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Abstract

In recent years, large language models built around the Transformer architecture
have achieved breakthrough progress in many fields. At the same time, certain
weaknesses in these models have prompted further reflection, with the most funda-
mental concerns centered on the Transformer architecture itself. The Transformer
offers high parallelism and can fully exploit the computing power of GPUs, which
has enabled it to replace models such as LSTM over the past few years. However,
high parallelism is not a free advantage, as it imposes fundamental limits on model
performance. In particular, the problems that the logarithmic-precision Trans-
former architecture can solve are strictly bounded within the class TC0. Many
important tasks are generally considered outside TC0, including Python code
execution, entity tracking, chess, and other state-tracking problems. Meanwhile,
recent state-space methods based on the Delta Rule have been able to surpass the
TC0 limitations of the Transformer, but these approaches suffer from fixed-size
state spaces and perform poorly on many tasks. To address this, we re-examine
the Transformer from the perspective of a state space with kernel functions, and
propose an improved architecture called DeltaFormer. We theoretically and em-
pirically demonstrate that this new architecture can overcome the inherent TC0

expressivity limitations of standard Transformers, while remaining at least as effec-
tive in language modeling tasks. We hope our work will inspire the design of more
expressive models.

1 Introduction

In the field of artificial intelligence, the Transformer model [71] has attracted widespread attention
for its outstanding performance and broad application prospects since its inception. As the core
architecture of modern AI systems, the Transformer has demonstrated remarkable results in various
domains [9, 32, 19, 55, 56]. Despite its significant success, the Transformer has shown poor perfor-
mance on many tasks that lack chain-of-thought reasoning, which has prompted reflection among
researchers.

Another noteworthy observation is that existing large models have demonstrated impressive reasoning
abilities following reinforcement learning [30, 29, 64]. However, recent studies indicate that RL
does not unlock fundamentally new capabilities, and that their abilities remain constrained by the
pre-training phase [79, 65]. Since model architecture lies at the core of pre-training, researchers have
increasingly turned their attention to its limitations—particularly the expressivity of Transformer
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models. Existing Transformer-based models possess restricted expressive power; it has been shown
that they belong to the TC0 complexity class [44]. Solving problems in larger classes requires the
use of chain-of-thought reasoning [24, 37]. Moreover, numerous real-world tasks go beyond TC0

and fall within NC1, such as entity tracking, Python code evaluation, and chess state tracking [42].
This limitation may be a fundamental reason why current large-scale models exhibit randomness in
entity tracking tasks [13]. This naturally raises the question: is it possible to break through the TC0

expressivity barrier that constrains the Transformer?

In the domain of finite state-space methods, recent work has shown that the delta rule can be used
to surpass the expressivity limits of TC0 [52, 66]. However, these methods rely on finite-sized state
spaces, which inherently face challenges, such as difficulties in performing retrieval tasks [31]. A
natural question follows: can we draw inspiration from these approaches to design a more expressive
Transformer?

To address this, we re-examine the Transformer architecture through the lens of kernel functions
and the delta rule, proposing a new model called DeltaFormer. We theoretically and empirically
validate that DeltaFormer possesses expressive power exceeding that of standard Transformers, while
maintaining comparable performance in language modeling tasks.

The main contributions of this work are as follows:

• We revisit the delta rule from the perspective of kernel functions and propose a new architec-
ture, DeltaFormer, which implicitly assigns a state space to the Transformer. In addition,
we design a chunk-wise algorithm that enables DeltaFormer to be efficiently implemented
in parallel on GPUs.

• We theoretically demonstrate that DeltaFormer has stronger expressivity than the standard
Transformer. We prove that by combining the delta rule with a non-linear kernel, a KV cache
of size O(T log n) can track T exchanges among n objects. Furthermore, if the KV cache
is compressed every O(n) steps, only O(n log n) space is required, which is significantly
smaller than that needed when using a linear kernel.

2 Related Work

Circuit Complexity Boolean circuits have long been used to study parallel complexity. Among
the most important complexity classes in this context are NC and TC. The TC class focuses on
problems solvable by Boolean circuits in which majority gates are the primary operation, while TC0

specifically denotes problems solvable by constant-depth, polynomial-size threshold circuits. For an
input of length n, previous work has shown that constant-depth Transformers with finite-precision
(size poly(n)) embeddings can only solve problems in TC0 without chain-of-thought reasoning [44].
Recently, several studies have demonstrated that DeltaNet [63, 77] and related variants [76, 52, 66]
can overcome the TC0 complexity limitation inherent to Transformers. These architectures exhibit
higher expressivity and achieve improved performance in tasks such as state tracking [27, 66, 42].

Model Architecture Over the past years, researchers have explored various architectures to en-
hance model capabilities, ranging from early RNNs [46] and LSTMs [69] to today’s dominant
Transformer [71]. Transformers have quadratic complexity, and numerous efforts have sought to
improve their efficiency [51, 28, 68, 5, 54]. Nevertheless, Transformers still possess many valuable
properties that are not easily replaced, particularly their ability to perform information retrieval and
adapt to forms of dynamic sparsity [31, 3, 47]. Currently, many popular language models [1, 20, 75]
continue to use Transformers as the core architecture, while some employ hybrid designs [58, 38, 35].
Our work aims to improve the Transformer by breaking through its expressivity limitations. We
summarize the relationship between commonly used model architectures and their parallelism in
Figure 1.

Understanding Transformer Since the rise in popularity of the Transformer [71], extensive
research has focused on understanding its underlying mechanisms. Several works analyze its
powerful approximation capabilities [80, 18, 34], while others explore the dynamics of model
training [41, 7, 70] and interpretability [10, 39, 40, 2]. With the advent of large-scale models,
increasing attention has been devoted to studying the contextual learning ability of Transformers [25,
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Figure 1: Parallelism and expressivity between models. The higher the parallelism of a model, the
more restricted it can be. Previous work has shown that the Log-Precision Transformer is in TC0

[44] and constant precision Transformer in AC0 [37]. The model based on DeltaNet can perform
tasks that exceed the expressivity of TC0, if we accept that TC0 ̸= NC1 [52]. In addition, even for
models with the same degree of parallelism, their performance is affected by the model capacity. One
of the most intuitive examples is that Transformer can perform better than Linear Transformer in
retrieval related tasks [31].

36, 49, 23, 21, 22, 73]. An important aspect in understanding the behavior of large models is their
associative memory [48, 33, 6, 72]. The delta rule can also be interpreted as an update mechanism
for associative memory. In this work, we re-examine the delta rule from the perspective of kernel
functions and propose a new model based on this insight.

3 Method

3.1 Re-examining the Delta Rule from the Perspective of Kernel Functions

The delta rule has a long research history [67, 53, 59] and has recently attracted renewed interest
among researchers studying model architectures [63, 77, 52]. Its name comes from updating weights
based on the difference between the prediction and the target. Mathematically, let the state space
at time t be denoted by St, the input by kt, and the target by vt. The model seeks to minimize the
Euclidean norm ∥Stkt − vt∥2. Applying one step of stochastic gradient descent (SGD) with learning
rate βt yields:

St+1 = St − βt(Stkt − vt)k
⊤
t (1)

= St

(
I − βtktk

⊤
t

)
+ βtvtk

⊤
t . (2)

To retrieve information from St, we use:

ot = Stqt. (3)

We now generalize this process by introducing a kernel function κ(x, y) = ψ(x)⊤ψ(y), where
x, y ∈ Rd and ψ(·) is a mapping to an (possibly) infinite-dimensional space. The delta rule with a
kernel function becomes:

St+1 = St

(
I − βtψ(kt)ψ(kt)

⊤)+ βtvtψ(kt)
⊤, (4)

and information retrieval is performed via:

ot = Stψ(qt). (5)

However, this formulation poses two significant challenges. First, both the kernel function ψ(·) and
the state matrix St are infinite-dimensional, making them infeasible for explicit computation on
conventional hardware. Second, updating St at each timestep is computationally inefficient; this
inefficiency is one of the key reasons why traditional LSTMs have lost popularity in recent years.
Therefore, it is essential to develop an efficient GPU-friendly implementation.
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3.2 Rewriting the Expression for Practical Computation

We can rewrite Eq. 4 in a simplified, equivalent form: St+1 = St+βtutk
⊤
t , where ut = vt−Stψ(kt)

is determined by {(ki, vi)}t−1
i=1 . Using the derivation in Appendix A, we obtain:

ut = βtvt − βt

t−1∑
i=1

κ(ki, kt)ui, (6)

ot =

t∑
i=1

κ(ki, qt)ui. (7)

Although ψ(·) may map to an infinite-dimensional space, ψ(·) does not explicitly appear in Eq. 6 and
Eq. 7, and all terms in these equations can be computed in finite form. If we set κ(x, y) = x⊤y, this
formulation exactly corresponds to DeltaNet [63, 77]. Details on efficient GPU implementation are
provided in Section 3.4.

Generalized Design. We can generalize the above formulation by applying separate kernel functions
(κ1, κ2) in Eq. 6 and Eq. 7, using different gating parameters (αt, βt) to scale vt and

∑t−1
i=1 κ(ki, kt)ui,

and introducing wt in Eq. 6 to control write and delete operations instead of using kt directly. This
yields:

ut = αtvt − βt

t−1∑
i=1

κ1(ki, wt)ui, (8)

ot =

t∑
i=1

κ2(ki, qt)ui. (9)

If we set βt = 0, αt = 1, and define: ot =
∑t

i=1 exp

(
k⊤
i qt√

d

)
ui∑t

i=1 exp

(
k⊤
i

qt√
d

) , the formulation degenerates to the

standard Transformer. We refer to Eq. 8 and Eq. 9 collectively as DeltaFormer. In the following, we
compare the advantages of DeltaFormer over previous models such as the Transformer and DeltaNet.

3.3 Beyond the Expressivity of Transformer

As previous literature have shown, the performance of Transformer is limited to TC0 if chain of
thought is not performed [44, 37, 24]. Based on a hypothesis that is considered correct, TC0 ̸= NC1,
We will prove that DeltaFormer can solve a problem which is NC1-complete under AC0 reduction.
This task is to track the exchange of n (n ≥ 5) elements [78]. Specifically, we provide a constructive
proof as shown in Theorem 1, and the detailed proof is in Appendix B.

Assumption 1 There exist n state points on a d-dimensional unit sphere, and the absolute value of
the inner product of any two distinct state points is less than or equal to ϵ(d, n), which means:

∃x1, x2, . . . , xn ∈ Rd s.t. ∥xi∥2 = 1(∀i), max
i̸=j

|x⊤i xj | ≤ ϵ(d, n) <
1

8
.

Assumption 2 There is a function f satisfies:

∀x ∈ {−1, 0, 1, 2}, ∀x̃ ∈ U(x, 4ϵ(d, n)) : f(x̃) = x.

Theorem 1 Based on the above assumptions, we can consider initializing n key-value pairs as
{(k1, v1), . . . , (kn, vn)}. The keys {k1, . . . , kn} lie on a d-dimensional unit sphere and satisfies
Assumption 1, which means:

∀ i, j ∈ {1, . . . , n}, i ̸= j : ∥ki∥2 = 1, |k⊤i kj | ≤ ϵ(n, d).

and define an attention mechanism as follows:

ut = vt −
t−1∑
i=1

f(k⊤i kt)ui, ot =

t∑
i=1

f(q⊤t ki)ui,
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where f(·) satisfies Assumption 2 and it is noted that ∀ i ∈ {1, . . . , n}, since f(k⊤i ki) = 0, we have
ui = vi.

At the current step t, t > n, the value corresponding to ki is denoted by ṽi, i ∈ {1, . . . , n}. Note that,
after t− 1− n exchanges, ṽi is not necessarily equal to the initially assigned vi. ∀ 1 ≤ t2 < t1 ≤ n,
to exchange the stored values ṽt1 and ṽt2 corresponding to kt1 and kt2 , it suffices to construct:

kt = kt1 − kt2 , vt = 0

When retrieving the values:

Query qt = kt1 , then ot = ṽt2 ;

Query qt = kt2 , then ot = ṽt1 ;

Query qt = kt3 , 1 ≤ t3 ≤ n, t3 ̸= t1, t2, then ot = ṽt3 .

This implies the exchange of values corresponding to kt1 and kt2 is completed.

3.3.1 Re-examining the Assumptions

We now revisit the two assumptions in Theorem 1.

What relationship between d and n must hold for Assumption 1 to be satisfied? According to
Theorem 5.2.1 in [82], For every α ∈ (0, 1) and ε > 0, there exists c > 0 such that for every d, one
can find at least 2cd unit vectors in Rd whose pairwise inner products all lie in [α− ε, α+ ε]. Setting
α = 0.01 and ε = 0.1, we obtain ϵ(d, n) ≤ 0.11 < 1

8 . This implies that for Assumption 1 to hold, it
is required that: d = O(log n).

Regarding the choice of f(·) in Assumption 2, one straightforward option is to use the rounding
function round(·), i.e., mapping the input to its nearest integer. With appropriate rounding precision,
this function can satisfy the assumption. If we instead adopt the commonly used exponential kernel
exp(·), theoretical results show that a multi-query attention mechanism with four shared heads can
express a function f(·) that fulfills Assumption 2.

In summary, according to Theorem 1, delta rule-based no-linear kernel attention can achieve state
exchange between historical timesteps t1 and t2, with d = O(log n).

Space Cost Analysis In Theorem 1, suppose we wish to track T exchanges among n states. Clearly,
we must set d = O(logn) and maintain a KU cache of length T . This results in a space cost of:
O(T log n).

If we read out {ṽ1, . . . , ṽn} based on {k1, . . . , kn} every O(n) steps, and then rewrite {(ki, ṽi)}ni=1
into the KU cache, we only require a KU cache of length O(n). This reduces the total space cost
to: O(n log n), which is significantly smaller than the O(n2) space required when f(·) is an identity
mapping. For example, RWKV7 [52] uses a 5× 5 matrix to track the exchange of 5 elements. To
provide a clearer comparison between linear and nonlinear kernels, we have restated both versions of
Theorem 1 in Appendix C.

For comparison, employing non-linear kernels unlocks the full potential of the delta rule: we can
track the exchange of exponentially many states, rather than just the n = O(d) most recent states.

In summary, DeltaFormer—as a generalized form of the Transformer— not only surpasses the
inherent TC0 expressivity limitations of the original Transformer, but also tracks the exchange of n
objects using significantly smaller state space than models such as RWKV7.

3.4 Efficient Chunk-wise Algorithm on GPUs

High parallelism on GPUs has been a key reason why Transformers have outperformed non-
parallelizable models such as LSTMs during the scaling era of large models. From a high-level
perspective, however, there exists a fundamental tension between parallelism and expressivity. No-
tably, the parallelizability of DeltaNet is lower than that of a standard Transformer; if reduced to the
level of an LSTM, it would lose much of its practical appeal. Therefore, in order to make a more
expressive model practically useful, we must devise an implementation that runs efficiently on GPUs.
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Consider q, k, v, u ∈ Rd, a sequence length T , and assume T ≫ d. For simplicity, and without loss of
generality, we focus on efficiently computing: ut = vt −

∑t−1
i=1 κ(ki, kt)ui, where the computation

of ot follows similarly to FlashAttention [15].

If we compute {u1, . . . , uT } directly according to the above recurrence, the computational com-
plexity is O(T 2d). Since each ut depends on all previous u<t, this algorithm is inherently sequen-
tial—requiring O(T ) iterations—and thus cannot exploit GPU parallelism.

Matrix Formulation. We can express the recurrence in matrix form as:

U = V −AU, (10)

where the t-th rows of U and V are given by Ut,: = ut and Vt,: = vt, respectively. The similarity

matrix A is defined by: At,i = κ(kt, ki), e.g., exp(k⊤
i kt)

Z
(1)
t

for a normalized exponential kernel, or

k⊤t ki for a linear kernel. Since A is lower triangular, U can be solved via:

U = (I +A)−1V. (11)

This formulation requires a matrix inversion, still costing O(T 2d) operations, but crucially it is fully
parallelizable on GPUs.

Chunk-wise Parallelization. A compromise between the two approaches above can be achieved
via chunk-wise processing. Divide the sequence of length T into N equal-sized chunks, each of
length C = ⌊T/N⌋. Then, compute ut within each chunk using parallelizable matrix operations,
processing the chunks sequentially.

This reduces the number of recurrent steps from O(T ) to O(N), while computational complex-
ity changes from O(T 2d) to: O(T 2d + TCd + TC2). In essence, this method trades additional
computation for reduced runtime3. For pseudo-code of the chunk-wise implementation, refer to
Appendix E.

4 Experiment

4.1 Track the Exchange of Elements

/?
1

2

34

5

Swap [1,2] Swap [2,4]

Figure 2: Swap task diagram. At the beginning, tokens of different colors are placed at positions 1 to
5, and the tokens of two positions are exchanged at each step. We expect the model to query what the
token for each position is at each step. Simply but without loss of generality, we default to outputting
the token at the first position to avoid introducing a "query token". This task can also be tokenized
into a task with an input vocabulary size of C2

5 = 10 and an output vocabulary size of 5.

Although Theorem 1 establishes that DeltaFormer can theoretically track the exchange of n objects,
it remains necessary to validate this capability empirically. Specifically, we investigate whether
DeltaFormer can learn to track the exchange of n objects from data when trained using gradient
descent. To this end, we design an experiment to verify this property. The experimental setup is
illustrated in Figure 2, with a default context length of 16.

DeltaFormer can track the exchange of elements. We compared DeltaFormer and the standard
Transformer under various designs of the similarity function, as shown in Figure 3. Across almost
all reasonably simple choices of κ1(·), DeltaFormer achieved better results than the Transformer. In

3Our code is available at https://github.com/fla-org/flash-linear-attention/blob/main/
fla/layers/deltaformer.py, and in the supplementary materials.
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(a) Transformer. (b) DeltaFormer. (κ1(x, y) =
⌊x⊤y⌋)

(c) DeltaFormer. (κ1(x, y) =
x⊤y)

(d) DeltaFormer. (κ1(x, y) =
max(x⊤y, 0))

(e) DeltaFormer. (κ1(x, y) =
exp(x⊤y))

(f) DeltaFormer. (κ1(x, y) =
softmax(x⊤y))

Figure 3: Comparison of Transformer and DeltaFormer using different similarity functions κ1(·) for
performing swapping tasks. For κ2(·), we use the softmax function to maintain consistency with
Transformer. Pay attention to the scale of the y-axis. To ensure convergence, ⌊·⌋ means round to two
decimal, such as ⌊1.236⌋ = 1.24.

particular, a 1-layer DeltaFormer was able to execute and track the exchange operations of 5 elements.
In contrast, increasing the number of Transformer layers did not yield improvements.

The similarity function used in Eq. 8 is important for tracking. Another key observation is that
the choice of similarity function has a significant impact on exchange-tracking performance. As
shown in our constructive proof in Theorem 1, the appropriately chosen similarity function can track
5 elements with perfect accuracy. The closer the chosen similarity function is to the constructive
form, the better the tracking performance. The normalization term in softmax negatively impacts
the similarity computation when using the exponential function exp(·). Notably, in our experiments
the retrieval similarity function κ2 (used in Eq. 9) was not based on the constructive similarity—so as
to remain consistent with standard attention—but instead used softmax. Even in this case, a suitable
choice of κ1 can still achieve 100% tracking accuracy. Theorem 1 effectively proves that it is possible
to retrieve element values at each position via a specific form of u, meaning that the exchange of
elements is implicitly captured in the update of u.

Intuitively, an inappropriate choice of κ1 leads to greater cumulative error in updating u. From
a mathematical standpoint, this corresponds to the perturbation of an inverse matrix that may be
ill-conditioned. For details, see Appendix F. We also performed stress tests using the Round and
Linear kernels in Appendix B.1, tracking exchanges of n ≥ d = 128 elements.

The similarity function used in Eq. 9 is important for retrieval. In the generalized DeltaFormer
formulation, the similarity function κ2 directly affects retrieval ability. We conducted experiments on
the MQAR benchmark [4], with the following configuration: vocab_size = 256, input_seq_len
= 128, num_kv_pairs = 32, and d_model = 32. To isolate retrieval ability, we used a linear kernel
so as not to enhance performance via similarity scaling. The results show that retrieval performance
with a purely linear kernel is poor.

Linear Round ReLU Softmax
Accuracy (%) 85.6 91.6 99.5 99.1

Table 1: Impact of κ2 on Retrieval Performance

Curriculum learning is important. As shown in Figure 4, training directly with a context length
of 256 led to very slow convergence.We therefore adopted curriculum learning, starting with length
32 and gradually increasing the window size, i.e., gradually raising task difficulty. Under such a
schedule, the model achieved better performance with less computation.
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(a) DeltaFormer with RoPE. (b) DeltaFormer with NoPE.

Figure 4: Comparison of DeltaFormer using different learning strategy and position embedding.
Each use κ1(x, y) = ⌊x⊤y⌋. "32 to 256" means that the initial training length is 32, which means
the number of swaps is 32. When the accuracy reaches 0.99, the training length will be doubled
until it reaches 256. And "256" means that the model is trained on a training length of 256 from the
beginning. The y-axis reflects the accuracy at the current training length.

The role of rotary embeddings. Since Theorem 1 does not require positional embeddings, we
conducted experiments removing the default rotary position embeddings (RoPE). Without RoPE,
convergence slowed and training directly at length 256 yielded random scores. However, under the
“32→256” curriculum, accuracy reached 100%. Moreover, NoPE models degraded less at jump
points during length extension, suggesting better generalization. We speculate that while RoPE may
hinder expressivity and extrapolation, it can facilitate optimization.

4.2 Reachability of directed acyclic graphs

Furthermore, we design a simple graph connectivity task to evaluate reachability in a directed acyclic
graph (DAG). For simplicity, we consider only whether the first node—given a specific topological
ordering—can reach other nodes. Initially, each node encodes only its immediate neighbors. Since the
final output is binary (True or False), we avoid class imbalance by dividing the n nodes evenly into
two classes and constructing one tree for each class. We then examine reachability from a designated
root node, encoding for each node only the information of its parent.

(a) Transformer. (b) DeltaFormer.

Figure 5: Comparison of Transformer and DeltaFormer using different similarity functions κ1(·) for
performing swapping tasks. For κ2(·), we use the softmax function to maintain consistency with
Transformer. Pay attention to the scale of the y-axis.

DeltaFormer outperforms Transformer. We conducted experiments on 32 nodes, as shown in
Figure 5. A multi-layer Transformer struggled to reach 100% accuracy, whereas a single-layer
DeltaFormer performed highly accurately. In theory, a Transformer requires O(logn) layers to
perform connectivity checks on n nodes [61]. However, based on Figure 5a, we speculate that
optimization challenges also limit the Transformer’s effectiveness in this task.

The power of matrix inversion. As shown in Eq. 11, the computation of u can be rewritten using
matrix inversion. If the adjacency matrix A is known, connectivity between nodes i and j can
be checked by computing A,A2, . . . , An and examining whether the (i, j) entry is positive. Since
(I−A)−1 approximates I+A+ · · ·+An, matrix inversion substantially enhances model expressivity,
particularly for graph-related tasks.

Relation to chain-of-thought (CoT). The limited depth of Transformers has motivated approaches
such as CoT [74, 37] and the Universal Transformer [16, 26], which loop through the layers. In
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contrast, our method effectively increases depth along the sequence dimension. This yields higher
token efficiency for tasks like DAG connectivity: for a constant-depth Transformer, directed graph
reachability requires O(n2) CoT steps [43], reduced to O(n) with continuous CoT [83], while
DeltaFormer achieves the same in a single forward pass.

4.3 Language modeling

To verify that DeltaFormer does not affect language modeling capabilities, we conducted experiments
on a small scale. Following prior work [76], we use open-source code of them and open-source
dataset Fineweb-edu for training and the open-source evaluation tool lm-evaluation-harness for
benchmark evaluation. The benchmarks that include LAMBADA [LMB.;[50]], PiQA[8], HellaSwag
[Hella.;[81]], WinoGrande [Wino.;[60]], ARC-easy (ARC-e) and ARC-challenge (Arc-c)[12], Boolq
[11], OpenbookQA [OBQA.;[45]], SIQA [62] and Copa [57]. We train on a 340M parameter scale
with 15B tokens with a peak learning rate of 2e-3. The context length is 2,048 and the global batch
size is 0.5M tokens. The experimental results are shown in Table 2.

Model (340M) ARC-c ARC-e Boolq Copa Hella. LMB. OBQA. PIQA SCIQ. Wino.
acc_n ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑

Transformer 28.58 59.61 60.00 68.00 40.11 34.50 38.40 67.25 81.60 52.01
DeltaFormer
κ1(x, y) = x⊤y 29.01 59.09 60.52 69.00 40.43 34.17 38.20 67.90 80.60 50.04
κ1(x, y) = Relu(x⊤y) 28.41 57.62 59.88 68.00 40.07 32.76 37.00 65.83 80.10 51.22
κ1(x, y) = ⌊x⊤y⌋ 28.50 58.33 60.09 70.00 40.29 33.03 35.40 67.03 81.50 51.92
κ1(x, y) = softmax(x⊤y) 28.92 57.89 61.80 69.00 40.21 34.05 37.40 67.21 81.40 52.41

Table 2: Comparison of DeltaFormer and its variants on various language modeling benchmarks on
the model with 340M parameter.

Due to the fact that at this scale, the fluctuations of one or two points in these benchmark indicators
are considered random. Therefore, we can say DeltaFormer is not weaker than standard Transformers
in language modeling tasks. Even with different similarity functions, the differences are very small,
which is also different from the findings of Section 4.1.

Later, we conducted experiments on the 14B activated MOE model, where the number of key and
value was 1/4 of the number of query. As a result, the flops in the self-attention section increased by
25%, and in the entire MOE model, the flops increased by 3%. The results are listed in Table 3 and
Table 4.

COPA ARC-E ARC-C PIQA C-Eval MMLU RACE-High RACE-Middle SIQA Winogrande Average

Transformer 73.8 80.9 50.8 78.2 44.0 43.8 48.8 62.5 55.6 64.6 60.30
DeltaFormer 74.6 82.9 51.2 79.4 46.3 45.2 49.0 62.9 54.7 67.2 61.34
∆ +0.8 +2.0 +0.4 +1.2 +2.3 +1.4 +0.2 +0.4 -0.9 +2.6 +1.04

Table 3: Benchmark Comparison. We compared the transformer model and delta model with 14B
total parameters, and they trained 500 tokens each.

General Domain Code Domain

Training tokens Transformer DeltaFormer Transformer DeltaFormer

100 B 2.06256 2.06254 1.52628 1.48656
200 B 1.94337 1.94336 1.42112 1.37757
300 B 1.88013 1.87554 1.35612 1.32587
400 B 1.83119 1.83558 1.32285 1.29567
500 B 1.81472 1.81032 1.31231 1.28326

Table 4: Benchmark Comparison. We compared the transformer model and delta model with 14B
total parameters, and they trained 500 tokens each.

Firstly, the benchmark results show that the DeltaFormer outperforms the baseline. Then there is
the result of training loss, which leads by 0.003 on the general domain, basically aligning with the
slight increase of 3% in flops. However, on the code domain, the loss leads by 0.05. When training
300b. The training token can match the baseline training of 400b, which far exceeds the gain of flops.
We believe this is due to the higher expressiveness of DeltaFormer, as the code data includes Dyck
grammars that match left and right parentheses.
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5 Discussion

Expressivity. Since matrix inversion lies within the NC2 complexity class [14], the theoretical
upper bound of DeltaFormer is likewise in NC2. We can design models with higher expressive power
at the cost of reduced parallelism, in the extreme approaching inherently sequential models such as
LSTM. Ultimately, a trade-off between parallelism and expressivity must be struck, influenced by
hardware and environmental constraints. On this trade-off curve, scaling a model with slightly lower
parallelism but higher expressivity than the Transformer may serve as a starting point. Identifying
models that fully exploit NC2 may be a promising direction, as many practical models fall within
this class, which still allows for parallel execution.

Optimization. Achieving a strong model also depends on optimization. We observed phenomena
such as curriculum learning—gradually extending context length—benefiting DeltaFormer in element-
tracking tasks. Differences between DeltaFormer and standard Transformers likely lead to distinct
optimization behaviors. Furthermore, as discussed in Section 4.1, rotary position embeddings (RoPE)
appear to hinder performance but aid optimization. A deeper study of the optimization dynamics of
such models is an interesting avenue for future work.

Scaling. Scaling DeltaFormer to larger models and examining the effects will be valuable. We
speculate that Transformers require deeper architectures to handle tasks beyond their expressivity,
whereas DeltaFormer may achieve such tasks with fewer layers, leading to different optimal depth-
to-width ratios. To optimally configure DeltaFormer, original Transformer components may need
rethinking. Exploring parameter scaling analogous to Transformer scaling laws is also of interest.

6 Limitations

First, although we propose an algorithm that executes efficiently on GPUs, current performance is
not optimal and further improvements are needed. Second, our evaluation focuses on toy tasks and
small-scale language modeling, without large-scale industrial training to confirm gains for complex
tasks. Additionally, a naive layer mixing of linear DeltaNet and standard Transformer could yield
a hybrid model with both state-tracking and long-text retrieval abilities. Such a hybrid may have
reduced state-tracking capacity but might still suffice for real-world applications. Comparisons
between DeltaFormer and simple hybrids thus require validation on practical tasks.

7 Conclusion

We extended the delta rule with kernel functions and introduced DeltaFormer. We proved, both
theoretically and empirically, that DeltaFormer surpasses the TC0 expressivity limit of Transform-
ers. In particular, introducing nonlinear kernels enables DeltaFormer to track exponentially many
element exchanges within the same dimension compared to linear kernels. Experiments indicate
that DeltaFormer matches the standard Transformer in language modeling performance. In future
work, we aim to scale DeltaFormer to industrial-level training, and hope our findings inspire new
Transformer designs with improved expressivity.
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A Delta Rule with Kernel Function

We consider the kernel function κ(x, y) = ψ(x)⊤ψ(y), where ψ(x) is a mapping from d to infinite
dimensions. Then the delta-rule-based update form and the corresponding read-out equation can be
re-write as:

St = St−1

(
I − ψ(kt)ψ(kt)

⊤)+ vtψ(kt)
⊤, (12)

ot = Stψ(qt). (13)

Hypothesis:

St =

t∑
i=1

uiw
⊤
i , (14)

where ui and wi is pending. Then we have:
t∑

i=1

uiw
⊤
i =

t−1∑
i=1

uiw
⊤
i

(
I − ψ(kt)ψ(kt)

⊤)+ vtψ(kt)
⊤, (15)

utw
⊤
t =

t−1∑
i=1

uiw
⊤
i

(
−ψ(kt)ψ(kt)⊤

)
+ vtψ(kt)

⊤, (16)

take the pending wi = ψ(ki):

utψ(kt)
⊤ =

t−1∑
i=1

uiψ(ki)
⊤(−ψ(kt)ψ(kt)⊤)+ vtψ(kt)

⊤

= −
t−1∑
i=1

ψ(ki)
⊤ψ(kt)uiψ(kt)

⊤ + vtψ(kt)
⊤

=

(
−

t−1∑
i=1

ψ(ki)
⊤ψ(kt)ui + vt

)
ψ(kt)

⊤. (17)

Thus, we get the pending ut:

ut
XXXXψ(kt)

⊤ =

(
−

t−1∑
i=1

ψ(ki)
⊤ψ(kt)ui + vt

)
XXXXψ(kt)

⊤

= −
t−1∑
i=1

κ(ki, kt)ui + vt. (18)

Then we have the final update form and the corresponding read-out equation:

St =

t∑
i=1

uiψ(ki)
⊤ = St−1 + utϕ(kt)

⊤, (19)

ot =

t∑
i=1

κ(ki, qt)ui. (20)

B Proof of Theorem 1

Before proving Theorem 1, we introduce an auxiliary lemma for facilitating the proof.

Lemma 1 Consider Theorem 1, the set of keys {ki}ni=1 satisfies Assumption 1, and k>n is
the difference between two keys chosen from {ki}ni=1. If the function f(·) satisfies Assumption
2, then the following identity holds:

∀ 1 ≤ j < i ≤ n, ∀ l ≥ 1 : f((ki − kj)
⊤kl) = f(k⊤i kl)− f(k⊤j kl).
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B.0.1 Proof of Lemma 1

We distinguish two separate cases according to the value of the index l:

Case 1: 1 ≤ l ≤ n. Consider the following subcases:

i. If ki = kl, then we obtain

f((ki − kj)
⊤kl) = f(1− k⊤j kl) = f(U(1, ϵ)) = 1

f(k⊤i kl)− f(k⊤j kl) = 1− f(U(0, ϵ)) = 1.

ii. If kj = kl, then we have

f((ki − kj)
⊤kl) = f(k⊤i kl − 1) = f(U(−1, ϵ)) = −1

f(k⊤i kl)− f(k⊤j kl) = f(U(0, ϵ))− 1 = −1.

iii. If ki ̸= kl, kj ̸= kl, then

f((ki − kj)
⊤kl) = f(k⊤i kl − k⊤j kl) = f(U(0, 2ϵ)) = 0

f(k⊤i kl)− f(k⊤j kl) = f(U(0, ϵ))− f(U(0, ϵ)) = 0.

Case 2: l > n. In this case, denote kl = kl1 − kl2 , where 1 ≤ l2 < l1 ≤ n. Consider the following
possibilities regarding the number of equalities among indices i, j and l1, l2:

i. If no pair among (i, j) and (l1, l2) is equal, then we have

f((ki − kj)
⊤kl) = f(U(0, 4ϵ)) = 0

f(k⊤i kl)− f(k⊤j kl) = f(U(0, 2ϵ))− f(U(0, 2ϵ)) = 0.

ii. If exactly one pair is equal, we analyze further:
1. If i = l1, then we have

f((ki − kj)
⊤kl) = f(U(1, 3ϵ)) = 1

f(k⊤i kl)− f(k⊤j kl) = f(U(1, ϵ))− f(U(0, 2ϵ)) = 1.

2. If i = l2, then we have

f((ki − kj)
⊤kl) = f(U(−1, 3ϵ)) = −1

f(k⊤i kl)− f(k⊤j kl) = f(U(−1, ϵ))− f(U(0, 2ϵ)) = −1.

3. If j = l1, then similarly

f((ki − kj)
⊤kl) = f(U(−1, 3ϵ)) = −1

f(k⊤i kl)− f(k⊤j kl) = f(U(0, 2ϵ))− f(U(1, ϵ)) = −1.

4. If j = l2, then similarly

f((ki − kj)
⊤kl) = f(U(1, 3ϵ)) = 1

f(k⊤i kl)− f(k⊤j kl) = f(U(0, 2ϵ))− f(U(−1, ϵ)) = 1.

iii. If two pairs are equal simultaneously:
1. If i = l1, j = l2, we have

f((ki − kj)
⊤kl) = f(U(2, 2ϵ)) = 2

f(k⊤i kl)− f(k⊤j kl) = f(U(1, ϵ))− f(U(−1, ϵ)) = 2.

2. If i = l2, j = l1, this contradicts the ordering condition j < i, l2 < l1 and thus cannot
occur.

Combining all the above cases, we have completed the proof.
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B.0.2 Formally Prove Theorem 1

We use mathematical induction to prove Theorem 1.

When t = n+ 1:

kt = kt1 − kt2 , (21)

ut = −
t−1∑
i=1

f(k⊤i kt)ui = −ut1 + ut2 . (22)

If we read the state at t1, i.e., qt = kt1 ,

t∑
i=1

f(q⊤t ki)ui =

t∑
i=1

f(k⊤t1ki)ui = ut1 + (−ut1 + ut2) = ut2 . (23)

If we read the state at t2, i.e., qt = kt2 ,

t∑
i=1

f(q⊤t ki)ui =

t∑
i=1

f(k⊤t2ki)ui = ut2 + (ut1 − ut2) = ut1 . (24)

If we read other states, i.e., the state at j, where j ̸= t1, t2,

t∑
i=1

f(q⊤t ki)ui =

t∑
i=1

f(k⊤j ki)ui = uj . (25)

In summary, at step t = n + 1, according to our rules, it is possible to trace the states exchanged
between t1 and t2.

Assuming the proposition holds for t− 1, we consider the case for t (t > n+ 1).

At the t-th step,

kt = kt1 − kt2 . (26)

According to Lemma 1, we have

ut = −
t−1∑
i=1

f(k⊤t ki)ui

= −
t−1∑
i=1

f(k⊤t1ki)ui +

t−1∑
i=1

f(k⊤t2ki)ui

= −ṽt1 + ṽt2 . (27)

If we read the state at t1, i.e., qt = kt1 ,

t∑
i=1

f(q⊤t ki)ui =

t∑
i=1

f(k⊤t1ki)ui

=

t−1∑
i=1

f(k⊤t1ki)ui + f(k⊤t1kt)ut

= ṽt1 + (−ṽt1 + ṽt2)

= ṽt2 . (28)
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If we read the state at t2, i.e., qt = kt2 ,
t∑

i=1

f(q⊤t ki)ui =

t∑
i=1

f(k⊤t2ki)ui

=

t−1∑
i=1

f(k⊤t2ki)ui + f(k⊤t2kt)ut

= ṽt2 + (ṽt1 − ṽt2)

= ṽt1 . (29)

If we read other states, i.e., the state at j, where j ̸= t1, t2,
t∑

i=1

f(q⊤t ki)ui =

t∑
i=1

f(k⊤j ki)ui

=

t−1∑
i=1

f(k⊤j ki)ui + f(k⊤j kt)ut

= ṽj . (30)

In summary, at step t, according to our rules, the retrieved states corresponding to {k1, . . . , kn} is
correct.

By mathematical induction, regardless of how large the exchange step t is, the model can always
trace the exchange of n states.

B.1 The expression of nonlinear vs linear

We also conducted stress tests on the round and linear function in this Section, with d = 128. The
setting is similar to Section 4.1, but with experiments where n is greater than or equal to 128. We use
n ∈ {128, 256, 512}, and the corresponding training length is {256, 512, 1024} to ensure as much as
possible that most elements participate in the exchange. In addition, to avoid optimization issues, we
adopted the almost orthogonal vectors used in our Theorem 1 to set key and value of the model and
the model only needs to learn to read information from the state space. The results is shown in Figure
6.

(a) d = 128, n = 128. (b) d = 128, n = 256. (c) d = 128, n = 512.

Figure 6: Comparison of DeltaFormer with κ(x, y) = x⊤y and κ(x, y) = ⌊x⊤y⌋.

We can observe that when d is fixed, as n ≥ d increases, the performance of the linear kernel is
severely degraded. This essentially involves the famous Thompson problem, which is how to place
as many orthogonal vectors as possible on the d-dimensional unit sphere. However linear functions
cannot have superposition, and nonlinear functions can store a large amount of information through
superposition [22].

C Compare of linear version and no-linear version of Theorem 1

Theorem 1 (rephrased) Let the list be L = [1, 2, . . . , n]. Define the swap operation Gi,j as

Gi,j(L)[k] =


L[j], k = i,

L[i], k = j,

L[k], otherwise.
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Let a sequence of swaps be g1, g2, . . . , gl ∈ G = {Gi,j | 0 < i < j ≤ n}. Then there exists a
single-layer DeltaFormer F with head dimension O(log n) such that

F (g1, . . . , gl, j) = g1 ◦ g2 ◦ · · · ◦ gl(L)[j].

KU Cache read out and rewrite

We can introduce the KU cache compress operator ku(·) that pre-fills the sequence g1, . . . , gl
into a cache of size O(n log n), independent of l. With this cache we obtain another single-layer
DeltaFormer H satisfying

H(ku(g1, . . . , gl), j) = F (g1, . . . , gl, j).

Comparison with Lemma 2 in RWKV-7

Lemma 2 in RWKV-7 (rephrased) There exists a single-layer RWKV-7 block F

• head dimension O(n),

• state-space size O(n2),

such that

F (g1, . . . , gl, j) = g1 ◦ g2 ◦ · · · ◦ gl(L)[j].

D What language can DeltaFormer express?

Regarding the expressive power of models, in addition to computational complexity theory, it can also
be understood from the perspective of language hierarchy. We conducted an experiment on language
hierarchy, and the results are shown in Table 5. The results show that in the category of regular (R)
language, Deltaformer has better length generalization ability compared to Transformer, indicating
that Deltaformer can learn circuits that are easily length generalized compared to Transformer. But for
some more complex languages, such as deterministic context-free (DCF) and context-sensitive (CS)
languages, the performance of Deltaformer and Transformer is not as good as RNN models, such as
Tape-RNN [17]. However, considering that RNN models have not yet been efficiently implemented
on GPUs, we believe that DeltaFormer is practical.

Level Task Model Architecture

RNN Stack-RNN Tape-RNN Transformer LSTM Deltaformer

R Modular Arithmetic (Simple) 100.0 100.0 100.0 24.2 100.0 100.0
Parity Check 100.0 100.0 100.0 52.0 100.0 100.0

DCF Stack Manipulation 56.0 100.0 100.0 57.5 59.1 58.3
Reverse String 62.0 100.0 100.0 62.3 60.9 63.4

CS Duplicate String 50.3 52.8 100.0 52.8 57.6 54.7
Odds First 51.0 51.9 100.0 52.8 55.6 52.5

Table 5: Language hierarchy solvable by different model architectures

E Efficient Chunk-wise Implementation

Below is a simple PyTorch implementation, serving as pseudo-code. We can easily modify the
selection of the kernel function or remove the normalization term. We tried three different ways of
running time on the H100, as shown in Table 6. And we can see that the chunkwise algorithm has
a 22x speed improvement compared to the recurrent implementation. At the same time, compared
to fully parallel algorithms, it has an 8x speed improvement, because fully parallel algorithms are
bounded by I/O, due to the n × n size matrix. The details can refer to the Readme file in the
supplementary materials of the Triton implementation.
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Method Time
Recurrent 279.9 ms
Parallel 102.2 ms
Chunk-wise 12.7 ms

Table 6: Comparison of execution times with tensor shape [2,32,8192,128] in an H100.

import torch
import torch.nn.functional as F
import math

def flash_attn(K_chunk , K_prev , V_prev):
attn = K_chunk @ K_prev.transpose(-1, -2)/math.sqrt(K_chunk.shape
[-1])
z_intra = torch.logsumexp(attn , dim=-1)
return torch.softmax(attn ,dim=-1)@V_prev , z_intra

def naive_implementation(k, n, d_model): """n is the previous v, v is
actually new v. """
B, H, T, D = k.shape
v = torch.zeros_like(n)
for t in range(T):

if t == 0:
v[:, :, 0] = n[:, :, 0]

else:
scores = torch.matmul(k[:, :, :t], k[:, :, t]. unsqueeze

(-1)).squeeze (-1) / math.sqrt(d_model)
attn_probs = F.softmax(scores , dim=-1)
v[:, :, t] = n[:, :, t] - torch.sum(attn_probs.unsqueeze

(-1) * v[:, :, :t], dim=-2)
return v

def optimized_chunked_implementation(K, N, d_model , C):
B, H, T, D = K.shape
V = torch.zeros(B, H, T, D)
chunk_nums = T // C
mask = torch.tril(torch.ones(C, C),diagonal =-1).unsqueeze (0).
unsqueeze (0).to(K.device)
for chunk_num in range(chunk_nums):

start = chunk_num * C
end = (chunk_num + 1) * C
K_chunk = K[:, :, start:end]
N_chunk = N[:, :, start:end]
if chunk_num > 0:

intra_output , Z_intra = flash_attn(K_chunk , K[:, :, :start
], V[:, :, :start])#O(TCD)

A = (K_chunk @ K_chunk.transpose(-2, -1)).masked_fill(mask
[:, :, :C, :C] == 0, float("-inf")) / math.sqrt(d_model)#O(C^2D)

Z_inter = torch.logsumexp(A, dim=-1)
P = N_chunk - intra_output * (1/(1 + torch.exp((Z_inter -

Z_intra).unsqueeze (-1))))
A = F.softmax(A, dim=-1) * (1/(1 + torch.exp((Z_intra -

Z_inter).unsqueeze (-1))))
A[:,:,0,:] = 0

else:
A = (K_chunk @ K_chunk.transpose(-2, -1)).masked_fill(mask

[:, :, :C, :C] == 0, float("-inf")) / math.sqrt(d_model)
A = F.softmax(A, dim=-1)
A[:,:,0,:] = 0
P = N_chunk

Ti = torch.eye(C).unsqueeze (0).unsqueeze (0).unsqueeze (0).to(K.
device) + A
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Ti_inverse = torch.inverse(Ti) ## Forward substitution method
O(C^3) Each block can be solved in parallel if we don’t use the
normalization of softmax.

V[:, :, start:end] = Ti_inverse @ P # O(C^2D)
return V #O(T/C * (TCD + C^2D)) = O(T^2D + TCD + TC^2)

def verify_equivalence ():
B = 2
H = 2
T = 1024
D = 64
C = 32
K = torch.randn(B, H, T, D)
N = torch.randn(B, H, T, D)
naive_output = naive_implementation(K, N, D)
optimized_output = optimized_chunked_implementation(K, N, D, C)
equivalence = torch.allclose(naive_output , optimized_output , atol
=1e-5)
print(f"{equivalence}")

Listing 1: PyTorch-style pseudo-code.

F The stability of the calculation of u and o

We rewrite the calculations for u and o as follows:

u = A−1
1 v

o = A2u, (31)

where A1(i, j) = κ1(ki, kj), A2(i, j) = κ2(ki, kj).

Then we will have:

∥(A1 +∆A)−1V −A−1
1 V ∥ ≈ ∥A−1

1 (∆A)A−1
1 V ∥ ≤ ∥A−1

1 ∥∥∆A∥∥A−1
1 ∥∥V ∥ = ∥A−1

1 ∥2∥∆A∥∥V ∥,
(32)

and

∥(A2 +∆A2)U −A2U∥ = ∥(∆A2)U∥ ≤ ∥∆A2∥∥U∥. (33)

The stability of the calculation for u is weaker than that for o, so the selection of the κ1 need to
balance stability and expressivity.

G Code for synthetic data.

Here we provide a code for synthesizing data and the encoding of input information.

G.1 Track the Exchange of Elements.

import numpy
import random
n_elements = 5
swap_pairs = [(i, j) for i in range(n_elements) for j in range(i+1,

n_elements)]

def apply_swap(perm , swap_idx):
i, j = swap_pairs[swap_idx]
perm = list(perm)
perm[i], perm[j] = perm[j], perm[i]
return tuple(perm)

def generate_data(k, num_samples):
data = []
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Figure 7: Swap task diagram. At the beginning, tokens of different colors are placed at positions 1 to
5, and the tokens of two positions are exchanged at each step. We expect the model to query what the
token for each position is at each step. Simply but without loss of generality, we default to outputting
the token at the first position to avoid introducing a "query token". This task can also be tokenized
into a task with an input vocabulary size of C2

5 = 10 and an output vocabulary size of 5.

for _ in range(num_samples):
swap_sequence = [random.randint(0, len(swap_pairs) -1) for _ in

range(k)]
current_perm = tuple(range(n_elements))
first_elements = []

for swap_idx in swap_sequence:
current_perm = apply_swap(current_perm , swap_idx)
first_elements.append(current_perm [0])

input_ids = torch.tensor(swap_sequence , dtype=torch.long)
labels = torch.tensor(first_elements , dtype=torch.long)
data.append ((input_ids , labels))

return data

G.2 Reachability of directed acyclic graphs.

?
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? ?

?

?

?

…

…

…

1 2

3
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30

31

29
28

Can reach or not ?

Figure 8: Reachability of directed acyclic graphs. Each node encodes at most its neighboring node
information at the beginning. Then the model need to determine whether a node can reach from a
starting point.

import numpy
import random
import torch.nn as nn
def create_graph(n):

if n % 2 != 0:
raise ValueError("n should be an even number")

# Step 1: Randomly divide the points into two sets S_1 and S_2
points = list(range(1, n + 1))
random.shuffle(points)
mid = n // 2
S_1 , S_2 = sorted(points [:mid]), sorted(points[mid :])

def assign_parents(S):
parents = {}
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for i in range(1, len(S)):
possible_parents = S[:i]
parents[S[i]] = random.choice(possible_parents)

return parents

# Step 2: Assign parent nodes within each set
parents_S1 = assign_parents(S_1)
parents_S2 = assign_parents(S_2)

# Step 3: Build adjacency matrix
adjacency_matrix = np.eye(n)
def fill_adjacency_matrix(parents):

for child , parent in parents.items():
if parent is not None:

adjacency_matrix[child - 1][ parent - 1] = 1

fill_adjacency_matrix(parents_S1)
fill_adjacency_matrix(parents_S2)
labels = [0 for i in range(n)]
if 1 in S_1:

for i in S_1:
labels[i-1] = 1

else:
for i in S_2:

labels[i-1] = 1
return labels , adjacency_matrix

def generate_graph_data(num_samples =100, n=32):
"""
Generates graph data samples with reachability information.

:param num_samples: Number of samples to generate.
:param n: Number of nodes in the graph.
:return: A list of tuples. Each tuple contains an adjacency matrix
and a list of labels indicating reachability from node 1 to each

node.
"""
data = []
for _ in range(num_samples):

labels , A = create_graph(n)
adj_matrix = torch.tensor(A, dtype=torch.float)
# adj_matrix = adj_matrix.transpose (0,1)
labels = torch.tensor(labels , dtype=torch.long)
data.append (( adj_matrix , labels))

return data
class Emb(nn.Module): #Encode the neighbor node information of each

node and mark the starting point
def __init__(self , config):

super().__init__ ()
self.hidden_size = config.hidden_size

def forward(self , x):
# x shape: (batch_size , seq_len , input_dim)
batch_size , seq_len , input_dim = x.shape
pos_onehot = torch.zeros(seq_len , seq_len , device=x.device)
pos_onehot [0, 0] = 1 # Mark the starting point
pos_emb = pos_onehot.unsqueeze (0).expand(batch_size , -1, -1)

# (batch_size , seq_len , seq_len)
current_dim = x.size(-1)
if current_dim < self.hidden_size:

pad_size = list(x.shape)
pad_size [-1] = self.hidden_size - current_dim
padding = torch.zeros (*pad_size , device=x.device)
x = torch.cat([x, padding], dim=-1) # (batch_size ,

seq_len , hidden_size)
return x.to(dtype)
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. At the last of introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes. There is a limitation section.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: There is two assumption in main text. And the complete proof is in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use open-source code for the training of language model and offer code for
toy tasks we design.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open-source data. The synthetic data for the toy task can be found in
the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We offer it in a jupyterbook in supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: : We just average over 3 runs for language modeling.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We offer in main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We made sure to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We study the structure of models, which has no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We use public datasets from the Internet.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use CC-BY 4.0 in our code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We communicate the details of the dataset/code/model at the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with 780 human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is used only for writing, editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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