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Abstract

Multimodal annotations add important cues to
understand how a conversation proceeded. In
this paper, we further extend the automated
conversation annotation system MONAH with
pitch and volume annotations to become the
state-of-the-art automatic annotation system in
terms of the number of aspects being anno-
tated automatically. MONAHv3 provides an
automated solution that is competitive against
the widely used, manual Jefferson transcription
system. In automatic evaluations, the additions
significantly improves supervised learning in
ten out of fifteen experiments. With human
evaluations to guess the emotions, the addi-
tions significantly outperformed the Jefferson
transcription system. In terms of usability, hu-
man evaluations also showed that the system is
significantly more usable than the Jefferson sys-
tem. Lastly, human evaluations also indicated
that the additions significantly improved par-
alinguistics (describing tone and volume) anno-
tations over MONAHv2, elevating MONAHv3
to be comparable with Jefferson in paralinguis-
tics. MONAHV3 is already and remains more
competitive in kinesics (describing actions).

1 Introduction

Multimodal annotations have emerged as a useful
tool in various fields of study, like conversational
analysis and human language learning and compre-
hension. For example, Boers et al. (2017); Patel
and Furr (2011) both found that multimodal anno-
tations — including both pictorial and verbal ele-
ments — significantly aid in reading fluency. Kim
and Yacef (2023b) also identified other possible
use-cases, such as (1) to be able to revisit a past
conversation on paper, (2) to quickly sift through
multiple conversations using search, (3) to improve
the conversation accessibility to the hearing or vi-
sually impaired, and (4) to reduce individual anno-
tator’s biases.

Specifically, pitch and volume annotations help
understand the prosodic context. Cole (2015) per-

formed a comprehensive review on the role of
prosody to the pragmatic context, expressing el-
ements of meaning that lie “beyond words". This
includes (1) focus, (2) identification of statement,
question, or acknowledge, (3) signalling uncer-
tainty or sarcasm, and (4) manage talker turn
changes and convey cohesion.

[MONAHV2]

the speaker smiled the speaker said It was really great to interact with so many
customers and meet a lot of new friendly faces.

the speaker displayed a positive expression raised upper 1id after ten hundred
milliseconds a short delay the speaker said Congratulations to our Quest winners
and thanks to everyone who participated in the drawing.

the speaker smiled displayed a positive expression raised upper lid the speaker
said We're putting together our 2014 conference schedule, so if you know of a
conference that would be a good fit for us, let us know!

[MONAHV3]
the speaker smiled the speaker said It was really great to interact with so tmany
customers and tmeet a lot of new friendly faces.
the speaker displayed a positive expression raised upper lid after ten hundred
milliseconds a short delay the speaker said Congratulations to our Quest winners
and thanks to everyone who participated in the drawing.
the speaker smiled displayed a positive expression raised upper lid the speaker
said We're putting TOGETHER our 2014 conference schedule, so if tyou know of a
conference that would be a good fit for us, let us know!
[Jefferson]
It was really great to interact with so many customers .hhh and
meet a lot of new £friendly facesf.
(0.6)
.tck (0.2) <Congratulations to our winners (0.2) and (0.2)
>thanks for everyone for participating in the drawing<_
(0.3)
.hhhh <We’re putting together our two #thousand# and fourteen
conference #schedule# .hhh so if you know of a #conference (0.2)

that would be a good fit for us# (0.3) let us °know®_

Figure 1: A side by side comparison of MONAHV?2, the
current addition of pitch and volume to MONAHv3, and
Jefferson transcription.

Given the importance of pitch and volume an-
notations, we extended the works of Kim et al.
(2021) (MONAHvV2) by adding annotations on
speech pitch and volume to release MONAHvV3
. A comparison of the output is in Fig. 1. Ta-
ble 1 summarises the various aspects of automated
annotation produced by each system. This paper
creates MONAHv3 by adding annotations at the
sub-word level, whilst previously MONAHvV2 only
had talk-turn level annotations. These contributions

"https://github.com/provideAfterReview



Group Aspect Moore Kimetal. | Umair et al.
(2015) (2021) (2022)
verbatim(v) Speech-to-text conversion Yes Yes Yes
verbatim(v) Speaker identification None Yes Yes
prosody(p) Phonetic rez;esﬁ?tatlon (e.g., None None None
prosody(p) Silence Yes Yes Yes
prosody(p) Audible breath None None None
prosody(p) Laughter None Yes Yes
prosody(p) Speech tempo None Yes Yes
actions(a) Facial expression None Yes None
actions(a) Body forward leaning None Yes None
actions(a) Head nodding None Yes None
prosody(p) Speech pitch None Contribution None
prosody(p) Speech volume None Contribution| ~ None

Table 1: This paper extends upon the works of Kim et al. (2021) by adding annotations on speech pitch and volume

(marked as “contribution”).

improve the state-of-the-art in terms of the number
of nonverbal aspects automatically annotated.

2 Background

The first attempts at automated multimodal annota-
tions started with (Moore, 2015), where the authors
attempted to automate annotations related to si-
lences. Although it was the one of the first attempts
at automated annotations, its annotation followed
an established system of Jefferson transcription
(Jefferson, 2004), which is still widely used by the
linguistics community to annotate conversations
manually.

Following the advances in deep learning, that
brought about better tools for facial landmark
recognition and speech processing. Umair et al.
(2022) improved upon Moore (2015) and added
speaker identification, laughter and speech tempo
annotations. Both systems followed the established
system of Jefferson transcription.

Kim et al. (2021) introduced MONAHvV2, which
further adds facial expression, body forward learn-
ing and head nodding annotations. Kim and Yacef
(2023a) conducted a user survey to understand the
relative strengths of MONAHV?2 and the manually
transcribed Jefferson transcript, and found that (1)
video recordings outperformed all forms of tran-
scripts, (2) MONAHv2 was more usable than Jef-
ferson, (3) Jefferson was stronger in paralinguistics
(pitch/volume).

3 Data
3.1 Dataset

We test our new multimodal annotations on the
MOSI and MOSEI (Zadeh and Pu, 2018; Zadeh
et al., 2016). MOSEI contains 23,453 annotated
video segments spoken by 1000 distinct people
across 250 topics. MOSI contains 3,702 anno-
tated video segments spoken by 89 distinct people
(Zadeh et al., 2016). For the automatic evalua-
tion, we used the same partitions as provided by
Zadeh and Pu (2018) and Zadeh et al. (2016). Both
datasets are in English.

We also took steps to deidentify individual peo-
ple by using the Named-Entity Recognition system
(Peters et al., 2017) to replace people names with
the “person-hashid" token at the word-level so that
we preserve the number of words in the transcipt
and annotations can be preserved at the word-level.

3.2 Dependent variables

For our purposes of supervised learning, each seg-
ment is annotated for its sentiment from -3 (highly
negative, to +3 (highly positive) and multi-label
emotion annotation across 6 classes — happiness,
sadness, anger, fear, disgust, and surprise.

4 Multimodal features extraction
4.1 Description of pitch and volume
annotations

In this paper, we contribute towards word-level
pitch and volume annotations. The annotations are



inserted in the same way as the Jefferson transcrip-
tion system (Jefferson, 2004). We first discuss pitch
annotations before volume annotations.

There are two types of pitch annotations, the
up (down) arrow signifies the high (low) pitch re-
spectively. The arrow can occur before or after
the word, depending on when the change in pitch
occurred. For example, if the speaker asks “would
you like coffee?" with a higher pitch at the sec-
ond syllabus of “coffee", the annotation would be
“would you like coffeef?" Pitch annotations are
important for emotion recognition and sentiment
analysis. Mairesse et al. (2012) found that anal-
ysis on pitch alone, without any text information
significantly outperformed the baseline.

For volume, there is only one type of annota-
tion, upper-cased words signify the louder words.
Unlike pitch annotations, the upper-casing occurs
at the word level, depending on the average loud-
ness computed across the duration of the word.
For example, if the speaker asks “how dare you?"
with a louder “dare", the annotation would be “how
DARE you?" Volume annotations are important for
emotion recognition and sentiment analysis (Tzi-
rakis et al., 2017).

4.2 Description of pre-existing annotations

We used the Google Speech-to-text service to ob-
tain the transcript for each recording. Unfortu-
nately, phonetic representation (e.g. “uhhhhh") is
not possible as only the correctly spelt form (“uh")
is returned, along with word-level timestamps.
With the word-level timestamps, MONAHv?2 uses
a set of predefined rules to insert phrases that de-
scribe the talkturn. We used the open-source sys-
tem to generate the features. As for Jefferson tran-
script, we have employed Jefferson Transcription
Specialists to transcribe the video snippets.

4.3 Generation of pitch and volume
annotations

Stage 1: Obtaining pitch and volume raw data
In the first stage, we first split the audio file into
multiple audio files, each consisting of one talkturn.
The start and end time of each talk turn is supplied
in the MOSEI dataset. We then send all talkturn au-
dio files to Google Speech-to-text API to obtain the
word-level timestamps. With the start time of each
word, we can derive the duration for each word
by using either the start time of the next word or
the end time of the talkturn (if the word is the last
word of the talkturn). Duration at the word level

is fine for volume as we annotate at the word level.
However, for pitch annotations, it is crucial to know
whether the first or last syllable has significantly
higher or lower pitch. We have used the Carnegie
Mellon Pronouncing Dictionary from NLTK (Bird
et al., 2009) to map words into the number of sylla-
bles. We then divided the word-level duration by
the number of syllabus to obtain the syllabus-level
duration. Finally, with the volume and pitch data
extracted using OpenSMILE (Eyben et al., 2010),
we calculate the average volume (pitch) using the
word- (syllable-) level duration.

Stage 2: Compute z-score The z-score trans-
formation helps the algorithm identify pitch and
volume variations within the same video. We calcu-
late the z-score for each word (or syllable) using the
following formula, where x is the volume (pitch) of
the word (syllable),  is the average volume (pitch)
of all words (syllables) in the same video, and o
is the standard deviation of volume (pitch) of all
words (syllables) in the same video.

s = T — [Video (1)

OVideo

Stage 3: Generate text narrative from z-score
Having computed the z-scores for pitch and vol-
ume, we insert unicode up(down) arrows to rep-
resent high(low) pitch if the absolute value of the
z-score is above the threshold (say, 2.0). Similarly,
for volume annotations, we captitalize the word if
the z-score is above the threshold. Fig 4 (Appendix
A.1) shows the sensitivity analysis of changing the
thresholds.

S5 Experimental settings

5.1 Research questions

We answer the following research questions using
both automatic and human evaluation. Considering
volume annotations and pitch annotations individu-
ally and collectively:

Q1: Do the annotations improve supervised
learning?

Q2: Do the annotations improve human perfor-
mance in guessing the emotions?

Q3: Do the annotations change the perceived
usability?

Q4: Do the annotations change the perceived
thoroughness of the three aspects of nonverbal an-
notation? The three aspects of nonverbal anno-
tations are (1) Chronemics: the use of pacing of
speech and length of silence, (2) Kinesic: body



movements or postures, and (3) Paralinguistic: vol-
ume, pitch, and quality of voice.

For both automatic and human evaluations, two
baselines are used: (B1) the unannotated verbatim
transcripts, and (B2) the transcripts of the previous
version MONAHV2 since this paper extends it.

5.2 Automatic evaluation
5.2.1 Applied models

In automatic evaluation, we test whether the annota-
tion additions help improve supervised learning in
three tasks. Sentiment prediction in MOSI (Zadeh
et al., 2016) and MOSEI (Zadeh and Pu, 2018),
and multilabel emotion prediction in MOSEIL. The
following models are selected to test the annotation
additions. In appendix A.3, we found that the tok-
enizer behavior of BERT and DistilBERT were the
same, but differ from DistilRoberta, when given a
range of capitalization and arrow annotation vari-
ants.

1. Cased BERT: Bidirectional Encoder Repre-
sentations from Transformer (Devlin et al.,
2018) is a widely used baseline in the NLP
community.

2. Cased DistilBERT (Sanh et al., 2019): built
via the knowledge distillation technique (Bu-
cilua et al., 2006; Hinton et al., 2015) on
BERT.

3. Cased DistilRoberta. A distilled version of
RoBERTa (Liu et al., 2019).

In our ablation tests, we have performed hyper-
parameter tuning over the following range (see Ap-
pendix Table 6) for each input configuration. We
used a random search to tune the hyper-parameters,
and each configuration was given 15 trials. We
picked the hyper-parameters with the best devel-
opment set performance and reported their test set
performance in this paper. As for the input thresh-
olds for pitch-only (P), volume-only (V) and pitch
plus volume (PV), we increased the threshold in
increments of 0.5 from O to 2.0 inclusive.

5.2.2 Evaluation metrics

We compare the automatic evaluations using MAE
for the sentiment task in both MOSEI and MOSI.
As for the multi-label emotions task, we use the
average class-wise weighted accuracy. We boot-
strapped 1000 samples to compute statistical sig-
nificance.

5.3 Human evaluation

Q2A: The accuracy of guessing the emotions using MONAH and
Jefferson transcripts would outperform verbatim transcripts significantly.

Q2: Do the

Q2B: The accuracy of guessing the emotions using video-recordings

annotations improve
‘ would outperform all four transcripts significantly.

human performance
in guessing the

emotions?

Q2C: MONAH would significantly outperform its previous iteration in
guess-the-emotion score.

Q3: Do the
annotations change Q3A: Users would find the MONAH system significantly more usable
the perceived than the Jefferson system.
usability?
QA4A: Jefferson would significantly outperform MONAH in chronemics
score.
Q4: Do the
annotations (_:hange Q4B: MONAH would significantly outperform Jefferson in kinesic score.
the perceived

thoroughness of the

three aspects of
nonverbal
annotation?

QA4C: Jefferson would significantly outperform MONAH in paralinguistic
score.

Q4D: MONAH would significantly outperform its previous iteration in
paralinguistic score.

Figure 2: The list of the eight hypotheses tested under
the three areas.

To demonstrate MONAHvV3’s competitiveness
against the Jefferson transcripts, we adapted a
shorter version of Kim and Yacef (2023a), test-
ing eight hypotheses in three areas (Q2 - Q4). The
hypotheses are summarized in Fig. 2. Hypothe-
ses group Q2 is associated with whether the addi-
tional multimodal annotations improves guess-the-
emotion siginicantly over not having the annota-
tions (Q2A). Since multimodal annotations are a
video-to-text compression, video recordings would
have significantly higher guess-the-emotion accu-
racy (Q2B). Since we added the pitch and volume
annotations, MONAHv3 should outperform the
MONAHV2 (Q2C). Hypotheses group Q3 is associ-
ated with only whether users would find the MON-
AHv3 system significantly more usable than the
Jefferson system with the addition of pitch symbols
and capitalization (Q3A). Hypotheses group Q4 is
associated with the three aspects of multimodal
annotation (chronemics, kinesic, paralinguistic).
Since Jefferson transcripts annotate within-talkturn
delays, Jefferson would significantly outperform
MONAH (v2 and 3) in chronemics score (Q4A).
As for kinesic score, MONAH (v2 and 3) should
outperform Jefferson transcripts as MONAH (v2
and 3) annotates more actions than Jefferson (Q4B).
As for paralinguistics, Jefferson has a lot more
types of symbolic annotations, like phonetic repre-
sentations and symbols that indicate an elongation
of a syllabus, therefore Jefferson should outperform
MONAHvV3 (Q4C). However, since MONAHv3
made a significant improvement in its pitch and
volume annotations, it should outperform MON-



AHV2 (Q4D). We selected the threshold 2.0 for
both pitch and volume and generated the narratives
for the user study. As for Jefferson transcripts, we
used the gold standard, human manually generated
transcripts from a professional transcriber.

Candidates
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System Usability Scale
(MONAHVv2, MONAHvV3, Jefferson)

Figure 3: Experiment design. The first two phases are
about guessing the emotions, where participants are ran-
domly placed into one of the five groups so that the order
in which the transcripts are presented are shuffled. T:
Verbatim, M: MONAHv2, N: MONAHYV3, J: Jefferson,
V: Video.

Our experimental design comprises a sequence
with four stages in the user study (Fig. 3). We
provide a quick introduction to the Jefferson tran-
script in the beginning (see Appendix A.4) before
starting the first stage. In the first stage, the par-
ticipant attempts to guess the emotions of fifteen
snippets. Three of each of the five types of question
is shown to the participant. We controlled for ques-
tion difficulty by fixing the set of fifteen questions
across the five groups. In each group, participants
were exposed to three questions of each transcript
variant.

If the participant gets at least seven out of fifteen
correct, the participant enters part two. In part
two, the participant again attempts to guess the
emotions of another fifteen snippets, the questions
of part one do not overlap with part two. The setup
of part two is similar to part one, where the set
of fifteen questions is fixed across the five groups,
each group was exposed to three questions of each
transcript variant. The participant needs to get at
least six out of fifteen correct to proceed on to the
next stage, the aspects rating stage.

The aspects rating stage consists of Likert-scale

questions that ask the users to rate the thoroughness
of each of the three aspects of nonverbal annota-
tion (Chronemics, Kinesics, Paralinguistics). The
set of 15 questions is divided into five groups, so
each group answers a set of three non-overlapping
question. Each of these three questions has nine
subparts each, because there were three transcripts
(MONAH v2 and 3, plus Jefferson), and there were
three aspects (Chronemics, Kinesics, Paralinguis-
tics). The phrasing of the question is, “The amount
of information is sufficient to interpret how the
talkturn is being said, for (1) Use of pacing of
speech and length of silence in conversation; (2)
Body movements or postures; (3) Volume, pitch
and quality of voice."

The last stage is the System Usability Scale stage
which is a set of ten questions for each system
(Brooke, 1996). First, the participant gets a re-
fresher on MONAH v2 and 3, and on the Jefferson
transcript. Then, for each of the three transcripts
types, the participant answers the ten questions on
the Likert scale. The list of questions is detailed in
Appendix A.5.

We administrated the survey on Amazon Me-
chanical Turk, and the hosting of the survey was
on Qualtrics. The base reward for the survey is 0.5
USD. A 2.50 USD bonus is awarded if the partici-
pant is able to get at least seven correct answers out
of the 15 questions in the first guess-the-emotion
section. The survey is terminated if the partici-
pant could not get at least seven correct answers
in the first section. An additional 2 USD bonus
is awarded if the participant is able to get at least
six correct answers out of the fifteen questions in
the second guess-the-emotion section. The ethics
approval number is 123456 (masked for review
anonymity). In total, 616 workers received the base
reward, 62 workers received the 2.50 USD bonus,
and 64 workers received the 4.50 USD bonus. The
total cost of administering the survey is 1088 USD,
including MTurk fees and taxes, and compensating
12 workers 5 USD each due to errors in the survey
setup. Workers who have received any base, bonus
or compensation are added to the MTurk exclusion
list to prevent multiple attempts. On the Qualtrics
end, we have also followed the recommended best
practices? to prevent fraud responses.

When extracting the data for analysis, we dis-
carded participants with score less than 7 for either

“https://www.qualtrics.com/support/survey-
platform/survey-module/survey-checker/fraud-detection/



DB

Baseline: Verbatim
MOSEI

BT

DR

DB

MOSI
BT

DR

DB

Baseline

MOSEI
BT

DR

: MONAH

DB

MOSI
BT

DR

Baseline
+P(0.0)
+P(0.5)
+P(1.0)
+P(1.5)
+P(2.0)
+V(0.0)
+V(0.5)
+V(1.0)
+V(1.5)
+V(2.0)
+PV(0.0)
+PV(0.5)
+PV(1.0)
+PV(1.5)
+PV(2.0)

0.551
0.583
0.568
0.554
0.543
0.548
0.646
0.581
0.555
0.555
0.540%
0.647
0.610
0.577
0.555
0.545

0.548
0.562
0.567
0.540
0.547
0.5374
0.613
0.570
0.550
0.536%
0.536%
0.648
0.592
0.562
0.545
0.538

0.519
0.544
0.547
0.535
0.529
0.511
0.550
0.535
0.515
0.516
0.510
0.595
0.580
0.554
0.523
0.514

0.851
1.003
0.931
0.941
0.873
0.866
1.118
1.021
0.930
0.904
0.855
1.209
1.056
0.934
0.881
0.839%

0.826
0.996
0.902
0.840
0.856
0.809
0.991
0.922
0.876
0.796
0.785%
1.097
1.037
0.885
0.827
0.800

0.714
0.815
0.843
0.815
0.754
0.709
0.863
0.734
0.722
0.717
0.696
0.981
0.927
0.823
0.740
0.731

0.537
0.577
0.548
0.540
0.542
0.534
0.634
0.577
0.550
0.546
0.531
0.639
0.599
0.564
0.543
0.540

0.540
0.558
0.544
0.550
0.527
0.518%
0.609
0.572
0.539
0.533
0.534
0.648
0.583
0.548
0.534

0.527

0.522
0.543
0.540
0.524
0.514
0.519
0.541
0.529
0.520
0.512
0.511
0.587
0.557
0.542
0.522
0.516

0.909
1.025
0.972
0.929
0.861
0.815
1.179
1.032
0.922
0.875
0.847
1.163
1.091
0.967
0.870
0.798

0.800
0.981
0.905
0.900
0.812
0.807
1.083
0.956
0.869
0.780
0.857
1.118
1.059
0.875
0.845
0.739%

0.720
0.854
0.770
0.820
0.755
0.708
0.759
0.737
0.735
0.732
0.710
1.004
0.887
0.822
0.777
0.777

Table 2: Summary of the model mean-absolute-error for the fine narratives. DB: DistilBERT, BT: BERT, RB:
RoBERTA. Best in column are in bold-face. * statistically significant difference with baseline (top row).

Dataset: MOSEI
Baseline: Verbatim Baseline: MONAH

Input DB BT DR DB BT DR
Baseline 0.832 0.838 0.838 0.839 0.840 0.844
P(0.0) 0.834 0.838 0.840 0.838 0.836 0.840
P(0.5) 0.837* 0.836 0.839 0.841 0.839 0.841
P(1.0) 0.837* 0.838 0.840 0.840 0.839 0.840
P(1.5) 0.841% 0.840 0.842* 0.842 0.840 0.843
P(2.0) 0.839* 0.840 0.837 0.844 0.841 0.844
V(0.0) 0.834 0.835 0.837 0.836 0.840 0.839
V(0.5) 0.839* 0.834 0.840 0.839 0.837 0.842
V(1.0) 0.834 0.842* 0.842%* 0.841 0.841 0.845
V(1.5) 0.839* 0.834 0.843* 0.840 0.839 0.842
V(2.0) 0.839* 0.839 0.840 0.842 0.845* 0.845
PV(0.0) 0.831 0.835 0.833 0.836 0.836 0.839
PV(0.5) 0.835* 0.837 0.840 0.840 0.840 0.839
PV(1.0) 0.836* 0.835 0.838 0.840 0.840 0.842
PV(1.5) 0.839* 0.841* 0.838 0.842 0.841 0.843
PV(2.0) 0.835* 0.841 0.839 0.842 0.841 0.843

Table 3: Summary of the classification accuracies for the fine narratives. Best in column are in bold-face. *
statistically significant difference with baseline (top row).

of the guess the emotions section to ensure that the

response quality is acceptable. When testing the

hypothesis, we used a two-sample, one-sided t-test

to compare the means.

6.1 Ablation analysis

6 Experimental Results

We first discuss the results of the sentiment regres-
sion task shared by both MOSEI and MOSI before
discussing the results of the multi-label classifica-




tion task from MOSEI. Table 2 and 3 summarizes
the model performances for the ablation tests. In
summary, the addition of pitch or volume annota-
tion (but not necessarily both) improves the perfor-
mance on the regression task and the classification
across all three variants of the Bert models.

Since there are three models, two sentiment tasks
(MOSEI, MOSI) and two baselines (Verbatim and
MONAHYV2), we present 3x2x2=12 columns in Ta-
ble 2. Out of the 12 combinations, the addition of
pitch and volume annotations improved supervised
learning significantly in six combinations. Four of
the six combinations are significant improvements
over the Verbatim baseline, and two are signifi-
cantly better over the MONAHV2 baseline.

Since there are three models, one classification
task (MOSEI) and two baselines (Verbatim and
MONAHvV2), we present 3x1x2=6 columns in Ta-
ble 3. Out of the 6 combinations, the addition of
pitch and volume annotations improved supervised
learning significantly in four combinations. All
three combinations under the verbatim baseline are
significant, and one is significantly better over the
MONAHV?2 baseline.

6.2 Human ratings

The results of the hypotheses testing results are
summarized in Table 4.

For Q2A, MONAH v2 and 3 both outperformed
verbatim significantly, but Jefferson did not outper-
form verbatim significantly. For Q2B, the accuracy
of guess the emotions using video significantly out-
performed Jefferson and verbatim transcript, but
not MONAH v2 nor v3. Lastly, for Q2C, although
the MONAHV3 accuracy (0.558) outperformed the
MONAHvV2 (0.497), the difference is not signifi-
cant.

For Q3A, users do find the MONAHV3 system
significantly more usable than the Jefferson system.

For Q4A, Jefferson significantly outperformed
MONAHV3 in chronemics score. For Q4B, MON-
AHv3 significantly outperformed Jefferson in ki-
nesics score. For Q4C, Jefferson significantly out-
performed the MONAHV2, but did not outperform
MONAHV3. Lastly, for Q4D, MONAHV3 signifi-
cantly outperformed MONAHvV?2 in paralinguistic
score.

7 Discussion

7.1 Ablation analysis

For supervised learning, we observed that the im-
pact of the pitch and volume annotations are more
significant over the Verbatim baseline (4 sentiment
combinations, and 3 classification combinations
significant) than it is over the MONAHV?2 base-
line (2 sentiment combinations, and 1 classification
combination significant). This suggests that pitch
and volume annotations are more valuable when
added to a transcript without any nonverbal an-
notations. As MONAHv2 have other nonverbal
talkturn-level annotations, the additional informa-
tion added by pitch and volume annotations is less
significant.

In addition, we observed that by model, BERT
has a higher count of significant differences (6) as
compared to DistilBERT (3) or DistilRoBERTA (1).
This is interesting because the tokenizer of BERT
and DistilBERT behaves identically, as seen in the
Appendix A.3. Therefore, the tokenizer is not a
reason behind this difference. The plausible reason
is that both DistilBERT and DistilRoBERTA are
distilled models and have less ability to take ad-
vantage of the pitch (up/down arrows) and volume
(capital letters) annotations.

7.2 Human ratings

In this section, we will be discussing our three
hypotheses areas illustrated in Fig. 2.

Does it improves the user’s accuracy in guess-
the-emotion? Compared to Kim and Yacef
(2023a), where the authors performed a user-study
of MONAHv?2 did not find a significant difference
in Q2A with 104 completions. Our study has a
larger number of completions (126), and we found
statistically significant differences in both MONAH
v2 and v3 outperforming the verbatim transcripts.
In contrast, the mean of Jefferson transcripts in this
study is lower than that of verbatim, which could be
explained by the low usability score and the users
did not understand the annotations.

As for Q2B, previously, the authors found that
video is significantly better than all variants of tran-
scripts, but in this paper, we found that video is
only significantly better than the Jefferson and the
verbatim transcript. This is interesting because the
video file encodes a lot more information compared
to the pure textual MONAH (v2 or v3) transcripts.

Is each system easy to use? Previously, MON-
AHv2 was found to be more usable than the Jef-



. Avg | N | Std | Avg | N | Std p-
Hypothesis CLG BSE 0G| CLG CLG| BSE | BSE| BSE | value
Q2A The accuracy of guess the emotions | ] t | 0.456] 581 | 0.498] 0.447) 591 | 0.498| 0.373
using MONAH and Jefferson transcripts | m2 t | 0.526] 591 | 0.500] 0.447) 591 | 0.498| 0.003*
outperform verbatim significantly. m3 t | 0.558] 581 | 0.497| 0.447) 591 | 0.498| 0.001*
. v t | 0.566| 581 | 0.496] 0.447| 591 | 0.498 0.001*
%ngﬁfoﬁZﬁfj 2; t‘; Zf;; ;Zea‘;’;w”o"s v | j | 0566/ 581 | 0.496] 0.456 581 | 0.498] 0.001*
transcripts significantly v | m2 | 0.566| 581 | 0.496] 0.526| 591 | 0.500] 0.084
v | m3 | 0.566| 581 | 0.496] 0.558| 581 | 0.497| 0.384
Q2C MONAH would significantly m3 | m2 | 0.558| 581 | 0.497| 0.526] 591 | 0.500 0.14
outperform its previous iteration in
guess-the-emotion score.
Q3A Users would find the MONAH m3 | j | 585 | 48 | 13.9]49.7| 48 | 16.1 | 0.003*
system significantly more usable than the
Jefferson system.
Q4A Jefferson significantly outperform ] m3 | 3.92 | 720 | 0.982| 3.79 | 720 | 1.00 | 0.007*
MONAH in chronemics score.
Q4B MONAH significantly outperform | m3 | j 3.75 | 720 | 1.10 | 3.54 | 720 | 1.24 | 0.001*
Jefferson in kinesic score.
QA4C Jefferson significantly outperform j m2 | 3.87 | 720 | 0.975| 3.70 | 720 | 1.12 | 0.001*
MONAH in paralinguistic score. j m3 | 3.87 | 720 | 0.975| 3.95 | 720 | 0.944| 0.950
Q4D MONAH significantly outperform | m3 | m2 | 3.95 | 720 | 0.944| 3.70 | 720 | 1.12 | 0.001*
its previous iteration in paralinguistic
score.

Table 4: Summary of hypotheses testing results. CLG: Challenger, BSE: Baseline, j: Jefferson, m3: MONAHV3,

m2: MONAHvV2, t: Verbatim, v: Video.

ferson system. MONAHv3 remains significantly
more usable than the Jefferson system with the ad-
dition of one type of symbol from the Jefferson
transcription system. In both systems, the up/down
arrows denote high/low pitch.

Is each system thorough in annotating nonver-
bal events? In MONAHV3, we did not change the
chronemics and kinesic annotations. Therefore, we
expected the previous findings to remain valid in
this study, and it did — Jefferson still significantly
outperformed MONAHV3 in chronemics (Q4A)
and MONAHV3 still significantly outperformed
Jefferson in kinesic (Q4B). The addition of pitch
and volume annotations should improve the par-
alinguistic score, and the results confirmed it. Jef-
ferson was found to outperform MONAHV2, and it
continued to outperform MONAHYV?2 in the current
study in Q4C. However, Jefferson no longer signif-
icantly outperforms MONAHv3 in Q4C. Lastly,
we observed that the additional annotations in
MONAHUV3 significantly improved upon the par-
alinguistics score as MONAHYv3 significantly out-
performed MONAHV2 (Q4D).

8 Conclusion

In this paper, we produce a state-of-the-art system
in terms of the number of nonverbal aspects be-
ing annotated, and have automatically annotated
prosody related annotations, elevating the thorough-
ness of human-rated paralinguistics score to be
comparable to the manual, and time-consuming
Jefferson transcripts. In addition, automated super-
vised learning and manual human ratings have im-
proved significantly from these additions, demon-
strating the importance of our additions.

Future works could focus on chronemics where
Jefferson still significantly outperforms MON-
AHv3. As for limitations, there are many other
analysis lenses such as toxicity, lie, or sacarsm de-
tection that could be explored in future works. The
risks of this paper include the over-generalization
of findings, e.g., improving the accessibility to vi-
sion or hearing impaired users require more specific
user testing.
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A Appendices
A.1 Z threshold sensitivity analysis
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Proportion of words having a loudness annotation
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Threshold for z-score to have a pitch annotation

Figure 4: Sensitivity analysis on the impact of changing
the threshold on the percentage of text being annotated.
Left: Since pitch annotations can be added to the first
or last syllabus of the word, we consider all beginning
and ending syllabus as candidates. We observe that
when the threshold is zero, all syllables have a pitch
annotation. Right: Since loudness annotations are added
at the word-level, and we only annotate loud words, and
not soft words, we observe that when the threshold is
zero, nearly half (50%) of the words have a loudness
annotation.

A.2 Tokenizer behavior

Since we are adding up and down arrow sumbols
as well as capitalising to the characters, it would be
important to study the effects of these additions on
the behaviour of the tokenizer, these are illustrated
in Table 5.

A.3 Hyperparameter tuning

We used a random search to tune the hyper-
parameters, and each configuration was given 15
trials. In each trial, we pick a random value that is
listed in Table 6.

A.4 Jefferson Reference

Table 7 is provided to all participants to help them
familiarize themselves with the Jefferson Transcrip-
tion System.

A.5 System Usability Scale Questions

Figure 5 details the set of the ten system usability
scale questions.

——

o 1 2 3
Threshold for z-score to have a loudness annotation
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Table 5: Tokenization outcomes with different anno-
tations by pre-trained models. BERT and DistilBERT
have the same tokenization outcomes. For ROBERTa
and Reformer, we added the randomly initialized up and

down arrows tokens embeddings.

Tokens from tokenizer
. Distil
Input BERT | DistilBERT ROBERTA
happy happy, happy, happy,
days days days Gdays
, ##ha, , ##tha,

Thappy T##ppy T##ppy T, happy,
days days days Gdays
happy| happy, | happy, ##|, | happy, |,
days ##], days days Gdays
1, ##ha, 1, ##ha,

ha , happy,
1 df;)sy ' ##ppy, | ##ppy, ##], I GdI;I; ys
#i#|, days days ’
H, #AP, | H, ##AP,
H(?aPIS)Y #HP, ##Y, | ##P, ##HY, ;{ ’G?il:P’s
y days days ’ Y
T, #HA, | T, #HA, T, H,
TPZZPSPY ##PP, ##PP, ##Y, | APP Y,
y ##Y, days days Gdays
H, ##AP, | H, ##AP, H, APP,
ngpsYi #HP, ##Y, | ##P, ##HY, Y, |,
Y ##], days | ##], days Gdays
T, ##HA, T, H,
THAPPY|| ##PP, T, #4HA, APP, Y,
##PP, ##Y,
days H#H#Y, ##], ##. days ##],
days > 42y Gdays
Table 6: Hyperparameter tuning
Hyper
parame- Min. Max. Scale
ter
Cor-ltext 2 10 Linear
Size
Learning .
Rate le-6 le-4 Loglinear
Bgtch 8 18 Linear
Size
Warmup | 0.5 Linear
Ratio




Symbol

Defintion and use

[yeah] [ok]

Overlapping talk

End of one TCU and beginning of next begin with no gap/pause in between
(sometimes a slight overlap if there is speaker change). Can also be used when
TCU continues on new line in transcript.

) Brief interval, usually between 0.08 and 0.2 seconds
Time (in absolute seconds) between end of a word and beginning of next.
(1.4) Alternative method: “none-one-thousand-two-one-thousand...”: 0.2, 0.5, 0.7,

1.0 seconds, etc.

Word [first letter
underlined] Wo:rd
[colon underlined]

Underlining indicates emphasis. Placement indicates which syllable(s) are
emphasised. Placement within word may also indicate timing/direction of pitch
movement (later underlining may indicate location of pitch movement)

Colon indicates prolonged vowel or consonant. One or two colons common,

wo::rd .
three or more colons only in extreme cases.
tword |word Marked shift in pitch, up (T) or down' ). Dpuble arrows can be used with
extreme pitch shifts.
Upper case indicates syllables or words louder than surrounding speech by the
WORD
same speaker
Degree sign indicate syllables or words distinctly quieter than surrounding
°word® speech by the same speaker. Pre-positioned left carat indicates a hurried start of
a word, typically at TCU beginning
word- A dash indicates a cut-off. In phonetic terms this is typically a glottal stop
Right/left carats indicate increased speaking rate (speeding up). Left/right
>word< .o . .
carats indicate decreased speaking rate (slowing down)
In/out breath. Three letters indicate ‘normal’ duration. Longer or shorter
.hhh . o .
inbreaths indicated with fewer or more letters.
whhord Can also indicate aspiration/breathiness if within a word (not laughter)
w(h)ord Indicates abrupt spurts of breathiness, as in laughing while talking
£word£ Pound sign indicates smiley voice, or suppressed laughter
word Hash sign indicates creaky voice
word Tilde sign indicates shaky voice (as in crying)
(word) Parentheses indicate uncertain word; no plausible candidate if empty
(@) Double parentheses contain analyst comments or descriptions

| think that | would like to use this system frequently. O (@] O

| found the system unnecessarily complex.

| thought the system was easy to use.

| think that | would need the support of a technical

personal to be able to use the system.

| found the various functions in this system were well

integrated

| thought there was too much inconsistency in this

system,

| would imagine that most people would learn to use

this system very quickly.
| found the system very cumbersome to use.

| felt very confident using the system.

| needed to learn a lot of things before | could get

going with this system.

Table 7: The Jefferson Transcription System.

Strongly disagree Somewhat disagree Neither agree nor disagree Somewhat agree Strongly agree

@) O O
@) O O
O (o]
O (o]
C o C
O (o]
C O C
C O C
C O C

Figure 5: System Usability Scale
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