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Abstract
Multimodal annotations add important cues to001
understand how a conversation proceeded. In002
this paper, we further extend the automated003
conversation annotation system MONAH with004
pitch and volume annotations to become the005
state-of-the-art automatic annotation system in006
terms of the number of aspects being anno-007
tated automatically. MONAHv3 provides an008
automated solution that is competitive against009
the widely used, manual Jefferson transcription010
system. In automatic evaluations, the additions011
significantly improves supervised learning in012
ten out of fifteen experiments. With human013
evaluations to guess the emotions, the addi-014
tions significantly outperformed the Jefferson015
transcription system. In terms of usability, hu-016
man evaluations also showed that the system is017
significantly more usable than the Jefferson sys-018
tem. Lastly, human evaluations also indicated019
that the additions significantly improved par-020
alinguistics (describing tone and volume) anno-021
tations over MONAHv2, elevating MONAHv3022
to be comparable with Jefferson in paralinguis-023
tics. MONAHv3 is already and remains more024
competitive in kinesics (describing actions).025

1 Introduction026

Multimodal annotations have emerged as a useful027

tool in various fields of study, like conversational028

analysis and human language learning and compre-029

hension. For example, Boers et al. (2017); Patel030

and Furr (2011) both found that multimodal anno-031

tations – including both pictorial and verbal ele-032

ments – significantly aid in reading fluency. Kim033

and Yacef (2023b) also identified other possible034

use-cases, such as (1) to be able to revisit a past035

conversation on paper, (2) to quickly sift through036

multiple conversations using search, (3) to improve037

the conversation accessibility to the hearing or vi-038

sually impaired, and (4) to reduce individual anno-039

tator’s biases.040

Specifically, pitch and volume annotations help041

understand the prosodic context. Cole (2015) per-042

formed a comprehensive review on the role of 043

prosody to the pragmatic context, expressing el- 044

ements of meaning that lie “beyond words". This 045

includes (1) focus, (2) identification of statement, 046

question, or acknowledge, (3) signalling uncer- 047

tainty or sarcasm, and (4) manage talker turn 048

changes and convey cohesion. 049

Figure 1: A side by side comparison of MONAHv2, the
current addition of pitch and volume to MONAHv3, and
Jefferson transcription.

Given the importance of pitch and volume an- 050

notations, we extended the works of Kim et al. 051

(2021) (MONAHv2) by adding annotations on 052

speech pitch and volume to release MONAHv3 053
1. A comparison of the output is in Fig. 1. Ta- 054

ble 1 summarises the various aspects of automated 055

annotation produced by each system. This paper 056

creates MONAHv3 by adding annotations at the 057

sub-word level, whilst previously MONAHv2 only 058

had talk-turn level annotations. These contributions 059

1https://github.com/provideAfterReview
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Group Aspect Moore
(2015)

Kim et al.
(2021)

Umair et al.
(2022)

verbatim(v) Speech-to-text conversion Yes Yes Yes
verbatim(v) Speaker identification None Yes Yes

prosody(p)
Phonetic representation (e.g.,

uhhh)
None None None

prosody(p) Silence Yes Yes Yes
prosody(p) Audible breath None None None
prosody(p) Laughter None Yes Yes
prosody(p) Speech tempo None Yes Yes
actions(a) Facial expression None Yes None
actions(a) Body forward leaning None Yes None
actions(a) Head nodding None Yes None
prosody(p) Speech pitch None Contribution None
prosody(p) Speech volume None Contribution None

Table 1: This paper extends upon the works of Kim et al. (2021) by adding annotations on speech pitch and volume
(marked as “contribution”).

improve the state-of-the-art in terms of the number060

of nonverbal aspects automatically annotated.061

2 Background062

The first attempts at automated multimodal annota-063

tions started with (Moore, 2015), where the authors064

attempted to automate annotations related to si-065

lences. Although it was the one of the first attempts066

at automated annotations, its annotation followed067

an established system of Jefferson transcription068

(Jefferson, 2004), which is still widely used by the069

linguistics community to annotate conversations070

manually.071

Following the advances in deep learning, that072

brought about better tools for facial landmark073

recognition and speech processing. Umair et al.074

(2022) improved upon Moore (2015) and added075

speaker identification, laughter and speech tempo076

annotations. Both systems followed the established077

system of Jefferson transcription.078

Kim et al. (2021) introduced MONAHv2, which079

further adds facial expression, body forward learn-080

ing and head nodding annotations. Kim and Yacef081

(2023a) conducted a user survey to understand the082

relative strengths of MONAHv2 and the manually083

transcribed Jefferson transcript, and found that (1)084

video recordings outperformed all forms of tran-085

scripts, (2) MONAHv2 was more usable than Jef-086

ferson, (3) Jefferson was stronger in paralinguistics087

(pitch/volume).088

3 Data 089

3.1 Dataset 090

We test our new multimodal annotations on the 091

MOSI and MOSEI (Zadeh and Pu, 2018; Zadeh 092

et al., 2016). MOSEI contains 23,453 annotated 093

video segments spoken by 1000 distinct people 094

across 250 topics. MOSI contains 3,702 anno- 095

tated video segments spoken by 89 distinct people 096

(Zadeh et al., 2016). For the automatic evalua- 097

tion, we used the same partitions as provided by 098

Zadeh and Pu (2018) and Zadeh et al. (2016). Both 099

datasets are in English. 100

We also took steps to deidentify individual peo- 101

ple by using the Named-Entity Recognition system 102

(Peters et al., 2017) to replace people names with 103

the “person-hashid" token at the word-level so that 104

we preserve the number of words in the transcipt 105

and annotations can be preserved at the word-level. 106

3.2 Dependent variables 107

For our purposes of supervised learning, each seg- 108

ment is annotated for its sentiment from -3 (highly 109

negative, to +3 (highly positive) and multi-label 110

emotion annotation across 6 classes – happiness, 111

sadness, anger, fear, disgust, and surprise. 112

4 Multimodal features extraction 113

4.1 Description of pitch and volume 114

annotations 115

In this paper, we contribute towards word-level 116

pitch and volume annotations. The annotations are 117

2



inserted in the same way as the Jefferson transcrip-118

tion system (Jefferson, 2004). We first discuss pitch119

annotations before volume annotations.120

There are two types of pitch annotations, the121

up (down) arrow signifies the high (low) pitch re-122

spectively. The arrow can occur before or after123

the word, depending on when the change in pitch124

occurred. For example, if the speaker asks “would125

you like coffee?" with a higher pitch at the sec-126

ond syllabus of “coffee", the annotation would be127

“would you like coffee↑?" Pitch annotations are128

important for emotion recognition and sentiment129

analysis. Mairesse et al. (2012) found that anal-130

ysis on pitch alone, without any text information131

significantly outperformed the baseline.132

For volume, there is only one type of annota-133

tion, upper-cased words signify the louder words.134

Unlike pitch annotations, the upper-casing occurs135

at the word level, depending on the average loud-136

ness computed across the duration of the word.137

For example, if the speaker asks “how dare you?"138

with a louder “dare", the annotation would be “how139

DARE you?" Volume annotations are important for140

emotion recognition and sentiment analysis (Tzi-141

rakis et al., 2017).142

4.2 Description of pre-existing annotations143

We used the Google Speech-to-text service to ob-144

tain the transcript for each recording. Unfortu-145

nately, phonetic representation (e.g. “uhhhhh") is146

not possible as only the correctly spelt form (“uh")147

is returned, along with word-level timestamps.148

With the word-level timestamps, MONAHv2 uses149

a set of predefined rules to insert phrases that de-150

scribe the talkturn. We used the open-source sys-151

tem to generate the features. As for Jefferson tran-152

script, we have employed Jefferson Transcription153

Specialists to transcribe the video snippets.154

4.3 Generation of pitch and volume155

annotations156

Stage 1: Obtaining pitch and volume raw data157

In the first stage, we first split the audio file into158

multiple audio files, each consisting of one talkturn.159

The start and end time of each talk turn is supplied160

in the MOSEI dataset. We then send all talkturn au-161

dio files to Google Speech-to-text API to obtain the162

word-level timestamps. With the start time of each163

word, we can derive the duration for each word164

by using either the start time of the next word or165

the end time of the talkturn (if the word is the last166

word of the talkturn). Duration at the word level167

is fine for volume as we annotate at the word level. 168

However, for pitch annotations, it is crucial to know 169

whether the first or last syllable has significantly 170

higher or lower pitch. We have used the Carnegie 171

Mellon Pronouncing Dictionary from NLTK (Bird 172

et al., 2009) to map words into the number of sylla- 173

bles. We then divided the word-level duration by 174

the number of syllabus to obtain the syllabus-level 175

duration. Finally, with the volume and pitch data 176

extracted using OpenSMILE (Eyben et al., 2010), 177

we calculate the average volume (pitch) using the 178

word- (syllable-) level duration. 179

Stage 2: Compute z-score The z-score trans- 180

formation helps the algorithm identify pitch and 181

volume variations within the same video. We calcu- 182

late the z-score for each word (or syllable) using the 183

following formula, where x is the volume (pitch) of 184

the word (syllable), µ is the average volume (pitch) 185

of all words (syllables) in the same video, and σ 186

is the standard deviation of volume (pitch) of all 187

words (syllables) in the same video. 188

z =
x− µV ideo

σV ideo
(1) 189

Stage 3: Generate text narrative from z-score 190

Having computed the z-scores for pitch and vol- 191

ume, we insert unicode up(down) arrows to rep- 192

resent high(low) pitch if the absolute value of the 193

z-score is above the threshold (say, 2.0). Similarly, 194

for volume annotations, we captitalize the word if 195

the z-score is above the threshold. Fig 4 (Appendix 196

A.1) shows the sensitivity analysis of changing the 197

thresholds. 198

5 Experimental settings 199

5.1 Research questions 200

We answer the following research questions using 201

both automatic and human evaluation. Considering 202

volume annotations and pitch annotations individu- 203

ally and collectively: 204

Q1: Do the annotations improve supervised 205

learning? 206

Q2: Do the annotations improve human perfor- 207

mance in guessing the emotions? 208

Q3: Do the annotations change the perceived 209

usability? 210

Q4: Do the annotations change the perceived 211

thoroughness of the three aspects of nonverbal an- 212

notation? The three aspects of nonverbal anno- 213

tations are (1) Chronemics: the use of pacing of 214

speech and length of silence, (2) Kinesic: body 215
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movements or postures, and (3) Paralinguistic: vol-216

ume, pitch, and quality of voice.217

For both automatic and human evaluations, two218

baselines are used: (B1) the unannotated verbatim219

transcripts, and (B2) the transcripts of the previous220

version MONAHv2 since this paper extends it.221

5.2 Automatic evaluation222

5.2.1 Applied models223

In automatic evaluation, we test whether the annota-224

tion additions help improve supervised learning in225

three tasks. Sentiment prediction in MOSI (Zadeh226

et al., 2016) and MOSEI (Zadeh and Pu, 2018),227

and multilabel emotion prediction in MOSEI. The228

following models are selected to test the annotation229

additions. In appendix A.3, we found that the tok-230

enizer behavior of BERT and DistilBERT were the231

same, but differ from DistilRoberta, when given a232

range of capitalization and arrow annotation vari-233

ants.234

1. Cased BERT: Bidirectional Encoder Repre-235

sentations from Transformer (Devlin et al.,236

2018) is a widely used baseline in the NLP237

community.238

2. Cased DistilBERT (Sanh et al., 2019): built239

via the knowledge distillation technique (Bu-240

ciluǎ et al., 2006; Hinton et al., 2015) on241

BERT.242

3. Cased DistilRoberta. A distilled version of243

RoBERTa (Liu et al., 2019).244

In our ablation tests, we have performed hyper-245

parameter tuning over the following range (see Ap-246

pendix Table 6) for each input configuration. We247

used a random search to tune the hyper-parameters,248

and each configuration was given 15 trials. We249

picked the hyper-parameters with the best devel-250

opment set performance and reported their test set251

performance in this paper. As for the input thresh-252

olds for pitch-only (P), volume-only (V) and pitch253

plus volume (PV), we increased the threshold in254

increments of 0.5 from 0 to 2.0 inclusive.255

5.2.2 Evaluation metrics256

We compare the automatic evaluations using MAE257

for the sentiment task in both MOSEI and MOSI.258

As for the multi-label emotions task, we use the259

average class-wise weighted accuracy. We boot-260

strapped 1000 samples to compute statistical sig-261

nificance.262

5.3 Human evaluation 263

Figure 2: The list of the eight hypotheses tested under
the three areas.

To demonstrate MONAHv3’s competitiveness 264

against the Jefferson transcripts, we adapted a 265

shorter version of Kim and Yacef (2023a), test- 266

ing eight hypotheses in three areas (Q2 - Q4). The 267

hypotheses are summarized in Fig. 2. Hypothe- 268

ses group Q2 is associated with whether the addi- 269

tional multimodal annotations improves guess-the- 270

emotion siginicantly over not having the annota- 271

tions (Q2A). Since multimodal annotations are a 272

video-to-text compression, video recordings would 273

have significantly higher guess-the-emotion accu- 274

racy (Q2B). Since we added the pitch and volume 275

annotations, MONAHv3 should outperform the 276

MONAHv2 (Q2C). Hypotheses group Q3 is associ- 277

ated with only whether users would find the MON- 278

AHv3 system significantly more usable than the 279

Jefferson system with the addition of pitch symbols 280

and capitalization (Q3A). Hypotheses group Q4 is 281

associated with the three aspects of multimodal 282

annotation (chronemics, kinesic, paralinguistic). 283

Since Jefferson transcripts annotate within-talkturn 284

delays, Jefferson would significantly outperform 285

MONAH (v2 and 3) in chronemics score (Q4A). 286

As for kinesic score, MONAH (v2 and 3) should 287

outperform Jefferson transcripts as MONAH (v2 288

and 3) annotates more actions than Jefferson (Q4B). 289

As for paralinguistics, Jefferson has a lot more 290

types of symbolic annotations, like phonetic repre- 291

sentations and symbols that indicate an elongation 292

of a syllabus, therefore Jefferson should outperform 293

MONAHv3 (Q4C). However, since MONAHv3 294

made a significant improvement in its pitch and 295

volume annotations, it should outperform MON- 296
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AHv2 (Q4D). We selected the threshold 2.0 for297

both pitch and volume and generated the narratives298

for the user study. As for Jefferson transcripts, we299

used the gold standard, human manually generated300

transcripts from a professional transcriber.301

Figure 3: Experiment design. The first two phases are
about guessing the emotions, where participants are ran-
domly placed into one of the five groups so that the order
in which the transcripts are presented are shuffled. T:
Verbatim, M: MONAHv2, N: MONAHv3, J: Jefferson,
V: Video.

Our experimental design comprises a sequence302

with four stages in the user study (Fig. 3). We303

provide a quick introduction to the Jefferson tran-304

script in the beginning (see Appendix A.4) before305

starting the first stage. In the first stage, the par-306

ticipant attempts to guess the emotions of fifteen307

snippets. Three of each of the five types of question308

is shown to the participant. We controlled for ques-309

tion difficulty by fixing the set of fifteen questions310

across the five groups. In each group, participants311

were exposed to three questions of each transcript312

variant.313

If the participant gets at least seven out of fifteen314

correct, the participant enters part two. In part315

two, the participant again attempts to guess the316

emotions of another fifteen snippets, the questions317

of part one do not overlap with part two. The setup318

of part two is similar to part one, where the set319

of fifteen questions is fixed across the five groups,320

each group was exposed to three questions of each321

transcript variant. The participant needs to get at322

least six out of fifteen correct to proceed on to the323

next stage, the aspects rating stage.324

The aspects rating stage consists of Likert-scale325

questions that ask the users to rate the thoroughness 326

of each of the three aspects of nonverbal annota- 327

tion (Chronemics, Kinesics, Paralinguistics). The 328

set of 15 questions is divided into five groups, so 329

each group answers a set of three non-overlapping 330

question. Each of these three questions has nine 331

subparts each, because there were three transcripts 332

(MONAH v2 and 3, plus Jefferson), and there were 333

three aspects (Chronemics, Kinesics, Paralinguis- 334

tics). The phrasing of the question is, “The amount 335

of information is sufficient to interpret how the 336

talkturn is being said, for (1) Use of pacing of 337

speech and length of silence in conversation; (2) 338

Body movements or postures; (3) Volume, pitch 339

and quality of voice." 340

The last stage is the System Usability Scale stage 341

which is a set of ten questions for each system 342

(Brooke, 1996). First, the participant gets a re- 343

fresher on MONAH v2 and 3, and on the Jefferson 344

transcript. Then, for each of the three transcripts 345

types, the participant answers the ten questions on 346

the Likert scale. The list of questions is detailed in 347

Appendix A.5. 348

We administrated the survey on Amazon Me- 349

chanical Turk, and the hosting of the survey was 350

on Qualtrics. The base reward for the survey is 0.5 351

USD. A 2.50 USD bonus is awarded if the partici- 352

pant is able to get at least seven correct answers out 353

of the 15 questions in the first guess-the-emotion 354

section. The survey is terminated if the partici- 355

pant could not get at least seven correct answers 356

in the first section. An additional 2 USD bonus 357

is awarded if the participant is able to get at least 358

six correct answers out of the fifteen questions in 359

the second guess-the-emotion section. The ethics 360

approval number is 123456 (masked for review 361

anonymity). In total, 616 workers received the base 362

reward, 62 workers received the 2.50 USD bonus, 363

and 64 workers received the 4.50 USD bonus. The 364

total cost of administering the survey is 1088 USD, 365

including MTurk fees and taxes, and compensating 366

12 workers 5 USD each due to errors in the survey 367

setup. Workers who have received any base, bonus 368

or compensation are added to the MTurk exclusion 369

list to prevent multiple attempts. On the Qualtrics 370

end, we have also followed the recommended best 371

practices2 to prevent fraud responses. 372

When extracting the data for analysis, we dis- 373

carded participants with score less than 7 for either 374

2https://www.qualtrics.com/support/survey-
platform/survey-module/survey-checker/fraud-detection/
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Baseline: Verbatim Baseline: MONAH
MOSEI MOSI MOSEI MOSI

DB BT DR DB BT DR DB BT DR DB BT DR
Baseline 0.551 0.548 0.519 0.851 0.826 0.714 0.537 0.540 0.522 0.909 0.800 0.720
+P(0.0) 0.583 0.562 0.544 1.003 0.996 0.815 0.577 0.558 0.543 1.025 0.981 0.854
+P(0.5) 0.568 0.567 0.547 0.931 0.902 0.843 0.548 0.544 0.540 0.972 0.905 0.770
+P(1.0) 0.554 0.540 0.535 0.941 0.840 0.815 0.540 0.550 0.524 0.929 0.900 0.820
+P(1.5) 0.543 0.547 0.529 0.873 0.856 0.754 0.542 0.527* 0.514 0.861 0.812 0.755
+P(2.0) 0.548 0.537* 0.511 0.866 0.809 0.709 0.534 0.518* 0.519 0.815 0.807 0.708
+V(0.0) 0.646 0.613 0.550 1.118 0.991 0.863 0.634 0.609 0.541 1.179 1.083 0.759
+V(0.5) 0.581 0.570 0.535 1.021 0.922 0.734 0.577 0.572 0.529 1.032 0.956 0.737
+V(1.0) 0.555 0.550 0.515 0.930 0.876 0.722 0.550 0.539 0.520 0.922 0.869 0.735
+V(1.5) 0.555 0.536* 0.516 0.904 0.796 0.717 0.546 0.533 0.512 0.875 0.780 0.732
+V(2.0) 0.540* 0.536* 0.510 0.855 0.785* 0.696 0.531 0.534 0.511 0.847 0.857 0.710
+PV(0.0) 0.647 0.648 0.595 1.209 1.097 0.981 0.639 0.648 0.587 1.163 1.118 1.004
+PV(0.5) 0.610 0.592 0.580 1.056 1.037 0.927 0.599 0.583 0.557 1.091 1.059 0.887
+PV(1.0) 0.577 0.562 0.554 0.934 0.885 0.823 0.564 0.548 0.542 0.967 0.875 0.822
+PV(1.5) 0.555 0.545 0.523 0.881 0.827 0.740 0.543 0.534 0.522 0.870 0.845 0.777
+PV(2.0) 0.545 0.538* 0.514 0.839* 0.800 0.731 0.540 0.527 0.516 0.798 0.739* 0.777

Table 2: Summary of the model mean-absolute-error for the fine narratives. DB: DistilBERT, BT: BERT, RB:
RoBERTA. Best in column are in bold-face. * statistically significant difference with baseline (top row).

Dataset: MOSEI
Baseline: Verbatim Baseline: MONAH

Input DB BT DR DB BT DR
Baseline 0.832 0.838 0.838 0.839 0.840 0.844
P(0.0) 0.834 0.838 0.840 0.838 0.836 0.840
P(0.5) 0.837* 0.836 0.839 0.841 0.839 0.841
P(1.0) 0.837* 0.838 0.840 0.840 0.839 0.840
P(1.5) 0.841* 0.840 0.842* 0.842 0.840 0.843
P(2.0) 0.839* 0.840 0.837 0.844 0.841 0.844
V(0.0) 0.834 0.835 0.837 0.836 0.840 0.839
V(0.5) 0.839* 0.834 0.840 0.839 0.837 0.842
V(1.0) 0.834 0.842* 0.842* 0.841 0.841 0.845
V(1.5) 0.839* 0.834 0.843* 0.840 0.839 0.842
V(2.0) 0.839* 0.839 0.840 0.842 0.845* 0.845

PV(0.0) 0.831 0.835 0.833 0.836 0.836 0.839
PV(0.5) 0.835* 0.837 0.840 0.840 0.840 0.839
PV(1.0) 0.836* 0.835 0.838 0.840 0.840 0.842
PV(1.5) 0.839* 0.841* 0.838 0.842 0.841 0.843
PV(2.0) 0.835* 0.841 0.839 0.842 0.841 0.843

Table 3: Summary of the classification accuracies for the fine narratives. Best in column are in bold-face. *
statistically significant difference with baseline (top row).

of the guess the emotions section to ensure that the375

response quality is acceptable. When testing the376

hypothesis, we used a two-sample, one-sided t-test377

to compare the means.378

6 Experimental Results 379

6.1 Ablation analysis 380

We first discuss the results of the sentiment regres- 381

sion task shared by both MOSEI and MOSI before 382

discussing the results of the multi-label classifica- 383
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tion task from MOSEI. Table 2 and 3 summarizes384

the model performances for the ablation tests. In385

summary, the addition of pitch or volume annota-386

tion (but not necessarily both) improves the perfor-387

mance on the regression task and the classification388

across all three variants of the Bert models.389

Since there are three models, two sentiment tasks390

(MOSEI, MOSI) and two baselines (Verbatim and391

MONAHv2), we present 3x2x2=12 columns in Ta-392

ble 2. Out of the 12 combinations, the addition of393

pitch and volume annotations improved supervised394

learning significantly in six combinations. Four of395

the six combinations are significant improvements396

over the Verbatim baseline, and two are signifi-397

cantly better over the MONAHv2 baseline.398

Since there are three models, one classification399

task (MOSEI) and two baselines (Verbatim and400

MONAHv2), we present 3x1x2=6 columns in Ta-401

ble 3. Out of the 6 combinations, the addition of402

pitch and volume annotations improved supervised403

learning significantly in four combinations. All404

three combinations under the verbatim baseline are405

significant, and one is significantly better over the406

MONAHv2 baseline.407

6.2 Human ratings408

The results of the hypotheses testing results are409

summarized in Table 4.410

For Q2A, MONAH v2 and 3 both outperformed411

verbatim significantly, but Jefferson did not outper-412

form verbatim significantly. For Q2B, the accuracy413

of guess the emotions using video significantly out-414

performed Jefferson and verbatim transcript, but415

not MONAH v2 nor v3. Lastly, for Q2C, although416

the MONAHv3 accuracy (0.558) outperformed the417

MONAHv2 (0.497), the difference is not signifi-418

cant.419

For Q3A, users do find the MONAHv3 system420

significantly more usable than the Jefferson system.421

For Q4A, Jefferson significantly outperformed422

MONAHv3 in chronemics score. For Q4B, MON-423

AHv3 significantly outperformed Jefferson in ki-424

nesics score. For Q4C, Jefferson significantly out-425

performed the MONAHv2, but did not outperform426

MONAHv3. Lastly, for Q4D, MONAHv3 signifi-427

cantly outperformed MONAHv2 in paralinguistic428

score.429

7 Discussion 430

7.1 Ablation analysis 431

For supervised learning, we observed that the im- 432

pact of the pitch and volume annotations are more 433

significant over the Verbatim baseline (4 sentiment 434

combinations, and 3 classification combinations 435

significant) than it is over the MONAHv2 base- 436

line (2 sentiment combinations, and 1 classification 437

combination significant). This suggests that pitch 438

and volume annotations are more valuable when 439

added to a transcript without any nonverbal an- 440

notations. As MONAHv2 have other nonverbal 441

talkturn-level annotations, the additional informa- 442

tion added by pitch and volume annotations is less 443

significant. 444

In addition, we observed that by model, BERT 445

has a higher count of significant differences (6) as 446

compared to DistilBERT (3) or DistilRoBERTA (1). 447

This is interesting because the tokenizer of BERT 448

and DistilBERT behaves identically, as seen in the 449

Appendix A.3. Therefore, the tokenizer is not a 450

reason behind this difference. The plausible reason 451

is that both DistilBERT and DistilRoBERTA are 452

distilled models and have less ability to take ad- 453

vantage of the pitch (up/down arrows) and volume 454

(capital letters) annotations. 455

7.2 Human ratings 456

In this section, we will be discussing our three 457

hypotheses areas illustrated in Fig. 2. 458

Does it improves the user’s accuracy in guess- 459

the-emotion? Compared to Kim and Yacef 460

(2023a), where the authors performed a user-study 461

of MONAHv2 did not find a significant difference 462

in Q2A with 104 completions. Our study has a 463

larger number of completions (126), and we found 464

statistically significant differences in both MONAH 465

v2 and v3 outperforming the verbatim transcripts. 466

In contrast, the mean of Jefferson transcripts in this 467

study is lower than that of verbatim, which could be 468

explained by the low usability score and the users 469

did not understand the annotations. 470

As for Q2B, previously, the authors found that 471

video is significantly better than all variants of tran- 472

scripts, but in this paper, we found that video is 473

only significantly better than the Jefferson and the 474

verbatim transcript. This is interesting because the 475

video file encodes a lot more information compared 476

to the pure textual MONAH (v2 or v3) transcripts. 477

Is each system easy to use? Previously, MON- 478

AHv2 was found to be more usable than the Jef- 479

7



Hypothesis CLG BSE Avg
CLG

N
CLG

Std
CLG

Avg
BSE

N
BSE

Std
BSE

p-
value

Q2A The accuracy of guess the emotions
using MONAH and Jefferson transcripts
outperform verbatim significantly.

j t 0.456 581 0.498 0.447 591 0.498 0.373
m2 t 0.526 591 0.500 0.447 591 0.498 0.003*
m3 t 0.558 581 0.497 0.447 591 0.498 0.001*

Q2B The accuracy of guess the emotions
using video would outperform all
transcripts significantly.

v t 0.566 581 0.496 0.447 591 0.498 0.001*
v j 0.566 581 0.496 0.456 581 0.498 0.001*
v m2 0.566 581 0.496 0.526 591 0.500 0.084
v m3 0.566 581 0.496 0.558 581 0.497 0.384

Q2C MONAH would significantly
outperform its previous iteration in

guess-the-emotion score.

m3 m2 0.558 581 0.497 0.526 591 0.500 0.14

Q3A Users would find the MONAH
system significantly more usable than the

Jefferson system.

m3 j 58.5 48 13.9 49.7 48 16.1 0.003*

Q4A Jefferson significantly outperform
MONAH in chronemics score.

j m3 3.92 720 0.982 3.79 720 1.00 0.007*

Q4B MONAH significantly outperform
Jefferson in kinesic score.

m3 j 3.75 720 1.10 3.54 720 1.24 0.001*

Q4C Jefferson significantly outperform
MONAH in paralinguistic score.

j m2 3.87 720 0.975 3.70 720 1.12 0.001*
j m3 3.87 720 0.975 3.95 720 0.944 0.950

Q4D MONAH significantly outperform
its previous iteration in paralinguistic

score.

m3 m2 3.95 720 0.944 3.70 720 1.12 0.001*

Table 4: Summary of hypotheses testing results. CLG: Challenger, BSE: Baseline, j: Jefferson, m3: MONAHv3,
m2: MONAHv2, t: Verbatim, v: Video.

ferson system. MONAHv3 remains significantly480

more usable than the Jefferson system with the ad-481

dition of one type of symbol from the Jefferson482

transcription system. In both systems, the up/down483

arrows denote high/low pitch.484

Is each system thorough in annotating nonver-485

bal events? In MONAHv3, we did not change the486

chronemics and kinesic annotations. Therefore, we487

expected the previous findings to remain valid in488

this study, and it did – Jefferson still significantly489

outperformed MONAHv3 in chronemics (Q4A)490

and MONAHv3 still significantly outperformed491

Jefferson in kinesic (Q4B). The addition of pitch492

and volume annotations should improve the par-493

alinguistic score, and the results confirmed it. Jef-494

ferson was found to outperform MONAHv2, and it495

continued to outperform MONAHv2 in the current496

study in Q4C. However, Jefferson no longer signif-497

icantly outperforms MONAHv3 in Q4C. Lastly,498

we observed that the additional annotations in499

MONAHv3 significantly improved upon the par-500

alinguistics score as MONAHv3 significantly out-501

performed MONAHv2 (Q4D).502

8 Conclusion 503

In this paper, we produce a state-of-the-art system 504

in terms of the number of nonverbal aspects be- 505

ing annotated, and have automatically annotated 506

prosody related annotations, elevating the thorough- 507

ness of human-rated paralinguistics score to be 508

comparable to the manual, and time-consuming 509

Jefferson transcripts. In addition, automated super- 510

vised learning and manual human ratings have im- 511

proved significantly from these additions, demon- 512

strating the importance of our additions. 513

Future works could focus on chronemics where 514

Jefferson still significantly outperforms MON- 515

AHv3. As for limitations, there are many other 516

analysis lenses such as toxicity, lie, or sacarsm de- 517

tection that could be explored in future works. The 518

risks of this paper include the over-generalization 519

of findings, e.g., improving the accessibility to vi- 520

sion or hearing impaired users require more specific 521

user testing. 522
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Cristian Buciluǎ, Rich Caruana, and Alexandru535
Niculescu-Mizil. 2006. Model compression. In Pro-536
ceedings of the 12th ACM SIGKDD international537
conference on Knowledge discovery and data mining,538
pages 535–541.539

Jennifer Cole. 2015. Prosody in context: A review.540
Language, Cognition and Neuroscience, 30(1-2):1–541
31.542

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and543
Kristina Toutanova. 2018. Bert: Pre-training of deep544
bidirectional transformers for language understand-545
ing. arXiv preprint arXiv:1810.04805.546

Florian Eyben, Martin Wöllmer, and Björn Schuller.547
2010. Opensmile: the munich versatile and fast open-548
source audio feature extractor. In Proceedings of the549
18th ACM international conference on Multimedia,550
pages 1459–1462.551

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.552
Distilling the knowledge in a neural network (2015).553
arXiv preprint arXiv:1503.02531, 2.554

Gail Jefferson. 2004. Glossary of transcript symbols.555
Conversation analysis: Studies from the first genera-556
tion, pages 24–31.557

Joshua Y Kim and Kalina Yacef. 2023a. An empirical558
user-study of text-based nonverbal annotation sys-559
tems for human–human conversations. International560
Journal of Human-Computer Studies, page 103082.561

Joshua Y Kim and Kalina Yacef. 2023b. Guidelines for562
designing and building an automated multimodal tex-563
tual annotation system. In Companion Publication564
of the 25th International Conference on Multimodal565
Interaction, ICMI ’23 Companion, page 330–336,566
New York, NY, USA. Association for Computing567
Machinery.568

Joshua Y Kim, Kalina Yacef, Greyson Kim, Chunfeng569
Liu, Rafael Calvo, and Silas Taylor. 2021. Monah:570
Multi-modal narratives for humans to analyze con-571
versations. In Proceedings of the 16th Conference of572
the European Chapter of the Association for Compu-573
tational Linguistics: Main Volume, pages 466–479.574

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 575
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 576
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 577
Roberta: A robustly optimized bert pretraining ap- 578
proach. arXiv preprint arXiv:1907.11692. 579

François Mairesse, Joseph Polifroni, and Giuseppe 580
Di Fabbrizio. 2012. Can prosody inform sentiment 581
analysis? experiments on short spoken reviews. In 582
2012 IEEE International Conference on Acoustics, 583
Speech and Signal Processing (ICASSP), pages 5093– 584
5096. IEEE. 585

Robert J Moore. 2015. Automated transcription and 586
conversation analysis. Research on Language and 587
Social Interaction, 48(3):253–270. 588

Rupal Patel and William Furr. 2011. Readn’karaoke: Vi- 589
sualizing prosody in children’s books for expressive 590
oral reading. In Proceedings of the SIGCHI Confer- 591
ence on Human Factors in Computing Systems, pages 592
3203–3206. 593

Matthew E Peters, Waleed Ammar, Chandra Bhaga- 594
vatula, and Russell Power. 2017. Semi-supervised 595
sequence tagging with bidirectional language models. 596
arXiv preprint arXiv:1705.00108. 597

Victor Sanh, Lysandre Debut, Julien Chaumond, and 598
Thomas Wolf. 2019. Distilbert, a distilled version 599
of bert: smaller, faster, cheaper and lighter. arXiv 600
preprint arXiv:1910.01108. 601

Panagiotis Tzirakis, George Trigeorgis, Mihalis A Nico- 602
laou, Björn W Schuller, and Stefanos Zafeiriou. 2017. 603
End-to-end multimodal emotion recognition using 604
deep neural networks. IEEE Journal of selected top- 605
ics in signal processing, 11(8):1301–1309. 606

Muhammad Umair, Julia Beret Mertens, Saul Albert, 607
and Jan P de Ruiter. 2022. Gailbot: An automatic 608
transcription system for conversation analysis. Dia- 609
logue & Discourse, 13(1):63–95. 610

Amir Zadeh and Paul Pu. 2018. Multimodal language 611
analysis in the wild: Cmu-mosei dataset and inter- 612
pretable dynamic fusion graph. In Proceedings of the 613
56th annual meeting of the association for computa- 614
tional linguistics (Long Papers). 615

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis- 616
Philippe Morency. 2016. Mosi: multimodal cor- 617
pus of sentiment intensity and subjectivity anal- 618
ysis in online opinion videos. arXiv preprint 619
arXiv:1606.06259. 620

9

https://doi.org/10.1145/3610661.3616182
https://doi.org/10.1145/3610661.3616182
https://doi.org/10.1145/3610661.3616182
https://doi.org/10.1145/3610661.3616182
https://doi.org/10.1145/3610661.3616182


A Appendices621

A.1 Z threshold sensitivity analysis622

Figure 4: Sensitivity analysis on the impact of changing
the threshold on the percentage of text being annotated.
Left: Since pitch annotations can be added to the first
or last syllabus of the word, we consider all beginning
and ending syllabus as candidates. We observe that
when the threshold is zero, all syllables have a pitch
annotation. Right: Since loudness annotations are added
at the word-level, and we only annotate loud words, and
not soft words, we observe that when the threshold is
zero, nearly half (50%) of the words have a loudness
annotation.

A.2 Tokenizer behavior623

Since we are adding up and down arrow sumbols624

as well as capitalising to the characters, it would be625

important to study the effects of these additions on626

the behaviour of the tokenizer, these are illustrated627

in Table 5.628

A.3 Hyperparameter tuning629

We used a random search to tune the hyper-630

parameters, and each configuration was given 15631

trials. In each trial, we pick a random value that is632

listed in Table 6.633

A.4 Jefferson Reference634

Table 7 is provided to all participants to help them635

familiarize themselves with the Jefferson Transcrip-636

tion System.637

A.5 System Usability Scale Questions638

Figure 5 details the set of the ten system usability639

scale questions.640

Table 5: Tokenization outcomes with different anno-
tations by pre-trained models. BERT and DistilBERT
have the same tokenization outcomes. For ROBERTa
and Reformer, we added the randomly initialized up and
down arrows tokens embeddings.

Tokens from tokenizer

Input BERT DistilBERT Distil
ROBERTa

happy
days

happy,
days

happy,
days

happy,
Ġdays

↑happy
days

↑, ##ha,
##ppy,
days

↑, ##ha,
##ppy,
days

↑, happy,
Ġdays

happy↓
days

happy,
##↓, days

happy, ##↓,
days

happy, ↓,
Ġdays

↑happy↓
days

↑, ##ha,
##ppy,

##↓, days

↑, ##ha,
##ppy, ##↓,

days

↑, happy,
↓, Ġdays

HAPPY
days

H, ##AP,
##P, ##Y,

days

H, ##AP,
##P, ##Y,

days

H, APP,
Y, Ġdays

↑HAPPY
days

↑, ##HA,
##PP,

##Y, days

↑, ##HA,
##PP, ##Y,

days

↑, H,
APP, Y,
Ġdays

HAPPY↓
days

H, ##AP,
##P, ##Y,
##↓, days

H, ##AP,
##P, ##Y,
##↓, days

H, APP,
Y, ↓,

Ġdays

↑HAPPY↓
days

↑, ##HA,
##PP,

##Y, ##↓,
days

↑, ##HA,
##PP, ##Y,
##↓, days

↑, H,
APP, Y,

##↓,
Ġdays

Table 6: Hyperparameter tuning

Hyper
parame-

ter
Min. Max. Scale

Context
Size

2 10 Linear

Learning
Rate

1e-6 1e-4 Loglinear

Batch
Size

8 18 Linear

Warmup
Ratio

0.0 0.5 Linear
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Symbol Defintion and use
[yeah] [ok] Overlapping talk

=
End of one TCU and beginning of next begin with no gap/pause in between

(sometimes a slight overlap if there is speaker change). Can also be used when
TCU continues on new line in transcript.

(.) Brief interval, usually between 0.08 and 0.2 seconds

(1.4)
Time (in absolute seconds) between end of a word and beginning of next.

Alternative method: “none-one-thousand-two-one-thousand. . . ”: 0.2, 0.5, 0.7,
1.0 seconds, etc.

Word [first letter
underlined] Wo:rd
[colon underlined]

Underlining indicates emphasis. Placement indicates which syllable(s) are
emphasised. Placement within word may also indicate timing/direction of pitch

movement (later underlining may indicate location of pitch movement)

wo::rd
Colon indicates prolonged vowel or consonant. One or two colons common,

three or more colons only in extreme cases.

↑word ↓word
Marked shift in pitch, up (↑) or down (↓). Double arrows can be used with

extreme pitch shifts.

WORD
Upper case indicates syllables or words louder than surrounding speech by the

same speaker

°word°
Degree sign indicate syllables or words distinctly quieter than surrounding

speech by the same speaker. Pre-positioned left carat indicates a hurried start of
a word, typically at TCU beginning

word- A dash indicates a cut-off. In phonetic terms this is typically a glottal stop

>word<
Right/left carats indicate increased speaking rate (speeding up). Left/right

carats indicate decreased speaking rate (slowing down)

.hhh
In/out breath. Three letters indicate ‘normal’ duration. Longer or shorter

inbreaths indicated with fewer or more letters.
whhord Can also indicate aspiration/breathiness if within a word (not laughter)
w(h)ord Indicates abrupt spurts of breathiness, as in laughing while talking
£word£ Pound sign indicates smiley voice, or suppressed laughter
word Hash sign indicates creaky voice
word Tilde sign indicates shaky voice (as in crying)

(word) Parentheses indicate uncertain word; no plausible candidate if empty
(( )) Double parentheses contain analyst comments or descriptions

Table 7: The Jefferson Transcription System.

Figure 5: System Usability Scale
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