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ABSTRACT

Spiking Neural Networks (SNNs) have garnered significant attention due to their
potential for low energy consumption. However, their application in the audio
domain remains relatively underexplored. This work aims to close this gap by
designing spiking transformers suitable for audio processing applications. We
introduce DiceFormer, a directly trained spiking transformer that incorporates
two novel components: (i) Spike Dice Attention (SDA), a spike-based attention
module that leverages the Dice similarity concept to produce density-aware at-
tention scores, which improve the modeling of spike-based representations; and
(i) Spike Audio Dice Attention (SADA), an SDA-based extension specifically
designed to handle the frequency—temporal features inherent in complex audio
spectrograms. Extensive experiments demonstrate that DiceFormer achieves su-
perior performance over existing state-of-the-art (SOTA) SNNs on mainstream
audio datasets. Notably, when trained from scratch, DiceFormer achieves an mAP
of 0.161 on AudioSet (20K) with only 54.3M parameters, substantially outper-
forming prior models. It also establishes new SOTA results on ESC-50 and SCV?2,
highlighting the promise of SNNs in complex audio processing.

1 INTRODUCTION

Artificial Neural Networks (ANN5s) especially the Transformer architecture have propelled major ad-
vances across computer vision, audio, and speech. In computer vision, Transformer-based models
drive progress in image classification (Yuan et al., [2021} |Liu et al., 2021), object detection (Carion
et al.|2020; |Zhu et al., 2020), and semantic segmentation (Wang et al., [2021; |Yuan et al.| 2022)); in
audio, they enable sound event classification (Gong et al., 2021} 2022} |Huang et al., |2022)), source
separation (Xu et al.L[2025Subakan et al.,|2021)); and in speech, large attention-based encoders have
become standard for automatic speech recognition and representation learning (Baevski et al.|, |2020;
Hsu et al., 2021; Radford et al., [2023). However, as the scale and complexity of ANN models in-
crease, they face a significant challenge of substantial energy consumption. To address this, Spiking
Neural Networks (SNNs) (Maass, [1997; Izhikevich| [2003; Masquelier et al.,2008)) (Appendix@for
details) have emerged as a promising alternative, offering an event-driven computational paradigm
inspired by the human brain. Operating with discrete spikes, SNNs enable much greater energy
efficiency, motivating their use in applications ranging from bearing fault diagnosis (Lim & Kim,
2025b)) to biosignal processing (Kang et al.,|[2025). However, despite this promise, SNNs have con-
sistently exhibited lower accuracy compared to ANNS, and recent progress in bridging this gap has
been predominantly concentrated in the image domain.

Much of this progress stems from adapting Vision Transformer (ViT) (Dosovitskiy et al.l [2021]))
architectures to the spiking setting. In image classification, models such as Spikformer (Zhou et al.,
2023)), Spike-driven Transformer (Yao et al.,[2023)), and QKFormer (Zhou et al.| 2024) have achieved
strong performance while retaining energy efficiency. Similarly, Spike-driven Transformer V2 (Yao
et al.,[2024)) extends these gains to dense prediction tasks such as semantic segmentation and object
detection. Further successes have been reported in generative modeling, with spiking variational
autoencoders (VAEs) (Kamata et al., 2022) and spiking diffusion models (Cao et al., 2024).

Despite these advances, progress has remained largely confined to the visual domain, and the opti-
mization of attention mechanisms for spike signals is still not well established. Existing spike self-
attention mechanisms, including dot-product (Zhou et al. 2023; |Yao et al., [2024) and Hadamard
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product (Yao et al.| [2023)), are density-unaware, as attention scores are computed without consid-
ering the spike density of query and key vectors. This can cause attention scores to be biased
toward vectors with high spike density, as the mechanism cannot distinguish between dense spik-
ing activity and true signal similarity. Consequently, the model may misinterpret raw spike counts
as indicators of similarity, limiting its ability to capture genuine spike-based relationships. More-
over, dot-product-based formulations incur quadratic complexity, leading to a substantial increase
in computation as the model scales up. Beyond the limitation of attention mechanisms, applying
spike-based transformers to audio requires architectures explicitly tailored to audio spectrograms.
Current SNN-ViIT models are primarily designed for images and are therefore not well-suited to
capture the frequency-temporal correlations of audio data. To the best of our knowledge, few prior
works have introduced SNN architectures explicitly designed for audio classification and validated
across diverse audio datasets.

To overcome these limitations, we propose DiceFormer, a novel SNN architecture optimized for
audio processing tasks. At the core of DiceFormer are two components: Spike Dice Attention
(SDA), a linear-time attention mechanism that is robust to spike-density variation, and the Spike
Audio Dice Attention (SADA), an extension of SDA that decouples frequency and temporal axes
to effectively learn audio-specific frequency-temporal features. We evaluate DiceFormer on three
widely used audio classification benchmarks: AudioSet (Gemmeke et al.l [2017), ESC-50 (Piczak,
2015), and Speech Commands V2 (Warden, [2018)). Trained from scratch, DiceFormer achieves a
new state-of-the-art (SOTA) performance among SNNs of 0.161 mAP on AudioSet (20K) and es-
tablishes new SNN benchmark performances on the other audio datasets. Furthermore, compared
to baseline ANN models across these benchmarks, DiceFormer reduces parameters and energy con-
sumption while maintaining competitive performance. This achievement highlights the effectiveness
of our architectural design and establishes a new benchmark that will facilitate future advancements
in SNN research for audio processing, providing a pathway toward broader adoption of spiking
models in real-world applications.

Our main contributions are summarized as follows:

1. Spike Dice Attention (SDA). We introduce SDA, a novel attention mechanism for SNNs
that explicitly accounts for spike density. SDA produces robust similarity estimates across
varying spike activities while maintaining O(N D) linear complexity. We also provide both
theoretical analysis and empirical validation of its effectiveness.

2. Spike Audio Dice Attention (SADA). We develop SADA, extended from SDA, tailored
for audio processing by decoupling frequency and temporal processing. SADA enables the
model to effectively capture the frequency-temporal features.

3. Bridging the Performance Gap to ANNs. DiceFormer achieves new SOTA performance
among SNNs on key audio benchmark datasets. Trained entirely from scratch, it narrows
the long-standing performance gap between SNNs and ANNs while delivering superior
energy efficiency.

2 RELATED WORK

Audio Transformers. Early progress in audio classification was driven by CNN-based architec-
tures such as PANNs (Kong et al.| |2020), which provided strong baselines through convolutional
feature extraction. However, the field has undergone a paradigm shift toward Transformer-based
architectures, which are better suited to capture long-range dependencies in sequential data. A pi-
oneering step in this direction was the Audio Spectrogram Transformer (AST) (Gong et al.,|2021),
which adapted the Vision Transformer (ViT) paradigm to audio by treating spectrograms as two-
dimensional images. AST divides the spectrogram into overlapping patches and processes them
sequentially, enabling the model to capture global frequency—temporal correlations. Additionally,
SSAST |Gong et al.| (2022) is an Audio Spectrogram Transformer that performs self-supervised pre-
training using Masked Spectrogram Patch Modeling (MSPM), which involves masking spectrogram
patches and then reconstructing or contrasting them. Building on this idea, subsequent works have
introduced designs that better align with the unique properties of audio data. For example, HTS-
AT (Chen et al.} 2022)) employed a hierarchical structure that integrates information across multiple
scales, thereby improving the representation of both local and global features. More recently, DTF-
AT (Alex et al.,[2024])) explicitly decoupled temporal and frequency modeling, creating a dual-branch



Under review as a conference paper at ICLR 2026

Inout (__Projection Conv__] (" spike Audio Dice Attention ] [ Spike Dice Attention ]
npu Init-1 Project-1
- o — ‘ P
- ' & ®
4 v v l_l—l—rl
[:] (BatchNorm ) (TBatchNorm ]
i v ()] (T Tw) (A |
' MaxPool MaxPool $og 4 X ¥ L.
® o ® 0@ ®® o
v é v v v v v Yy v v
i Dice Dice Dice
Spike Audio '""24. Project-2 ? Attention ] Attention ] [ Attention ]
Conv2d, K=3 | : skip 1_,? — l
\ L T (Crween ] (Crweonv ]
2] BatchNorm ] T v
v K | BatchNorm BatchNorm
Projection Conv 2 l
3 y « —
12 ®—- &
Spike Dice e % l ®
Attention Conv2d, K = \ / MLP MLP
¥ ¥
® c ion 2d Skip Connection () Channel Concatenation
® BatchNormalization ® Spiking Neuron [, Linear layer
Head é MaxPooling (FREE) Pointwise Convolution
It Multi-Layer Perceptron (3 Element-wise addition

Figure 1: The overall architecture of our proposed DiceFormer. The model processes the input
through five main stages: an Initialize block, Projection Conv blocks, a SADA module, a SDA
module, and a final Classification Head.

architecture that further advanced performance by learning these two dimensions separately before
combining them into a unified representation.

SNN Vision Transformers. The adaptation of the Vision Transformer (ViT) (Dosovitskiy et al.,
2021)) to Spiking Neural Networks (SNNs) has spurred a new generation of high-performance spik-
ing architectures. Spikformer (Zhou et al., 2023) was the first to propose an SNN-ViT, introducing
dot-product-based spiking self-attention that demonstrated the feasibility of combining spiking dy-
namics with Transformer architectures. Building on this, Spike-driven Transformer (Yao et al.,
2023) proposed a Hadamard-product-based attention mechanism, achieving linear computational
complexity and significantly narrowing the performance gap between SNNs and ANNs on image
classification. The framework was later extended by Spike-driven Transformer V2 (Yao et al.||2024),
which introduced a hierarchical architecture combined with dot-product attention to achieve strong
results in dense prediction tasks, including object detection and semantic segmentation. Most re-
cently, QKFormer (Zhou et al.l [2024) advanced this line of research by combining hierarchical
representations with a more efficient attention mechanism, achieving state-of-the-art accuracy for
SNNs on ImageNet-1K (Deng et al.,2009) and demonstrating performance competitive with widely
used ANN baselines such as ViT (Dosovitskiy et al., 2021 and DeiT (Touvron et al.|[2021).

3 METHOD

The architecture of our proposed DiceFormer, illustrated in Figure [I] is a hierarchical network de-
signed to learn features at multiple scales. As a Spiking Neural Network, DiceFormer integrates
Spiking Neurons (SN) after its main computational layers to convert continuous-valued features
into binary spikes for event-driven processing.

Spiking Neuron To convert continuous-valued features into binary spikes, we employ the Paramet-
ric Leaky Integrate-and-Fire (PLIF) neuron model (Fang et al.,[2021). Its dynamics at each time-step
t are defined as

Hlt) = VIt = 1]+ = (X~ (VI — 1] - Vi) n
S[t] = Heav(H[t] — V) 2
Vit = H[t] (1 - S[t]) + S[t] Vieset, (3)

where X [t] is the input current, Vi, is a the firing threshold, and 7 is the membrane time constant.
H t] denotes the pre-spike membrane potential obtained by leaky integration of V[t—1] and X [].
The output spike S[t] € {0,1} is generated by the Heaviside step function Heav(-), which emits
1 when H|[t] > Vi. The post-spike membrane potential V'[t] equals H[t] if no spike occurs, and
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is reset to Vit Otherwise. The time constant 7 is treated as a learnable parameter, allowing the
neuron’s temporal dynamics to be optimized during training.

Overall Architecture DiceFormer consists of five main components: an Initialize block, Projec-
tion Conv blocks, the SADA and an SDA, and a final Classification Head (CH). Given an input
spectrogram [ € RTxCxH XWB the processing pipeline is as follows. The Initialize block maps
channels C' — E and downsamples the spatial resolution by a factor of 4 (H — H/4, W — W/4).
The first Projection Conv 1 block further maps channels £ — D; and applies an additional x2
downsampling (H/4 — H/8, W/4 — W/8). The SADA module then splits the D; channels into
two parallel streams of size D /2, where frequency attention operates over Ny.q = H/8 tokens and
temporal attention over Niepyp = W/8 tokens. After this stage, the second Projection Conv 2 block
performs one more downsampling, changing feature maps channels from D; — D5, and the SDA
module applies unified self-attention on the flattened token sequence Npyw = (H/16) x (W/16)
with D, feature channels. Finally, the SDA output is aggregated by Global Average Pooling (GAP)
and passed to the Classification Head (CH) for prediction. Implementation details for each module
are provided in Appendix [B]

3.1 INITIALIZE

The Initialize block serves as the CNN stem (Liu et al., [2022) of DiceFormer, performing initial
feature extraction and spatial downsampling from the input spectrogram. As shown in Figure [I] it
consists of three sequential sub-blocks (Init-1, Init-2, Init-3) and a parallel skip connection (Skip).
Init-1 applies a 7 x 7 Conv2d, BatchNorm, and MaxPool, followed by a Spiking Neuron (SN). The
main path then proceeds through Init-2, which applies a 3 x 3 Conv2d, BatchNorm, and another
MaxPool, again followed by an SN. The final stage, Init-3, applies a 3 x 3 Conv2d and BatchNorm.
In parallel, the Skip path—branched from the input of Init-2—contains its own 3 x 3 Conv2d and
BatchNorm to align channel dimensions with those of Init-3. The outputs of Init-3 and Skip are
then combined by element-wise addition, and the summed feature is passed through an SN. This
output, X, has each spatial dimension reduced by a factor of 4 (H x W — H/4 x W/4) and its
channel dimension projected to the base embedding size E

3.2 PROJECTION CONV

The Projection Conv blocks act as transition layers (Huang et al., |2017) in the hierarchical archi-
tecture of DiceFormer. Their role is to further downsample feature maps while projecting channels
to match the dimensionality required by subsequent attention modules (SADA and SDA). As il-
lustrated in Figure |1} each block consists of two sub-blocks, Project-1 and Project-2. Project-1
performs downsampling with a 3 x 3 Conv2d, BatchNorm, and MaxPool (stride 2), thereby reduc-
ing each spatial dimension by half. Its output is then passed through an SN, which provides the input
to Project-2. The latter applies a 3 x 3 Conv2d and BatchNorm without further altering spatial res-
olution. A skip connection adds the output of Project-1 (before the SN) to the output of Project-2.
The combined feature is finally processed by an SN to produce the block output.

3.3 DICE-BASED SPIKE ATTENTION

The self-attention mechanism in ANN-based Transformer relies heavily on Softmax normalization
of real-valued feature vectors (Vaswanti et al.,[2017)). In SNNs, however, information is represented
as event-based binary spikes. Consequently, directly applying Softmax is not only difficult but also
fails to exploit the inherent sparsity and event-driven nature of SNNs (Zhou et al.,[2023)). It is there-
fore essential in the SNN field to design attention mechanisms specifically tailored to spike signals.
Motivated by this need, we analyze the limitations of existing spike-based attention formulations
and propose a new attention mechanism tailored for spike processing.

Figure [2] illustrates the two primary approaches for spike-based self-attention. The first is dot-
product-based Spike Self-Attention (SSA) with computational complexity O(N2D). The second

'For static 2D inputs (I, € RE*7*W) we form a length-T" sequence by repeating the same frame 7" times
along the temporal axis to match the SNN interface. In practice, the temporal dimension 7" is treated as an
independent axis for spiking neuron layers, while in other layers, it is typically merged with the batch size.
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Figure 2: (a) Dot-product-based Spike Self-Attention (SSA, O(N?D), density-unaware); (b)
Hadamard-product-based Spike-Driven Self-Attention (SDSA, O(ND), density-unaware); (c)
Spike Dice Attention (SDA, O(N D), density-aware). Here, N is the number of tokens and D
the channel dimension.

approach is Spike Driven Self-Attention (SDSA), which replaces dot products with Hadamard Prod-
ucts (HP) followed by summation, reducing the complexity to O(N D). These mechanisms have
been widely adopted in recent SNN-ViT models (Zhou et al.,|2023; Yao et al., 2024} [2023).

However, both dot-product and Hadamard-
product attention suffer from a key limitation:

Attention Score

; ) . Spik N N Dot HP Dice
their scores are strongly biased by spike den- ~_Pie Q¥ - (55K (SDSm) _(SDA)
sity, yielding an inaccurate measure of true _SPikeKey1 KX & 3] 3
similarity. As illustrated in Figure both  spike Key 2 P O 3 3

density-unaware attention mechanisms assign
the same score (3) across four distinct spike
keys, treating a sparse, precise match (Key 1)  SpikeKey4 N 4 4 & & 4| 3 3
as equivalent to a much denser, less specific one

(Key 4). Our empirical analysis further con- Figure 3: An illustrative example of density-aware
firms this density bias, showing a strong pos- scoring. SSA (dot) and SDSA (Hadamard + sum)
itive correlation between conventional spike- yield the same score despite different key densi-
attention scores and overall spike density (see ties, whereas SDA (Dice) differentiates them by
Appendix [F). reflecting the density difference. Toy single-token
case.

Spike Key 3 N NN NN 3 3

Ol o =

To overcome this issue, we propose SDA (Ap-
pendix [C). At its core is the Spike Dice Score
(SDS), a Dice-based similarity measure that incorporates density-aware normalization (Dicel |1945).
This design substantially reduces the correlation between attention scores and spike density (see
Appendix [F)), confirming robustness to density bias. Formally, SDS(Q,K) is defined as follows:

2 sumgy(Q © K)

SDS(Q, K) = sumg(Q) + sumy(K) + €

4)

where ® denotes the element-wise Hadamard product, and sum, is the sum over the channel axis
and ¢ = 107° ensures numerical stability. Because SDS requires only element-wise Hadamard
products and channel-wise reductions, it retains linear complexity O(N D).
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3.3.1 SPIKE AUDIO DICE ATTENTION

The SADA module is designed to learn rich frequency-temporal features by explicitly decoupling
and then fusing information from the frequency and temporal axes. The module’s operation consists
of three main stages.

1. Input Processing and Decoupling. Let Xj, € RT*DP1xH/8xW/8 pe the output of the preceding
projection conv block, where H and W denote the frequency and temporal axes, respectively. After
passing through a spiking neuron (SN), we obtain Xgye € R7*PrxH /8xW/8 which is split along
the channel dimension into two equal halves (D} := D;/2) and routed to a frequency branch and
a temporal branch in parallel. The original Xj, is retained for the final residual connection applied
after feature fusion. In the frequency branch, the temporal axis (WW/8) is merged into the batch
dimension so that each temporal slice is treated as an independent sequence of length Ng.q = H/8.
In the temporal branch, the frequency axis (H/8) is merged into the batch dimension so that each
frequency slice is treated as an independent sequence of length Niemp = W/8.

2. Parallel Attention Streams. The two halves of the split tensor, denoted as X, are processed in
parallel, with one stream operating along the frequency axis and the other along the temporal axis.
In both streams, the input is reshaped such that the designated axis serves as the sequence length for

attention: Freq € R7*NwaxD1 with Nyeq = H/8, and Temp € RT*New D1 with Ny, = W/8.

From each reshaped tensor, query (Q), key (K), and value (V') spike vectors are generated using
parallel Linear—BatchNorm—SN branches with learnable matrices:

Q = SN(BN(XWg)), K =SN(BN(XWg)), V =SNBN(XWy)). (5)

The attention output is computed by forming a spike-dice map from the SDS between @) and K.
This continuous-valued score is passed through an SN to obtain a binary map, which is then applied
to V via element-wise (Hadamard) product with channel-wise broadcasting:

Attn = SN(SDS(Q, K)) © V- ©6)

Applying this procedure separately yields the frequency-focused output Attng.eq and the temporal-
focused output Attniemp.

3. Feature Fusion and Output. The frequency- and temporal-attention outputs, Attngeq and
Attniemp, are concatenated along the channel dimension to reconstruct the original size D;. The
combined tensor is processed by a Pointwise Convolution (PWConv) (Howard et al., [2017) with
BatchNorm, enabling the model to learn cross-dependencies between frequency and temporal fea-
tures. A residual connection with Xj, is then applied, and the result is passed through a spiking
neuron (SN) followed by an MLP block to produce the final output:

Xtused = BN(PWConv(concat(Attngreq, Atthtemp))) + Xin, @)
Xout = MLP(SN(Xfused))~ (8)

3.3.2 SPIKE DICE ATTENTION

Whereas the SADA module explicitly decouples frequency and temporal information, the SDA per-
forms unified attention over the combined frequency—temporal dimensions.

Given an input tensor X, € RT*P2x(H/16)x(W/16) from the second Projection Conv block, we
first flatten the spatial dimensions into a sequence of length Nyw = (H/16) x (W/16), yielding
a tensor of shape T' x Nyw x Dy. After passing through a spiking neuron (SN), this produces
Xspike c RTXNHW X Do .

From X, query (@), key (K), and value (V') vectors are generated via parallel Lin-
ear—-BatchNorm—SN branches with learnable matrices:

Q = SN(BN(XgpixeWq)), K =SNBN(XgpieWk)), V =SNBNXgyiWv)). (9)
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Table 1: Performance comparison across datasets. Scores are reported as mAP for AudioSet (20K)
and accuracy (%) for ESC-50 and SCV2. We evaluated three model variants: DiceFormer-10-S,
DiceFormer-10-M, and DiceFormer-10-L. Here, 710" denotes a total of 10 attention layers, consist-
ing of 5 SADA and 5 SDA layers each. The S, M, and L suffixes distinguish the models by their
attention channel dimensions, which are set to [192, 384] for S, [256, 512] for M, and [384, 768] for
L, respectively.

Model Type Direct training Parameters (M) Energy (mJ) Time step Score
AudioSet (20K) — mAP

AST (Gong et al.||2021) ANN - 88.1 475.64 - 0.148 /0.347*
SSAST-S (Gong et al.|[2022) ANN - 23 176.82 - 0.165/0.308**
DTF-AT (Alex et al.[[2024) ANN - 69 153.18 - 0.187/0.355*
Spikformer (Zhou et al.|2023) SNN v 65.9 18.82 4 0.136
Spike-driven Transformer (Yao et al.|[2023) SNN v 65.9 8.15 4 0.130
Spike-driven Transformer V2 (Yao et al.|[2024) SNN v 55.0 14.92 4 0.117
QKFormer (Zhou et al.|[2024) SNN v 64.5 43.43 4 0.147
DiceFormer-10-S (Ours) SNN v 13.7 5.34 4 0.145
DiceFormer-10-M (Ours) SNN v 24.2 9.55 4 0.157
DiceFormer-10-L (Ours) SNN v 543 6.18 1 0.153
DiceFormer-10-L (Ours) SNN v 543 17.80 4 0.161
ESC-50 — Acc (%)

AST (Gong et al.|[2021) ANN - 87.2 260.54 - -/88.7*
SSAST-S (Gong et al.|[2022) ANN - 23 72.63 - - /85.4**
DTF-AT (Alex et al.|[2024) ANN - 68.6 77.28 - 76.40/ 89.19*
DiceFormer-10-S (Ours) SNN v 135 5.17 4 85.37
DiceFormer-10-M (Ours) SNN v 24.0 7.95 4 85.47
SCV2 — Acc (%)

AST (Gong et al.||2021) ANN - 86.9 44.11 - -/98.11*
SSAST-S (Gong et al.[[2022) ANN - 23 11.32 - 93.30/97.70**
DTF-AT (Alex et al.[[2024) ANN - 68.6 19.32 - 97.87/98.30*
DCLS-Delays (Hammouamri et al.|{|2024) SNN v 2.5 - - 95.35
SIDC-KWS (Lim & Kim][2025a) SNN v 0.4 - 8 94.70
DiceFormer-10-S (Ours) SNN v 13.5 5.31 4 97.27

* ImageNet-pretrained; ** Audio self-supervised pretraining. a/b®***) = from-scratch / pretrained.

Attention is computed using the SDS. The resulting similarity map is passed through an SN to yield a
binary spike-dice map, which is then applied to the value vector via element-wise Hadamard product
with broadcasting:

Attn = SN(SDS(Q, K)) ® V. (10)

Finally, Attn is reshaped back to the spatial view, passed through a Pointwise Convolution (PW-
Conv) with BatchNorm, combined with the residual input Xj,, and processed by an SN and an MLP
to produce the final output:

Xtused = BN(PWConv(Attn)) + Xiy, (11)
Xout = MLP(SN(Xfyseq))- (12)

Both SADA and SDA are naturally extended to multi-head variants, with detailed formulations
provided in Appendix

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of DiceFormer across three widely
used benchmark datasets: AudioSet (20K) and ESC-50 for general audio classification, and Speech
Commands V2 (SCV2) for keyword spotting. These datasets collectively cover large-scale, envi-
ronmental, and speech-focused tasks, providing a comprehensive assessment of model generaliz-
ability. All DiceFormer variants are trained from scratch to ensure that performance gains cannot
be attributed to pre-training or external supervision. Our SNN models, in particular, adopt direct
training (Wu et al., 2019) with surrogate gradients (Neftci et al.,|2019; |Fang et al.| 2021)). Detailed
training protocols and hyperparameters are provided in Appendix [E} while the energy calculation
methodology and training/inference times are detailed in Appendix [Gland Appendix [H] respectively.
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4.1 PERFORMANCE COMPARISON

As presented in Table[I| on the AudioSet (20K) benchmark, our largest model, DiceFormer-10-L
(54.3M, 17.80 mJ), achieves a new SNN SOTA with 0.161 mAP, trained entirely from scratch. It
surpasses prior SNN-ViT models (Spikformer, Spike-driven Transformer, Spike-driven Transformer
V2, QKFormer) while using fewer parameters and lower energy. Furthermore, our model outper-
forms the ANN baseline AST (88.1M, 475.64 mJ, 0.148 mAP) with substantially higher efficiency
and accuracy. Although it remains 2.6 percentage points (pp) behind the ANN SOTA DTF-AT (69M,
153.18 mJ, 0.187 mAP), DiceFormer-10-L. demonstrates markedly superior parameter and energy
efficiency, highlighting the competitiveness of spiking architectures at scale.

Notably, the lightweight DiceFormer-10-S achieves 0.145 mAP with only 13.7M parameters and
5.34 m]J, essentially matching the previous SNN SOTA QKFormer (64.5M, 43.43 mJ, 0.147 mAP),
while using ~ 4.7 fewer parameters and ~ 8.1 x lower energy. This highlights the scalability and
efficiency of our design, even in resource-constrained settings.

Furthermore, on ESC-50, DiceFormer-10-S (13.5M, 5.17 mJ) reaches 85.37% accuracy, outper-
forming the from-scratch DTF-AT baseline (68.6M, 77.28 mJ, 76.40%) by a large margin while
being far more efficient. On SCV2, DiceFormer-10-S (13.5M, 5.31 mJ) achieves 97.27%, com-
petitive with the self-supervised-pretrained SSAST-S (23M, 11.32 mJ, 97.70%**) but with ~ 2.1x
lower energy and ~41% fewer parameters.

Overall, as summarized in Table|l| these results demonstrate that DiceFormer not only establishes
new SOTA performance among SNNs but also rivals strong ANN baselines, proving that spiking
transformers can deliver both accuracy and efficiency across diverse audio tasks.

4.2 CORRELATION BETWEEN ATTENTION SCORES AND SPIKE DENSITY

On AudioSet-20K, we measure density bias
as the Pearson correlation (Pearsonl [1896) be- 0.160 A
tween layer-wise attention scores and input oassh . °

spike density (see Appendix [F for details), "
conventional SNN-ViTs exhibit strong positive
correlations, for example, Spikformer (0.934),
Spike-driven Transformer (0.572), and QK-
Former (0.725), indicating that their attention
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els, these correlations show a negative relation-

ship with mAP (Pearson r ~ —0.682; Flg-EI)’ Figure 4: Association between mAP and den-
suggesting that lower density-dependence is a  sjty_score correlation.

reliable indicator of better performance, even

though other factors also contribute.

4.3 ABLATION STUDY

All ablations are conducted on AudioSet (20K) with DiceFormer-10-L under a shared setup (7'=4);
results are summarized in Table[2] We analyze three aspects: (i) component analysis to validate the
contribution of attention modules, SADA and SDA, in comparison to two density-unaware controls
(dot-product SSA and Hadamard-product SDSA); (ii) the generality of SDA when used as a drop-
in replacement in other SNNs; and (iii) the effect of binarization in enforcing a fully spike-based
attention path.

Analysis of attention components. On AudioSet (20K), the full SADA+SDA model achieves
0.161 mAP. Using a single module yields 0.157 (SADA-only) and 0.158 (SDA-only), indicating
that the two modules are complementary when combined. In contrast, density-unaware controls,
SSA-only (dot-product, 0.142) and SDSA-only (Hadamard, 0.126), fall far behind. Relative to these
baselines, SADA+SDA improves by +0.004 over SADA-only, +-0.003 over SDA-only, +-0.019 over
SSA-only, and +0.035 over SDSA-only, under identical training (7'=4) and comparable parameter
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Table 2: Combined ablation studies on the AudioSet-20K dataset. The top section evaluates the
effectiveness of SDA by swapping it into existing SNNs. The bottom sections analyze the synergy
of attention components and the impact of attention map binarization.

Methods Parameters (M) Time step mAP
Analysis of Attention Components

DiceFormer-10-L (SDSA only) 554 4 0.126
DiceFormer-10-L (SSA only) 554 4 0.142
DiceFormer-10-L (SADA only) 54.3 4 0.157
DiceFormer-10-L (SDA only) 54.4 4 0.158
DiceFormer-10-L (SADA + SDA, Full Model) 54.3 4 0.161
Effectiveness of SDA

Spike-driven Transformer (baseline) 65.9 4 0.130
Spike-driven Transformer (+SDA) 65.9 4 0.142 (+0.012)
Spike-driven Transformer V2 (baseline) 55.0 4 0.117
Spike-driven Transformer V2 (+SDA)f 45.0 4 0.144 (+0.027)
QKFormer (baseline) 64.5 4 0.147
QKFormer (+SDA) 64.5 4 0.149 (+0.002)
Effectiveness of Binarized Attention Map

DiceFormer-10-L (SDS-continuous) 54.3 4 0.160
DiceFormer-10-L (SDS-binarized) 54.3 4 0.161

 Removes re-parameterized conv from attention block (= -10M params).

counts (~ 54.2-55.4M). This confirms that density-aware scoring provides substantial advantages
over conventional formulations.

Effectiveness of SDA. To isolate the impact of our core mechanism, we minimally swap SDA into
three existing SNNs. In all cases, SDA yields consistent gains: Spike-driven Transformer — 0.130
— 0.142 (4+0.012), Spike-driven Transformer V2 — 0.117 — 0.144 (4+0.027), and QKFormer —
0.147 — 0.149 (+0.002). These results demonstrate that density-aware scoring generalizes across
architectures and can serve as a reliable drop-in attention mechanism for SNNs.

Effect of binarized SDS. Finally, comparing the continuous (SDS-continuous, 0.160) with its bina-
rized variant (SDS-binarized, 0.161) reveals negligible differences. This demonstrates that binariza-
tion preserves accuracy while enabling a purely spike-based attention computation, which is fully
aligned with the event-driven nature of SNNs.

5 CONCLUSION

In this work, we proposed DiceFormer, a novel spiking transformer architecture tailored for audio
processing. DiceFormer mitigates the density bias of conventional spike-based attention through
SDA, a linear-complexity mechanism that yields density-aware attention scores. To further cap-
ture audio-specific patterns, we introduced SADA, which decouples and fuses frequency-temporal
structure. Ablation studies confirmed the complementary contributions of SDA and SADA, the ro-
bustness of their binarized realization, and the generality of SDA as a drop-in replacement across
SNNS. Trained entirely from scratch, DiceFormer-10-L achieves 0.161 mAP on AudioSet (20K),
establishing a new SOTA performance among SNNs, and delivers competitive or superior results on
ESC-50 and SCV2 with strong parameter and energy efficiency.

Limitations and Future Work. Our experiments trained DiceFormer from scratch to isolate archi-
tectural contributions and efficiency. This design choice currently leaves a gap compared to state-of-
the-art ANNS that leverage large-scale pretraining. As future work, we will explore spike-compatible
pretraining and distillation strategies—such as self-supervised audio pretraining and multimodal
teacher—student transfer—built upon our SDA/SADA modules. We believe these directions hold
strong potential to further narrow the performance gap and advance the practical adoption of SNNs
in real-world audio applications.
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A SPIKING NEURAL NETWORK

Spiking Neural Networks (SNNs), inspired by the information processing in the human brain, op-
erate in an event-driven manner using sparse, binary spikes. This bio-mimetic approach offers
significant potential for energy efficiency. However, a primary challenge in training SNNs is the
non-differentiable nature of the spike generation function within neuron models, such as the Leaky
Integrate-and-Fire (LIF) neuron (Maass), [1997; |Wu et al., 2017), which precludes the direct appli-
cation of standard backpropagation (Rumelhart et al., |1986). To address this, two main training
paradigms have emerged. The first is ANN-to-SNN conversion (Deng & Gul 2021} [Hu et al., 2023
Han et al.}2020; (Cao et al., 2015;|Wang et al., [2022)), which transfers the weights from a pre-trained
ANN to an SNN architecture. The second is direct training (Wu et al.| 2019), which employs the
surrogate gradient (Neftci et al.| 2019) method to approximate the derivative of the spike activation.
In this work, we utilize the direct training paradigm to train our proposed model.

B DICEFORMER IMPLEMENTATION DETAILS

We configure three versions of the DiceFormer model based on the attention channel dimensions:
DiceFormer-10-S, DiceFormer-10-M, and DiceFormer-10-L. The number 10 in the model names
denotes the total count of SADA and SDA blocks, with all versions containing a total of 10 such
blocks. The detailed architecture for each model is summarized in Table

The model processes an input tensor with a shape of T' x C' x H x W, where T,C, H, and W
denote the time step, channels, height, and width, respectively. For simplicity, the batch dimension
is omitted from all tensor shapes described below.

Table 3: Detailed architecture of DiceFormer. ’k’, ’s’, and "p’ denote kernel size, stride, and padding,
respectively. The model has three variants: DiceFormer-10-S (E' = 96, D; = 192, Dy = 384),
DiceFormer-10-M (E = 128, D, = 256, D, = 512), and DiceFormer-10-L (F = 192, D, =
384, Dy = 768). For all variants, the SADA and SDA modules use 2 and 8 attention heads, respec-
tively.

Channels
DiceFormer-10-S  DiceFormer-10-M  DiceFormer-10-L

Stage Layer Name Key Operations # Tokens

Init-1:
Conv2d(k=7,s=1,p=3)
MaxPool(k=2,s=2)

Init-2:

- H, W
1 Initialize Block Conv2d(k=3,s=1,p=1) T X1 96 128 192
MaxPool(k=2,s=2)
Init-3:
Conv2d(k=3,s=1,p=1)
Skip:
Conv2d(k=3,s=2,p=1)
Project-1:
— Conv2d(k=3,s=1,p=1) H W
2 Projection Conv 1 MaxPool(k=2,5=2) T X5 192 256 384

Project-2:
Conv2d(k=3,s=1,p=1)

— Frequency Stream —
Freq-Attention (2 Heads) % x W 96 128 192

— Temporal Stream —

3 SADA Module

Temp-Attention (2 Heads) I 96 128 192
PWConv & MLP 4w 192 256 384
Project-1:
Lo Conv2d(k=3,s=1,p=1) H oW
4 Projection Conv 2 MaxPool(k=2,5=2) 16 X 16 384 512 768
Project-2:
Conv2d(k=3,s=1,p=1)
Unified Spike Dice Attention (8 Heads) £ x W 384 512 768
5 SDA Modul §
odute Fusion (PWConv) & MLP Bow 384 512 768

6 Classification Head ~ Global Average Pooling, Linear
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C SPIKE DICE ATTENTION: THEORETICAL PROPERTIES

This appendix provides a formal proof that the proposed SDA is density-aware. The analysis
matches the main-paper definition: the SDS is computed per token along the channel dimension
with € > 0, yielding SDS(Q, K) € RY*! and overall O(N D) complexity.

Setup and notation. Let Q,K € {0,1}V*P.  For the n-th token we write ¢, =
(@nas--qnp) € {0,1} and k,, = (kn1,...,knp) € {0,1}7. Define the (spike) densities

D D D
lanlli = >-4_1 @n,a and |[kyp|l1 = D>, 4 kn,a, and the co-occurrence gy, - kn, = D/ | Gn,dkn,d-
The per-token SDS equals

_ Z(qn : kn)
gnlly + [&nlls + €

e>0. 13)

Sn

Stacking {s,, }_; gives SDS(Q, K) € RV*1. Because each token only aggregates over channels
D, the total costis O(N D).

Limitations of density-unaware raw scores. For binary vectors, the raw dot/Hadamard score
Scoreraw(n) := gy, - ky, cannot distinguish keys that share the same co-occurrence and is biased
toward saturated (all-ones) keys: if & = ||, ||1 > j, then gy, - ksat = k > J.

C.1 PREFERENCE FOR SPARSE KEYS AT EQUAL CO-OCCURRENCE
Fix g, and consider two keys with equal overlap gy, - ksparse = @n - Fdense = J but different densities
[lksparselln = 7 and ||kgense||1 = m > j. Then
_ 2j

||Qn||1 +.7 + 6’

2j

. — 14
Tl +m+ e (1

Sn(ksparse) Sn(kdense)

Since ||gn |1 + m + € > ||gnll1 + j + ¢, we have
Sn(ksparse) > Sn(kdense)~ (15)

Hence, SDA assigns a higher score to lower-density keys at equal co-occurrence.

C.2 SUPPRESSION OF SATURATED KEYS

For the saturated (all-ones) key kgat we have ||ksatl|s = D and gy, - ksat = |lgnll1 =: k. Equa-
tion equation[13] gives
2k

sn(ksar) = k+D+e Dosoo 0- (16)

In contrast, an ideal sparse key ksparse maintains s, (ksparse) =

27

. which is independent of D.

D SPIKE DICE ATTENTION: MULTI-HEAD FORMULATION

(1) MULTI-HEAD IN SADA

The SADA module applies multi-head attention to both the frequency and temporal streams. In each
stream, the input tensor has shape 7' x N x D (with stream-specific N and D). We split the feature
dimension D into 4 heads, each with a per-head width of d = D /4, and reshape itto T x i X N x d,
enabling parallel attention across heads.

Frequency branch (multi-head). Given Q;, K, V; € {0,1}7*NweaXP1 with D = id, for each
head h € {1,...,i} we take Q}h), K](ch), Vf(h) € {0, 1}7*Nweaxd and compute

Attn{) = SN(SDS(Q, k")) o v{P.

freq

The final frequency output is obtained by merging head-wise results along the head axis to recover
the original width: Attng.eq € {0, I}TXfoeqXDi.
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Temporal branch (multi-head). Analogously, with Q;, K;, V; € {0,1}7*NwmoxD1 and D} = id,
we compute

At = SN(SDS(Q™, K™Yy o v,

temp

and merge along the head axis to obtain Attngemyp € {0, 1}7%Neempx D1

3. FEATURE FUSION AND OUTPUT.

The outputs of the two streams, Attngeq and Attngemp, are concatenated along the channel dimen-
sion, restoring the original channel D;. The combined tensor is passed through a PWConv to fuse
inter-dependencies, followed by a residual connection and an MLP:

Xtused = BN(PWConv(concat(Attifeq, Attiemp))) + Xin,

Xoul = MLP(SN(XquEd))a

(2) MULTI-HEAD IN SDA (UNIFIED)

The unified SDA also employs multi-head attention. The input tensor 7' X Ngy X Ds is split into
i heads, yielding d = D /i and the reshaped form T X i X Ny X d for parallel processing.

Unified branch (multi-head). For Q, K,V € {0,1}7*NuwxDz with Dy = id and Ngw =
(H/16)(W/16), each head computes
Attn™ = SN(SDS(Q™, KM)) & VM,

Merging the 7 head-wise outputs restores the width Dy: Attn € {0, 1}7*Nuw XDz,

Residual + PWConv.
Xfused = BN(PWCOHV(Attn)) + Xin7

Xout = MLP(SN(Xfyseq))-

E EXPERIMENT DETAILS

E.1 TRAINING ENVIRONMENT

For our experiments, we trained the models for AudioSet (20K) on a single NVIDIA A100 GPU
with 80 GB of memory. For the ESC-50 and SCV2 datasets, training was conducted on a single
NVIDIA RTX 6000 GPU with 96GB of memory.

E.2 SURROGATE GRADIENT FUNCTION

To address the non-differentiable nature of the spike activation function in direct training, we em-
ployed the surrogate gradient method. Specifically, we adopted the sigmoid function as our surrogate
function, which is defined as:

1

" T epw) "

Sigmoid(z)
The steepness parameter v was set to 4.0 in our experiments.

E.3 DATASETS

We employed Specaugment (Park et al., |2019) and Mixup (Zhang et al) [2017) during training.
Detailed experimental settings for each dataset are summarized in Table 4]
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AudioSet. AudioSet is a large-scale dataset for audio event research, containing 10-second audio
clips sourced from YouTube videos. The dataset is organized with an ontology of 527 audio event
classes (Gemmeke et al., [2017). It includes a smaller balanced subset ( 22k clips) for controlled
experiments and an evaluation set ( 20k clips). For our work, we utilize this dataset as a foundational
resource for training general-purpose audio representations. For our experiments, all audio clips
were first resampled to 16 kHz and converted to a single channel (mono). We then extracted log-Mel
filterbank energies (Fbank) as input features. The features were computed using a Hanning window
with a frame shift of 10 ms. We used 128 Mel frequency bins for the filterbank calculation. To
ensure a uniform input size for our model, the resulting feature sequences were padded or truncated
to a fixed length of 1024 frames.

ESC-50 (Environmental Sound Classification). The ESC-50 dataset is a widely used benchmark
for environmental sound classification (Piczak,2015). It consists of 2,000 5-second audio recordings
distributed evenly across 50 distinct semantic classes, such as "Dog” and ”Rain,” with 40 clips
per class. Following standard evaluation protocol, we report the classification accuracy using a 5-
fold cross-validation scheme. The audio data from ESC-50 was processed using the same feature
extraction methodology applied to AudioSet. After converting the recordings into log-Mel filterbank
features, each sequence was padded to a final length of 512 frames.

Speech Commands V2 (SCV2). The Speech Commands V2 dataset is designed for keyword
spotting tasks (Warden, [2018)). It contains approximately 105,000 1-second utterances of 35 short
command words. The dataset is pre-divided into standard training, validation, and testing splits.
Performance is evaluated based on classification accuracy on the test set. Following the same pro-
cedure, we extracted Fbank features from each utterance. The temporal dimension of the resulting
feature sequences was then padded to 128 frames to create uniform inputs for our model.

Table 4: Experiment details for different datasets.

Hyperparameter Audioset ESC-50 SCV2
Time step 4 4 4
Batch size 12 24 96
Optimizer AdamW AdamW AdamW
Input shape (1, 1024, 128) (1,512,128) (1,128, 128)
Augmentation spec spec + Mixup  spec + Mixup
Epochs 100 200 200
Scheduler Cosine Cosine Cosine
Warmup epochs 5 5 5
Warmup start Ir 1x1073 1x1074 1x1074
Warmup end Ir 1x1072 1x1073 1x1073
End Ir 5x 1075 1x10°° 1x10°°

F CORRELATION ANALYSIS DETAILS

Density—unaware spike attention can exhibit a high correlation between the attention score and the
spike density, implying that scores may be biased by how many spikes fire rather than by semantic
similarity. This limitation undermines the reliability of attention scores. In this section, we quan-
tify such density bias on AudioSet-20K for Spikformer (SSA), Spike-driven Transformer (SDSA),
DiceFormer-10-{S,M,L} (SDA), and QKFormer (QK) by measuring correlations between layer-
wise attention scores and the spike densities of their inputs across the available attention layers (five
for Spikformer/SDSA/DiceFormer; three for QKFormer).

Spike density. At each layer, we define “spike density” as the fraction of active spikes in the
tensors (e.g., Q/K or Q/K/V, depending on the mechanism) that are actually used to compute the
attention score.
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Results. As detailed in Table 3] the correlations averaged over the available stages are highest for
Spikformer (0.934, range [0.920, 0.949]) and moderate for the Spike-driven Transformer (0.572,
[0.545, 0.595]). For DiceFormer-10-{S,M,L}, the means (ranges) are 0.228 ([—0.061, 0.349]),
0.264 ([0.113, 0.368]), and 0.196 ([—0.0038, 0.409]), respectively; QKFormer shows 0.725
([0.677, 0.766]) over three attention layers. These results indicate that our density-aware formu-
lation mitigates spike—density bias more effectively than dot-product/Hadamard-style attention.

Table 5: Density correlation analysis on AudioSet-20K. Correlation between attention score and
spike density by stage (where available); mean and range are computed across the reported attention
layers.

Model Stage 0 Stage 1 Stage2 Stage3 Stage4 Mean Range

Spikformer (SSA) 0.949 0.930 0.935 0.934 0.920 0.934 [0.920, 0.949]
Spike-driven transformer (SDSA)  0.565 0.585 0.595 0.571 0.545  0.572 [0.545,0.595]
QKFormer (QK)f 0.678 0.732 0.767 — — 0.725  [0.678,0.767]
DiceFormer-10-S (SDA) 0.277 0.228  -0.061  0.349 0.347  0.228 [-0.061, 0.349]
DiceFormer-10-M (SDA) 0.264 0.368 0.319 0.113 0264 0.266 [0.113,0.368]
DiceFormer-10-L (SDA) 0.196 0.238  -0.038  0.042 0.409  0.169 [-0.038, 0.409]

T QKFormer applies QK attention in only three stages (Stages 0—2); mean/range are computed over these
available stages.

G ENERGY CONSUMPTION ESTIMATION METHODOLOGY

We estimate the theoretical energy consumption based on the total Synaptic Operations (SOPs)
(Kundu et al.| 2021} |Hu et al., 2021} Yao et al., [2022} |Zhou et al.l 2024; 2023), which represent
spike-based accumulate (AC) operations, calculated from the FLOPs (floating point operations) of
each layer. We distinguish between continuous-valued inputs (MAC operations) and spike-based
inputs (AC operations).

The theoretical FLOPs for each layer are calculated according to standard definitions (Molchanov
et al.,|2017) as follows:

* Conv2d: FLOPs = Coy X (Cin/g) X kpkw X HouWout
» Convld: FLOPs = Coy X (Cin/g) X k X Low
e Linear: FLOPs = in_features x out_features

We adopt the energy constants from a 45nm CMOS process reported in (Horowitz, 2014):
EMAC =4.6 pJ (18)
EAC = 0.9pJ (19)

1. SNN Energy : For spike-driven layers, we scale by time steps 7' and the layer-wise spike
rate R, € [0, 1], using the energy per accumulate:

SOPsy = FLOPs; x T x Ry,
ESNN = ZSOPS@ X EAC~ (20)
¢
We refer to FLOPs, x T' x Ry as the spiking operation count (SOPs) of layer .

2. Total Energy: The total energy is obtained by summing the per-layer SNN energies defined
above.

H TRAINING AND INFERENCE TIME

The DiceFormer-10-L, DiceFormer-10-M, DiceFormer-10-S, Spikformer, Spike-driven transformer,
Spike-driven transformer V2 and QKFormer models were trained and evaluated on the AudioSet
(20K) dataset. The actual training and inference times, measured on the same device with a batch
size (BS) of 12, are detailed in Table[f]
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Table 6: Training and inference time per epoch for various models on the AudioSet (20K) dataset.
All measurements were performed on the same device.

Model Training Time (min sec / epoch) Inference Time (min sec / epoch)
DiceFormer-10-S 6m 43s 2m 32s
DiceFormer-10-M 8m 39s 3m 23s
DiceFormer-10-L 13m 45s S5m 16s
Spikformer 9m 33s 3m 32s
Spike-driven transformer 9m 15s 3m 26s
Spike-driven transformer V2 12m58s 4m 15s
QKFormer 12m 06s 4m 29s

I LARGE LANGUAGE MODEL USAGE

We received assistance from the GPT-5-Thinking and Gemini 2.5 Pro models in refining the gram-
mar and style of this manuscript.
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