use
a parameter-free method for a wide
range of graph types, as we described
above. Thus, the only trainable parts of
the pipeline are simple linear adapters
that convert the raw graph encodings to a format “understandable” by an LLM. Our FoGE-LLM is
shown in Figure 5. After getting the graph encodings, we train one/more linear adapters and append
the transformed encodings to the question’s embeddings fed to the LLM.

Summary and Takeaway. We highlight some key advantages. First, our graph encoding is parameter-
free and efficient. The complexity of aggregation is O(d log d) (d is vectors’ dimension) and the
number of aggregation operations is linear (in graph size). Second, our encoder is not restricted to
specific graph types: it works easily for simple graphs, for proteins and for hypergraphs just via small
modifications. In contrast, GraphToken [16] uses a specific GNN whose output size is dependent on
the underlying task whereas GraphLLM [17] uses a transformer model together with a GNN (also
specific to the underlying task). These properties simplify our training and eliminates any tunable
components. Third, our open-source code offers a scalable way to train FoGE-LLM even on consumer
GPUs, by using FSDP [52]. For reference, GraphToken [16] is trained on TPUs (code unavailable)
whereas GraphLLM [17] has a large memory/compute footprint (trained on A100 80GB).

4 Experimental results

We examine our Fock-space based encoding in two separate settings: (a) as a stand-alone input of a
simple model, and (b) as an extra prefix in a frozen LLM (FoGE-LLM), for graph prompting. Our
initial experiments (§4.1) show that simple models can process FoGE embeddings quite well for
traditional tasks. In §4.2, we present that FoGE can be successfully combined with an LLM, leading
to two advantages over stand-alone models: (1) language interface for flexible graph queries without
pre-defining task types, and (2) easier integration with mature software ecosystems built around
LLMs that reduce deployment overhead.

Datasets and Models. We performed experiments on multiple graph reasoning datasets: from
simple graph-understanding tasks to hypergraphs and proteins and aim to cover different aspects of
graph understanding/reasoning. Specifically, we consider the 7 following datasets/dataset collections:
(i) GraphQA [15] (ii) GraphReasoning [17] (iii) HyperGraphQA (iv) PPI [53] (v) OBNB
[54] (vi) mol-HIV [55] (vii) SabDab [56]. More details about the datasets can be found in the
appendix. Exploring diverse graph reasoning datasets helps evaluate our model’s performance and
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Table 1: Using a small neural network with a single layer on the obtained graph representations allows us to
perform near-perfectly on tasks such as number of nodes and number of edges, for both synthetic and real data.

GraphQA HyperGraphQA Jaffe
num nodes num edges has cycle num nodes num edges num acids num links

MSE/Acc 0.67 0.03 98.7% 1.12 0.63 2.95 11.9
Model size 32K 8K 16K 32K 4K 32K 16K

generalization across various graph structures and domains, from traditional graph-based QA to
hypergraph understanding and biological network analysis. By including datasets like PPI and
BioGRID, we seek to check the practical relevance of our result, with potential applications in
biology, network analysis, and more. We use the Llama2 (7B) model [57] as the frozen LLM, and we
use only extra linear adapters for the graph embeddings obtained using our formulation. We adjust
vector dimensionality from 512 to 2048 and use just a single adapter for the entire model or one
adapter per layer in FoGE-LLM.

4.1 Proof of Principle Evaluations for Graph Understanding

Table 2: Results on mol-HIV [55,
58]. The full details can be found
on https://ogb.stanford.edu/docs/
leader_graphprop

ROC-AUC

HyperFusion 0.8475± 0.0003
PAS + Fingerprint 0.8420± 0.0015
HIG 0.8403± 0.0021
DeepAUC 0.8352± 0.0054
FoGE + Fingerprint 0.8305± 0.0068

GMAN + Fingerprint 0.8244± 0.0033
RF + Fingerprint 0.8208± 0.0037
FoGE 0.7614± 0.0051
GCN 0.7606± 0.0097
GIN 0.7558± 0.0140

Setup and Results. While our key goal is graph-prompting,
we first perform multiple preliminary checks of the effec-
tiveness of our graph encoding. We conduct three different
types of experiments.

First, we evaluate whether our graph embeddings are infor-
mative (i.e., they preserve the graph’s structure), by using
a small, 1-hidden-layer FFN for basic graph-understanding
tasks. The results in Table 1 show that our representations
are rich and informative. More specifically, we assess the
quality of the embeddings by first encoding graphical struc-
tures from 3 different classes of graphs (graphs, hypergraphs,
and proteins) and then training a small model (one hidden
layer) to predict graph attributes like number of nodes and
edges. The results indicate that our representations are rich
and informative and only few parameters suffice to achieve
almost-perfect performance on such tasks.

Table 3: Results on two real protein datasets from OBNB. Our
method is the strongest unsupervised scheme to obtain node embed-
dings, especially for DisGeNet. Its performance is comparable to
trainable, graph-specific models. More details on all baselines are in
[54]. The reported metric is the APOP (Average test Precision Over
Prior).

BioGRID HumanNet

Model DisGeNet GOBP DisGeNet GOBP

LabelProp 0.931 1.885 3.059 3.806
Adj + LR 0.743 2.528 3.053 3.964
Node2Vec + LR 0.836 2.571 2.433 4.036
LapEigMap + LR 0.864 2.149 2.301 3.778
FoGE 1.062 2.433 3.254 3.916

GCN [59] 1.012 2.572 3.116 3.812
GAT [60] 1.063 2.562 3.065 3.963

Additionally, for more involved tasks,
we consider the Open Graph Bench-
mark (OGB) [58] (more specifically,
the mol-HIV[55] dataset) and we
show that our encoding is better
than multiple, heavy, specialized,
and trainable methods while being
training-free and unsupervised! In
Table 2, we show the results. Inter-
estingly, because our method allows
a seamless integration of additional
graph information (like a molecule’s
footprint), we find that this can help
us achieve even better results and, in
some cases, be competitive with sub-
missions at the top of the leaderboard.
To obtain the final results, we used
AutoGluon [61] on our unsupervised embeddings, with a time limit of 10 minutes, similarly to the
strategy of many of the other baselines.

Second, we examine whether our graph encodings preserve important biological markers of the data.
To test this, we use a small dataset of about 900 proteins (SabDab [56]) which are accompanied by
affinity data that corresponds to each protein’s clade. Briefly, clades are protein superfamilies, based
on common ancestry (more information can be found in the appendix). In principle, proteins from
the same clade are more similar than across clades, so we examine whether this is also preserved
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in our obtained embeddings. Although the dataset has only few samples and some of the clades are
scarcely populated, we can observe that there is a clear separation between the most populated clades
in the embeddings space.

Table 4: Micro F1-score on PPI.
Our approach is better than the best
unsupervised approaches and bet-
ter/comparable to the supervised ap-
proaches.

Model F1

Random 39.2
Node2Vec [62] 40.9
Raw features [62] 42.2

U
ns

up
er

vi
se

d GraphSAGE-min [53] 46.5
GraphSAGE-max [53] 50.2
DGI [63] 63.8
GRACE [64] 66.2
FoGE 99.2

Su
pe

rv
is

ed

GraphSAGE-min [53] 50.0
GraphSAGE-max [53] 61.2
LGCN [65] 77.2
GAT [60] 97.3
GCNII [66] 99.5

Third, we examine if the same encoding practice can generate
rich node-level encodings, by encoding for each node, the sub-
graph that is generated by itself and its neighbors. We examine
performance on nineteen real protein datasets (OBNB [54] and
PPI [53]). The detailed results on the complete OBN Benchnark
can be found on the appendix (4 of them are presented in Table 3),
while Table 4 demonstrates FoGE’s performance on PPI. We see
that our approach is, in all datasets, among the best unsupervised
approaches, and is also competitive (if not better) than special-
ized supervised approaches that leverage trainable, graph-specific
models such as GCN [59] and GAT [60]. Specifically, we achieve
state-of-the-art performance in PPI. We also achieve the best re-
sults (among both unsupervised and supervised) in seven out of
the eighteen datasets of OBNB.

These results provide encouraging evidence that (a) our approach
gives “rich” graph embeddings for a range of different graph
types and styles, and (b) our graph embeddings can be used as
an extra, grounding input to a powerful LLM without the need to
design/train a specialized model, e.g., GNN [67, 68] or a Graph
Transformer [69].

4.2 Grounding LLMs with Graph prompting

We next investigate whether such an encoder can be successfully integrated with an LLM. Can an
LLM understand graph structure? Our experimental evidence suggests that it can: the model learns
to reason about graph properties and, in many cases, performs better than approaches relying on
heavily specialized graph encoders. While this line of research is still in its early stages and requires
further exploration, it closely parallels recent multimodal advances. Just as LLaVA [70, 71, 72]
acquires visual understanding and TimeLLM [73] develops temporal reasoning once their respective
modalities are properly embedded, our findings indicate that LLMs can develop some graph reasoning
capabilities when provided with rich structural representations such as those produced by FoGE.

Table 5: GraphToken vs FoGE-LLM on GraphQA. Column 1
stands for a single embedding for the entire graph; O(n) stands
for a single embedding per node. In all 6 tasks, although we
use a parameter-free, predetermined graph encoding, we see a
performance similar/better relative to a trainable graph encoder
with a larger LLM.

ICL GraphToken FoGE-LLM

Tokens O(n2) 1 O(n) 1

num of nodes 26.9% 99.6% - 97.2%
num of edges 12.8% 42.6% - 45.1%
cycle existence 83.2% 95.6% - 97.9%
num of triangles 16.2% 34.8% - 37.7%
edge existence 54.4% - 73.8% 74.3%

Graph Understanding. In our first ex-
periment, we examine whether an LLM
can answer questions about a graph’s
structure, such as the number of nodes,
the presence of cycles, and so on. We
use GraphToken and conduct a suite of
six different experiments. Although our
method’s encodings are not specific to
each underlying task, it performs com-
petitively with specialized models, as
shown in Table 5. Even when GraphTo-
ken uses different embeddings for each
node (node degree) or edge (edge exis-
tence), our model still achieves compa-
rable results using a single embedding for the entire graph.

Advanced Graph Reasoning. Going beyond “simple” graph understanding tasks, we also examine
our performance on more complicated graph-reasoning tasks, using the GraphReasoning dataset [17].
GraphToken is not applicable here since each node is accompanied by a textual description which
cannot be handled by that model. So, our main baseline is GraphLLM, which uses a transformer
combined with a GNN to merge the graphical/textual information into one or more embedding vectors.
Similar to GraphToken [16], GraphLLM [17] also utilizes a different approach for each task, using
multiple graph embeddings for each task. In contrast, we achieve comparable performance using
a single graph embedding, showcasing the versatility/richness of the graph embeddings (Table 6).
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Further, we see that using a pretrained text encoder such as RoBERTa [47] to generate the vectors
is reasonable, and results in a similar performance. This is a strong improvement over traditional
symbolic methods, by allowing a large set of “symbols”/vectors. Dealing with proteins is similar to
advanced graph reasoning, since both datasets are graphs with additional node information.

Table 6: GraphLLM vs FoGE-LLM. Although we are using
the same, predetermined graph embedding for each task, we
enjoy a performance similar to GraphLLM which leverages 5
graph embeddings, specific to the task at hand. The vectors
stands for the two approaches we follow in generating them:
(a) randomly generated (almost) orthogonal vectors (ignoring
the node’s text description), and (b) using RoBERTa [47] and
utilizing all vertices’ information.

GraphLLM FoGE-LLM

model size 100M 25M
question specific output Yes No
graph embeddings 5 1
vectors - random RoBERTa

substructure count 99.9% 97.3% 95.6%
max triplet sum 95.7% 94.6% 94.7%
shortest path 97.2% 95.7% 95.8%
bipartite match 99.8% 98.1% 97.3%

Furthermore, in Table 7, we show the ac-
curacy of FoGE-LLM for three protein-
related tasks on Jaffe. Although the size
of the protein graphs is more than 10×
larger compared to the ones in GraphQA
and GraphReasoning, our model is able,
up to some extent, to understand the pro-
vided protein, as a whole (number of
amino acids and number of links) as well
as at an individual-node level for the task
type of amino acid (where we prompt the
model to determine the type of a specific
vertex in the protein).

Hypergraphs. Existing works focus on
specific forms of graphs and rarely ap-
plicable (or easily modifiable) to differ-
ent graph types. One common family
of graphs in applications is hypergraphs.
Here each edge is a subset of the nodes, of arbitrary size (Figure 4). Our formulation can handle such
a generalization of the typical graphs with only minor modifications to the encoding formulation
(Equation (4)). Here, we show that our setup can indeed answer questions about such complicated
structures, using our encodings as an extra prefix (graph prompting). Using the HyperGraphQA
dataset, we assess the performance of FoGE-LLM on four common tasks. Since GraphToken as
well as GraphLLM cannot handle such data, we compare our model’s performance against two of
the most common prompt-engineering methods: 1. zero-shot, where the model is given the graph
in text form along with the corresponding question, and 2. few-shot, where the model is given pairs
of textualized graphs with the corresponding question/answer pair and it is asked to produce the
answer to a new combination of graph/question. The results are presented in Table 7. Interestingly,
even though hypergraphs have a much more complicated structure than “simple” graphs, our model
achieves a performance very close to basic graph understanding (Table 5), or even better at some
tasks.

4.2.1 FoGE-LLM runtime

Table 7: FoGE-LLM performance against ICL techniques for
hypergraphs and proteins.

Zero-Shot Few-Shot FoGE-LLM

H
yp

er
Q

A num of nodes 04.5% 16.8% 85.0%
num of edges 03.9% 27.0% 95.4%
node degree 02.1% 10.1% 53.9%
edge existence 65.9% 79.4% 87.9%

Ja
ff

e num of amino-acids 03.9% 17.1% 99.3%
num of links 03.8% 06.1% 13.2%
amino-acid type 01.4% 12.3% 37.7%

Besides the raw performance gains as
presented above, FoGE-LLM offers a
very low inference time, due to two rea-
sons. First, we always “reserve” only
a single token for the given graph. In
contrast, zero/few-shot approaches that
textualize the graph require a large num-
ber of tokens, and grows larger as the
graph grows. This leads to an increase
in inference time, due to the number of
input tokens. Second, FoGE-LLM uses
one or more linear adapters, no special-
ized architectures like in [17, 16] are needed. Based on our experiments, this impacts inference time,
and gives FoGE-LLM strong efficiency benefits. In Table 8 we show the average inference time
required for each approach.

5 Related Work

Geometric Algebra in Machine Learning. There is growing interest in application of geometric
algebra in machine learning, particularly for developing models that maintain geometric properties.
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While these ideas have been leveraged in the context of equivariance/symmetry transformations
in deep learning [74, 75, 76, 77, 78], the concept is finding interesting uses in recent works. For
example, [79] recently proposed Clifford Neural Layers to model dynamical systems in fields like
fluid dynamics and [29] described Geometric Clifford Algebra Networks (GCANs), specifically
designed to respect symmetry group transformations. Beyond classical machine learning, geometric
algebra finds more direct applications in quantum computing as well: [80] leveraged the isomorphism
between Pauli matrices and Clifford Algebra to represent multidimensional data, to define specialized
transforms for machine learning tasks.

Table 8: Average inference time for each
approach. FoGE-LLM is significantly lower
than zero/few shot approaches since the num-
ber of input tokens does not grow with the
graph size, while it enjoys a 40% improve-
ment over GraphLLM dues to its simpler en-
coder/adapter.

Model Inference time (s) ↓
zero-shot 0.175 (±0.05)
few-shot 0.541 (±0.10)

GraphLLM [17] 0.052 (±0.01)
FoGE-LLM 0.031 (±0.01)

Graphs & LLMs. The body of work describing ways
to infuse extra, graphical information into a frozen LLM
is sizable and growing. As discussed earlier, initial ap-
proaches focused on converting the underlying graph into
natural language form, such as “node 1 is connected to
node 3, node 5 is connected to node 4, . . . ” [13, 14, 15].
These works while far from perfect showed viability: that
a frozen LLM has the capability to reason about the given
graph and answer graph-related questions, such as “is there
a cycle in the graph?”. Practical difficulties involving the
format of graph serialization is an important factor in the
performance and the results tend to be only moderately
better than random. The perspective taken in [16, 17] was
fresh and led to an alternative approach: infusing the graph
information directly at the embedding level, by encoding the graph using a model such as a Graph
Neural Network (GNN) [67, 68, 16] or a Graph Transformer [69, 17]. These works significantly
improved the state of the art, showing that carefully crafted graph embeddings are key to a successful
grounding of an LLM.

6 Conclusions

We have described a novel scheme to encode a graph into a vector form for direct downstream use
or to augment prompts fed to LLMs. Our approach, motivated by Fock space operations, offers
numerous advantages in practice demonstrated via experiments. We can obtain encodings of arbitrary
graphs quickly, with no trainable parameters, that nicely captures the important information content
in the underlying graph. To utilize these encodings, we introduced FoGE-LLM – a way to fuse the
graph information for graph-prompting with a pre-trained, frozen LLM, allowing it to “understand”
and reason about graphs. Given the growing interest in grounding LLM responses based on additional
domain-specific priors, we believe that this is an interesting direction. Our model, accompanied with
a simple-to-train open-source codebase, performs favorably relative to highly specialized models.
It is also quite flexible and can handle classes of graphs where other alternatives fall short or need
adjustments.

Impact & Limitations. A key strength of our method is its parameter-free approach for generating
rich graph embeddings. Such an approach can be a great fit in less computationally rich environments
or in cases where the dataset’s size is not big enough for the trainable approaches, without, as we
demonstrated extensively, lacking in performance in data-rich situations. Given the scarcity of the
data in many real-life graph-related problems (like the protein-based questions we answered here),
our approach can benefit multiple aspects of research. However, the unsupervised nature of FoGE also
limits the ability to fine-tune performance if the embeddings are insufficient for specific applications.
So, we believe that building representation learners on top of these embeddings, as in FoGE-LLM,
is a good strategy. Additionally, when dealing with infinitely large vector sets, random generation
is impractical. While RoBERTa works well in our experiments, integration with other models may
involve some trial-and-error to identify sensible configurations.

Acknowledgments We would like to thank Tom Reps and Anthony Gitter for discussions and
feedback. Additional experiments on the applicability of FoGE in other types of datasets were
performed during a summer internship of S.P. Chytas at LLNL, and will be disseminated in a separate
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Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[76] Monami Banerjee, Rudrasis Chakraborty, Jose Bouza, and Baba C. Vemuri. Volterranet: A
higher order convolutional network with group equivariance for homogeneous manifolds. IEEE
Trans. Pattern Anal. Mach. Intell., 44(2), 2022. ISSN 0162-8828. doi: 10.1109/TPAMI.2020.
3035130.

[77] Xuanyu Zhu, Yi Xu, Hongteng Xu, and Changjian Chen. Quaternion convolutional neural
networks. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision – ECCV 2018, Cham, 2018. Springer International Publishing. ISBN 978-3-
030-01237-3.

[78] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing
convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research. PMLR, 2020.

15



[79] Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter, and Patrick
Forré. Clifford-steerable convolutional neural networks. arXiv preprint arXiv:2402.14730,
2024.

[80] Marco A. S. Trindade, Vinícius N. A. Lula-Rocha, and S. Floquet. Clifford Algebras, Quantum
Neural Networks and Generalized Quantum Fourier Transform. Adv. Appl. Clifford Algebras,
33(3), 2023. doi: 10.1007/s00006-023-01279-7.

[81] P Erdös and A Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 1959.

[82] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod.
Phys., 74, 2002. doi: 10.1103/RevModPhys.74.47.

[83] Fan Chung and Linyuan Lu. The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences, 99(25), 2002. doi: 10.1073/pnas.
252631999.

[84] David B. Jaffe, Payam Shahi, Bruce A. Adams, Ashley M. Chrisman, Peter M. Finnegan,
Nandhini Raman, Ariel E. Royall, Funien Tsai, Thomas Vollbrecht, Daniel S. Reyes, and
Wyatt J. McDonnell. Functional antibodies exhibit light chain coherence. Nature, 611, 2022.

[85] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and
Mike Tyers. Biogrid: a general repository for interaction datasets. Nucleic acids research, 34
(Database issue), 2006. ISSN 0305-1048. doi: 10.1093/nar/gkj109.

[86] Sohyun Hwang, Chan Yeong Kim, Sunmo Yang, Eiru Kim, Traver Hart, Edward M. Marcotte,
and Insuk Lee. Humannet v2: Human gene networks for disease research. Nucleic acids
research, 47(D1), 2019. ISSN 0305-1048. doi: 10.1093/nar/gky1126. Publisher Copyright: ©
2018 The Author(s).

[87] William Falcon and The PyTorch Lightning team. PyTorch Lightning, 2019.

[88] Jung-Hoon Han, Sarah Batey, Adrian A Nickson, Sarah A Teichmann, and Jane Clarke. The
folding and evolution of multidomain proteins. Nature reviews. Molecular cell biology, 2007.
ISSN 1471-0072. doi: 10.1038/nrm2144.

16



The code can be found in https://github.com/SPChytas/FoGE

A Dataset details

In our experiments, we used the following datasets:

1. GraphQA [15]: It includes 6 different graph-understanding tasks (number of nodes, number
of edges, cycle existence, number of triangles, node degree, and edge existence) on 7
different graph structures (Erdos-Renyi [81], Scale-Free, Barabasi-Albert [82], Stochastic
Block Model, Star, Path and Complete).

2. GraphReasoning [17]: Recently introduced in [17] to better assess the model’s graph
understanding ability, it consists of 4 more advanced graph-understanding tasks (substructure
count, maximum triplet sum, shortest path, and bipartite graph matching). Each graph node
is accompanied by extra information in the form of a text description, making this dataset a
suitable testbed for our RoBERTa-based vector encoding.

3. HyperGraphQA: We extend GraphQA to Hypergraphs. Specifically, we consider 4 different
graph-understanding tasks (number of nodes, number of edges, node degree, and edge
existence) on 2 different hypergraph structures (Erdos-Renyi [81], and Chung-Lu [83]). The
training dataset consists of only 2000 instances, making it hard for large models to avoid
overfitting.

4. Jaffe [84]: Jaffe is a recent dataset consisting of approximately 1.6 million natively paired
human antibody sequences from healthy donors. To our knowledge, this represents by far
the largest publicly available dataset of its kind.

5. PPI [53]: PPI consists of 24 proteins collected from human tissue, with each node associated
with 121 binary labels. Compiled from experimental techniques like yeast two-hybrid screen-
ing and mass spectrometry, as well as computational predictions, such a dataset provides
critical insights into the functional organization of the proteome. By understanding how
proteins interact, scientists can uncover the molecular underpinnings of cellular processes
and develop targeted therapeutic strategies.

6. OBNB [54]: OBNB (Open Biomedical Network Benchmark) is a collection of 15 datasets
(including well-known datasets such as BioGRID [85] and HumanNet [86]). Each dataset’s
sample consists of a gene accompanied by 3 vectors (named DISEASES, DisGeNET, GOBP)
of node-level binary labels.

7. SabDab [56]: SabDab (Structural Antibody Database) is a collection of 919 publicly
available, annotated antibody structures (proteins). Each structure is accompanied by
multiple annotations, such as the heavy and light chain pairing.

8. mol-HIV [55]: The ogbg-molHIV dataset consists of molecular graphs (atoms as nodes,
chemical bonds as edges) labeled for the binary classification task of predicting whether a
molecule inhibits HIV replication or not. Each molecule is represented with 9-dimensional
atom features (e.g. atomic number, chirality, ring membership, formal charge), and the
dataset is evaluated using scaffold splits with ROC-AUC as the metric.

B FoGE-LLM

B.1 Training details

We train the LLM-based construction with a batch size of 16 and a learning rate of 1e-3. The model
required less than 10 epochs to convergence, in contrast to other works that require more training time
due to the ellaborate graph encoders (e.g., [17]). Our implementation is based on Pytorch Lightning
[87], which allows us to split and train the model on multiple GPUs using FSDP. This implementation
allows the user to train this, or any similar, model to conventional GPUs with less memory while, at
the same time, speed up the process by preloading all the obtained lightweight graph embeddings to
the GPUs. The merging of the graph embedding with the LLM is based on the idea of prefix tuning
[18], i.e., pre-append the embedding to the input text embeddings and, in our case, this is happening
with the use of a linear adapter. We experimented both with a single linear adapter on the input layer,
as well as a linear adapter per layer and the difference was only marginal in the final results.
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B.2 Inference details

Besides the low training time, FoGE-LLM enjoys an extremely low inference time, due to two reasons.
First, we always “reserve” only a single token for the provided graph. In contrast, zero/few-shot
approaches that textualize the graph require a large number of tokens, prohibitively large as the graph
grows. This leads to an explosion of the inference time, due to the transformer’s quadratic dependency
on the number of input tokens. Second, FoGE-LLM employs one or more linear adapters and does
not require any specialized architectures, like existing solutions [17, 16]. This, as we observed in
our experiments, impacts the inference time, casting FoGE-LLM one of the fastest graph-augmented
Language Models. In Table 9 we present the average inference time required for each approach.

Table 9: Average inference time for each approach on Llama-7B. FoGE-LLM is significantly lower
than zero/few shot approaches since the number of input tokens does not grow with the graph size,
while it enjoys a 40% improvement over GraphLLM dues to its simpler encoder/adapter.

Model Inference time (s) ↓
zero-shot 0.175 (±0.05)
few-shot 0.541 (±0.10)

GraphLLM [17] 0.052 (±0.01)
FoGE-LLM 0.031 (±0.01)

C ICL prompting for hypergraphs

In Table Table 7 we demonstrate FoGE’s superiority over In-Context Learning approaches, like
zero-shot and few-shot prompting. Here we explain how we created the textual descriptions of the
hypergraphs, that were used in both zero- and few-shot prompting. Following similar works for graph
textualization [16, 15], we first assign a number to each node and then, in a new line, we explain
which nodes are part of each hyperedge. An example can be seen below.

G describes a hypergraph among 0, 1, 2, 3, 4, 5, 6, 7, and 8.
In this hypergraph:
Hyperedge 1 connects nodes 2, 3, 6.
Hyperedge 2 connects nodes 1, 4, 5, 7.
Hyperedge 3 connects nodes 1, 2.
Hyperedge 4 connects nodes 3, 5, 7, 8.

After the hypergraph textualization, the question follows in the case of zero-shot, while both the
question and the answer follow in the case of few-shot.

D Lossless representations

One advantage of the obtained embeddings is that fact that the underlying structures are recoverable.
This allows us to obtain unbiased vector estimates of complicated structures, such as graphs with
multiple edge and node attributes. Here, we show how this property manifests in our specific
formulation as well as more generally for pairs of key-item.

D.1 Capacity

One of the typical ways to examine the performance of such a construction is by assuming a vector u
as being the bundling of multiple binded pairs, as in the following equation

u =

n⊕
i=1

ki ⊗ vi (5)

and then examine how accurately we can recover each vector vi, given the corresponding ki. In
theory, the vector vi can be easily recovered using the operation:

ṽi = k−1
i ⊗ u (6)
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In Fig. 6 we examine the cosine similarity of the obtain vector ṽi with the correct one (vi) as well as
with all the rest ({vj}j ̸=i). We observe that the results follow closely the theoretical results above,
with a perfect separation of up to 100 pairs, and a small overlap for 200− 300 pairs of vectors.

Figure 6: Given a vector R4096 ∋ u = ⊕n
i=1ki ⊗ vi, how correctly we can recover all pairs of keys-

values back, as the number of pairs (n) grows. Worst-case wrong CS corresponds to the maximum
cosine similarity of the recovered value vector with all value vectors but the correct one, and correct
CS corresponds to the cosine similarity with the correct value vector.

D.2 Graph reconstruction

In our specific application, we deal with graphs and, as we analyzed, the graph representations
we obtain are, in theory, lossless, i.e., we can recover back the original graph from the vector
representation using the inverse vectors. Here, we examine whether this claim holds in practice
too. In Fig. 7 you can observe the strength of each edge after reconstruction, for 3 different vector
dimensionalities. We can observe that, even for a moderately large dimension, there is a clear
separation between the true edge set and the rest of the edges.

Figure 7: Lossless representations: even for small vector dimension, we can obtain back the true edge
set. The numbers show the cosine similarity of the obtained vector with the true edge vector, and it
can be used to estimate the true edge set.

E FoGE runtime

In Table 10, we show the runtime of FoGE as we increase the number of edges, on a conventional
consumer CPU. The graphs are randomly generated instances of Erdos-Renyi graphs. From this
experiment, three observations stand out:

1. The linear relationship between the number of edges and the runtime.
2. Fast encoding of graphs with even millions of edges.
3. The ability of FoGE to handle huge graphs without any substantial increase in memory

consumption.

Additionally, given the properties of the aggregation we use, the operations can be parallelized on
multiple CPU threads, speeding up even further the computation on larger graphs. For example,
similarly to our experiments with OBNB, we can calculate in parallel a single embedding per node,
and then aggregate them together. This can lead to significant improvement in encoding, exploiting
the fact that our aggregation operations are lightweight and can even run on CPUs.
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Table 10: Total encoding runtime for random instances of Erdos-Renyi [81] using FoGE.

number of edges 1 500 50000 1200000 5000000
runtime (sec) 0.0006 (±0.00) 0.041 (±0.01) 3.769 (±0.35) 94.041 (±1.04) 378.018 (±4.55)

Figure 8: T-SNE plot of the SabDab embeddings. Although the dataset is very small, each one of
the populated clades occupies a different region and, interestingly, clades 1 and 7 are very similar,
just like in real life. The T-SNE plot was robust to different choices of hyperparameters, with no
significant differences beyond simple translations of the space.

F Preservation of Clade information on SabDab

Given that the SabDab proteins [56] are annotated with the heavy/light chain pairing, we can extract
the clades and visualize their embeddings with respect to that information. As a brief reminder, the
clades correspond to superfamilies of proteins that share a common ancestor [88]. To extract the
clades we used the V gene heavy chain and chose seven families. It is well known from biology that
antibodies that belong to the same clade are more similar than antibodies across different clades, so,
here, we examine if this real-world, biological property is reflected on our embeddings. Specifically,
after obtaining each protein’s embedding using FoGE (in an unsupervised fashion without using the
clade annotations), we apply a T-SNE transformation on the high-dimensional vectors so that we are
able to plot them, with a significant amount of noise, in just two dimensions. Although we reduce
the dimensionality significantly, and, even worse, we deal with a extremely small dataset of just 919
proteins (Table 11), in Fig. 8 we can observe that the proteins of each clade cluster together. This is a
different, qualitative indicator, which shows that FoGE is able to preserve all the information that is
encapsulated in the inputted structures.

Table 11: Distribution of samples across the different clades. In total there are 919 samples, with clades 1, 3, 4
being the most frequent.

Clade 1 2 3 4 5 6 7 Total

Count 325 28 414 101 25 3 23 919

G Additional results on OBNB

OBNB (which stands for Open Biomedical Network Benchmark) is a collection of multiple, real-
world protein datasets, where each node (or amino-acid) of each protein is accompanied by multiple
binary labels. A detailed analysis of the datasets and their labels can be found in [54] and the
corresponding repository. In Table 12 we present the results on all 18 reported datasets of OBNB.
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Table 12: FoGE vs multiple unsupervised and supervised methods. After obtaining our embeddings, we use a
Random Forest to predict the corresponding node’s label. The evaluation is based on the APOP metric [54] and
we can observe that FoGE is always comparable to the best methods, while in almost half of the cases it is the
best one.

Network Model DISEASES DisGeNET GOBP

BioGRID

LabelProp 1.210 0.931 1.858
LogReg 1.556 1.026 2.571
GCN+BoT 1.511 1.014 2.442
SAGE+BoT 1.486 1.031 2.402
GIN+BoT 1.410 1.007 2.386
GAT+BoT 1.609 1.037 2.624
GatedGCN+BoT 1.547 1.038 2.517
FoGE 1.599 1.062 2.433

HumanNet

LabelProp 3.728 3.098 3.806
LogReg 3.812 3.158 4.053
GCN+BoT 3.552 3.053 3.921
SAGE+BoT 3.401 3.052 3.816
GIN+BoT 3.513 3.054 3.861
GAT+BoT 3.761 3.100 3.809
GatedGCN+BoT 3.677 3.086 3.889
FoGE 3.853 3.254 3.916

COMPPIHumanInt

LabelProp 1.352 1.106 2.076
LogReg 1.644 1.240 2.806
GCN+BoT 1.648 1.211 2.685
SAGE+BoT 1.694 1.210 2.629
GIN+BoT 1.608 1.219 2.611
GAT+BoT 1.665 1.230 2.755
GatedGCN+BoT 1.672 1.218 2.735
FoGE 1.660 1.241 2.586

BioPlex

LabelProp 0.964 0.939 1.714
LogReg 1.358 0.939 2.587
GCN+BoT 1.324 0.911 2.553
SAGE+BoT 1.246 0.865 2.513
GIN+BoT 1.349 0.868 2.504
GAT+BoT 1.355 0.873 2.548
GatedGCN+BoT 1.301 0.859 2.590
FoGE 1.273 0.879 2.599

HuRI

LabelProp 0.545 0.598 1.086
LogReg 0.650 0.656 1.084
GCN+BoT 0.634 0.693 1.129
SAGE+BoT 0.593 0.679 1.190
GIN+BoT 0.583 0.702 1.143
GAT+BoT 0.667 0.687 1.174
GatedGCN+BoT 0.596 0.695 1.195
FoGE 0.684 0.729 1.070

OmniPath

LabelProp 1.358 0.897 1.593
LogReg 1.542 1.093 2.125
GCN+BoT 1.577 1.068 2.071
SAGE+BoT 1.478 1.062 1.986
GIN+BoT 1.452 1.073 1.993
GAT+BoT 1.552 1.048 2.068
GatedGCN+BoT 1.516 1.049 2.071
FoGE 1.511 1.085 2.102

FoGE is one of the best-performing methods across all benchmarks, showcasing once more the
capabilities of our obtained embeddings.

H Impact of vector dimension

One of few the hyperparameters of FoGE is the dimensionality of the vectors (i.e. graph embeddings).
Using GraphQA, we perform an ablation study on the impact of the dimension on the final accuracy
of the model (Fig. 9). Relative accuracy is calculated as the actual accuracy for each dimensionality,
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divided by the best one, for each task respectively, and it allows us to compare different tasks with
completely different best performances (Table Table 5).

Figure 9: Accuracy versus vectors dimensionality. Although there is a positive trend between the two quantities,
the dependency on the dimension is not equally strong or always positive in all tasks.

From this study, a few important remarks surface that we observe to hold true for the other datasets
too. First of all, a larger dimensionality does not always “translate” to better results. We observe that
for some tasks (cycle existence), we achieve the optimal performance with a dimension significantly
lower than the maximum we consider (2048), matching essentially GraphToken’s performance with
less than 20K trainable parameters, while in some cases there is a small drop as we go from 1024 to
2048. Finally, as with most of the tunable hyperparameters in machine learning models, there is no
predetermined best strategy for choosing the dimensionality. For instance, when we consider cycle
existence or the number of triangles we can have a highly performing model with a dimensionality of
less than 128, while for tasks such as edge and node count the performance drops significantly as we
reduce the dimensionality.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: All contributions are mentioned explicitly in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: The limitations can be found on the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: There are no proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: All models used and the corresponding hyperparameters are mentioned in the
paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes] .

Justification: All models are publicly available and we have included our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: All training hyperparameters are mentioned.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: We followed and reported the existing evaluation criteria, to avoid any discrep-
ancies in the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: All relevant information is provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: We have reviewed and adhere to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: Impact is discussed on the conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: No new models or data are released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: All used assets are public and cited accordingly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: No new models or datasets are released. Our code is documented appropriately.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: No crowdsourcing was involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: No study participants needed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: LLMs were used only for grammar checks.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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