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Abstract

“Distribution shift” is the main obstacle to the success of offline reinforcement
learning. A learning policy may take actions beyond the behavior policy’s knowl-
edge, referred to as Out-of-Distribution (OOD) actions. The Q-values for these
OOD actions can be easily overestimated. As a result, the learning policy is biased
by using incorrect Q-value estimates. One common approach to avoid Q-value
overestimation is to make a pessimistic adjustment. Our key idea is to penalize
the Q-values of OOD actions associated with high uncertainty. In this work, we
propose Q-Distribution Guided Q-Learning (QDQ), which applies a pessimistic
adjustment to Q-values in OOD regions based on uncertainty estimation. This
uncertainty measure relies on the conditional Q-value distribution, learned through
a high-fidelity and efficient consistency model. Additionally, to prevent overly
conservative estimates, we introduce an uncertainty-aware optimization objective
for updating the Q-value function. The proposed QDQ demonstrates solid theoret-
ical guarantees for the accuracy of Q-value distribution learning and uncertainty
measurement, as well as the performance of the learning policy. QDQ consis-
tently shows strong performance on the D4RL benchmark and achieves significant
improvements across many tasks.

1 Introduction

Reinforcement learning (RL) has seen remarkable success by using expressive deep neural networks
to estimate the value function or policy function [1]. However, in deep RL optimization, updating the
Q-value function or policy value function can be unstable and introduce significant bias [2]. Since
the learning policy is influenced by the Q-value function, any bias in the Q-values affects the learning
policy. In online RL, the agent’s interaction with the environment helps mitigate this bias through
reward feedback for biased actions. However, in offline RL, the learning relies solely on data from
a behavior policy, making information about rewards for states and actions outside the dataset’s
distribution unavailable.
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It is commonly observed that during offline RL training, backups using OOD actions often lead to
target Q-values being overestimated [3] (see Figure 1(a)). As a result, the learning policy tends to
prioritize these risky actions during policy improvement. This false prioritization accumulates with
each training step, ultimately leading to failure in the offline training process [4, 5, 6]. Therefore,
addressing Q-value overestimation for OOD actions is crucial for the effective implementation of
offline reinforcement learning.

（a） （b）

Figure 1: (a) The maximum of the estimated Q-value often occurs in OOD actions due to the
instability of the offline RL backup process and the “distribution shift” problem , so the Q-value of the
learning policy (yellow line) will diverge from the behavior policy’s action space (blue line) during
the training. (b) The red line represents the optimal Q-value within the action space of the dataset,
while the blue line depicts the Q-value function of the behavior policy. The gold line corresponds to
the Q-value derived from the in-sample Q training algorithm, showcasing a distribution constrained
by the behavior policy. On the other hand, the green line illustrates the Q-value resulting from a more
conservative Q training process. Although it adopts lower values in OOD actions, the Q-value within
in-distribution areas proves excessively pessimistic, failing to approach the optimal Q-value.

Since any bias or error in the Q-value will propagate to the learning policy, it’s crucial to evaluate
whether the Q-value is assigned to OOD actions and to apply a pessimistic adjustment to address
overestimation. Ideally, this adjustment should only target OOD actions. One common way to
identify whether the Q-value function is updated by OOD actions is by estimating the uncertainty of
the Q-value [4] in the action space. However, estimating uncertainty presents significant challenges,
especially with high-capacity Q-value function approximators like neural networks [4]. If Q-value
uncertainty is not accurately estimated, a penalty may be uniformly applied across most actions [7],
hindering the optimality of the Q-value function.

While various methods [7, 8, 9, 10, 11, 12, 3, 13, 14] attempt to make pessimistic estimates of the
Q-value function, most have not effectively determined which Q-values need constraining or how to
pessimistically estimate them with reliable and efficient uncertainty estimates. As a result, previous
methods often end up being overly conservative in their Q-value estimations [15] or fail to achieve a
tight lower confidence bound of the optimal Q-value function. Moreover, some in-sample training
[16, 17, 18, 19] of the Q-value function may lead it to closely mimic the Q-value of the behavior
policy (see Figure 1(b)), rendering it unable to surpass the performance of the behavior policy,
especially when the behavior policy is sub-optimal. Therefore, in balancing Q safety for learning
and not hindering the recovery of the most optimal Q-value, current methods tend to prioritize safe
optimization of the Q-value function.

In this study, we introduce Q-Distribution guided Q-Learning (QDQ) for offline RL 2. The core
concept focuses on estimating Q-value uncertainty by directly computing this uncertainty through
bootstrap sampling from the behavior policy’s Q-value distribution. By approximating the behav-
ior policy’s Q-values using the dataset, we train a high-fidelity and efficient distribution learner-
consistency model [20]. This ensures the quality of the learned Q-value distribution.

2Our code can be found at https://github.com/evalarzj/qdq.

2



Since the behavior and learning policies share the same set of high-uncertainty actions [5], we
can sample from the learned Q-value distribution to estimate uncertainty, identify risky actions,
and make the Q target values for these actions more pessimistic. We then create an uncertainty-
aware optimization objective to carefully penalize Q-values that may be OOD, ensuring that the
constraints are appropriately pessimistic without hindering the Q-value function’s exploration in the
in-distribution region. QDQ aims to find the optimal Q-value that exceeds the behavior policy’s
optimal Q-value while remaining as pessimistic as possible in the OOD region. Moreover, our
pessimistic approach is robust against errors in uncertainty estimation. Our main contributions are as
follows:

• Utilization of trajectory-level data with a sliding window: We use trajectory-level data with a
sliding window approach to create the real truncated Q dataset. Our theoretical analysis (Theorem
4.1) confirms that the generated data has a distribution similar to true Q-values. Additionally,
distributions learned from this dataset tend to favor high-reward actions.

• Introduction of a consistency model as a distribution learner: QDQ introduces the consistency
model [20] as the distribution learner for the Q-value. Similar to the diffusion model, the consistency
model demonstrates strong capabilities in distribution learning. Our theoretical analysis (Theorem
4.2) highlights its consistency and one-step sampling properties, making it an ideal choice for
uncertainty estimation.

• Risk estimation of Q-values through uncertainty assessment: QDQ estimates the risk set of
Q-values by evaluating the uncertainty of actions. For Q-values likely to be overestimated and
associated with high uncertainty, a pessimistic penalty is applied. For safer Q-values, a mild
adjustment based on uncertainty error enhances their robustness.

• Uncertainty-aware optimization objective to address conservatism: To reduce the overly con-
servative nature of pessimistic Q-learning in offline RL, QDQ introduces an uncertainty-aware
optimization objective. This involves simultaneous optimistic and pessimistic learning of the
Q-value. Theoretical (Theorem 4.3 and Theorem 4.4) and experimental analyses show that this
approach effectively mitigates conservatism issues.

2 Background

Our approach aims to temper the Q-values in OOD areas to mitigate the risk of unpredictable
extrapolation errors, leveraging uncertainty estimation. We estimate the uncertainty of Q-values
across actions visited by the learning policy using samples from a learned conditional Q-distribution
via the consistency model. In this section, we provide a concise overview of the problem settings in
offline RL and introduce the consistency model.

2.1 Fundamentals in offline RL

The online RL process is shaped by an infinite-horizon Markov decision process (MDP): M =
{S,A,P, r, µ0, γ}. The state space is S , andA is the action space. The transition dynamic among the
state is determined by P : S ×A 7→ ∆(S), where ∆(S) is the support of S . The reward determined
on the whole state and action space is r : S × A 7→ R, r < ∞, and can either be deterministic or
random. µ0(s0) is the distribution of the initial states s0, γ ∈ (0, 1) is the discount factor. The goal
of RL is to find the optimal policy π : S 7→ ∆(a) that yields the highest long-term average return:

J(π) = Es0∼µ0V (s0) = Es0∼µ0,a0∼πQ(s0, a0) = Es0∼µ0,a0∼π

[
Eπ

[ ∞∑
k=1

γk−1rk|sk, ak

]]
, (1)

where Q(s, a) is the Q-value function under policy π. The process of obtaining the optimal policy is
generally to recover the optimal Q-value function, which maximizes the Q-value function over the
whole space A, and then to obtain either an implicit policy (Q-Learning algorithm [21, 22, 23]), or a
parameterized policy (Actor-Critic algorithm [24, 25, 26, 27, 28]).

The optimal Q-value function Q∗(s, a) can be obtained by minimizing the Bellman residual:

Es∼P,a∼π[Q(s, a)− BQ(s, a)]2, (2)
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where B is the Bellman operator defined as
BQ(s, a) := r(s, a) + γEs′∼P[max

a′∼π
Q(s′, a′)].

However, the whole paradigm needs to be adjusted in the offline RL setting, as MDP is only
determined from a dataset D, which is generated by behavior policy πβ . Hence, the state and action
space is constraint by the distribution support of D. We redefine the MDP in the offline RL setting
as: MD = {SD,AD,PD, r, µ0, γ}, where SD = {s|s ∈ ∆(sD)},AD = {a|a ∈ ∆(πβ)}. Then
the transition dynamic is determined by PD : SD × AD 7→ ∆(SD). Therefore, the well-known
“distribution shift” problem occurs when solving the Bellman equation Eq.2. The Bellman residual is
taking expectation in SD ×AD, while the target Q-value is calculated based on the actions from the
learning policy.

2.2 Consistency model

The consistency model is an enhanced generative model compared to the diffusion model. The
diffusion model gradually adds noise to transform the target distribution into a Gaussian distribution
and by estimating the random noise to achieve the reverse process, i.e., sampling a priori sample from
a Gaussian distribution and denoise to the target sample iteratively (forms the sample generation tra-
jectory). The consistency model is proposed to ensures each step in a sample generation trajectory of
the diffusion process aligns with the target sample (we call consistency). Specifically, the consistency
model [20] try to overcome the slow generation and inconsistency over sampling trajectory generated
by the Probability Flow (PF) ODE during training process of the diffusion model [29, 30, 31, 32, 33].

Let pdata(x) denote the data distribution, we start by diffuse the original data distribution by the PF
ODE:

dxt =

[
µ(xt, t)−

1

2
σ(t)2∇ log(pt(xt))

]
dt, (3)

where µ(·, ·) is the drift coefficient, σ(·) is the diffusion coefficient, pt(xt) is the distribution of xt,
p0(x) ≡ pdata(x), and {xt, t ∈ [ϵ, T ]} is the solution trajectory of the above PF ODE.

Consistency model aims to learn a consistency function fθ(xt, t) that maps each point in the same
PF ODE trajectory to its start point, i.e., fθ(xt, t) = xϵ,∀t ∈ [ϵ, T ]. Therefore, ∀t, t′ ∈ [ϵ, T ], we
have fθ(xt, t) = fθ(xt′ , t

′), which is the “self-consistency” property of consistency model.

Here, fθ(xt, t) is defined as:
fθ(xt, t) = cskip(t)xt + cout(t)Fθ(xt, t), (4)

where cskip(t) and cout(t) are differentiable functions, and cskip(ϵ) = 1, cout(ϵ) = 0 such that they
satisfy the boundary condition fθ(xϵ, ϵ) = xϵ. In (4), Fθ(xt, t) can be free-form deep neural network
with output that has the same dimension as xt.

Consistency function fθ(xt, t) can be optimized by minimizing the difference of points in the same
PF ODE trajectory. If we use a pretrained diffusion model to generate such PF ODE trajectory, then
utilize it to train a consistency model, this process is called consistency distillation. We use the
consistency distillation method to learn a consistency model in this work and optimize the consistency
distillation loss as the Definition 1 in [20].

With a well-trained consistency model fθ(xt, t), we can generate samples by sampling from the
initial Gaussian distribution x̂T ∼ N (0, T 2I) and then evaluating the consistency model for x̂ϵ =
fθ(x̂T , T ). This involves only one forward pass through the consistency model and therefore
generates samples in a single step. This is the one-step sampling process of the consistency model.

3 Q-Distribution guided Q-learning via Consistency Model

In this work, we present a novel method for offline RL called Q-Distribution Guided Q-Learning
(QDQ). First, we quantify the uncertainty of Q-values by learning the Q-distribution using the
consistency model. Next, we propose a strategy to identify risky actions and penalize their Q-values
based on uncertainty estimation, helping to mitigate the associated risks. To tackle the excessive
conservatism seen in previous approaches, we introduce uncertainty-aware Q optimization within
the Actor-Critic learning framework. This mechanism allows the Q-value function to perform both
optimistic and pessimistic optimization, fostering a balanced approach to learning.
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3.1 Learn Uncertainty of Q-value by Q-distribution

Estimating the uncertainty of the Q function is a significant challenge, especially with deep neural
network Q estimators. A practical indicator of uncertainty is the presence of large variances in the
estimates. Techniques such as bootstrapping multiple Q-values and estimating variance [7] have been
used to address this issue. However, these ensemble methods often lack diversity in Q-values [9]
and fail to accurately represent the true Q-value distribution. They may require tens or hundreds of
Q-values to improve accuracy, which is computationally inefficient [9, 5].

Other approaches involve estimating the Q-value distribution and determining the lower confidence
bound [10, 12, 16], or engaging in in-distribution learning of the Q-value function [3, 13, 16, 10, 34].
However, these methods often struggle to provide precise uncertainty estimations for the Q-value
[15]. Stabilization methods can still lead to Q-value overestimation [3], while inaccurate variance
estimation can worsen this problem. Furthermore, even if the Q-value is not overestimated, there is
still a risk of it being overly pessimistic or constrained by the performance of the behavior policy
when using in-distribution-only training.

In this subsection, we elucidate the process of learning the distribution of Q-values based on the
consistency model, and outline the technique for estimating the uncertainty of actions and identifying
risky actions. We have give a further demonstration on the performance of the consistency model and
efficiency of the uncertainty estimation in Appendix G.2 and Appendix G.3.

Trajectory-level truncated Q-value. We chose to estimate the Q-value distribution of the behavior
policy instead of the learning policy because they share a similar set of high-uncertainty actions
[5]. Using the behavior policy’s Q-value distribution has several advantages. First, the behavior
policy’s Q-value dataset comes from the true dataset, ensuring high-quality distribution learning. In
contrast, the learning policy’s Q-value is unknown, counterfactually learned, and often noisy and
biased, leading to poor data quality and biased distribution learning. Second, using the behavior
policy’s Q-value distribution to identify high-uncertainty actions does not force the learning policy’s
target Q-value to align with that of the behavior policy.

To gain insights into the Q-value distribution of the behavior policy, we first need the raw Q-value data.
The calculation of the Q-value operates at the trajectory level, represented as τ = (s0, a0, s1, a1, ...),
with an infinite horizon (see Eq.1). In the context of offline RL, our training relies on the dataset D
produced by the behavior policy. This dataset consists of trajectories generated by the behavior policy,
which is the only available trajectory-level data. However, the trajectory-level data from the behavior
policy often faces a significant challenge: sparsity. This issue becomes even more pronounced when
dealing with low-quality behavior policies, as the generated trajectories tend to be sporadic and do
not adequately cover the entire state-action space S ×A, especially the high reward region.

To address this pervasive issue of sparsity, as well as the infinite summation in Eq.1, we present a
novel approach aimed at enhancing sample efficiency. Our proposed solution involves the utilization
of truncated trajectories to ameliorate the sparsity conundrum and avoid infinite summation. By
employing a k- step sliding window of width T , we systematically traverse the original trajectories,
isolating segments within the window to compute the truncated Q-value (as depicted in Figure A.1).
For instance, considering the initiation point of the i-th step sliding window as (si, ai), by setting
T = i+ k, we derive the truncated Q-value of this starting point as follows:

Q
πβ

T (si, ai) =

T∑
m=i

γm−1r(sm, am)× t(sm, am), t(sm, am) =

{
0, terminal,

1, otherwise.
(5)

The truncation of Q-values can occur either through sliding window mechanisms or task terminations.
When truncation happens due to termination, the Q-value from Eq.5 is equivalent to the true Q-value,
QπβT (·, ·) ≡ Qπβ (·, ·). In contrast, if truncation results from window blocking, our theoretical
analysis in Theorem 4.1 confirms that the distribution of truncated Q-values has properties similar to
those of the true Q-value distribution.

Using a k-step sliding window does not compromise the consistency of the trajectory, owing to the
inherent memory-less Markov property in RL. This strategic truncation allows for the extraction of
truncated Q-values, which can improve sample efficiency, especially for long trajectories. Moreover,
this approach highlights actions with potential high Q-values, as actions from lengthy trajecto-
ries—those with many successful interactions—are encountered more often during Q-distribution
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training. Consequently, the uncertainty of these actions is lower, reducing the likelihood of them
being overly pessimistic.

Learn the distribution of Q-value. In distributional RL, the learning of Q-value distributions
is typically achieved through Gaussian neural networks [35, 36], Gaussian processes [37, 38], or
categorical parameterization [39]. However, these methods often suffer from low precision represen-
tation of Q-value distributions, particularly in high-dimensional spaces. Moreover, straightforward
replacement of true Q-value distributions with ensembles or bootstraps can lead to reduced accuracy
in uncertainty estimation(a critical aspect in offline reinforcement learning [4]), or impose significant
computational burdens [8, 7].

The idea of diffusing the original distribution using random noise has rendered the diffusion model a
potent and high-fidelity distribution learner. However, it has limitations when estimating uncertainty.
Sampling with a diffusion model requires a multi-step forward diffusion process to ensure sample
quality. Unfortunately, this iterative process can compromise the accuracy of uncertainty estimates by
introducing significant fluctuations and noise into the Q-value uncertainty. For a detailed discussion,
see Appendix A.2.

To address this issue, we suggest using the consistency model [20] to learn the Q-value distribution.
The consistency model allows for one-step sampling, like other generative models, which reduces
the randomness found in the multi-step sampling of diffusion models. This results in a more robust
uncertainty estimation. Furthermore, the consistency feature, as explained in Theorem 4.2, accurately
captures how changes in actions affect the variance of the final bootstrap samples, making Q-value
uncertainty more sensitive to out-of-distribution (OOD) actions compared to the diffusion model.
Additionally, the fast-sampling process of the consistency model improves QDQ’s efficiency. While
there may be some quality loss in restoring real samples, this is negligible for QDQ since it only
calculates uncertainty based on the variance of the bootstrap samples, not the absolute Q-value of
the sampled samples. Overall, the consistency model is an ideal distribution learner for uncertainty
estimation due to its reliability, high-fidelity, ease of training, and faster sampling.

Once we derive the truncated Q dataset DQ, we train a conditional consistency model, denoted by
fθ(xT , T |(s, a)), which approximates the distribution of Q-values. Since the consistency model
aligns with one-step sampling, we can easily sample multiple Q-values for each action using the
consistency model. Suppose we draw n prior noise {x̂T1

, x̂T2
, · · · , x̂Tn

} from the initial noise
distribution N (0, T 2), and denoise the prior samples by the consistency one-step forward process:
x̂ϵi = fθ(x̂Ti

, Ti|(s, a)), i = 1, 2, · · · , n. Then the variance of these Q-values, derived by

V (Xϵ|(s, a)) =
1

n− 1

n∑
i=1

[
fθ(x̂Ti , T |(s, a))−

1

n

n∑
i=1

fθ(x̂Ti , T |(s, a))

]2

, (6)

can be used to gauge the uncertainty of Q(s, a).

3.2 Q-distribution guided optimization in offline RL

Recover Q-value function. We propose an uncertainty-aware optimization objective Luw(Q) to
penalize Q-value for OOD actions as well as to avoid too conservative Q-value learning for in-
distribution areas. The uncertainty-aware learning objective for Q-value function Qθ(s, a) is :

Luw(Qθ) = min
θ
{αL(Qθ)H + (1− α)L(Qθ)L}. (7)

In Eq.7, L(Qθ)H represents the classic Bellman residual defined in Eq.2. This residual is used in
online RL and encourages optimistic optimization of the Q-value. In contrast, L(Qθ)L is a pessimistic
Bellman residual based on the uncertainty-penalized Q target QL(s

′, a′), defined as

QL(s
′, a′) =

1

HQ(a′|s′)
Qθ(s

′, a′)1(a′∈U(Q)) + βQθ(s
′, a′)1(a′ /∈U(Q)). (8)

In Eq.8,HQ(a
′|s′) =

√
V (Xϵ|(s′, a′)) represents the uncertainty estimate of the Q-value for action

a′. The set U(Q) includes actions that may be out-of-distribution (OOD). We use the upper β-quantile
Hβ

Q(a
′|s′) of the uncertainty estimate on actions taken by the learning policy as the threshold for

forming U(Q). Additionally, we incorporate the quantile parameter β as a robust weighting factor for
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the unpenalized Q-target value. This helps control the estimation error of uncertainty and enhances
the robustness of the learning objective. We can also set a free weighting factor, but we use β to
reduce the number of hyperparameters.

Improve the learning policy. The optimization of learning policy follows the classic online RL
paradigm:

Lϕ(π) = max
ϕ

[
Es∼PD(s),a∼πϕ(·|s)[Qθ(s, a)] + γEa∼D[log πϕ(a)]

]
. (9)

In Eq.9, an entropy term is introduced to further stabilize the volatile learning process of Q-value
function. For datasets with a wide distribution, we can simply set the penalization factor γ to zero,
which can further enhance performance. Furthermore, other policy learning objectives, such as the
AWR policy objective [40], can also be flexibly used within the QDQ framework, especially for the
goal conditioned task like Antmaze.

We outline the entire learning process of QDQ in Algorithm 1. In Section 4, Theorems 4.3 and 4.4
show that QDQ penalizes the OOD region based on uncertainty while ensuring that the Q-value
function in the in-distribution region is close to the optimal Q-value. This alignment is the main goal
of offline RL.

Algorithm 1 Q-Distribution guided Q-learning (QDQ)
Initialize: target network update rate κ, uncertainty-aware learning hyperparameter α, β,policy
training hyperparameters γ. Consistency model fη, Q networks {Qθ1 , Qθ2}, actor πϕ, target
networks {Qθ′

1
, Qθ′

2
}, target actor πϕ′ .

Q-distribution learning:
Calculate Q dataset DQ = {Qπβ

T (s, a)} scanning each trajectory τ ∈ D by Eq.5.
for each gradient step do

Sample minibatch of Qπβ

T (s, a) ∼ DQ

Update η minimizing consistency distillation loss in Eq.(7) [20]
end for
for each gradient step do

Sample mini-batch of transitions (s, a, r, s′) ∼ D
Updating Q-function:
Update θ = (θ1, θ2) minimizing Luw(Qθ) in Eq.7
Updating policy:
Update ϕ minimizing Lϕ(π) in Eq.9
Update Target Networks:
ϕ′ ← κϕ+ (1− κ)ϕ′; θ′i ← κθi + (1− κ)θ′i, i = 1, 2

end for

4 Theoretical Analysis

In this section, we provide a theoretical analysis of QDQ. The first theorem states that if T is
sufficiently large, the distribution of QπβT does not significantly differ from the true distribution
of Qπβ . This shows that our sliding window-based truncated Q-value distribution converges to the
true Q-value distribution, ensuring accurate uncertainty estimation. A detailed proof can be found in
Appendix B.
Theorem 4.1 (Informal). Under some mildly condition, the truncated Q-value Q

πβ

T converge in-
distribution to the true true Q-value Qπβ .

F
Q

πβ
T
(x)→ FQπβ (x), T → +∞. (10)

In Theorem 4.2, we analyze why the consistency model is suitable for estimating uncertainty. Our
analysis shows that Q-value uncertainty is more sensitive to actions. This sensitivity helps in detecting
out-of-distribution (OOD) actions. A detailed statement of the theorem and its proof can be found in
Appendix C.
Theorem 4.2 (Informal). Following the assumptions as in [20], fθ(x, T |(s, a)) is L-Lipschitz. We
also assume the truncated Q-value is bounded byH. The action a broadly influences V (Xϵ|(s, a))
by: |∂var(Xϵ)

∂a | = O(L2T
√
log n)1.
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In Theorem 4.3, we give theoretical analysis that the uncertainty-aware learning objective in Eq.7 can
converge and the details can be found in Appendix D.
Theorem 4.3 (Informal). The Q-value function of QDQ can converge to a fixed point of the Bellman
equation: Q(s, a) = FQ(s, a), where the Bellman operator FQ(s, a) is defined as:

FQ(s, a) := r(s, a) + γEs′∼PD(s′){max
a′

[αQ(s′, a′) + (1− α)QL(s
′, a′)]}. (11)

Theorem 4.4 shows that QDQ penalizes the OOD region by uncertainty while ensuring that the
Q-value function in the in-distribution region is close to the optimal Q-value, which is the goal of
offline RL.
Theorem 4.4 (Informal). Under mild conditions, with probability 1− η we have∥∥Q∆ −Q∗∥∥

∞ ≤ ϵ, (12)

where Q∆ is learned by the uncertainty-aware loss in Eq.7, ϵ is error rate related to the difference
between the classical Bellman operator BQ and the QDQ bellman operator FQ.

The optimal Q-value, Q∆, derived by the QDQ algorithm can closely approximate the optimal
Q-value function, Q∗, benefiting from the balanced approach of the QDQ algorithm that avoids
excessive pessimism for in-distribution areas. Both the value ϵ and η are small and more details in
Appendix E.

5 Experiments

In this section, we first delve into the experimental performance of QDQ using the D4RL benchmarks
[41]. Subsequently, we conduct a concise analysis of parameter settings, focusing on hyperparameter
tuning across various tasks. For detailed implementation, we refer to Appendix G.

5.1 Performance on D4RL benchmarks for Offline RL

We evaluate the proposed QDQ algorithm on the D4RL Gym-MuJoCo and AntMaze tasks. We
compare it with several strong state-of-the-art (SOTA) model-free methods: behavioral cloning
(BC), BCQ [42], DT [43], AWAC [44], Onestep RL [45], TD3+BC [46], CQL [3], and IQL [10].
We also include UWAC [7], EDAC [9], and PBRL [14], which use uncertainty to pessimistically
adjust the Q-value function, as well as MCQ [13], which introduces mild constraints to the Q-value
function. The experimental results for the baselines reported in this paper are derived from the
original experiments conducted by the authors or from replication of their official code. The reported
values are normalized scores defined in D4RL [41].

Table 1: Comparison of QDQ and the other baselines on the three Gym-MuJoCo tasks. All the
experiment are performed on the MuJoCo "-v2" dataset. The results are calculated over 5 random
seeds.med = medium, r = replay, e = expert, ha = halfcheetah, wa = walker2d, ho=hopper

Dataset BC AWAC DT TD3+BC CQL IQL UWAC MCQ EDAC PBRL QDQ(Ours)

ha-med 42.6 43.5 42.6 48.3 44.0 47.4 42.2 64.3 65.9 57.9 74.1±1.774.1±1.774.1±1.7

ho-med 52.9 57.0 67.6 59.3 58.5 66.2 50.9 78.4 101.6101.6101.6 75.3 99.0±0.399.0±0.399.0±0.3

wa-med 75.3 72.4 74.0 83.7 72.5 78.3 75.4 91.0 92.592.592.5 89.6 86.9±0.08

ha-med-r 36.6 40.5 36.6 44.6 45.5 44.2 35.9 56.8 61.3 45.1 63.7±2.963.7±2.963.7±2.9

ho-med-r 18.1 37.2 82.7 60.9 95.0 94.7 25.3 101.6 101.0 100.6 102.4±0.28102.4±0.28102.4±0.28

wa-med-r 26.0 27.0 66.6 81.8 77.2 73.8 23.6 91.3 87.1 77.7 93.2±1.193.2±1.193.2±1.1

ha-med-e 55.2 42.8 86.8 90.7 91.6 86.7 42.7 87.5 106.3106.3106.3 92.3 99.3±1.7

ho-med-e 52.5 55.8 107.6 98.0 105.4 91.5 44.9 112.3 110.7 110.8 113.5±3.5113.5±3.5113.5±3.5

wa-med-e 107.5 74.5 108.1 110.1 108.8 109.6 96.5 114.2 114.7 110.1 115.9±0.2115.9±0.2115.9±0.2

Total 466.7 450.7 672.6 684.6 677.4 698.5 437.4 797.4 841.1 759.4 848.0±11.8848.0±11.8848.0±11.8

Table 1 shows the performance comparison between QDQ and the baselines across Gym-MuJoCo
tasks, highlighting QDQ’s competitive edge in almost all tasks. Notably, QDQ excels on datasets
with wide distributions, such as medium and medium-replay datasets. In these cases, QDQ effectively
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avoids the problem of over-penalizing Q-values. By balancing between being too conservative
and actively exploring to find the optimal Q-value function through dynamic programming, QDQ
gradually converges toward the optimal Q-value, as supported by Theorem 4.4.

Table 2: Comparison of QDQ and the other baselines on the Antmaze tasks. All the experiment are
performed on the Antmaze "-v0" dataset for the comparison comfortable with previous baseline. The
results are calculated over 5 random seeds.

Dataset BC TD3+BC DT Onestep RL AWAC CQL IQL QDQ(Ours)

umaze 54.6 78.6 59.2 64.3 56.7 74.0 87.5 98.6±2.898.6±2.898.6±2.8

umaze-diverse 45.6 71.4 53.0 60.7 49.3 84.084.084.0 62.2 67.8±2.5

medium-play 0.0 10.6 0.0 0.3 0.0 61.2 71.2 81.5±3.681.5±3.681.5±3.6

medium-diverse 0.0 3.0 0.0 0.0 0.7 53.7 70.0 85.4±4.285.4±4.285.4±4.2

large-play 0.0 0.2 0.0 0.0 0.0 15.8 39.639.639.6 35.6±5.4

large-diverse 0.0 0.0 0.0 0.0 1.0 14.9 47.547.547.5 31.2±4.5

Total 100.2 163.8 112.2 125.3 142.4 229.8 378 400.1±23.0400.1±23.0400.1±23.0

Table 2 presents the performance comparison between QDQ and selected baselines3 across AntMaze
tasks, highlighting QDQ’s commendable performance. While QDQ focuses on reducing overly
pessimistic estimations, it does not compromise its performance on narrow datasets. This is evident
in its competitive results on the medium-expert dataset in Table 1, as well as its performance on
AntMaze tasks. Notably, QDQ outperforms SOTA methods on several datasets. This success is due
to the inherent flexibility of the QDQ algorithm. By allowing for flexible hyperparameter control
and seamless integration with various policy optimization methods, QDQ achieves a synergistic
performance enhancement.

5.2 Parameter analysis

The uncertainty-aware loss parameter α. The parameter α is crucial for balancing the dominance
between optimistic and pessimistic updates of the Q-value (Eq.7). A higher α value skews updates
toward the optimistic side, and we choose a higher α when the dataset or task is expected to be highly
robust. However, the setting of α is also influenced by the pessimism of the Q target defined in Eq.8.
For a more pessimistic Q target value, we can choose a larger α. Interestingly, both the theoretical
analyses in Theorem 4.3 and Theorem 4.4 and empirical parameter tuning suggest that variability in
α across tasks is minimal, with a typical value around 0.95.

The uncertainty related parameter β. The parameter β influences both the partitioning of high
uncertainty sets and acts as a relaxation variable to control uncertainty estimation errors. When
dealing with a narrow action space or a sensitive task (such as the hopper task), the value of β should
be smaller. In these cases, the Q-value is more likely to select OOD actions, increasing the risk of
overestimation. This means we face greater uncertainty (Eq.8) and need to minimize overestimation
errors. Therefore, we require stricter criteria to ensure actions are in-distribution and penalize the
Q-values of OOD points more heavily. A detailed analysis of how to determine the value of β can be
found in Appendix G.3.

The entropy parameter γ. The γ term in Eq.9 stabilizes the learning of a simple Gaussian policy, es-
pecially for action-sensitive and narrower distribution tasks. When the dataset has a wide distribution
or the task shows high robustness to actions (such as in the half-cheetah task), the Q-value function
generalizes better across the action space. In these cases, we can set a more lenient requirement
for actions, keeping the value of γ as small as possible or even at 0. However, when the dataset is
narrow (e.g., in the AntMaze task) or when the task is sensitive to changes in actions (like in the
hopper or maze tasks, where small deviations can lead to failure), a larger value of γ is necessary. For
these tasks, a simple Gaussian policy can easily sample risky actions, as it fits a single-mode policy.
Nonetheless, experimental results indicate that the sensitivity of the γ parameter is not very high. In
fact, γ in Eq.9 is relatively small compared to the Q-value, primarily to stabilize training and prevent
instability in Gaussian policy action sampling. See Appendix G.7 for more details.

3We do not provide the performance of UWAC, EDAC, PBRL, and MCQ on the AntMaze task, as they do
not offer useful parameter settings for this task.

9



6 Related Works

Restrict policy deviate from OOD areas. The distribution mismatch between the behavior policy
and the learning policy can be overcome if the learning policy share the same support with the
behavior policy. One approach involves explicit distribution matching constraints, where the learning
policy is encouraged to align with the behavior policy by minimizing the distance between their
distributions. This includes techniques based on KL-divergence [47, 48, 40, 44, 46], Jensen–Shannon
divergence [49], and Wasserstein distance [47, 49]. Another line of research aims to alleviate the
overly conservative nature of distribution matching constraints by incorporating distribution support
constraints. These methods employ techniques such as Maximum Mean Discrepancy (MMD) distance
[5], learning behavior density functions using implicit [50] or explicit [51] methods, or measuring the
geometric distance between actions generated by the learning and behavior policies [52].In addition
to explicit constraint methods, implicit constraints can also be implemented by learning a behavior
policy sampler using techniques like Conditional Variational Autoencoders (CVAE) [42, 53, 50, 54],
Autoregressive Generative Model [55], Generative Adversarial Networks (GAN) [49], normalized
flow models [56], or diffusion models [57, 58, 11, 59, 11, 60].

Pessimistic Q-value optimization. Pessimistic Q-value methods offer a direct approach to address
the issue of Q-value function overestimation, particularly when policy control fails despite the
learning policy closely matching the behavior policy [3]. A promising approach to pessimistic
Q-value estimation involves estimating uncertainty over the action space, as OOD actions typically
exhibit high uncertainty. However, accurately quantifying uncertainty poses a challenge, especially
with high-capacity function approximators like neural networks [4]. Techniques such as ensemble
or bootstrap methods have been employed to estimate multiple Q-values, providing a proxy for
uncertainty through Q-value variance [7, 9, 14], importance ratio [61, 62] or approximate Lower
Confidence Bounds (LCB) for OOD regions [8, 9]. Other methods focus on estimating the LCB of
Q-values through quantile regression [63, 34], expectile regression [10, 11], or tail risk measurement
such as Conditional Value at Risk (cVAR) [12]. Alternatively, some approaches seek to pessimistically
estimate Q-values based on the behavior policy, aiming to underestimate Q-values under the learning
policy distribution while maximizing Q-values under the behavior policy distribution [3, 13, 64, 65].
Another category of Q-value constraint methods involves learning Q-values only within the in-sample
[16, 17, 18, 19], capturing only in-sample patterns and avoid OOD risk. Furthermore, Q-value
functions can be replaced by safe planning methods used in model-based RL, such as planning with
diffusion models [66] or trajectory-level prediction using Transformers [43]. However, ensemble
estimation of uncertainty may tend to underestimate true uncertainty, while quantile estimation
methods are sensitive to Q-distribution recovery. In-sample methods may also be limited by the
performance of the behavior policy.

7 Conclusion

We introduce QDQ, a novel framework rendering pessimistic Q-value in OOD areas by uncertainty
estimation. Our approach leverages the consistency model to robustly estimate the uncertainty
of Q-values. By employing this uncertainty information, QDQ can apply a judicious penalty to
Q-values, mitigating the overly conservative nature encountered in previous pessimistic Q-value
methods. Additionally, to enhance optimistic Q-learning within in-distribution areas, we introduce an
uncertainty-aware learning objective for Q optimization. Both theoretical analyses and experimental
evaluations demonstrate the effectiveness of QDQ. Several avenues for future research exist, including
embedding QDQ into goal-conditioned tasks, enhancing exploration in online RL by efficient
uncertainty estimation. We hope our work will inspire further advancements in offline reinforcement
learning.
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Appendix

A Further discussion about uncertainty estimation of Q-value by
Q-distribution.

A.1 The Q-value dataset enhancement with sidling window.

In Section 3.1, we analyze the challenges associated with deriving the Q-value dataset. We propose
the k-step sliding window method to improve sample efficiency at the trajectory level. The imple-
mentation details of the k-step sliding window within an entire trajectory are illustrated in Figure
A.1.

This sliding window framework not only facilitates the expansion of Q-value data but also prevents the
state-action pairs from becoming overly dense, thereby mitigating the risk of Q-value homogenization.
In continuous state-action spaces, Q-values tend to be homogeneity when state and action are close in
a trajectory, which may hinder subsequent learning of the Q-value distribution.
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Figure A.1: This exemplifies how the sliding window mechanism operates to augment Q data. Let’s
consider a sliding window with a width of 50 and a step size of k = 10. For a specific trajectory, at
step 1, we commence with (s1, a1) and compute the truncated Q-value utilizing trajectories within
the window. At step 2, the sliding window progresses k steps forward, allowing us to compute the
truncated Q-value for (s1+k, a1+k).

A.2 Drawbacks of the diffusion model for estimating the uncertainty

Suppose we use the score matching method proposed in [30] to learn a conditional score network
sθ(x, σ|s, a) to approximate the score function of the Q-value distribution pQ(x). Then we use
the annealed Langevin dynamics as in [30] to sample from the learned Q-value distribution. For
x0 ∼ π(x) from some arbitrary prior distribution π(x), the denoised sample is:

xi+1 = xi + ϵ · sθ(xi, σ|s, a) +
√
2ϵzi, i = 0, 1, 2, · · · , T. zi ∼ N (0, 1). (A.1)

The distribution of xi+1 equals pQ(x) when ϵ→ 0 and T →∞.
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Our primary approach to quantify the uncertainty of the action with respect to the Q-value is to
evaluate the spread of the sampled Q-values for each (s, a). We then use the gradient of the Q-value
samples with respect to the action to assess their sensitivity to changes in action. By iteratively
deriving the gradient over the sampling chain of length T , as shown in Eq.A.1, we approximate the
following outcome:

∂xT

∂a
=

T∑
i=1

ciϵ
i ∂

isθ(·|s, a)
∂ai

. (A.2)

From Eq.A.2, the impact of actions on Q-value samples learned from the diffusion model shows
considerable instability, especially during the iterative gradient-solving process for the score network
sθ(x, σ|s, a). This instability often leads to gradient vanishing or exploding. While the diffusion
model effectively recovers the Q-value distribution with high precision, the multi-step sampling
process introduces significant fluctuations and noise, making it difficult to accurately assess the
uncertainty of Q-values for different actions.

Additionally, as different prior information may yield the same target sample, and this stochastic
correlation also introduces an uncontrollable impact on uncertainty of the Q-value. However, the
effect of prior sample variance on the uncertainty of the sampled Q-value can not be quantified with
the diffusion model. So we can not guarantee if the absolute influence on the Q-value uncertainty is
from the action, then the performance of the uncertainty can not be guaranteed.

B Convergence of the truncated Q-value distribution.

We first give a formal introduction of Theorem 4.1 as Theorem B.1.

Theorem B.1. Suppose the true distribution of Q-value w.r.t the behavior policy πβ is defined as
FQπβ (x). By Eq.5, we derive the truncated Q-value Q

πβ

T , denote the distribution of the truncated
Q-value is F

Q
πβ
T
(x). Assume the true Q-value is finite over the state and action space,then Q

πβ

T
converge in-distribution to the true true Q-value Qπβ .

F
Q

πβ
T
(x)→ FQπβ (x), T → +∞. (B.1)

We will show the distribution of the truncated Q-value Q
πβ

T has the same property with the true
distribution of the Q-value Q

πβ

T and give a brief proof of Theorem 4.1.

Suppose the state-action space determined by the offline RL dataset D is ΩD = SD ×AD. Note that

Qπβ can be seen as an r.v. defined as: (ΩD,F ,P · πβ)
Qπβ

−−−→ (R,B(R), (P · πβ) ◦ (Qπβ )−1), where
F is the σ-field on ΩD, P · πβ is the probability measure on ΩD and P is the transition probability
measure over state, B(R) is the Borel σ-field on R, (P · πβ) ◦ (Qπβ )−1 = (P · πβ)((Q

πβ )−1) is the
push forward probability measure on R. Same as Qπβ , Qπβ

T can also be seen as a r.v..

Then we show that Qπβ

T converge to Qπβ almost surely: Qπβ

T
a.s.−−→ Qπβ , when sending T to infinity.

Define the trajectory level dataset Dτ = {τk|τk = (sk0 , ak0 , rk0 , sk1 , ak1 , rk1 , · · · )}. Then for any
trajectory τk ∈ Dτ , the true Q-value w.r.t this trajectory can be rewrite without the expectation

as:Qπ(sk0
, ak0

) =

∞∑
j=1

γj−1r(skj
, akj

).

Truncating Q-value by termination situation. If the terminal occurs at step kt of the trajectory τk,
then we have r(skj

, akj
) = 0, for j > kt. Then the truncated Q-value is identical the true Q-value:

Q
πβ

kt
≡ Qπ(sk0 , ak0). So the distribution of these two distribution is same for the situation when the

truncation is happened due to terminal of the task.

Truncating Q-value by sliding window situation. If the Q-value is truncated by a sliding window as
shown in Figure A.1, then for a specific k- step sliding widow of width T with starting point (si, ai)

over a trajectory τ , we have Q
πβ

T (si, ai) =

T∑
m=i

γm−1r(sm, am).
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Define the state action set Bn(ξ) :=
∞
∪

T =n
An(ξ), where AT (ξ) = {(s, a) : |Q

πβ

T (s, a)−Qπβ (s, a)| >
ξ}. By the definition of Q-value, we have Bm(ξ) = Am(ξ), as AT (ξ) ⊃ AT +1(ξ) ⊃ AT +2(ξ) ⊃
· · · is decreasing. So Bn(ξ) is also decreasing. Then,

lim
m→∞

P(Bn(ξ)) = P( lim
n→∞

Bn(ξ)) = P( lim
n→∞

An(ξ)) (B.2)

By definition, An(ξ) = {(s, a) : |Qπβ
n (s, a) − Qπβ (s, a)| > ξ}, and assume the reward function

r(·, ·) is bounded as r(·, ·) < c for some constant c,

|Qπβ
n (s, a)−Qπβ (s, a)| =

∞∑
k=n+1

γnr(sk, ak) ≤ c

∞∑
k=n+1

γn =
γn

1− γ
· c (B.3)

So An(ξ)→ ∅ when sending n to infinity, as the discount factor γ < 1 by definition.

Then by Eq.B.2, we have limm→∞ P(Bn(ξ)) = 0,∀ξ > 0. In probability theory, this is equivalent
to Q

πβ

T
a.s.−−→ Qπβ .

Furthermore, if Qπβ

T converge to Qπβ almost surely, then Q
πβ

T also converge to Qπβ in probability,
and in-distribution. Hence, we finish the proof.
Remark B.1. Theorem 4.1 suggests that for arbitrary small ϵ, there exists a sufficiently large T , such
that |F

Q
πβ
T
(x) − FQπβ (x)| < ϵ. Given that the impact of rewards diminishes exponentially after

as the increasing of trajectory length, it is unnecessary to set T to an excessively large value. It’s
important to remember that the goal of the Q dataset is to learn the Q-distribution and assess the
uncertainty of different actions. Therefore, the absolute magnitude of Q is not crucial. Additionally,
using too many future steps may introduce significant uncertainty into the Q-value, as predictions for
the distant future can be inaccurate.
Remark B.2. During the proof, the specific starting point of the sliding window holds no significance;
rather, our focus lies solely on the length of the window. This is primarily due to the Markovian
nature of trajectories in RL, where the current state and action are unaffected by previous ones and
adhere to a memoryless property. Consequently, the starting point of the sliding window exerts
minimal influence on the computation of Q.

C Robustness of consistency model for uncertainty measure.

The formal introduction of Theorem 4.2 is shown in Theorem C.1.

Theorem C.1. Follow the assumptions in [20], we assume fθ(x, T |(s, a)) is L-Lipschitz.

By using the partial gradient to analyze the influence of prior samples x̂T , time step T and action a
to the variance of the denoised sample var(Xϵ), with high probability, we have:

(1) Prior noise influence the variance V (Xϵ) is bounded by: |∂V (Xϵ)
∂x̂T

| =

O(L2Tn−1
√
T log(n))1.

(2) Time step T influence the variance V (Xϵ) is bounded by: |∂var(Xϵ)
∂T | = O(L2T

√
log n).

(3) Action a influence the variance V (Xϵ) is bounded by: |∂var(Xϵ)
∂a | = O(L2T

√
log n)1.

As discussed in Section 3.1 and A.2, while the diffusion model has shown great success in learning
distributions and generating samples, it is less suitable for scenarios where the influence of certain
parameters on sample uncertainty must be guaranteed. When estimating uncertainty, we sample
multiple Q-values for each (s, a) pair, and the standard deviation of these sampled Q-values measures
the uncertainty. Therefore, it is crucial that the sample spread is sensitive to changes in action to
accurately judge OOD actions.

However, the multi-step forward denoising process of the diffusion model undermines the influence of
actions on the sampled Q-values, compromising the robustness of uncertainty estimation. Additionally,
the lack of a one-to-one correspondence between prior information and target samples prevents the
cancellation of prior effects on the Q-value distribution through repeated sampling.
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In contrast, the consistency model addresses these challenges. It not only overcomes the aforemen-
tioned issues, but its one-step sampling significantly enhances efficiency. In the following theoretical
analysis, we will demonstrate the robustness of the consistency model in estimating uncertainty.

As described in [20] and Section 2.2, a consistency model fθ(x, t) is trained to mapping the prior
noise on any trajectory of PF ODE to the trajectory’s origin xϵ by: fθ(x, t) = xϵ, given x and xϵ

belong to the same PF ODE trajectory. fθ(x, t) is defined as in Eq.4.

Suppose we trained a conditional consistency model fθ(x, t|s, a) with the truncated Q-value dataset
DQ = {Qπβ

T (s, a)}, following the one-step sampling of consistency model, we first initial n noise
x̂Ti ∼ N (0, T 2), i = 1, 2, ..., n, then do one-step forward denosing and derive n sample x̂ϵi =
fθ(x̂Ti , T |s, a), where T is a fixed time step. The variance based on the Q sample is:

V (Xϵ) =
1

n− 1

n∑
i=1

[
fθ(x̂Ti

, T |(s, a))− 1

n

n∑
i=1

fθ(x̂Ti
, T |(s, a))

]2

. (C.1)

Next, we derive the gradient of V (Xϵ) w.r.t x̂Ti
, T , a, and check how change in these variable

influence the variance. As state s is always in-distribution during offline RL training process and has
little influence on the uncertainty of the sampled Q-value, we skip the analysis.

Following [20], we assume that fθ(x, t|s, a) is L-Lipschitz bounded, i.e., for any x and y,

∥fθ(x, t|(s, a))− fθ(y, t|(s, a))∥2 ≤ L ∥x− y∥2 .

Gradient of the prior x̂Ti
.

Proof. Let ei be the square difference of the i-th prior x̂Ti
:

ei(x̂Ti) :=

[
fθ(x̂Ti , T |(s, a))−

1

n

n∑
i=1

fθ(x̂Ti , T |(s, a))

]2

. (C.2)

Then we have:

∂V (Xϵ)

∂x̂Ti

=
1

n− 1

n∑
j=1

∂ej(x̂Tj
)

∂x̂Ti

(C.3)

If j = i,

∂ej(x̂Tj )

∂x̂Ti

=2

[
fθ(x̂Ti

, T |(s, a))− 1

n

n∑
i=1

fθ(x̂Ti
, T |(s, a))

]
·
[
∂fθ(x̂Ti , T |(s, a))

∂x̂Ti

− 1

n

∂fθ(x̂Ti , T |(s, a))
∂x̂Ti

]

=2

[
fθ(x̂Ti

, T |(s, a))− 1

n

n∑
i=1

fθ(x̂Ti
, T |(s, a))

]
· n− 1

n

∂fθ(x̂Ti
, T |(s, a))

∂x̂Ti

. (C.4)

If j ̸= i,

∂ej(x̂Tj )

∂x̂Ti

=2

[
fθ(x̂Tj

, T |(s, a))− 1

n

n∑
i=1

fθ(x̂Ti
, T |(s, a))

]
·
[
0− 1

n

∂fθ(x̂Ti , T |(s, a))
∂x̂Ti

]

=2

[
fθ(x̂Tj

, T |(s, a))− 1

n

n∑
i=1

fθ(x̂Ti
, T |(s, a))

]
· − 1

n

∂fθ(x̂Ti
, T |(s, a))

∂x̂Ti

. (C.5)

Thus, plugging Eq.C.4 and Eq.C.5 into ∂V (Xϵ)
∂x̂Ti

yields

∂V (Xϵ)

∂x̂Ti

=
1

n− 1

n∑
j=1

∂ej(x̂Tj
)

∂x̂Ti

=
2

n(n− 1)

∂fθ(x̂Ti , T |(s, a))
∂x̂Ti

(n− 1)fθ(x̂Ti
, T |(s, a))−

∑
j ̸=i

fθ(x̂Tj
, T |(s, a))

 .

(C.6)
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As fθ(x, t|s, a) is L-Lipschitz bounded, we have

|∂V (Xϵ)

∂x̂Ti

| ≤ 2

n(n− 1)
|∂fθ(x̂Ti

, T |(s, a))
∂x̂Ti

|
∑
j ̸=i

|fθ(x̂Ti , T |(s, a))− fθ(x̂Tj , T |(s, a))|

≤ 2

n(n− 1)
· L · L

∑
j ̸=i

|x̂Ti
− x̂Tj

| ≤ 2

n
· L2 · c

√
log n · T, (C.7)

where |x̂Ti − x̂Tj |,∀j ̸= i can be bounded by cT
√
log n due to x̂Ti ∼ N (0, T 2) with probability at

least 1− n−1. Denote the constant with cp and apply the previous process to all the prior samples
completes the proof.

Gradient of the time step T .

Proof.

Note that

∂V (Xϵ)

∂T
=

1

n− 1

n∑
j=1

∂ej(T )

∂T
. (C.8)

Taking partial gradient of ei(T ) w.r.t T for any j ∈ {1, 2, · · · , n}, we obtain∣∣∣∣∂ej(x̂Tj )

∂T

∣∣∣∣
=2

∣∣∣∣∣
[
fθ(x̂Tj , T |(s, a))−

1

n

n∑
i=1

fθ(x̂Ti , T |(s, a))

]
·

[
∂fθ(x̂Tj

, T |(s, a))
∂T

− 1

n

n∑
i=1

∂fθ(x̂Ti , T |(s, a))
∂T

]∣∣∣∣∣
≤4L

2

n

n∑
i=1

|x̂Tj − x̂Ti | ≤ 4L2
√
log n, (C.9)

with probability at least 1 − n−1, since |x̂Ti
− x̂Tj

|,∀j ̸= i can be bounded by cT
√
log n due to

x̂Ti
∼ N (0, T 2) with probability at least 1− n−1.

Plugging Eq.C.9 into Eq.C.8 yields∣∣∣∣∂V (Xϵ)

∂T

∣∣∣∣ ≤ 4cL2T
√

log n. (C.10)

Gradient of the action a.

For the gradient of ∂V (Xϵ)
∂a , we just need to take partial gradient of V (Xϵ) for each dimmension of

the action a = {a1, a2, · · · , am} by ∂V (Xϵ)
∂ai

. The result is same as those we got in Eq.C.10.

Then take the vector form, we have |∂V (Xϵ)
∂a | = O(L2T

√
log n) · 1, which finish the proof.

Remark C.1. Theorem 4.2 elucidates the diminishing impact of random prior on the variance of the
denoised Q-value as the sample size increases. Leveraging the consistency of sampling, we mitigate
concerns regarding the influence of a priori samples on the uncertainty of final target samples. Given
the fixed sampling step size T , we also address concerns about its effect on the uncertainty of Q
samples. However, for a thorough analysis, we still include the gradient analysis of V (Xϵ) against T .
Remark C.2. The influence of actions on sample variance depends on factors like the Lipschitz factor
and sample size. As the sample size increases, the impact of actions on Q sample variance does not
diminish; instead, it becomes more sensitive. Larger Q sample variance is more likely to occur when
OOD actions are present. Consequently, the consistency model proves to be a reliable approach for
Q-value sampling and uncertainty estimation.
Remark C.3. Although experiments in [20] show that the performance of the consistency model is
less competitive compared to the diffusion model or adversarial generators like GANs, these findings
have minimal relevance to our method. Our primary focus is not on the absolute accuracy of the
sampled Q-values but on the sensitivity of Q sample dispersion to OOD actions and its ability to
effectively capture uncertainty in such cases. Additionally, the high sampling efficiency achieved
through one-step sampling compensates for the minor performance discrepancies of the consistency
model.
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D Convergence of the uncertainty-aware learning objective for recovering the
Q-value function.

We first give a formal introduction of Theorem 4.3 below.
Theorem D.1. Updating Q-value Qθ(s, a) via the uncertainty-aware objective in Eq.7 is equivalent
to minimizing the L2-norm of Bellman residuals: Es∼PD(s),a∼π(a|s)[Q(s, a)−FQ(s, a)]2, where
the Bellman operator FQ(s, a) is defined as:

FQ(s, a) := r(s, a) + γEs′∼PD(s′){max
a′

[αQ(s′, a′) + (1− α)QL(s
′, a′)]}. (D.1)

In addition, assume 1
HQ(a′|s′)1(a′∈U(Q)) < β. Then the Bellman operator FQ is cγ-contraction

operator in the L∞ norm, where c < 1. The Q-value function Qθ(s, a) can converge to a fixed point
by value iteration method.

We will show the the uncertainty-aware learning objective is equivalent to minimized the Bellman
equation defined by a specific Bellman operator FQ firstly.

Then the we proof the Bellman operator FQ is cγ-contraction operator in the L∞ norm, where
c < 1. The Q-value function Qθ(s, a) can converge to a fixed point by the value iteration method.

D.1 Derivation of the Bellman operator FQ.

Recall the Q-value is optimized by the uncertainty-aware learning objective by Eq.7:

Luw(Qθ) = min
θ
{αL(Qθ)H + (1− α)L(Qθ)L}, (D.2)

where

L(Q)H :=Es∼PD(s),a∼π(a|s)[Qθ(s, a)− (BQ)(s, a)]2

=Es∼PD(s),a′∼π(a|s)[Qθ(s, a)− (r(s, a) + γEs′∼PD(s′)[max
a′

Qθ(s
′, a′)])]2, (D.3)

L(Q)L :=Es∼PD(s),a∼π(a|s)[Qθ(s, a)− (BQ)L(s, a)]
2

=Es∼PD(s),a′∼π(a|s)[Qθ(s, a)− (r(s, a) + γEs′∼PD(s′)[max
a′

QL(s
′, a′)])]2. (D.4)

The uncertainty penalized Q target QL(s
′, a′) is defined as:

QL(s
′, a′) =

1

HQ(a′|s′)
Qθ(s

′, a′)1(a′∈U(Q)) + βQθ(s
′, a′)1(a′ /∈U(Q)). (D.5)

For simplicity, we ignore the estimation parameter of Qθ(s, a) and just use Q(s, a) in the following
proof.

We can just take the uncertainty-aware loss in Eq.7 as a plain regression like loss and we have:

αL(Q)H + (1− α)L(Q)L =α[Q(s, a)− (BQ)(s, a)]2 + (1− α)[Q(s, a)− (BQ)L(s, a)]
2

=α[Q(s, a)2 − 2Q(s, a)(BQ)(s, a) + ((BQ)(s, a))2]

+(1− α)[Q(s, a)2 − 2Q(s, a)(BQ)L(s, a) + ((BQ)L(s, a))
2]

=αQ(s, a)2 − α2Q(s, a)(BQ)(s, a) + α((BQ)(s, a))2

+(1− α)Q(s, a)2 − (1− α)2Q(s, a)(BQ)L(s, a) + (1− α)((BQ)L(s, a))
2

=Q(s, a)2 − 2Q(s, a)[α(BQ)(s, a) + (1− α)(BQ)L(s, a)]

+α((BQ)(s, a))2 + (1− α)((BQ)L(s, a))
2

=[Q(s, a)− (α(BQ)(s, a) + (1− α)(BQ)L(s, a))]
2 + C, (D.6)

where C is a factor that not related to Q(s, a), since the value of (BQ)L(s, a) and (BQ)(s, a) are
fixed as we update Q. By the definition of (BQ)(s, a) and (BQ)L(s, a) in Eq.D.3 and Eq.D.4, the
uncertainty-aware learning is equivalent to minimized the following Bellman equation:

Es∼PD(s),a∼π(a|s)[Q(s, a)− (FQ)(s, a)]2, (D.7)

where the specific Bellman operator (FQ)(s, a) is defined in Eq.D.1. Then we finish the proof.
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D.2 Bellman operator FQ is cγ-contraction operator in the L∞ norm.

Then we give a brief proof of the convergence of the Bellman operator FQ by value interative
optimization.

For any Q-value function Q(s, a), Q′(s, a), define I = |FQ(s, a)−FQ′(s, a)|, we have

I =|r(s, a) + γEs′∼PD(s′){max
a′

[αQ(s′, a′) + (1− α)QL(s
′, a′)]}−

+(r(s, a) + γEs′∼PD(s′){max
a′

[αQ′(s′, a′) + (1− α)Q′
L(s

′, a′)]})|

=γ|Es′∼PD(s′) max
a′
{αQ(s′, a′) + (1− α)QL(s

′, a′)− [αQ′(s′, a′) + (1− α)Q′
L(s

′, a′)]}|

≤γEs′∼PD(s′)|max
a′
{αQ(s′, a′) + (1− α)QL(s

′, a′)− [αQ′(s′, a′) + (1− α)Q′
L(s

′, a′)]}|

≤γmax
s′
|max

a′
{αQ(s′, a′) + (1− α)QL(s

′, a′)− [αQ′(s′, a′) + (1− α)Q′
L(s

′, a′)]}|

≤γmax
s′

max
a′
|αQ(s′, a′) + (1− α)QL(s

′, a′)− [αQ′(s′, a′) + (1− α)Q′
L(s

′, a′)]|

=γmax
s′

max
a′
|α(Q(s′, a′)−Q′(s′, a′)) + (1− α)(QL(s

′, a′)−Q′
L(s

′, a′))|

=γmax
s′

max
a′
|α(Q(s′, a′)−Q′(s′, a′)) + (1− α)(βQ(s′, a′)− βQ′(s′, a′))1(a′ /∈U(Q))

+(1− α)(
1

HQ(a′|s′)
Q(s′, a′)− 1

HQ(a′|s′)
Q′(s′, a′))1(a′∈U(Q))|

=γmax
s′

max
a′
|α(Q(s′, a′)−Q′(s′, a′)) + (1− α)β(Q(s′, a′)−Q′(s′, a′))1(a′ /∈U(Q))

+
(1− α)

HQ(a′|s′)
(Q(s′, a′)−Q′(s′, a′))1(a′∈U(Q))|

=γmax
s′

max
a′
|α(Q(s′, a′)−Q′(s′, a′))1(a′ /∈U(Q)) + (1− α)β(Q(s′, a′)−Q′(s′, a′))1(a′ /∈U(Q))

+ α(Q(s′, a′)−Q′(s′, a′))1(a′∈U(Q)) +
(1− α)

HQ(a′|s′)
(Q(s′, a′)−Q′(s′, a′))1(a′∈U(Q))|

≤γmax
s′

max
a′
{(α+ (1− α)β)|Q(s′, a′)−Q′(s′, a′)|1(a′ /∈U(Q)) + (α+

(1− α)

HQ(a′|s′)
)|Q(s′, a′)−Q′(s′, a′)|1(a′∈U(Q))}

≤γmax
s′

max
a′
{max{α+ (1− α)β, α+

(1− α)

HQ(a′|s′)
}|Q(s′, a′)−Q′(s′, a′)|}

=γmax{α+ (1− α)β, α+
(1− α)

HQ(a′|s′)
1(a′∈U(Q))}||Q(s′, a′)−Q′(s′, a′)||∞ (D.8)

Since 1
HQ(a′|s′)1(a′∈U(Q)) < β, we have max{α + (1 − α)β, α + (1−α)

HQ(a′|s′)} = α + (1 − α)β is
always true. As β < 1, then α+ (1− α)β < α+ (1− α) < 1.

Set c = α+ (1− α)β, then we have

|FQ(s, a)−FQ′(s, a)| ≤ cγ||Q(s′, a′)−Q′(s′, a′)||∞, (D.9)

which implies FQ is cγ-contraction operator with cγ < 1.

Suppose Q∆ is the stationary point of the Bellman equation in Eq.D.7, then it can be shown that Q
iteratively updated by Eq.D.7 can converge to Q∆:

||Qt+1 −Q∆||∞ =||FQt −FQ∆||∞ ≤ cγ||Qt −Q∆||∞
≤(cγ)2||Qt−1 −Q∆||∞
≤ · · · ≤ (cγ)t+1||Q0 −Q∆||∞. (D.10)

Sending t to infinity, we can derive Qt converge to Q∆, then we finish the proof.
Remark D.1. The assumption 1

HQ(a′|s′)1(a′∈U(Q)) < β can be always satisfied. Roughly speaking,
since a′ ∈ U(Q), the uncertainty of Q-value HQ(a

′|s′) on this a′ has large uncertainty due to the
OOD property. Furthermore, we can scale the absolute value HQ(a

′|s′) for all the action with
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same factor to guarantee 1
HQ(a′|s′)1(a′∈U(Q)) < β without hurting the relative comparison for the

uncertainty. Furthermore, experiment results have shown that 1
HQ(a′|s′)1(a′∈U(Q)) < β is consistently

satisfied without additional processing.

E Performance of the Q-value function Qk(s, a) derived by QDQ.

In this section, we delve into an analysis of the performance of the Q-value function derived from
the QDQ algorithm. Given that the primary aim of QDQ is to mitigate the issue of excessively
conservative in most pessimistic Q-value methods, our focus is directed towards scrutinizing the
disparity between the optimal Q-value within the offline RL framework and the optimal Q-value
function yielded by QDQ.

The following is a formal version of Theorem 4.4.

Theorem E.1. Suppose the optimal Q-value function over state-action space SD × AD defined
by the dataset D is Q∗. Then with probability at least 1 − η, the Q-value function Q∆ learned by
minimizing uncertainty-aware loss (Eq.7) can approach the optimal Q∗ with a small constant:

∥∥Q∆ −Q∗∥∥
∞ ≤ ϵ, (E.1)

where ϵ is error rate related to the difference between the classical Bellman operator
BQ and the QDQ Bellman operator FQ, and η is determined by the probability that
maxa′{(1 − β))|Q(s′, a′)|1(a′ /∈U(Q)) + (1 − 1

HQ(a′|s′) )|Q(s′, a′)|1(a′∈U(Q))} = maxa′{(1 −
1

HQ(a′|s′) )|Q(s′, a′)|1(a′∈U(Q))}.

Before the proof, we redefine some notation to make the subsequent exposition clearer.

Denote state space SD be the state space defined by the distribution of dataset D, AD is the action
space defined by the dataset D, and actions not belong to this space is the OOD actions. The optimal
Q-value Q∗ on SD ×AD can be derived by optimize the following Bellman equation:

L(Q) :=Es∼PD(s),a∼π(a|s)[Q(s, a)− BQ(s, a)]2

=Es∼PD(s),a′∼π(a|s)[Q(s, a)− (r(s, a) + γEs′∼PD(s′)[max
a′

Q(s′, a′)])]2, (E.2)

where (s, a) ∈ SD ×AD, Q∗ = BQ∗.

We first introduced Lemma E.1 to facilitate the proof of Theorem 4.4.

Lemma E.1. For any s ∈ SD, a ∈ AD, with probability 1− η,

|BQ∗(s, a)−FQ∗(s, a)| ≤ γ(1− α)(1− β)||Q∗(·, ·)||∞, (E.3)

and with probability η,

|BQ∗(s, a)−FQ∗(s, a)| ≤ γ(1− α)(1− 1

HQ∗(a′|s′)
)||Q∗(·, ·)||∞. (E.4)

Proof of Lemma E.1.

8



Direct computation shows that

|BQ(s, a)−FQ(s, a)|
=|r(s, a) + γEs′∼PD(s′){max

a′
Q(s′, a′)} − r(s, a)− γEs′∼PD(s′){max

a′
[αQ(s′, a′) + (1− α)QL(s

′, a′)]}|

≤γEs′∼PD(s′)|max
a′
{Q(s′, a′)− [αQ(s′, a′) + (1− α)QL(s

′, a′)]}|

≤γEs′∼PD(s′)|max
a′
{Q(s′, a′)− [αQ(s′, a′) + (1− α)QL(s

′, a′)]}|

≤γEs′∼PD(s′) max
a′
|Q(s′, a′)− [αQ(s′, a′) + (1− α)QL(s

′, a′)]|

=γEs′∼PD(s′) max
a′
|Q(s′, a′)− [(α+ (1− α)β)Q(s′, a′)1(a′ /∈U(Q)) + (α+

(1− α)

HQ(a′|s′)
)Q(s′, a′)1(a′∈U(Q))]|

=γEs′∼PD(s′) max
a′
|(1− α− (1− α)β)Q(s′, a′)1(a′ /∈U(Q)) + (1− α− (1− α)

HQ(a′|s′)
)Q(s′, a′)1(a′∈U(Q))|

≤γEs′∼PD(s′) max
a′
{(1− α)(1− β))|Q(s′, a′)|1(a′ /∈U(Q)) + (1− α)(1− 1

HQ(a′|s′)
)|Q(s′, a′)|1(a′∈U(Q))}.

(E.5)

Then with probability 1− η,

|BQ∗(s, a)−FQ∗(s, a)| ≤γEs′∼PD(s′) max
a′
{(1− α)(1− β))|Q∗(s′, a′)|}

≤γ(1− α)(1− β)||Q∗(·, ·)||∞, (E.6)

and with probability η,

|BQ∗(s, a)−FQ∗(s, a)| ≤γmax
s′

max
a′
{(1− α)(1− 1

HQ∗(a′|s′)
)|Q(s′, a′)|}

≤γ(1− α)(1− 1

HQ∗(a′|s′)
)||Q∗(·, ·)||∞. (E.7)

Then we finish the proof.

Next, we will give a brief proof of Theorem 4.4 with the results of Theorem 4.3 and Lemma E.1.
Suppose the stationary point or the optimal Q-value derived based on the QDQ Bellman operator is
Q∆, which satisfying: Q∆ = FQ∆.

Then with probability 1− η we have∥∥Q∆ −Q∗∥∥
∞ =

∥∥FQ∆ −FQ∗ + FQ∗ −BQ∗∥∥
∞

≤
∥∥FQ∆ −FQ∗∥∥

∞ + ∥FQ∗ −BQ∗∥∞
≤cγ||Q∆ −Q∗||∞ + γ(1− α)(1− β)||Q∗(·, ·)||∞.

Hence, ∥∥Q∆ −Q∗∥∥
∞ ≤ γ(1− α)(1− β)(1− cγ)−1||Q∗(·, ·)||∞.

Set ϵ = γ(1− α)(1− β)(1− cγ)−1||Q∗(·, ·)||∞ finish the proof.
Remark E.1. The error ϵ = γ(1− α)(1− β)(1− cγ)−1||Q∗(·, ·)||∞ can be 0 by setting β = 1 . In
practice, we can ensure that ϵ converges to a small value by appropriately adjusting the parameters α
and β.
Remark E.2. Our primary focus lies on the scenario where maxa′{(1− β))|Q(s′, a′)|1(a′ /∈U(Q)) +

(1 − 1
HQ(a′|s′) )|Q(s′, a′)|1(a′∈U(Q))} = maxa′{(1 − β))|Q(s′, a′)|1(a′ /∈U(Q))}. This preference

stems from the potential minuteness of η. Firstly, we can rely on Theorem 1 in [20] to ensure that
the consistency model can converge to ground truth, thus guaranteeing the fidelity of the learned
Q-distribution. Consequently, the accuracy of our uncertainty estimation is upheld, enabling us
to effectively assess OOD points and pessimistically adjust the Q-value for such occurrences [4].
Secondly, in order to mitigate segmentation errors of the uncertainty set, we introduce the penalty
factor β in Eq.8. Finally, since actions in the set U(Q) are always penalized, the Q-value always takes
a lower value when a′ ∈ U(Q). Collectively, these measures reinforce our aim to maintain a small η.
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Theorem 4.4 shows the optimal Q-value by QDQ can closely approximate the true optimal Q-value
Q∗ over SD ×AD. Then we also provide the following corollary to show that substitute the optimal
Bellman operator BQ with FQ will introduce controllable error at each step, and give an step-wise
analysis of the convergence of QDQ operator FQ.

Let ζk(s, a) = |Qk(s, a) − Q∗(s, a)| be the total estimation error of Q-value learned by QDQ
algorithm and the optimal in-distribution Q-value at step k of the value iteration. Let δk(s, a) =
|Qk(s, a)−FQk(s, a)| be the Bellman residual induced by QDQ Bellman operator FQ at step k.
Assume δ∗k(s, a) = |Qk(s, a)− BQk(s, a)| be the Bellman residual for the optimal in-distribution
Q-value optimization.
Corollary 1. At step k of value iteration, substitute the optimal Bellman operator BQ with FQ
introduce an arbitrary small error as ξ:

ζk(s, a) ≤δ∗k(s, a) + ξ + γEs′∼D max
a′
|ζk−1(s, a)|

Then we introduce our second Lemma E.2 to help the proof of Corollary 1:
Lemma E.2. For any s ∈ SD, a ∈ AD, with probability 1− η,

δk(s, a) ≤ δ∗k(s, a) + γ(1− α)(1− β)||Q(s′, a′)||∞. (E.8)
With probability η,

δk(s, a) ≤ δ∗k(s, a) + γ(1− α)(1− 1

HQ(a′|s′)
)||Q(s′, a′)||∞. (E.9)

Proof of Lemma E.2.
δk(s, a) =|Qk(s, a)−FQk(s, a)|

=|Qk(s, a)− BQk(s, a) + BQk(s, a)−FQk(s, a)|
≤δ∗k(s, a) + |BQ(s, a)−FQ(s, a)|δ∗k(s, a) + γ(1− α)(1− β)||Q(s′, a′)||∞. (E.10)

By Lemma E.1, with probability 1− η,
δk(s, a) =|Qk(s, a)−FQk(s, a)|

=|Qk(s, a)− BQk(s, a) + BQk(s, a)−FQk(s, a)|
≤δ∗k(s, a) + |BQ(s, a)−FQ(s, a)|
≤δ∗k(s, a) + γ(1− α)(1− β)||Q(s′, a′)||∞. (E.11)

With probability η,
δk(s, a) =|Qk(s, a)−FQk(s, a)|

=|Qk(s, a)− BQk(s, a) + BQk(s, a)−FQk(s, a)|
≤δ∗k(s, a) + |BQ(s, a)−FQ(s, a)|

≤δ∗k(s, a) + γ(1− α)(1− 1

HQ(a′|s′)
)||Q(s′, a′)||∞. (E.12)

Then we finish the proof.

Next, we will give a brief proof of Corollary 1.
ζk(s, a) =|Qk(s, a)−Q∗(s, a)|

=|Qk(s, a)−FQk−1(s, a) + FQk−1(s, a)−Q∗(s, a)|
≤|Qk(s, a)−FQk−1(s, a)|+ |FQk−1(s, a)−Q∗(s, a)|
=δk(s, a) + |FQk−1(s, a)−Q∗(s, a)|
=δk(s, a) + |FQk−1(s, a)− BQk−1(s, a) + BQk−1(s, a)− BQ∗(s, a)|
≤δk(s, a) + |FQk−1(s, a)− BQk−1(s, a)|+ |BQk−1(s, a)− BQ∗(s, a)|
=δk(s, a) + |FQk−1(s, a)− BQk−1(s, a)|+ |γEs′∼PD

(s′)max
a′

Qk−1(s, a)− γEs′∼PD
(s′)max

a′
Q∗(s, a)|

≤δk(s, a) + |FQk−1(s, a)− BQk−1(s, a)|+ γEs′∼D max
a′
|Qk−1(s, a)−Q∗(s, a)|

=δ∗k(s, a) + γ(1− α)(1− 1

HQ(a′|s′)
)||Q(s′, a′)||∞ + γEs′∼D max

a′
|ζk−1(s, a)| (E.13)
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By Lemma E.1 and Lemma E.2, we can easily derive, with probability 1− η,

ζk(s, a) ≤δ∗k(s, a) + γ(1− α)(1− β)||Q(s′, a′)||∞ + γEs′∼D max
a′
|ζk−1(s, a)| (E.14)

Set ξ = γ(1− α)(1− β)||Q(s′, a′)||∞, then we finish the proof.
Remark E.3. During the value iteration, there are two error accumulate: δ∗k(s, a) and ξ. Given the
convergence of optimal Q-value iteration, δ∗k(s, a) tends to approach an arbitrarily small value and may
even converge to 0 under optimal circumstances. The error ξ = γ(1−α)(1−β)||Q(s′, a′)||∞induced
by using the Bellman operator FQ instead of the optimal Bellman operator can also approach 0 as
discussed in Remark E.1.

F Gap expanding of the QDQ algorithm.

In this section we will show that QDQ also has a Gap expanding property as discussed in CQL [3].
Proposition F.1. The QDQ algorithm is Gap expanding for Q-values within-distribution and Q-values
out of distribution.

(1) If a /∈ U(Q) and is indeed in-distribution action, the target Q-value for the in-distribution
point is (α+ (1− α)β)Q. The target Q-value for the OOD point is (α+ (1−α)

HQ(a|s) )Q. And

(α+ (1− α)β)Q− (α+ (1−α)
HQ(a|s) )Q > 0 definitely. And this suggest Q-value will prefer

in-distribution actions.
(2) If a /∈ U(Q) and is indeed OOD action. In such cases, the penalty parameter β is introduced

to penalize the Q-value, resulting in (α+(1−α)β)Q < Q. Consequently, misclassifications
of OOD actions can be handled in a pessimistic manner.

While introducing the penalty parameter β may slightly slow down optimization updates for true
in-distribution actions, it is crucial to prioritize control over out-of-distribution (OOD) actions due to
the potentially severe consequences of exploration errors. In balancing the optimization of Q-learning
with a pessimistic approach to OOD actions, the focus should be on reducing the impact of OOD
actions. In fact, compared to previous pessimistic Q-value methods, QDQ offers greater flexibility
in managing these values. This includes incorporating an uncertainty-aware learning objective and
adjusting Q-values based on their uncertainty.

G Experiment Details and More Results

G.1 Real Q dataset generation.

In Section 3.1, we use a k-step sliding window approach with a length of T to traverse each trajectory
in the dataset D and generate the Q-value dataset DQ based on Equation 5. A good Q-value dataset
for uncertainty estimation should cover a broad state and action space to accurately characterize the
Q distribution and detect high uncertainty in the OOD action region. This coverage helps identify
actions with significant Q-value uncertainty in OOD areas.

Choosing the right value for the sliding step k and the window length T is crucial. A large value for
k may result in a smaller Q dataset, while a small value may lead to excessive homogenization of
the Q dataset. Both situations can negatively impact the learning of the Q-value distribution. If the
Q-value dataset is too small, the learned Q distribution may not generalize well across the state-action
space S ×A. Conversely, if the Q-values are too homogeneous, it can hinder feature learning by the
distribution learner.

To illustrate this, Figure G.1 shows the Q dataset distributions obtained for different values of k using
the halfcheetah-medium dataset. When k = 1, the Q distribution is more concentrated, resulting in
more homogeneous Q-values. In contrast, with k = 50, the Q distribution becomes sparser, showing
a greater inclination towards individual features.

In the experiments, we consider various factors when setting the value of k, including the trajectory
length, the width of the sliding window, and the derived Q-value dataset size. Throughout all
experiments, we set k to 10. Interestingly, we observed that the distribution of Q-values remains
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robust to minor adjustments in k, indicating that the choice of k does not necessitate overly stringent
tuning.

k=1，data size=800,000 k=10，data size=80,000 k=50，data size=16,000

Figure G.1: The derived Q-value distribution when using difference sliding step and same window
width to scan over the trajectory’s on halfcheetah-medium dataset.The width of the sliding window is
set to 200. The Q-value is scaled to facilitate comparison.
When choosing the width of the sliding window, T , we must consider factors such as trajectory
length and the resulting size of the Q-value dataset. When T increases, the size of the Q-value dataset
decreases. However, if T is too small, it might truncate essential information from the true Q-value.
We give the experimental analysis of Q-value distribution for different T on the sparse reward task
Antmaze-medium-play in Figure G.2.
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Figure G.2: The Q distribution of the Antmaze-medium-play dataset with varying sliding window
widths (100 to 300 steps) is shown in the figure. Widening the sliding window does not change the
shape of the Q distribution, even though a larger window covers more information for this sparse
reward task with many short trajectories. Instead, enlarging the sliding window decreases the Q value
and compresses the size of the derived Q data.
In our experiments, we opted for T = 200 across all tasks. This choice considers factors such
as the maximum trajectory length (1000), the decay rate of γm−1 in Eq.5. Based on the analysis
provided in Section B, T does not need to be very large. We also found that minor adjustments to T
do not significantly affect the Q-value distribution, indicating that strict tuning of this parameter is
unnecessary.

G.2 The distribution of Q-value function.

The Q-distributions based on the truncated Q-value and the learned distribution from the consistency
model are shown in Figure G.3 for Gym-MuJoCo tasks and in Figure G.5 for Antmaze tasks. In
Figure G.3, the consistency model roughly captures the main characteristics of the true Q-value
distribution. However, for the Antmaze task (Figure G.5), the learned distribution shows some
fluctuations and a slightly wider support compared to the true Q-value distribution, particularly in the
dynamic goal task ("-diverse" task).

From the distribution of Antmaze we observe that trajectories for these tasks mainly consist of
suboptimal or failed experiences, this underscores the challenging nature of the Antmaze task.
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Further the narrower data distribution make it easier to take OOD actions during offline training and
fewer positive experiences limits the optimisation of Q, these all potentially leading to failure of these
kinds of tasks.

halfcheetah-medium-v2 halfcheetah-medium-replay-v2 halfcheetah-medium-expert-v2

hopper-medium-v2 hopper-medium-replay-v2 hopper-medium-expert-v2

walker2d-medium-v2 walker2d-medium-expert-v2walker2d-medium-replay-v2

Figure G.3: The Q-value distribution based on the truncated Q-value v.s. the sample Q-value
distribution via the learned consistency model for Gym-MuJoCo tasks.

antmaze-umaze-v0

antmaze-umaze-diverse-v0

antmaze-medium-play-v0

antmaze-medium-diverse-v0

antmaze-large-play-v0

antmaze-large-diverse-v0

Figure G.4: The Q-value distribution based on the truncated Q-value v.s. the sample Q-value
distribution via the learned consistency model for Antmaze tasks.
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G.3 Efficiency of the uncertainty measure.

The uncertainty measure is crucial for guiding the Q-value towards a pessimistic regime within the
QDQ algorithm. In this section, we will first verify how uncertainty can assess the overestimation of
Q-values in OOD regions. Then, we will discuss how the uncertainty set U(Q) can be shaped using
the hyperparameter β.

To understand the differences in uncertainty between in-distribution actions and OOD actions from
a random policy, we can compare their distributions. In the left graph of Figure G.5, the red
line represents the 95% quantile of the standard deviation of sampled Q-values from the learned
Q-distribution for in-distribution actions. In the right graph, this 95% quantile corresponds to
approximately the 75% quantile of the standard deviation for OOD actions. This indicates that OOD
actions contribute to a heavy-tailed distribution of Q-value uncertainty, resulting in larger values
compared to in-distribution actions.

Figure G.6 further illustrates this, showing that the standard deviation of sampled Q-values from
the learned policy sharply increases when Q-values are overestimated and become uncontrollable.
These observations suggest that the uncertainty measure in the QDQ algorithm effectively captures
the overestimation phenomenon in OOD actions.

Figure G.5: The uncertainty distribution of Q-value based on in-distribution action v.s. the uncertainty
distribution of Q-value based on OOD actions(by a ramodm policy).

Q value function Standard deviation of the sample Q value 

Figure G.6: The Q value learned by QDQ(left), and the standard deviation of the sample Q-value
from the consistency model for same state and action pair.

14



Table G.1: The hyperparameter used in consistency model training.

Hyperparameter Value

Batch size 256
Time embedding Gaussian Fourier features embeddings
Fourier scale factor 16

Shared parameter Time embedding size 8
Minimum time 0.002
Maximum time 80
Group norm True
Activation in the hidden layer Swish
Latent dim 256
Hidden Layer 3
sample size 50

Optimizer Adam
Learning rate 5e-4

Diffusion model SDE KVESDE [68]
sampling method heun sampler
Number of iterations 80000

Optimizer RAdam
Learning rate 4e-4
trajectory interval 1000

Consistency model trajectory interval factor as in [68] 7
consistency loss norm l2
SDE solver heun
sampling method one-step sampler
Number of iterations 160000

The uncertainty set U(Q) is derived using the upper β-quantile of the entire uncertainty value of
Q over the action taken by the learning policy. In Section 5.2, we provide a brief discussion on
determining the appropriate β during experiments. A higher β may allow for a more generous attitude
towards OOD actions, which is suitable for tasks with a wide data distribution or that are robust for
action change. Conversely, a lower β suggests more rigid control over OOD actions, appropriate
for tasks with a narrow data distribution or that are sensitive. During experiments, a rough starting
point for setting β can be obtained by comparing the quantiles of the uncertainty distribution based
on in-distribution actions and OOD actions. For instance, as shown in Figure G.5, parameter tuning
might begin with β = 0.75 or β = 0.80.

G.4 Implementation details for QDQ algorithm.

Implementation of QDQ algorithm contains consistency distillation for the consistency model and
offline RL training. The whole algorithm is implemented with jax [67]. The training process
of consistency distillation and offline RL is independent, we first train the consistency model by
consistency distillation and save the converged model. Then we use the pretrained consistency model
as the Q-value distribution sampler and go through the offline RL training, see Algorithm 1 for the
whole training process.

Consistency Distillation. The consistency model is trained using a pretrained diffusion model [33].
The training process follows the official implementation 4 of the consistency model [20]. Since the
consistency model is designed for image data, we modified the initial architecture, the NCSN++ model
[33], to better fit offline RL data. For instance, we replaced the U-Net architecture with a multilayer
perceptron (MLP) that has three hidden layers, each with 256 units. This simplified architecture
is used to learn the consistency function fθ(xt, t). The main hyperparameters for the consistency
distillation are shown in Table G.1, covering both diffusion model training and consistency model
training.

4https://github.com/openai/consistency_models_cifar10
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Table G.2: The hyperparameters used in Actor-Critic training.

Hyperparameter Value

Optimizer Adam
Batch size 256
Discount factor 0.99
Actor learning rate 3e-4
Critic learning rate 3e-4

TD3 training Number of iterations 1e6
Target update rate τ 0.005
Actor noise 0.2
Actor noise clipping 0.5
Actor update frequency 2
Actor activation relu
Critic activation mish
Evaluation episode length 10 for MuJoCo

100 for Antmaze

Actor hidden dim 256
Architecture Actor layers 3

Critic hidden dim 256
Critic layers 3

sliding window step k 10
sliding window width T 200
uncertainty parameter β 0.8 for hopper task

QDQ specific 0.9 for other task
pessimistic parameter α 0.99 for halfcheetah ,hoper-medium and hoper-medium-replay, Antmaze task

0.95 for other task
entropy parameter γ 0 for halfcheetah task except the expert dataset

1 for other task

Offline RL training. The offline RL training follows TD3 [46], which has a delayed update schedule
for both the target Q network and the target policy network. For the Gym-MuJoCo tasks, we use the
raw dataset without any preprocessing, such as state normalization or reward adjustment. For the
AntMaze tasks, we apply the same reward tuning as IQL [10], with no additional preprocessing for
the state. The hyperparameters used in offline RL training are shown in Table G.2.

G.5 Learning Curve

The learning curve of Gym-Mujoco tasks are shown in Figure G.7. The learning curve of AntMaze
tasks are shown in Figure G.8.

G.6 Computation efficienty of QDQ

We provide a detailed discussion of the computational efficiency of the QDQ algorithm we proposed,
focusing on the training cost of the consistency model and computation coefficiency of QDQ (the
distribution-based bootstrap method) compared with SOTA uncertainty estimation methods based on
Q-value ensembles.

Regarding the training cost of the consistency model, we believe it is nearly negligible. Training a
diffusion model on a 4090 GPU takes about 5.2 minutes, while training a consistency model using
this pretrained diffusion model takes around 16 minutes. Additionally, the consistency model can be
stored and reused for subsequent RL experiments, eliminating the need for retraining.

For a comparison of the computational costs of QDQ with SOTA uncertainty estimation methods in
offline RL, see Table G.6. As mentioned earlier, QDQ achieves a significantly faster training speed
compared to the ensemble-based uncertainty estimation method EDAC and other SOTA methods.
The results for other methods are taken from Table 3 of EDAC [9].
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Figure G.7: Training curve of different Mujoco Tasks. All results are averaged across 5 random
seeds. The evaluation interval is 5000 with evaluation episode length 10.

Table G.3: Computational performance of QDQ and other SOTA methods.

Runtime(s/epoch) GPU Mem.(GB)

SAC 21.4 1.3
CQL 38.2 1.4

EDAC 30.8 1.8
QDQQDQQDQ 0.0280.0280.028 0.740.740.74

G.7 Ablations

Although QDQ has three hyperparameters (α, β, and γ) for flexibility, the tuning process is straight-
forward. For example, as discussed in Theorem 4.4 (Appendix E), theoretically, (1−α)(1−β) should
be small. Since β controls the size of the uncertainty set and requires flexibility across different tasks,
we typically set α close to 1, tuning it between 0.9 and 0.995. This only requires a few experiments
to find the optimal value. Our tuning process involves sequentially fixing parameters while selecting
the best α, then β, and finally γ. Based on the characteristics of different datasets, we can set each
parameter to an initial value close to its optimal value. QDQ offers evidence-based guidelines for
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Figure G.8: Training curve of different Antmaze Tasks. All results are averaged across 5 random
seeds. The evaluation interval is 100000 with evaluation episode length 100.

hyperparameter ranges, making tuning manageable. Additionally, QDQ’s efficiency (see Table G.6)
reduces the tuning burden.

In the ablation study, we choose four task which represent different kinds of dataset we analyzed
during parameter study:

(1) Wide distribution: halfcheetah-medium-v2.
(2) Task sensitive: hopper-medium-v2.
(3) Demonstration: walker2d-medium-expert-v2.
(4) Narrow distribution: umaze-diverse-v0.

We perform ablation study for parameters we discussed in Section 5.2. We compare the performances
of three different settings for the three parameters respectively.

The learning curves for four types of tasks with different uncertainty-aware weights α (Eq. 7) are
shown in Figure G.9. For the halfcheetah-medium-v2 and hopper-medium-v2 datasets, decreasing α
harms performance. For the walker2d-medium-expert-v2 dataset, a slightly lower α increases training
volatility. In contrast, the umaze-diverse-v0 dataset shows high sensitivity to α. This sensitivity occurs
because the Antmaze task requires combining different suboptimal trajectories, which challenges
algorithms like QDQ that are not fully in-sample but in-support. For instance, an α value that is too
high or too low can lead to overly optimistic or pessimistic Q-values, causing the algorithm to favor
actions that do not align with the exact suboptimal trajectories.

The ablation study of the uncertainty-related parameter β is presented in Figure G.11. For the wide
dataset halfcheetah-medium-v2, a higher β is preferred, indicating less control over the uncertainty
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Figure G.9: Training curve of four different Tasks when using different α in Eq. 7. All results are
averaged across 5 random seeds. The evaluation interval is 5000 with evaluation episode length 10
for Mujoco tasks. The evaluation interval is 100000 with evaluation episode length 100 for Antmaze
task.

penalty and a smaller uncertainty set. In contrast, the performance for the hopper-medium-v2 and
umaze-diverse-v0 datasets is sensitive to small changes in β due to their task sensitivity and narrow
distribution. The walker2d-medium-expert-v2 dataset, however, is robust to small changes in β.

We present the performance of different tasks for the entropy parameter γ in Figure G.12. For
the wide distribution in halfcheetah-medium-v2, a larger γ negatively impacts performance. The
hopper-medium-v2 and umaze-diverse-v0 datasets also show sensitivity to the parameter γ. In the
walker2d-medium-expert-v2 dataset, a very small γ may introduce volatility into the training process.
However, the final result’s convergence is not significantly affected.

Furthermore, as discussed in Section 5.2, the gamma term primarily stabilizes the learning of a simple
Gaussian policy, especially for action-sensitive and dataset-narrow tasks. We note that Gaussian
policies are prone to sampling risky actions because they can only fit a single-mode policy. To verify
the impact of uncertainty-aware Q-value optimization in QDQ, we compared the performance of
Q-values without uncertainty control (using Bellman optimization like in online RL settings) to
the QDQ algorithm on the action-sensitive hopper-medium dataset, using identical gamma settings.
Figure ?? shows that introducing an uncertainty-based constraint for the Q-value function in QDQ
significantly improves training stability, convergence speed, and overall performance. This supports
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the effectiveness of QDQ’s uncertainty-aware Q-value optimization. We believe that a stronger
learning policy will further reduce the need for this stabilizing term.
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Figure G.10: The training curve of the hopper-medium dataset with QDQ’s uncertainty pessimistic
Q learning and without Q-value adjustments is shown. The green curve indicates that the γ term
in Eq. 9 has a limited impact on performance. Comparing the learning curves, QDQ’s uncertainty
pessimistic Q learning boosts performance, leading to faster convergence and greater stability.
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Figure G.11: Training curve of four different Tasks when using different β in Section 3.2. All
results are averaged across 5 random seeds. The evaluation interval is 5000 with evaluation episode
length 10 for Mujoco tasks. The evaluation interval is 100000 with evaluation episode length 100 for
Antmaze task.
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Figure G.12: Training curve of four different Tasks when using different γ in Eq. 9. All results are
averaged across 5 random seeds. The evaluation interval is 5000 with evaluation episode length 10
for Mujoco tasks. The evaluation interval is 100000 with evaluation episode length 100 for Antmaze
task.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28


	Introduction
	Background
	Fundamentals in offline RL
	Consistency model

	Q-Distribution guided Q-learning via Consistency Model
	Learn Uncertainty of Q-value by Q-distribution
	Q-distribution guided optimization in offline RL

	Theoretical Analysis
	Experiments
	Performance on D4RL benchmarks for Offline RL
	Parameter analysis

	Related Works
	Conclusion
	Further discussion about uncertainty estimation of Q-value by Q-distribution.
	The Q-value dataset enhancement with sidling window.
	Drawbacks of the diffusion model for estimating the uncertainty

	Convergence of the truncated Q-value distribution.
	Robustness of consistency model for uncertainty measure.
	Convergence of the uncertainty-aware learning objective for recovering the Q-value function.
	Derivation of the Bellman operator F Q.
	Bellman operator F Q is c-contraction operator in the L norm.

	Performance of the Q-value function Qk(s,a) derived by QDQ.
	Gap expanding of the QDQ algorithm.
	Experiment Details and More Results
	Real Q dataset generation.
	The distribution of Q-value function.
	Efficiency of the uncertainty measure.
	Implementation details for QDQ algorithm.
	Learning Curve
	Computation efficienty of QDQ
	Ablations


