DeltaFormer: Unlock the State Space of Transformer

Mingyu Xu*

Seed Team, ByteDance xumingyu@bytedance.com

Tenglong Ao*

Seed Team, ByteDance aotenglong@bytedance.com

Jiaao He

Seed Team, ByteDance hejiaoao@bytedance.com

Jianqiao Lu

Seed Team, ByteDance lujianqiao@bytedance.com

Guang Shi[†]

Seed Team, ByteDance shiguang@bytedance.com

Shu Zhong^{†,*}

Seed Team, ByteDance zhongshu@bytedance.com

Abstract

In recent years, large language models built around the Transformer architecture have achieved breakthrough progress in many fields. At the same time, certain weaknesses in these models have prompted further reflection, with the most fundamental concerns centered on the Transformer architecture itself. The Transformer offers high parallelism and can fully exploit the computing power of GPUs, which has enabled it to replace models such as LSTM over the past few years. However, high parallelism is not a free advantage, as it imposes fundamental limits on model performance. In particular, the problems that the logarithmic-precision Transformer architecture can solve are strictly bounded within the class TC^0 . Many important tasks are generally considered outside TC^0 , including Python code execution, entity tracking, chess, and other state-tracking problems. Meanwhile, recent state-space methods based on the Delta Rule have been able to surpass the TC^0 limitations of the Transformer, but these approaches suffer from fixed-size state spaces and perform poorly on many tasks. To address this, we re-examine the Transformer from the perspective of a state space with kernel functions, and propose an improved architecture called *DeltaFormer*. We theoretically and empirically demonstrate that this new architecture can overcome the inherent TC^0 expressivity limitations of standard Transformers, while remaining at least as effective in language modeling tasks. We hope our work will inspire the design of more expressive models.

1 Introduction

In the field of artificial intelligence, the Transformer model [71] has attracted widespread attention for its outstanding performance and broad application prospects since its inception. As the core architecture of modern AI systems, the Transformer has demonstrated remarkable results in various domains [9, 32, 19, 55, 56]. Despite its significant success, the Transformer has shown poor performance on many tasks that lack chain-of-thought reasoning, which has prompted reflection among researchers.

Another noteworthy observation is that existing large models have demonstrated impressive reasoning abilities following reinforcement learning [30, 29, 64]. However, recent studies indicate that RL does not unlock fundamentally new capabilities, and that their abilities remain constrained by the pre-training phase [79, 65]. Since model architecture lies at the core of pre-training, researchers have increasingly turned their attention to its limitations—particularly the expressivity of Transformer

^{*}Equal contribution.

[†]Corresponding authors.

models. Existing Transformer-based models possess restricted expressive power; it has been shown that they belong to the TC^0 complexity class [44]. Solving problems in larger classes requires the use of chain-of-thought reasoning [24, 37]. Moreover, numerous real-world tasks go beyond TC^0 and fall within NC^1 , such as entity tracking, Python code evaluation, and chess state tracking [42]. This limitation may be a fundamental reason why current large-scale models exhibit randomness in entity tracking tasks [13]. This naturally raises the question: is it possible to break through the TC^0 expressivity barrier that constrains the Transformer?

In the domain of finite state-space methods, recent work has shown that the delta rule can be used to surpass the expressivity limits of TC^0 [52, 66]. However, these methods rely on finite-sized state spaces, which inherently face challenges, such as difficulties in performing retrieval tasks [31]. A natural question follows: can we draw inspiration from these approaches to design a more expressive Transformer?

To address this, we re-examine the Transformer architecture through the lens of kernel functions and the delta rule, proposing a new model called *DeltaFormer*. We theoretically and empirically validate that DeltaFormer possesses expressive power exceeding that of standard Transformers, while maintaining comparable performance in language modeling tasks.

The main contributions of this work are as follows:

- We revisit the delta rule from the perspective of kernel functions and propose a new architecture, *DeltaFormer*, which implicitly assigns a state space to the Transformer. In addition, we design a chunk-wise algorithm that enables DeltaFormer to be efficiently implemented in parallel on GPUs.
- We theoretically demonstrate that DeltaFormer has stronger expressivity than the standard Transformer. We prove that by combining the delta rule with a non-linear kernel, a KV cache of size $O(T\log n)$ can track T exchanges among n objects. Furthermore, if the KV cache is compressed every O(n) steps, only $O(n\log n)$ space is required, which is significantly smaller than that needed when using a linear kernel.

2 Related Work

Circuit Complexity Boolean circuits have long been used to study parallel complexity. Among the most important complexity classes in this context are NC and TC. The TC class focuses on problems solvable by Boolean circuits in which majority gates are the primary operation, while TC^0 specifically denotes problems solvable by constant-depth, polynomial-size threshold circuits. For an input of length n, previous work has shown that constant-depth Transformers with finite-precision (size poly(n)) embeddings can only solve problems in TC^0 without chain-of-thought reasoning [44]. Recently, several studies have demonstrated that DeltaNet [63, 77] and related variants [76, 52, 66] can overcome the TC^0 complexity limitation inherent to Transformers. These architectures exhibit higher expressivity and achieve improved performance in tasks such as state tracking [27, 66, 42].

Model Architecture Over the past years, researchers have explored various architectures to enhance model capabilities, ranging from early RNNs [46] and LSTMs [69] to today's dominant Transformer [71]. Transformers have quadratic complexity, and numerous efforts have sought to improve their efficiency [51, 28, 68, 5, 54]. Nevertheless, Transformers still possess many valuable properties that are not easily replaced, particularly their ability to perform information retrieval and adapt to forms of dynamic sparsity [31, 3, 47]. Currently, many popular language models [1, 20, 75] continue to use Transformers as the core architecture, while some employ hybrid designs [58, 38, 35]. Our work aims to improve the Transformer by breaking through its expressivity limitations. We summarize the relationship between commonly used model architectures and their parallelism in Figure 1.

Understanding Transformer Since the rise in popularity of the Transformer [71], extensive research has focused on understanding its underlying mechanisms. Several works analyze its powerful approximation capabilities [80, 18, 34], while others explore the dynamics of model training [41, 7, 70] and interpretability [10, 39, 40, 2]. With the advent of large-scale models, increasing attention has been devoted to studying the contextual learning ability of Transformers [25,

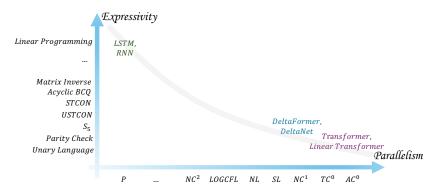


Figure 1: Parallelism and expressivity between models. The higher the parallelism of a model, the more restricted it can be. Previous work has shown that the Log-Precision Transformer is in TC^0 [44] and constant precision Transformer in AC^0 [37]. The model based on DeltaNet can perform tasks that exceed the expressivity of TC^0 , if we accept that $TC^0 \neq NC^1$ [52]. In addition, even for models with the same degree of parallelism, their performance is affected by the model capacity. One of the most intuitive examples is that Transformer can perform better than Linear Transformer in retrieval related tasks [31].

36, 49, 23, 21, 22, 73]. An important aspect in understanding the behavior of large models is their associative memory [48, 33, 6, 72]. The delta rule can also be interpreted as an update mechanism for associative memory. In this work, we re-examine the delta rule from the perspective of kernel functions and propose a new model based on this insight.

3 Method

3.1 Re-examining the Delta Rule from the Perspective of Kernel Functions

The delta rule has a long research history [67, 53, 59] and has recently attracted renewed interest among researchers studying model architectures [63, 77, 52]. Its name comes from updating weights based on the difference between the prediction and the target. Mathematically, let the state space at time t be denoted by S_t , the input by k_t , and the target by v_t . The model seeks to minimize the Euclidean norm $\|S_t k_t - v_t\|_2$. Applying one step of stochastic gradient descent (SGD) with learning rate β_t yields:

$$S_{t+1} = S_t - \beta_t (S_t k_t - v_t) k_t^{\mathsf{T}} \tag{1}$$

$$= S_t \left(I - \beta_t k_t k_t^{\mathsf{T}} \right) + \beta_t v_t k_t^{\mathsf{T}}. \tag{2}$$

To retrieve information from S_t , we use:

$$o_t = S_t q_t. (3)$$

We now generalize this process by introducing a kernel function $\kappa(x,y) = \psi(x)^{\top} \psi(y)$, where $x,y \in \mathbb{R}^d$ and $\psi(\cdot)$ is a mapping to an (possibly) infinite-dimensional space. The delta rule with a kernel function becomes:

$$S_{t+1} = S_t \left(I - \beta_t \psi(k_t) \psi(k_t)^\top \right) + \beta_t v_t \psi(k_t)^\top, \tag{4}$$

and information retrieval is performed via:

$$o_t = S_t \psi(q_t). \tag{5}$$

However, this formulation poses two significant challenges. First, both the kernel function $\psi(\cdot)$ and the state matrix S_t are infinite-dimensional, making them infeasible for explicit computation on conventional hardware. Second, updating S_t at each timestep is computationally inefficient; this inefficiency is one of the key reasons why traditional LSTMs have lost popularity in recent years. Therefore, it is essential to develop an efficient GPU-friendly implementation.

3.2 Rewriting the Expression for Practical Computation

We can rewrite Eq. 4 in a simplified, equivalent form: $S_{t+1} = S_t + \beta_t u_t k_t^{\top}$, where $u_t = v_t - S_t \psi(k_t)$ is determined by $\{(k_i, v_i)\}_{i=1}^{t-1}$. Using the derivation in Appendix A, we obtain:

$$u_t = \beta_t v_t - \beta_t \sum_{i=1}^{t-1} \kappa(k_i, k_t) u_i,$$
 (6)

$$o_t = \sum_{i=1}^t \kappa(k_i, q_t) u_i. \tag{7}$$

Although $\psi(\cdot)$ may map to an infinite-dimensional space, $\psi(\cdot)$ does not explicitly appear in Eq. 6 and Eq. 7, and all terms in these equations can be computed in finite form. If we set $\kappa(x,y) = x^{\top}y$, this formulation exactly corresponds to DeltaNet [63, 77]. Details on efficient GPU implementation are provided in Section 3.4.

Generalized Design. We can generalize the above formulation by applying separate kernel functions (κ_1, κ_2) in Eq. 6 and Eq. 7, using different gating parameters (α_t, β_t) to scale v_t and $\sum_{i=1}^{t-1} \kappa(k_i, k_t) u_i$, and introducing w_t in Eq. 6 to control write and delete operations instead of using k_t directly. This yields:

$$u_{t} = \alpha_{t} v_{t} - \beta_{t} \sum_{i=1}^{t-1} \kappa_{1}(k_{i}, w_{t}) u_{i},$$
(8)

$$o_t = \sum_{i=1}^t \kappa_2(k_i, q_t) \, u_i. \tag{9}$$

If we set $\beta_t = 0$, $\alpha_t = 1$, and define: $o_t = \frac{\sum_{i=1}^t \exp\left(\frac{k_i^\top q_t}{\sqrt{d}}\right) u_i}{\sum_{i=1}^t \exp\left(\frac{k_i^\top q_t}{\sqrt{d}}\right)}$, the formulation degenerates to the

standard Transformer. We refer to Eq. 8 and Eq. 9 collectively as *DeltaFormer*. In the following, we compare the advantages of DeltaFormer over previous models such as the Transformer and DeltaNet.

3.3 Beyond the Expressivity of Transformer

As previous literature have shown, the performance of Transformer is limited to TC^0 if chain of thought is not performed [44, 37, 24]. Based on a hypothesis that is considered correct, $TC^0 \neq NC^1$, We will prove that DeltaFormer can solve a problem which is NC^1 -complete under AC^0 reduction. This task is to track the exchange of n ($n \geq 5$) elements [78]. Specifically, we provide a constructive proof as shown in Theorem 1, and the detailed proof is in Appendix B.

Assumption 1 There exist n state points on a d-dimensional unit sphere, and the absolute value of the inner product of any two distinct state points is less than or equal to $\epsilon(d, n)$, which means:

$$\exists x_1, x_2, \dots, x_n \in \mathbb{R}^d \quad \text{s.t.} \quad ||x_i||_2 = 1(\forall i), \quad \max_{i \neq j} |x_i^\top x_j| \le \epsilon(d, n) < \frac{1}{8}.$$

Assumption 2 There is a function f satisfies:

$$\forall x \in \{-1, 0, 1, 2\}, \ \forall \tilde{x} \in U(x, 4\epsilon(d, n)): f(\tilde{x}) = x.$$

Theorem 1 Based on the above assumptions, we can consider initializing n key-value pairs as $\{(k_1, v_1), \ldots, (k_n, v_n)\}$. The keys $\{k_1, \ldots, k_n\}$ lie on a d-dimensional unit sphere and satisfies Assumption 1, which means:

$$\forall i, j \in \{1, \dots, n\}, i \neq j: ||k_i||_2 = 1, |k_i^\top k_j| \leq \epsilon(n, d).$$

and define an attention mechanism as follows:

$$u_t = v_t - \sum_{i=1}^{t-1} f(k_i^{\top} k_t) u_i, \quad o_t = \sum_{i=1}^{t} f(q_t^{\top} k_i) u_i,$$

where $f(\cdot)$ satisfies Assumption 2 and it is noted that $\forall i \in \{1, \dots, n\}$, since $f(k_i^\top k_i) = 0$, we have $u_i = v_i$.

At the current step t, t > n, the value corresponding to k_i is denoted by \tilde{v}_i , $i \in \{1, \dots, n\}$. Note that, after t-1-n exchanges, \tilde{v}_i is not necessarily equal to the initially assigned v_i . $\forall 1 \leq t_2 < t_1 \leq n$, to exchange the stored values \tilde{v}_{t_1} and \tilde{v}_{t_2} corresponding to k_{t_1} and k_{t_2} , it suffices to construct:

$$k_t = k_{t_1} - k_{t_2}, \quad v_t = 0$$

When retrieving the values:

Query $q_t = k_{t_1}$, then $o_t = \tilde{v}_{t_2}$;

Query $q_t = k_{t_2}$, then $o_t = \tilde{v}_{t_1}$;

Query $q_t = k_{t_3}$, $1 \le t_3 \le n$, $t_3 \ne t_1, t_2$, then $o_t = \tilde{v}_{t_3}$.

This implies the exchange of values corresponding to k_{t_1} and k_{t_2} is completed.

3.3.1 Re-examining the Assumptions

We now revisit the two assumptions in Theorem 1.

What relationship between d and n must hold for Assumption 1 to be satisfied? According to Theorem 5.2.1 in [82], For every $\alpha \in (0,1)$ and $\varepsilon > 0$, there exists c > 0 such that for every d, one can find at least 2^{cd} unit vectors in \mathbb{R}^d whose pairwise inner products all lie in $[\alpha - \varepsilon, \alpha + \varepsilon]$. Setting $\alpha = 0.01$ and $\varepsilon = 0.1$, we obtain $\epsilon(d,n) \leq 0.11 < \frac{1}{8}$. This implies that for Assumption 1 to hold, it is required that: $d = O(\log n)$.

Regarding the choice of $f(\cdot)$ in Assumption 2, one straightforward option is to use the rounding function $\operatorname{round}(\cdot)$, i.e., mapping the input to its nearest integer. With appropriate rounding precision, this function can satisfy the assumption. If we instead adopt the commonly used exponential kernel $\exp(\cdot)$, theoretical results show that a multi-query attention mechanism with four shared heads can express a function $f(\cdot)$ that fulfills Assumption 2.

In summary, according to Theorem 1, delta rule-based no-linear kernel attention can achieve state exchange between historical timesteps t_1 and t_2 , with $d = O(\log n)$.

Space Cost Analysis In Theorem 1, suppose we wish to track T exchanges among n states. Clearly, we must set $d = O(\log n)$ and maintain a KU cache of length T. This results in a space cost of: $O(T \log n)$.

If we read out $\{\tilde{v}_1,\ldots,\tilde{v}_n\}$ based on $\{k_1,\ldots,k_n\}$ every O(n) steps, and then rewrite $\{(k_i,\tilde{v}_i)\}_{i=1}^n$ into the KU cache, we only require a KU cache of length O(n). This reduces the total space cost to: $O(n\log n)$, which is significantly smaller than the $O(n^2)$ space required when $f(\cdot)$ is an identity mapping. For example, RWKV7 [52] uses a 5×5 matrix to track the exchange of 5 elements. To provide a clearer comparison between linear and nonlinear kernels, we have restated both versions of Theorem 1 in Appendix C.

For comparison, employing non-linear kernels unlocks the full potential of the delta rule: we can track the exchange of exponentially many states, rather than just the n=O(d) most recent states.

In summary, DeltaFormer—as a generalized form of the Transformer— not only surpasses the inherent TC^0 expressivity limitations of the original Transformer, but also tracks the exchange of n objects using significantly smaller state space than models such as RWKV7.

3.4 Efficient Chunk-wise Algorithm on GPUs

High parallelism on GPUs has been a key reason why Transformers have outperformed non-parallelizable models such as LSTMs during the scaling era of large models. From a high-level perspective, however, there exists a fundamental tension between parallelism and expressivity. Notably, the parallelizability of DeltaNet is lower than that of a standard Transformer; if reduced to the level of an LSTM, it would lose much of its practical appeal. Therefore, in order to make a more expressive model practically useful, we must devise an implementation that runs efficiently on GPUs.

Consider $q, k, v, u \in \mathbb{R}^d$, a sequence length T, and assume $T \gg d$. For simplicity, and without loss of generality, we focus on efficiently computing: $u_t = v_t - \sum_{i=1}^{t-1} \kappa(k_i, k_t) u_i$, where the computation of o_t follows similarly to FlashAttention [15].

If we compute $\{u_1, \ldots, u_T\}$ directly according to the above recurrence, the computational complexity is $O(T^2d)$. Since each u_t depends on all previous $u_{< t}$, this algorithm is inherently sequential—requiring O(T) iterations—and thus cannot exploit GPU parallelism.

Matrix Formulation. We can express the recurrence in matrix form as:

$$U = V - AU, (10)$$

where the t-th rows of U and V are given by $U_{t,:} = u_t$ and $V_{t,:} = v_t$, respectively. The similarity matrix A is defined by: $A_{t,i} = \kappa(k_t, k_i)$, e.g., $\frac{\exp(k_i^\top k_t)}{Z_t^{(1)}}$ for a normalized exponential kernel, or $k_t^\top k_i$ for a linear kernel. Since A is lower triangular, U can be solved via:

$$U = (I+A)^{-1}V. (11)$$

This formulation requires a matrix inversion, still costing $O(T^2d)$ operations, but crucially it is fully parallelizable on GPUs.

Chunk-wise Parallelization. A compromise between the two approaches above can be achieved via chunk-wise processing. Divide the sequence of length T into N equal-sized chunks, each of length $C = \lfloor T/N \rfloor$. Then, compute u_t within each chunk using parallelizable matrix operations, processing the chunks sequentially.

This reduces the number of recurrent steps from O(T) to O(N), while computational complexity changes from $O(T^2d)$ to: $O(T^2d + TCd + TC^2)$. In essence, this method trades additional computation for reduced runtime³. For pseudo-code of the chunk-wise implementation, refer to Appendix E.

4 Experiment

4.1 Track the Exchange of Elements

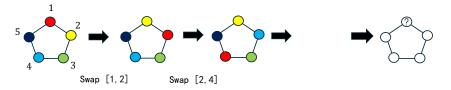


Figure 2: Swap task diagram. At the beginning, tokens of different colors are placed at positions 1 to 5, and the tokens of two positions are exchanged at each step. We expect the model to query what the token for each position is at each step. Simply but without loss of generality, we default to outputting the token at the first position to avoid introducing a "query token". This task can also be tokenized into a task with an input vocabulary size of $C_5^2 = 10$ and an output vocabulary size of 5.

Although Theorem 1 establishes that DeltaFormer can theoretically track the exchange of n objects, it remains necessary to validate this capability empirically. Specifically, we investigate whether DeltaFormer can learn to track the exchange of n objects from data when trained using gradient descent. To this end, we design an experiment to verify this property. The experimental setup is illustrated in Figure 2, with a default context length of 16.

DeltaFormer can track the exchange of elements. We compared DeltaFormer and the standard Transformer under various designs of the similarity function, as shown in Figure 3. Across almost all reasonably simple choices of $\kappa_1(\cdot)$, DeltaFormer achieved better results than the Transformer. In

³Our code is available at https://github.com/fla-org/flash-linear-attention/blob/main/fla/layers/deltaformer.py, and in the supplementary materials.

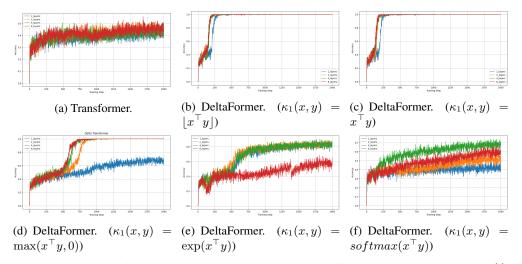


Figure 3: Comparison of Transformer and DeltaFormer using different similarity functions $\kappa_1(\cdot)$ for performing swapping tasks. For $\kappa_2(\cdot)$, we use the softmax function to maintain consistency with Transformer. Pay attention to the scale of the y-axis. To ensure convergence, $\lfloor \cdot \rfloor$ means round to two decimal, such as $\lfloor 1.236 \rfloor = 1.24$.

particular, a 1-layer DeltaFormer was able to execute and track the exchange operations of 5 elements. In contrast, increasing the number of Transformer layers did not yield improvements.

The similarity function used in Eq. 8 is important for tracking. Another key observation is that the choice of similarity function has a significant impact on exchange-tracking performance. As shown in our constructive proof in Theorem 1, the appropriately chosen similarity function can track 5 elements with perfect accuracy. The closer the chosen similarity function is to the constructive form, the better the tracking performance. The normalization term in softmax negatively impacts the similarity computation when using the exponential function $\exp(\cdot)$. Notably, in our experiments the retrieval similarity function κ_2 (used in Eq. 9) was not based on the constructive similarity—so as to remain consistent with standard attention—but instead used softmax. Even in this case, a suitable choice of κ_1 can still achieve 100% tracking accuracy. Theorem 1 effectively proves that it is possible to retrieve element values at each position via a specific form of u, meaning that the exchange of elements is implicitly captured in the update of u.

Intuitively, an inappropriate choice of κ_1 leads to greater cumulative error in updating u. From a mathematical standpoint, this corresponds to the perturbation of an inverse matrix that may be ill-conditioned. For details, see Appendix F. We also performed stress tests using the Round and Linear kernels in Appendix B.1, tracking exchanges of $n \ge d = 128$ elements.

The similarity function used in Eq. 9 is important for retrieval. In the generalized DeltaFormer formulation, the similarity function κ_2 directly affects retrieval ability. We conducted experiments on the MQAR benchmark [4], with the following configuration: vocab_size = 256, input_seq_len = 128, num_kv_pairs = 32, and d_model = 32. To isolate retrieval ability, we used a linear kernel so as not to enhance performance via similarity scaling. The results show that retrieval performance with a purely linear kernel is poor.

	Linear	Round	ReLU	Softmax	
Accuracy (%)	85.6	91.6	99.5	99.1	

Table 1: Impact of κ_2 on Retrieval Performance

Curriculum learning is important. As shown in Figure 4, training directly with a context length of 256 led to very slow convergence. We therefore adopted curriculum learning, starting with length 32 and gradually increasing the window size, i.e., gradually raising task difficulty. Under such a schedule, the model achieved better performance with less computation.

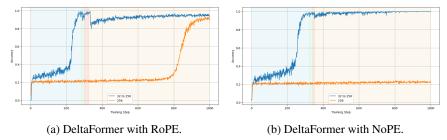


Figure 4: Comparison of DeltaFormer using different learning strategy and position embedding. Each use $\kappa_1(x,y) = \lfloor x^\top y \rfloor$. "32 to 256" means that the initial training length is 32, which means the number of swaps is 32. When the accuracy reaches 0.99, the training length will be doubled until it reaches 256. And "256" means that the model is trained on a training length of 256 from the beginning. The y-axis reflects the accuracy at the current training length.

The role of rotary embeddings. Since Theorem 1 does not require positional embeddings, we conducted experiments removing the default rotary position embeddings (RoPE). Without RoPE, convergence slowed and training directly at length 256 yielded random scores. However, under the " $32\rightarrow256$ " curriculum, accuracy reached 100%. Moreover, NoPE models degraded less at jump points during length extension, suggesting better generalization. We speculate that while RoPE may hinder expressivity and extrapolation, it can facilitate optimization.

4.2 Reachability of directed acyclic graphs

Furthermore, we design a simple graph connectivity task to evaluate reachability in a directed acyclic graph (DAG). For simplicity, we consider only whether the first node—given a specific topological ordering—can reach other nodes. Initially, each node encodes only its immediate neighbors. Since the final output is binary (True or False), we avoid class imbalance by dividing the n nodes evenly into two classes and constructing one tree for each class. We then examine reachability from a designated root node, encoding for each node only the information of its parent.

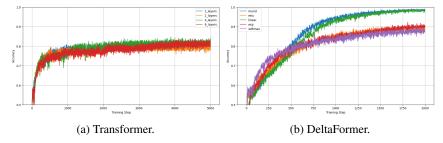


Figure 5: Comparison of Transformer and DeltaFormer using different similarity functions $\kappa_1(\cdot)$ for performing swapping tasks. For $\kappa_2(\cdot)$, we use the softmax function to maintain consistency with Transformer. Pay attention to the scale of the y-axis.

DeltaFormer outperforms Transformer. We conducted experiments on 32 nodes, as shown in Figure 5. A multi-layer Transformer struggled to reach 100% accuracy, whereas a single-layer DeltaFormer performed highly accurately. In theory, a Transformer requires $O(\log n)$ layers to perform connectivity checks on n nodes [61]. However, based on Figure 5a, we speculate that optimization challenges also limit the Transformer's effectiveness in this task.

The power of matrix inversion. As shown in Eq. 11, the computation of u can be rewritten using matrix inversion. If the adjacency matrix A is known, connectivity between nodes i and j can be checked by computing A, A^2, \ldots, A^n and examining whether the (i, j) entry is positive. Since $(I-A)^{-1}$ approximates $I+A+\cdots+A^n$, matrix inversion substantially enhances model expressivity, particularly for graph-related tasks.

Relation to chain-of-thought (CoT). The limited depth of Transformers has motivated approaches such as CoT [74, 37] and the Universal Transformer [16, 26], which loop through the layers. In

contrast, our method effectively increases depth along the sequence dimension. This yields higher token efficiency for tasks like DAG connectivity: for a constant-depth Transformer, directed graph reachability requires $O(n^2)$ CoT steps [43], reduced to O(n) with continuous CoT [83], while DeltaFormer achieves the same in a single forward pass.

4.3 Language modeling

To verify that DeltaFormer does not affect language modeling capabilities, we conducted experiments on a small scale. Following prior work [76], we use open-source code of them and open-source dataset Fineweb-edu for training and the open-source evaluation tool lm-evaluation-harness for benchmark evaluation. The benchmarks that include LAMBADA [LMB.;[50]], PiQA[8], HellaSwag [Hella.;[81]], WinoGrande [Wino.;[60]], ARC-easy (ARC-e) and ARC-challenge (Arc-c)[12], Boolq [11], OpenbookQA [OBQA.;[45]], SIQA [62] and Copa [57]. We train on a 340M parameter scale with 15B tokens with a peak learning rate of 2e-3. The context length is 2,048 and the global batch size is 0.5M tokens. The experimental results are shown in Table 2.

Model (340M)	ARC-c	ARC-e	Boolq	Copa	Hella.	LMB.	OBQA.	PIQA	SCIQ.	Wino.
	acc_n ↑	acc ↑	acc ↑	acc ↑	acc_n ↑	acc ↑	acc_n ↑	acc ↑	acc ↑	acc ↑
Transformer	28.58	59.61	60.00	68.00	40.11	34.50	38.40	67.25	81.60	52.01
DeltaFormer										
$\kappa_1(x, y) = x^{\top} y$	29.01	59.09	60.52	69.00	40.43	34.17	38.20	67.90	80.60	50.04
$\kappa_1(x, y) = Relu(x^\top y)$	28.41	57.62	59.88	68.00	40.07	32.76	37.00	65.83	80.10	51.22
$ \kappa_1(x, y) = \lfloor x^\top y \rfloor $	28.50	58.33	60.09	70.00	40.29	33.03	35.40	67.03	81.50	51.92
$\kappa_1(x, y) = softmax(x^\top y)$	28.92	57.89	61.80	69.00	40.21	34.05	37.40	67.21	81.40	52.41

Table 2: Comparison of DeltaFormer and its variants on various language modeling benchmarks on the model with 340M parameter.

Due to the fact that at this scale, the fluctuations of one or two points in these benchmark indicators are considered random. Therefore, we can say DeltaFormer is not weaker than standard Transformers in language modeling tasks. Even with different similarity functions, the differences are very small, which is also different from the findings of Section 4.1.

Later, we conducted experiments on the 14B activated MOE model, where the number of key and value was 1/4 of the number of query. As a result, the flops in the self-attention section increased by 25%, and in the entire MOE model, the flops increased by 3%. The results are listed in Table 3 and Table 4.

	COPA	ARC-E	ARC-C	PIQA	C-Eval	MMLU	RACE-High	RACE-Middle	SIQA	Winogrande	Average
Transformer	73.8	80.9	50.8	78.2	44.0	43.8	48.8	62.5	55.6	64.6	60.30
DeltaFormer	74.6	82.9	51.2	79.4	46.3	45.2	49.0	62.9	54.7	67.2	61.34
Δ	+0.8	+2.0	+0.4	+1.2	+2.3	+1.4	+0.2	+0.4	-0.9	+2.6	+1.04

Table 3: Benchmark Comparison. We compared the transformer model and delta model with 14B total parameters, and they trained 500 tokens each.

	General	Domain	Code Domain			
Training tokens	Transformer	DeltaFormer	Transformer	DeltaFormer		
100 B	2.06256	2.06254	1.52628	1.48656		
200 B	1.94337	1.94336	1.42112	1.37757		
300 B	1.88013	1.87554	1.35612	1.32587		
400 B	1.83119	1.83558	1.32285	1.29567		
500 B	1.81472	1.81032	1.31231	1.28326		

Table 4: Benchmark Comparison. We compared the transformer model and delta model with 14B total parameters, and they trained 500 tokens each.

Firstly, the benchmark results show that the DeltaFormer outperforms the baseline. Then there is the result of training loss, which leads by 0.003 on the general domain, basically aligning with the slight increase of 3% in flops. However, on the code domain, the loss leads by 0.05. When training 300b. The training token can match the baseline training of 400b, which far exceeds the gain of flops. We believe this is due to the higher expressiveness of DeltaFormer, as the code data includes Dyck grammars that match left and right parentheses.

5 Discussion

Expressivity. Since matrix inversion lies within the NC^2 complexity class [14], the theoretical upper bound of DeltaFormer is likewise in NC^2 . We can design models with higher expressive power at the cost of reduced parallelism, in the extreme approaching inherently sequential models such as LSTM. Ultimately, a trade-off between parallelism and expressivity must be struck, influenced by hardware and environmental constraints. On this trade-off curve, scaling a model with slightly lower parallelism but higher expressivity than the Transformer may serve as a starting point. Identifying models that fully exploit NC^2 may be a promising direction, as many practical models fall within this class, which still allows for parallel execution.

Optimization. Achieving a strong model also depends on optimization. We observed phenomena such as curriculum learning—gradually extending context length—benefiting DeltaFormer in element-tracking tasks. Differences between DeltaFormer and standard Transformers likely lead to distinct optimization behaviors. Furthermore, as discussed in Section 4.1, rotary position embeddings (RoPE) appear to hinder performance but aid optimization. A deeper study of the optimization dynamics of such models is an interesting avenue for future work.

Scaling. Scaling DeltaFormer to larger models and examining the effects will be valuable. We speculate that Transformers require deeper architectures to handle tasks beyond their expressivity, whereas DeltaFormer may achieve such tasks with fewer layers, leading to different optimal depth-to-width ratios. To optimally configure DeltaFormer, original Transformer components may need rethinking. Exploring parameter scaling analogous to Transformer scaling laws is also of interest.

6 Limitations

First, although we propose an algorithm that executes efficiently on GPUs, current performance is not optimal and further improvements are needed. Second, our evaluation focuses on toy tasks and small-scale language modeling, without large-scale industrial training to confirm gains for complex tasks. Additionally, a naive layer mixing of linear DeltaNet and standard Transformer could yield a hybrid model with both state-tracking and long-text retrieval abilities. Such a hybrid may have reduced state-tracking capacity but might still suffice for real-world applications. Comparisons between DeltaFormer and simple hybrids thus require validation on practical tasks.

7 Conclusion

We extended the delta rule with kernel functions and introduced DeltaFormer. We proved, both theoretically and empirically, that DeltaFormer surpasses the TC^0 expressivity limit of Transformers. In particular, introducing nonlinear kernels enables DeltaFormer to track exponentially many element exchanges within the same dimension compared to linear kernels. Experiments indicate that DeltaFormer matches the standard Transformer in language modeling performance. In future work, we aim to scale DeltaFormer to industrial-level training, and hope our findings inspire new Transformer designs with improved expressivity.

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] Zeyuan Allen-Zhu. ICML 2024 Tutorial: Physics of Language Models, July 2024. Project page: https://physics.allen-zhu.com/.
- [3] Josh Alman and Hantao Yu. Fundamental limitations on subquadratic alternatives to transformers. *arXiv preprint arXiv:2410.04271*, 2024.
- [4] Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. *arXiv preprint arXiv:2312.04927*, 2023.
- [5] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-term memory. *arXiv preprint arXiv:2405.04517*, 2024.
- [6] Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. *arXiv preprint arXiv:2501.00663*, 2024.
- [7] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36:1560–1588, 2023.
- [8] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 7432–7439, 2020.
- [9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- [10] Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 782–791, 2021.
- [11] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint arXiv:1905.10044*, 2019.
- [12] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.
- [13] Vanya Cohen and Raymond Mooney. Met-bench: Multimodal entity tracking for evaluating the limitations of vision-language and reasoning models. arXiv preprint arXiv:2502.10886, 2025.
- [14] Laszlo Csanky. Fast parallel matrix inversion algorithms. In 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), pages 11–12. IEEE, 1975.
- [15] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv* preprint arXiv:2307.08691, 2023.
- [16] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers. *arXiv preprint arXiv:1807.03819*, 2018.
- [17] Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky hierarchy. *arXiv preprint arXiv:2207.02098*, 2022.

- [18] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure attention loses rank doubly exponentially with depth. In *International conference on machine learning*, pages 2793–2803. PMLR, 2021.
- [19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv* preprint *arXiv*:2010.11929, 2020.
- [20] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- [21] Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell, Kamal Ndousse, Andy Jones, Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath, Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish, Dario Amodei, and Christopher Olah. Softmax linear units. *Transformer Circuits Thread*, 2022. https://transformer-circuits.pub/2022/solu/index.html.
- [22] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposition. *Transformer Circuits Thread*, 2022. https://transformer-circuits.pub/2022/toy_model/index.html.
- [23] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 1(1):12, 2021.
- [24] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing the mystery behind chain of thought: a theoretical perspective. *Advances in Neural Information Processing Systems*, 36:70757–70798, 2023.
- [25] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context? a case study of simple function classes. *Advances in Neural Information Processing Systems*, 35:30583–30598, 2022.
- [26] Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris Papailiopoulos. Looped transformers as programmable computers. In *International Conference on Machine Learning*, pages 11398–11442. PMLR, 2023.
- [27] Riccardo Grazzi, Julien Siems, Arber Zela, Jörg KH Franke, Frank Hutter, and Massimiliano Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues. *arXiv preprint arXiv:2411.12537*, 2024.
- [28] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv preprint arXiv:2312.00752*, 2023.
- [29] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [30] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv* preprint arXiv:2412.16720, 2024.
- [31] Samy Jelassi, David Brandfonbrener, Sham M Kakade, et al. Repeat after me: Transformers are better than state space models at copying. In *Forty-first International Conference on Machine Learning*, 2024.

- [32] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.
- [33] Jikun Kang, Wenqi Wu, Filippos Christianos, Alex J Chan, Fraser Greenlee, George Thomas, Marvin Purtorab, and Andy Toulis. Lm2: Large memory models. *arXiv preprint arXiv:2502.06049*, 2025.
- [34] Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon Hong. Pure transformers are powerful graph learners. *Advances in Neural Information Processing Systems*, 35:14582–14595, 2022.
- [35] Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention. *arXiv* preprint arXiv:2501.08313, 2025.
- [36] Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as algorithms: Generalization and stability in in-context learning. In *International conference on machine learning*, pages 19565–19594. PMLR, 2023.
- [37] Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to solve inherently serial problems. *arXiv preprint arXiv:2402.12875*, 1, 2024.
- [38] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-mamba language model. *arXiv preprint arXiv:2403.19887*, 2024.
- [39] David Lindner, János Kramár, Sebastian Farquhar, Matthew Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr: Compiled transformers as a laboratory for interpretability. *Advances in Neural Information Processing Systems*, 36:37876–37899, 2023.
- [40] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language model. *Transformer Circuits Thread*, 2025.
- [41] Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Hyeji Kim, Michael Gastpar, and Chanakya Ekbote. Local to global: Learning dynamics and effect of initialization for transformers. Advances in Neural Information Processing Systems, 37:86243–86308, 2024.
- [42] William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models. In *International Conference on Machine Learning*, pages 35492–35506. PMLR, 2024.
- [43] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought. *arXiv preprint arXiv:2310.07923*, 2023.
- [44] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision transformers. *Transactions of the Association for Computational Linguistics*, 11:531–545, 2023.
- [45] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*, 2018.
- [46] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural network based language model. In *Interspeech*, volume 2, pages 1045–1048. Makuhari, 2010.
- [47] Alireza Mousavi-Hosseini, Clayton Sanford, Denny Wu, and Murat A Erdogdu. When do transformers outperform feedforward and recurrent networks? a statistical perspective. *arXiv* preprint arXiv:2503.11272, 2025.

- [48] Xueyan Niu, Bo Bai, Lei Deng, and Wei Han. Beyond scaling laws: Understanding transformer performance with associative memory. *arXiv preprint arXiv:2405.08707*, 2024.
- [49] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. *arXiv preprint arXiv:2209.11895*, 2022.
- [50] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset: Word prediction requiring a broad discourse context. *arXiv* preprint arXiv:1606.06031, 2016.
- [51] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer era. *arXiv preprint arXiv:2305.13048*, 2023.
- [52] Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, et al. Rwkv-7" goose" with expressive dynamic state evolution. *arXiv preprint arXiv:2503.14456*, 2025.
- [53] DL Prados and SC Kak. Neural network capacity using delta rule. *Electronics Letters*, 25(3):197–199, 1989.
- [54] Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. *arXiv* preprint *arXiv*:2202.08791, 2022.
- [55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PmLR, 2021.
- [56] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In *International conference on machine learning*, pages 28492–28518. PMLR, 2023.
- [57] Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266, 2019.
- [58] Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple hybrid state space models for efficient unlimited context language modeling. *arXiv* preprint arXiv:2406.07522, 2024.
- [59] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations by error propagation, 1985.
- [60] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
- [61] Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow, Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph algorithms. Advances in Neural Information Processing Systems, 37:78320–78370, 2024.
- [62] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.
- [63] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight programmers. In *International conference on machine learning*, pages 9355–9366. PMLR, 2021.
- [64] ByteDance Seed, Yufeng Yuan, Yu Yue, Mingxuan Wang, Xiaochen Zuo, Jiaze Chen, Lin Yan, Wenyuan Xu, Chi Zhang, Xin Liu, et al. Seed-thinking-v1. 5: Advancing superb reasoning models with reinforcement learning. *arXiv* preprint arXiv:2504.13914, 2025.

- [65] Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash Vanjani, Ashish Vaswani, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma, et al. Rethinking reflection in pre-training. *arXiv* preprint arXiv:2504.04022, 2025.
- [66] Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo Grazzi. Deltaproduct: Improving state-tracking in linear rnns via householder products. *arXiv* preprint arXiv:2502.10297, 2025.
- [67] Gregory O Stone et al. An analysis of the delta rule and the learning of statistical associations. Parallel distributed processing: Explorations in the microstructure of cognition, 1:444–459, 1986.
- [68] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei. Retentive network: A successor to transformer for large language models. *arXiv* preprint arXiv:2307.08621, 2023.
- [69] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language modeling. In *Interspeech*, volume 2012, pages 194–197, 2012.
- [70] Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Shaolei Du. Joma: Demystifying multilayer transformers via joint dynamics of mlp and attention. In *The Twelfth International Conference on Learning Representations*, 2024.
- [71] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
- [72] Ke Alexander Wang, Jiaxin Shi, and Emily B Fox. Test-time regression: a unifying framework for designing sequence models with associative memory. arXiv preprint arXiv:2501.12352, 2025.
- [73] Xiaoqiang Wang, Suyuchen Wang, Yun Zhu, and Bang Liu. R³mem: Bridging memory retention and retrieval via reversible compression. *arXiv preprint arXiv:2502.15957*, 2025.
- [74] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- [75] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv* preprint *arXiv*:2407.10671, 2024.
- [76] Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with delta rule. *arXiv preprint arXiv:2412.06464*, 2024.
- [77] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers with the delta rule over sequence length. *arXiv* preprint arXiv:2406.06484, 2024.
- [78] Andrew C Yao. Circuits and local computation. In *Proceedings of the twenty-first annual ACM symposium on Theory of computing*, pages 186–196, 1989.
- [79] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in Ilms beyond the base model? *arXiv preprint arXiv:2504.13837*, 2025.
- [80] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Are transformers universal approximators of sequence-to-sequence functions? *arXiv preprint arXiv:1912.10077*, 2019.
- [81] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.
- [82] Yufei Zhao. Probabilistic methods in combinatorics. *Draft available at https://yufeizhao.com/pm*, 2022.
- [83] Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian. Reasoning by superposition: A theoretical perspective on chain of continuous thought. *arXiv* preprint *arXiv*:2505.12514, 2025.

A Delta Rule with Kernel Function

We consider the kernel function $\kappa(x,y) = \psi(x)^{\top} \psi(y)$, where $\psi(x)$ is a mapping from d to infinite dimensions. Then the delta-rule-based update form and the corresponding read-out equation can be re-write as:

$$S_t = S_{t-1} (I - \psi(k_t) \psi(k_t)^{\top}) + v_t \psi(k_t)^{\top}, \tag{12}$$

$$o_t = S_t \psi(q_t). \tag{13}$$

Hypothesis:

$$S_t = \sum_{i=1}^t u_i w_i^\top, \tag{14}$$

where u_i and w_i is pending. Then we have:

$$\sum_{i=1}^{t} u_i w_i^{\top} = \sum_{i=1}^{t-1} u_i w_i^{\top} (I - \psi(k_t) \psi(k_t)^{\top}) + v_t \psi(k_t)^{\top},$$
 (15)

$$u_{t}w_{t}^{\top} = \sum_{i=1}^{t-1} u_{i}w_{i}^{\top} \left(-\psi(k_{t})\psi(k_{t})^{\top}\right) + v_{t}\psi(k_{t})^{\top}, \tag{16}$$

take the pending $w_i = \psi(k_i)$:

$$u_{t}\psi(k_{t})^{\top} = \sum_{i=1}^{t-1} u_{i}\psi(k_{i})^{\top} \left(-\psi(k_{t})\psi(k_{t})^{\top}\right) + v_{t}\psi(k_{t})^{\top}$$

$$= -\sum_{i=1}^{t-1} \psi(k_{i})^{\top}\psi(k_{t})u_{i}\psi(k_{t})^{\top} + v_{t}\psi(k_{t})^{\top}$$

$$= \left(-\sum_{i=1}^{t-1} \psi(k_{i})^{\top}\psi(k_{t})u_{i} + v_{t}\right)\psi(k_{t})^{\top}.$$
(17)

Thus, we get the pending u_t :

$$u_t \overline{\psi(k_t)}^{\top} = \left(-\sum_{i=1}^{t-1} \psi(k_i)^{\top} \psi(k_t) u_i + v_t\right) \overline{\psi(k_t)}^{\top}$$
$$= -\sum_{i=1}^{t-1} \kappa(k_i, k_t) u_i + v_t. \tag{18}$$

Then we have the final update form and the corresponding read-out equation:

$$S_t = \sum_{i=1}^t u_i \psi(k_i)^\top = S_{t-1} + u_t \phi(k_t)^\top,$$
(19)

$$o_t = \sum_{i=1}^t \kappa(k_i, q_t) u_i. \tag{20}$$

B Proof of Theorem 1

Before proving Theorem 1, we introduce an auxiliary lemma for facilitating the proof.

Lemma 1 Consider Theorem 1, the set of keys $\{k_i\}_{i=1}^n$ satisfies Assumption 1, and $k_{>n}$ is the difference between two keys chosen from $\{k_i\}_{i=1}^n$. If the function $f(\cdot)$ satisfies Assumption 2, then the following identity holds:

$$\forall 1 \le j < i \le n, \forall l \ge 1: \quad f((k_i - k_j)^\top k_l) = f(k_i^\top k_l) - f(k_j^\top k_l).$$

B.0.1 Proof of Lemma 1

We distinguish two separate cases according to the value of the index l:

Case 1: $1 \le l \le n$. Consider the following subcases:

i. If $k_i = k_l$, then we obtain

$$f((k_i - k_j)^{\top} k_l) = f(1 - k_j^{\top} k_l) = f(U(1, \epsilon)) = 1$$
$$f(k_i^{\top} k_l) - f(k_j^{\top} k_l) = 1 - f(U(0, \epsilon)) = 1.$$

ii. If $k_i = k_l$, then we have

$$f((k_i - k_j)^{\top} k_l) = f(k_i^{\top} k_l - 1) = f(U(-1, \epsilon)) = -1$$
$$f(k_i^{\top} k_l) - f(k_i^{\top} k_l) = f(U(0, \epsilon)) - 1 = -1.$$

iii. If $k_i \neq k_l$, $k_i \neq k_l$, then

$$f((k_i - k_j)^\top k_l) = f(k_i^\top k_l - k_j^\top k_l) = f(U(0, 2\epsilon)) = 0$$
$$f(k_i^\top k_l) - f(k_i^\top k_l) = f(U(0, \epsilon)) - f(U(0, \epsilon)) = 0.$$

Case 2: l > n. In this case, denote $k_l = k_{l_1} - k_{l_2}$, where $1 \le l_2 < l_1 \le n$. Consider the following possibilities regarding the number of equalities among indices i, j and l_1, l_2 :

i. If no pair among (i, j) and (l_1, l_2) is equal, then we have

$$f((k_i - k_j)^{\top} k_l) = f(U(0, 4\epsilon)) = 0$$
$$f(k_i^{\top} k_l) - f(k_j^{\top} k_l) = f(U(0, 2\epsilon)) - f(U(0, 2\epsilon)) = 0.$$

- ii. If exactly one pair is equal, we analyze further:
 - 1. If $i = l_1$, then we have

$$f((k_i - k_j)^{\top} k_l) = f(U(1, 3\epsilon)) = 1$$
$$f(k_i^{\top} k_l) - f(k_j^{\top} k_l) = f(U(1, \epsilon)) - f(U(0, 2\epsilon)) = 1.$$

2. If $i = l_2$, then we have

$$f((k_i - k_j)^{\top} k_l) = f(U(-1, 3\epsilon)) = -1$$
$$f(k_i^{\top} k_l) - f(k_j^{\top} k_l) = f(U(-1, \epsilon)) - f(U(0, 2\epsilon)) = -1.$$

3. If $j = l_1$, then similarly

$$f((k_i - k_j)^\top k_l) = f(U(-1, 3\epsilon)) = -1$$
$$f(k_i^\top k_l) - f(k_j^\top k_l) = f(U(0, 2\epsilon)) - f(U(1, \epsilon)) = -1.$$

4. If $j = l_2$, then similarly

$$f((k_i - k_j)^\top k_l) = f(U(1, 3\epsilon)) = 1$$
$$f(k_i^\top k_l) - f(k_i^\top k_l) = f(U(0, 2\epsilon)) - f(U(-1, \epsilon)) = 1.$$

- iii. If two pairs are equal simultaneously:
 - 1. If $i = l_1, j = l_2$, we have

$$f((k_i - k_j)^{\top} k_l) = f(U(2, 2\epsilon)) = 2$$
$$f(k_i^{\top} k_l) - f(k_j^{\top} k_l) = f(U(1, \epsilon)) - f(U(-1, \epsilon)) = 2.$$

2. If $i = l_2, j = l_1$, this contradicts the ordering condition $j < i, l_2 < l_1$ and thus cannot occur.

Combining all the above cases, we have completed the proof.

B.0.2 Formally Prove Theorem 1

We use mathematical induction to prove Theorem 1.

When t = n + 1:

$$k_t = k_{t_1} - k_{t_2}, (21)$$

$$u_t = -\sum_{i=1}^{t-1} f(k_i^{\top} k_t) u_i = -u_{t_1} + u_{t_2}.$$
 (22)

If we read the state at t_1 , i.e., $q_t = k_{t_1}$,

$$\sum_{i=1}^{t} f(q_t^{\top} k_i) u_i = \sum_{i=1}^{t} f(k_{t_1}^{\top} k_i) u_i = u_{t_1} + (-u_{t_1} + u_{t_2}) = u_{t_2}.$$
(23)

If we read the state at t_2 , i.e., $q_t = k_{t_2}$,

$$\sum_{i=1}^{t} f(q_t^{\top} k_i) u_i = \sum_{i=1}^{t} f(k_{t_2}^{\top} k_i) u_i = u_{t_2} + (u_{t_1} - u_{t_2}) = u_{t_1}.$$
(24)

If we read other states, i.e., the state at j, where $j \neq t_1, t_2$,

$$\sum_{i=1}^{t} f(q_t^{\top} k_i) u_i = \sum_{i=1}^{t} f(k_j^{\top} k_i) u_i = u_j.$$
 (25)

In summary, at step t = n + 1, according to our rules, it is possible to trace the states exchanged between t_1 and t_2 .

Assuming the proposition holds for t-1, we consider the case for t (t > n+1).

At the t-th step,

$$k_t = k_{t_1} - k_{t_2}. (26)$$

According to Lemma 1, we have

$$u_{t} = -\sum_{i=1}^{t-1} f(k_{t}^{\top} k_{i}) u_{i}$$

$$= -\sum_{i=1}^{t-1} f(k_{t_{1}}^{\top} k_{i}) u_{i} + \sum_{i=1}^{t-1} f(k_{t_{2}}^{\top} k_{i}) u_{i}$$

$$= -\tilde{v}_{t_{1}} + \tilde{v}_{t_{2}}.$$
(27)

If we read the state at t_1 , i.e., $q_t = k_{t_1}$,

$$\sum_{i=1}^{t} f(q_{t}^{\top} k_{i}) u_{i} = \sum_{i=1}^{t} f(k_{t_{1}}^{\top} k_{i}) u_{i}$$

$$= \sum_{i=1}^{t-1} f(k_{t_{1}}^{\top} k_{i}) u_{i} + f(k_{t_{1}}^{\top} k_{t}) u_{t}$$

$$= \tilde{v}_{t_{1}} + (-\tilde{v}_{t_{1}} + \tilde{v}_{t_{2}})$$

$$= \tilde{v}_{t_{2}}.$$
(28)

If we read the state at t_2 , i.e., $q_t = k_{t_2}$,

$$\sum_{i=1}^{t} f(q_{t}^{\top} k_{i}) u_{i} = \sum_{i=1}^{t} f(k_{t_{2}}^{\top} k_{i}) u_{i}$$

$$= \sum_{i=1}^{t-1} f(k_{t_{2}}^{\top} k_{i}) u_{i} + f(k_{t_{2}}^{\top} k_{t}) u_{t}$$

$$= \tilde{v}_{t_{2}} + (\tilde{v}_{t_{1}} - \tilde{v}_{t_{2}})$$

$$= \tilde{v}_{t_{1}}.$$
(29)

If we read other states, i.e., the state at j, where $j \neq t_1, t_2$,

$$\sum_{i=1}^{t} f(q_t^{\top} k_i) u_i = \sum_{i=1}^{t} f(k_j^{\top} k_i) u_i$$

$$= \sum_{i=1}^{t-1} f(k_j^{\top} k_i) u_i + f(k_j^{\top} k_t) u_t$$

$$= \tilde{v}_j. \tag{30}$$

In summary, at step t, according to our rules, the retrieved states corresponding to $\{k_1, \ldots, k_n\}$ is correct.

By mathematical induction, regardless of how large the exchange step t is, the model can always trace the exchange of n states.

B.1 The expression of nonlinear vs linear

We also conducted stress tests on the round and linear function in this Section, with d=128. The setting is similar to Section 4.1, but with experiments where n is greater than or equal to 128. We use $n \in \{128, 256, 512\}$, and the corresponding training length is $\{256, 512, 1024\}$ to ensure as much as possible that most elements participate in the exchange. In addition, to avoid optimization issues, we adopted the almost orthogonal vectors used in our Theorem 1 to set key and value of the model and the model only needs to learn to read information from the state space. The results is shown in Figure 6.

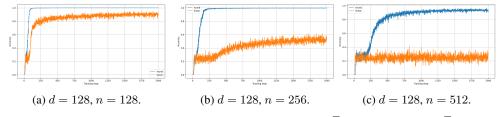


Figure 6: Comparison of DeltaFormer with $\kappa(x,y) = x^{\top}y$ and $\kappa(x,y) = |x^{\top}y|$.

We can observe that when d is fixed, as $n \ge d$ increases, the performance of the linear kernel is severely degraded. This essentially involves the famous Thompson problem, which is how to place as many orthogonal vectors as possible on the d-dimensional unit sphere. However linear functions cannot have superposition, and nonlinear functions can store a large amount of information through superposition [22].

C Compare of linear version and no-linear version of Theorem 1

Theorem 1 (rephrased) Let the list be L = [1, 2, ..., n]. Define the swap operation $G_{i,j}$ as

$$G_{i,j}(L)[k] = \begin{cases} L[j], & k = i, \\ L[i], & k = j, \\ L[k], & \text{otherwise.} \end{cases}$$

Let a sequence of swaps be $g_1, g_2, \dots, g_l \in G = \{G_{i,j} \mid 0 < i < j \le n\}$. Then there exists a single-layer DeltaFormer F with head dimension $O(\log n)$ such that

$$F(g_1, \dots, g_l, j) = g_1 \circ g_2 \circ \dots \circ g_l(L)[j].$$

KU Cache read out and rewrite

We can introduce the KU cache compress operator $ku(\cdot)$ that pre-fills the sequence g_1, \ldots, g_l into a cache of size $O(n \log n)$, independent of l. With this cache we obtain another single-layer DeltaFormer H satisfying

$$H(ku(g_1, ..., g_l), j) = F(g_1, ..., g_l, j).$$

Comparison with Lemma 2 in RWKV-7

Lemma 2 in RWKV-7 (rephrased) There exists a single-layer RWKV-7 block F

- head dimension O(n),
- state-space size $O(n^2)$,

such that

$$F(g_1,\ldots,g_l,j)=g_1\circ g_2\circ\cdots\circ g_l(L)[j].$$

D What language can DeltaFormer express?

Regarding the expressive power of models, in addition to computational complexity theory, it can also be understood from the perspective of language hierarchy. We conducted an experiment on language hierarchy, and the results are shown in Table 5. The results show that in the category of regular (R) language, Deltaformer has better length generalization ability compared to Transformer, indicating that Deltaformer can learn circuits that are easily length generalized compared to Transformer. But for some more complex languages, such as deterministic context-free (DCF) and context-sensitive (CS) languages, the performance of Deltaformer and Transformer is not as good as RNN models, such as Tape-RNN [17]. However, considering that RNN models have not yet been efficiently implemented on GPUs, we believe that DeltaFormer is practical.

Level	Task	Model Architecture						
		RNN	Stack-RNN	Tape-RNN	Transformer	LSTM	Deltaformer	
R	Modular Arithmetic (Simple)	100.0	100.0	100.0	24.2	100.0	100.0	
	Parity Check	100.0	100.0	100.0	52.0	100.0	100.0	
DCF	Stack Manipulation	56.0	100.0	100.0	57.5	59.1	58.3	
	Reverse String	62.0	100.0	100.0	62.3	60.9	63.4	
cs	Duplicate String	50.3	52.8	100.0	52.8	57.6	54.7	
	Odds First	51.0	51.9	100.0	52.8	55.6	52.5	

Table 5: Language hierarchy solvable by different model architectures

E Efficient Chunk-wise Implementation

Below is a simple PyTorch implementation, serving as pseudo-code. We can easily modify the selection of the kernel function or remove the normalization term. We tried three different ways of running time on the H100, as shown in Table 6. And we can see that the chunkwise algorithm has a 22x speed improvement compared to the recurrent implementation. At the same time, compared to fully parallel algorithms, it has an 8x speed improvement, because fully parallel algorithms are bounded by I/O, due to the $n \times n$ size matrix. The details can refer to the Readme file in the supplementary materials of the Triton implementation.

Method	Time
Recurrent	279.9 ms
Parallel	102.2 ms
Chunk-wise	12.7 ms

Table 6: Comparison of execution times with tensor shape [2,32,8192,128] in an H100.

```
import torch
import torch.nn.functional as F
import math
def flash_attn(K_chunk, K_prev, V_prev):
    attn = K_chunk @ K_prev.transpose(-1, -2)/math.sqrt(K_chunk.shape
   \lceil -1 \rceil
    z_intra = torch.logsumexp(attn, dim=-1)
    return torch.softmax(attn,dim=-1)@V_prev, z_intra
def naive_implementation(k, n, d_model): """n is the previous v, v is
   actually new v. """
    B, H, T, D = k.shape
    v = torch.zeros_like(n)
    for t in range(T):
        if t == 0:
            v[:, :, 0] = n[:, :, 0]
   scores = torch.matmul(k[:, :, :t], k[:, :, t].unsqueeze (-1)).squeeze(-1) / math.sqrt(d_model)
            attn_probs = F.softmax(scores, dim=-1)
            v[:, :, t] = n[:, :, t] - torch.sum(attn_probs.unsqueeze
   (-1) * v[:, :, :t], dim=-2)
    return v
def optimized_chunked_implementation(K, N, d_model, C):
    B, H, T, D = K.shape
    V = torch.zeros(B, H, T, D)
    chunk_nums = T // C
    mask = torch.tril(torch.ones(C, C), diagonal=-1).unsqueeze(0).
   unsqueeze(0).to(K.device)
    for chunk_num in range(chunk_nums):
        start = chunk_num * C
        end = (chunk_num + 1) * C
        K_chunk = K[:, :, start:end]
        N_{chunk} = N[:, :, start:end]
        if chunk_num > 0:
            intra_output, Z_intra = flash_attn(K_chunk, K[:, :, :start
   ], V[:, :, :start])#0(TCD)
            A = (K_chunk @ K_chunk.transpose(-2, -1)).masked_fill(mask
   [:, :, :C, :C] == 0, float("-inf")) / math.sqrt(d_model)#0(C^2D)
            Z_inter = torch.logsumexp(A, dim=-1)
            P = N_{chunk} - intra_output * (1/(1 + torch.exp((Z_inter-
   Z_intra).unsqueeze(-1))))
            A = F.softmax(A, dim=-1) * (1/(1 + torch.exp((Z_intra-
   Z_inter).unsqueeze(-1))))
            A[:,:,0,:] = 0
        else:
            A = (K_chunk @ K_chunk.transpose(-2, -1)).masked_fill(mask
   [:, :, :C, :C] == 0, float("-inf")) / math.sqrt(d_model)
            A = F.softmax(A, dim=-1)
            A[:,:,0,:] = 0
            P = N_chunk
        Ti = torch.eye(C).unsqueeze(0).unsqueeze(0).unsqueeze(0).to(K.
   device) + A
```

```
Ti_inverse = torch.inverse(Ti) ## Forward substitution method
   O(C^3) Each block can be solved in parallel if we don't use the
   normalization of softmax.
        V[:, :, start:end] = Ti_inverse @ P
                                               # O(C^2D)
                \#O(T/C * (TCD + C^2D)) = O(T^2D + TCD + TC^2)
def verify_equivalence():
   B = 2
   H = 2
   T = 1024
   D = 64
   C = 32
   K = torch.randn(B, H, T, D)
   N = torch.randn(B, H, T, D)
   naive_output = naive_implementation(K, N, D)
    optimized_output = optimized_chunked_implementation(K, N, D, C)
   equivalence = torch.allclose(naive_output, optimized_output, atol
   print(f"{equivalence}")
```

Listing 1: PyTorch-style pseudo-code.

F The stability of the calculation of u and o

We rewrite the calculations for u and o as follows:

$$u = A_1^{-1}v$$

$$o = A_2u,$$
(31)

where $A_1(i, j) = \kappa_1(k_i, k_j), A_2(i, j) = \kappa_2(k_i, k_j).$

Then we will have:

$$\|(A_1 + \Delta A)^{-1}V - A_1^{-1}V\| \approx \|A_1^{-1}(\Delta A)A_1^{-1}V\| \le \|A_1^{-1}\| \|\Delta A\| \|A_1^{-1}\| \|V\| = \|A_1^{-1}\|^2 \|\Delta A\| \|V\|, \tag{32}$$

and

$$\|(A_2 + \Delta A_2)U - A_2U\| = \|(\Delta A_2)U\| \le \|\Delta A_2\| \|U\|. \tag{33}$$

The stability of the calculation for u is weaker than that for o, so the selection of the κ_1 need to balance stability and expressivity.

G Code for synthetic data.

Here we provide a code for synthesizing data and the encoding of input information.

G.1 Track the Exchange of Elements.

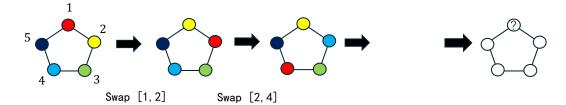


Figure 7: Swap task diagram. At the beginning, tokens of different colors are placed at positions 1 to 5, and the tokens of two positions are exchanged at each step. We expect the model to query what the token for each position is at each step. Simply but without loss of generality, we default to outputting the token at the first position to avoid introducing a "query token". This task can also be tokenized into a task with an input vocabulary size of $C_5^2=10$ and an output vocabulary size of 5.

```
for _ in range(num_samples):
    swap_sequence = [random.randint(0, len(swap_pairs)-1) for _ in
    range(k)]
    current_perm = tuple(range(n_elements))
    first_elements = []

    for swap_idx in swap_sequence:
        current_perm = apply_swap(current_perm, swap_idx)
        first_elements.append(current_perm[0])

    input_ids = torch.tensor(swap_sequence, dtype=torch.long)
    labels = torch.tensor(first_elements, dtype=torch.long)
    data.append((input_ids, labels))

return data
```

G.2 Reachability of directed acyclic graphs.

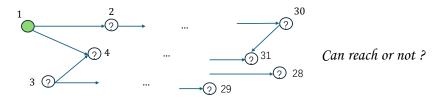


Figure 8: Reachability of directed acyclic graphs. Each node encodes at most its neighboring node information at the beginning. Then the model need to determine whether a node can reach from a starting point.

```
import numpy
import random
import torch.nn as nn
def create_graph(n):
    if n % 2 != 0:
        raise ValueError("n should be an even number")

# Step 1: Randomly divide the points into two sets S_1 and S_2
points = list(range(1, n + 1))
    random.shuffle(points)
    mid = n // 2
    S_1, S_2 = sorted(points[:mid]), sorted(points[mid:])

def assign_parents(S):
    parents = {}
```

```
for i in range(1, len(S)):
            possible_parents = S[:i]
            parents[S[i]] = random.choice(possible_parents)
        return parents
    # Step 2: Assign parent nodes within each set
    parents_S1 = assign_parents(S_1)
    parents_S2 = assign_parents(S_2)
    # Step 3: Build adjacency matrix
    adjacency_matrix = np.eye(n)
    def fill_adjacency_matrix(parents):
        for child, parent in parents.items():
            if parent is not None:
                adjacency_matrix[child - 1][parent - 1] = 1
    fill_adjacency_matrix(parents_S1)
    fill_adjacency_matrix(parents_S2)
    labels = [0 for i in range(n)]
    if 1 in S_1:
        for i in S_1:
            labels[i-1] = 1
    else:
        for i in S_2:
            labels[i-1] = 1
    return labels, adjacency_matrix
def generate_graph_data(num_samples=100, n=32):
    Generates graph data samples with reachability information.
    :param num_samples: Number of samples to generate.
    :param n: Number of nodes in the graph.
    :return: A list of tuples. Each tuple contains an adjacency matrix
    and a list of labels indicating reachability from node 1 to each
   node.
   0.00
   data = []
   for _ in range(num_samples):
        labels, A = create_graph(n)
        adj_matrix = torch.tensor(A, dtype=torch.float)
        # adj_matrix = adj_matrix.transpose(0,1)
        labels = torch.tensor(labels, dtype=torch.long)
        data.append((adj_matrix, labels))
   return data
class Emb(nn.Module): #Encode the neighbor node information of each
   node and mark the starting point
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
    def forward(self, x):
        # x shape: (batch_size, seq_len, input_dim)
        batch_size, seq_len, input_dim = x.shape
        pos_onehot = torch.zeros(seq_len, seq_len, device=x.device)
        pos_onehot[0, 0] = 1 # Mark the starting point
        pos_emb = pos_onehot.unsqueeze(0).expand(batch_size, -1, -1)
   # (batch_size, seq_len, seq_len)
        current_dim = x.size(-1)
        if current_dim < self.hidden_size:</pre>
            pad_size = list(x.shape)
            pad_size[-1] = self.hidden_size - current_dim
            padding = torch.zeros(*pad_size, device=x.device)
            x = torch.cat([x, padding], dim=-1) # (batch_size,
   seq_len, hidden_size)
       return x.to(dtype)
```

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Yes. At the last of introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes. There is a limitation section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: There is two assumption in main text. And the complete proof is in Appendix. Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use open-source code for the training of language model and offer code for toy tasks we design.

Guidelines:

• The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We use open-source data. The synthetic data for the toy task can be found in the supplementary materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We offer it in a jupyterbook in supplementary materials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: : We just average over 3 runs for language modeling.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We offer in main text.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We made sure to preserve anonymity.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: We study the structure of models, which has no societal impact.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [No]

Justification: We use public datasets from the Internet.

Guidelines:

• The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We use CC-BY 4.0 in our code.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We communicate the details of the dataset/code/model at the supplementary materials.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with 780 human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLM is used only for writing, editing.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.