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Abstract Model stitching is a technique for assembling new neural networks from the parts of existing
networks, without having to re-train or fine-tune the existing weights. It has shown promise
for new forms of neural architecture search, decentralized training, and transfer learning.
However, little investigation has gone into determining exactly what types of blocks can (or
cannot) be stitched together, and how. In this short paper, we ask whether it is possible to
stitch very low layers to very high layers, across different architectures. We find that it is
possible to stitch such disparate layers, but requires some important modifications to the
original stitching methods.!

1 Introduction

Model stitching was originally proposed as an interpretability method, for determining whether
the internal representations of two different neural networks were functionally similar (Lenc and
Vedaldi, 2015; Bansal et al., 2021). Thus, the original stitching papers only stitch identical layers
from identical architectures, and only learn linear transformations.

Since then, many works have proposed to use stitching for the practical purpose of constructing
new models, not just introspecting existing models. These works demonstrate the promise of
stitching for diverse purposes. Ni et al. (2023) enables more distributed training of large models by
training parts of the network separately and stitching them together later. Wang et al. (2023a) and
Wang et al. (2023b) use stitching to enable the use of heterogenous models in federated learning.
Other works select subsets of a number of models from a model zoo, and stitch them into a new
model; this suggests a more efficient, flexible form of transfer learning compared to fine-tuning a
single model (Yang et al., 2022; He et al., 2024; Liu et al., 2024; Teerapittayanon et al., 2023).

Some works even describe stitching diverse model architectures—e.g. stitching a CNN to a
Transformer—which is far outside the scope of the original stitching methods (Yang et al., 2022;
Pan et al,, 2023; He et al., 2024; Liu et al., 2024). They describe assembling models from blocks
pulled from a diverse model zoo. But they do not describe in detail how effective it is to stitch such
diverse block types, nor any limitations on the process.

Thus, stitching has promise for a diverse range of AutoML use cases. It may enable new methods
in neural architecture search, if it is possible to recombine architectural elements without having
to train their weights from scratch. It may be paired with dynamic routing techniques to assemble
large models from the pieces of smaller ones (Komatsuzaki et al., 2023; Mugeeth et al., 2024). In
order to judge these promising directions, we probe what is possible with model stitching.

In this short paper we focus on one sub-question: is it possible to stitch at very different depths
(e.g. low layers to high layers)? We find that it is, in fact, not possible with the original stitching
methods. But with some modifications, listed in Section 3, it becomes possible and can achieve
surprisingly good performance. This increases the scope of what can be stitched, potentially
opening up new use cases.

10ur source code is available at https://github.com/uvm-neurobotics-lab/stitching.
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2 Methods

For simplicity and reproducibility, we focus on stitching
two models which were trained on the same dataset. In
some cases, these might be two separate parts of the exact
same model; in other cases, they might have entirely
different architectures. Regardless, all the models were
pretrained on ImageNet-1k, and all stitched models will
be trained and evaluated on ImageNet-1k.

Given a source model A and a destination model B,
we wish to know if we can stitch point A; to point Bj,
where i < jand i, j € [0, 1] are fractions representing
how far along in the feedforward computation graph of
the model (i = 0 would be the input and j = 1 would be
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Figure 1: An illustration of the different
gaps that may be stitched under
our experimental protocol. For

the output). If such a model can achieve a test accuracy each arrow pictured here, we
close to the original models, this would be a success, since knock out the intermediate lay-
it has effectively “skipped” many intermediate layers. ers spanned by the arrow, and re-

To simplify the possible permutations of this ques- place them with a particular type
tion, we will divide our candidate models into four stages. of adapter (or multiple adapters,
Many common vision models are already structured as in the case of bridging multiple

scale-shifts). See Section 2 for a

four stages, or can be divided this way. For instance,
full description.

ResNet-18 consists of four stages, with two blocks in each
stage. ResNet-50 is four stages with {3, 4, 6, 4} blocks in
each stage. Typically, each stage operates at a different receptive field scale. At the beginning
of each stage, the model might transform the input as [B, 2C, H/2, W /2] —thus, stitching across
different stages involves stitching across different spatial scales. We will simplify by choosing
one stitching point in each stage, and testing all pairs where Stage x < Stage y. When x = y, we
use different points within the same stage. See Figure 1 for a diagram of the different gaps that we
will stitch across.

We test our ability to stitch these gaps on four different scenarios: parts of the same ResNet-
502, parts of the same Swin-Tiny?, parts of the same MobileNetV3*, and the beginning of ResNet-50
to the end of Swin-Tiny.

The stitching methods originally used in Bansal et al. (2021) were kept as strictly linear trans-
forms for interpretability purposes (i.e., a 1x1 convolution). In our case, we are interested in finding
out whatever stitching methods may be successful, even if nonlinear. Thus, we test a number
of different adapters of varying complexity: Linear, Linear + ReLU, Conv3x3 + ReLU, ResNet
BottleneckBlock (He et al., 2016).

In addition, we also test a scenario with no adapter (fine-tuning all weights). This baseline
preserves the original downsample blocks from the top model, but deletes all intermediate blocks,
and fine-tunes end-to-end. Schemes similar to this have been shown to be an effective form of
warm-starting (Xu et al., 2023). However, this is only possible when stitching models with similar
architecture, and cannot serve as a general replacement for stitching.

Further, we expect that we must rescale the feature maps to match the size expected at their
destination. If we do not do this, we often run out of memory (see Section 3). This fact is not
mentioned in “model zoo” approaches such as Yang et al. (2022); Pan et al. (2023); Liu et al. (2024).
To our knowledge, StitchNet (Teerapittayanon et al., 2023) is unique in mentioning this issue, but
only briefly. We compare a few different methods for dealing with the spatial scaling problem:

ZPretrained weights resnet50.a1_in1k from the Huggingface timm library (Wightman, 2019).
3Pretrained weights swin_t from the Torchvision library (Torchvision maintainers and contributors, 2016).
4Pretrained weights mobilenetv3_large_100.ra_in1k from the Huggingface timm library (Wightman, 2019).


https://huggingface.co/timm/resnet50.a1_in1k
https://docs.pytorch.org/vision/main/models/generated/torchvision.models.swin_t.html
https://huggingface.co/timm/mobilenetv3_large_100.ra_in1k
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Figure 2: The test accuracy of various stitching methods in different scenarios. Downsampling and
BottleneckBlocks can achieve performance close to fine-tuning, while being applicable in a
range of scenarios far broader than fine-tuning. Left: Stitching from Stage 1 in ResNet-50.
Middle: Stitching from Stage 2 in ResNet-50. Right: Stitching from ResNet-50 Stage 1 to other
stages in Swin-T. Results for all other architectures and stages can be found in Appendix A.

« No Downsample — The method of prior literature.
« Downsample — Downsample just before each adapter using bilinear image interpolation.
« Integrated Downsample — Using a 3x3 convolution of stride 2.
We place BatchNorm (loffe and Szegedy, 2015) layers before and after each adapter to aid in
optimization, as in Bansal et al. (2021). All scenarios are optimized on ImageNet-1k for just 10
epochs. For full details of optimization, see Appendix B.

Results

Here we will highlight four major findings:
1. Itis possible to stitch across large gaps and across very different architectures, by interpolating

the feature maps accordingly.

2. More complex adapters are needed to achieve good accuracy, rather than the traditional

linear adapters.

3. Using a “bottleneck” style adapter is important for computational efficiency.
4. It is sufficient to use a simple bilinear image interpolation to match feature map sizes.

Stitching Across Large Gaps. We can
stitch across very large gaps (e.g. Stage
1 — Stage 4), approaching the perfor-
mance of full-parameter fine-tuning. With-
out spatial scaling, stitching across such
gaps is often not possible (note that the
No Downsample variants are missing from
Figure 2 Left and Right, due to out-of-
memory errors when attempting to push
such large feature maps into later stages
of the model).

As a baseline, we can also compare to
smaller ResNet variants when trained from
scratch. Table 1 shows that by stitching

Table 1: By stitching various parts of a ResNet-50, we can
produce models which are similar to the smaller
ResNet variants, with only 10 epochs of training.

Model Accuracy  FLOPs
ResNet-18 71.5 1.81e09
ResNet-50 Stage 1 — 4 67.4 1.67¢09
ResNet-34 76.4  3.66e09
ResNet-50 Stage 1 — 2 78.3 3.58e09
ResNet-50 80.4  4.09¢09

various gaps, we can turn a ResNet-50 into the rough equivalent of a ResNet-18 or ResNet-34, with
just 10 epochs of adapter training. Although the objective of this method is not to be competitive
on model compression, we find this to be an intriguing example of the efficacy of stitching.
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Figure 3: Accuracy vs. FLOP count, in two different scenarios. Up and to the left means better accuracy
with less compute. Grey stars represent the original model. Left: ResNet-50 Stage 1. See how
Downsample, Bottleneck matches the pareto curve of Fine-Tuning. Notice how the orange
lines fully dominate the green lines (Bottleneck blocks are more efficient and performant than
a full Conv3x3). Right: MobileNetV3 Stage 2. See how all No Downsample variants actually
grow the computation relative to the original model, even though there are fewer layers.

Our method functions in cases where fine-tuning cannot, and can even stitch together such
different architectures as a CNN and a Swin Transformer into a very capable model. Figure 2 shows
that our best method (Downsample, Bottleneck) can stitch the ResNet Stage 1 layers into Swin Stage
3 (a ~33% reduction in FLOPs relative to Swin-T) with only a 3.3% drop in accuracy relative to the
original Swin model. By stitching Stage 1 — Stage 4, we can even produce a ~65% reduction in
FLOPs, with only ~12% lower accuracy than Swin-T.

More Complex Adapters. Using more sophisticated adapters greatly improves performance over
linear adapters. In Figure 2, see that Conv3x3 and Bottleneck adapters substantially outperform the
original Linear and Linear + ReLU adapters used in all prior stitching work.

Bottleneck-shaped Adapters for Efficiency. This increased complexity must be balanced with
efficiency. The ResNet BottleneckBlock (He et al., 2016) projects channels down to a smaller
dimensionality before performing 3x3 convolution. Using a bottleneck rather than a full-channel
convolution (Conv3x3) matches performance with a much smaller FLOP count. A similar effect
was used in He et al. (2024), but it was based on LoRA (Hu et al.,, 2022) and limited to a linear
transformation. Downsampling is also important for keeping the model tractable. See Figure 3.

Integrated Scaling is Not Needed. We also considered the possibility that interpolating from one
receptive field scale to another would need to be learned as part of the adapter itself. To test this,
we used adapters which incorporate a strided convolution, such that scaling and transformation
happen simultaneously (“Integrated Downsample”). We find that this integrated downsampling is
not necessary; a separate downsample step works just as well—in fact, better. In Figure 2, we see
that Downsample, Conv3x3 beats Integrated Downsample, Conv3x3, and similarly for the Bottleneck
adapters. This replicates across all 12 scenarios in Appendix A.

Conclusion

We have determined two key modifications which greatly increase the range of layers that can
be stitched together: (1) using more complex transformations, and (2) interpolating feature maps
to their expected scale. We achieve accuracies on ImageNet-1k comparable to those of models
trained from scratch, with only 10 epochs of adapter training. This reveals stitching as a promising
technique for assembling novel architectures.
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A Full Results

See Figures 4 and 5 for results across all 12 scenarios.

B Details of Optimization

As mentioned in the main text, Section 2, all scenarios are optimized on ImageNet-1k image
classification, using standard cross-entropy loss, for 10 epochs. We use AdamW (Loshchilov and
Hutter, 2019) with an effective batch size of 512, learning rate 0.002, weight decay 0.05, and a
learning rate schedule of cosine annealing to 0.0. We found that the fine-tuning baseline is more
sensitive to learning rate, so in that case we ran with three separate learning rates (0.01, 0.002,
0.0002), and take the best result for each data point. Experiments justifying the learning rates are
described in the next section (Appendix C). For each setting, our results are aggregated over two
replicates with different random seeds.

C Learning Rate Study

We find that training stitching adapters is relatively stable with AdamW. Our chosen learning rate
0.002 and weight decay 0.05 seem to be optimal across the various adapters and architectures that
we checked. See Figure 6.

However, for fine-tuning all weights, we find larger performance differences across different
learning rates. We also find the best learning rate is not consistent across all scenarios. Due to
these issues, we run separate trials for all three learning rates and report the best performer in each
unique scenario (Appendix B).
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Figure 4: Accuracy vs. stitching gap size, across three stages on all four architectures.
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Figure 5: Accuracy vs. FLOP count of the resulting model, across three stages on all four architectures.
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differences to other learning rates.
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Figure 7: Fine-tuning all weights using various learning rates, on two different architectures. In
contrast to the adapters, we find a larger performance difference across different learning
rates, especially for Swin-T. We find that fine-tuning tends to prefer the smaller learning rate
(the dotted line), but the best learning rate is not consistent across all scenarios. Due to these
issues, we run separate trials for all three learning rates and report the best performer in
each unique scenario.
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