

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIYHEALTH SUITE: DATASET, MODEL, AND BENCH- MARK FOR HEALTH MANAGEMENT AT HOME

Anonymous authors

Paper under double-blind review

ABSTRACT

Generative AI is reshaping healthcare by enhancing multimodal data interpretation, clinical insight generation, and personalized decision support. However, existing advances remain tightly coupled with hospital-grade devices, restricting accessibility and use for anytime, anywhere health management in non-clinical settings. With the proliferation of wearables, mobile sensors, and telemedicine, healthcare is shifting toward the home, giving rise to the emerging field of **Diagnosis-It-Yourself (DIY) at home**, *i.e.*, home care. Despite this promise, several distinctive challenges remain: (i) home-collected data are heterogeneous, exacerbated by the absence of standardized large-scale datasets; (ii) models require adaptation to highly variable task demands and dynamically evolving individual conditions; (iii) the broad spectrum of home care tasks lacks a unified benchmark for systematic evaluation. In this paper, we present **DIYHealth Suite**, a comprehensive framework designed to address these challenges through a tailored dataset, model, and benchmark. We first curate **DIYHealth-900K**, a large-scale multimodal dataset capturing diverse real-world home care scenarios. Building on this, we propose **DIYHealthGPT**, an adaptive foundation model for home-based health management, powered by the novel Hybrid Hyper Low-Rank Adaptation technique, which integrates expert mixtures with hypernetwork-driven modulation to balance cross-task generalization and instance-level personalization. Finally, we establish **DIYHealthBench**, the first benchmark to evaluate foundation models on home care tasks. Extensive experiments demonstrate that DIYHealthGPT delivers state-of-the-art performance over both general-purpose and medical-specific baselines on 11 home care tasks in both open-QA and closed-QA settings, laying the groundwork for the next generation of AI-driven, personalized, and scalable health management at home.

1 INTRODUCTION

Generative AI has progressed at an unprecedented rate, evolving from large language models (LLMs) (Brown et al., 2020; OpenAI, 2023) to multimodal architectures (Radford et al., 2021), driving broad impact across diverse domains. Within healthcare, these advances have enabled the interpretation of complex clinical data, the integration of heterogeneous modalities, and the provision of decision support, opening new opportunities to enhance diagnosis, treatment, and patient care (Wang et al., 2015; Lin et al., 2025; Qiu et al., 2024).

Recent studies have begun to investigate medical foundation models that leverage large-scale clinical data to improve tasks such as radiology report generation (Thawkar et al., 2023), medical image interpretation (Rajpurkar & Lungren, 2023), and clinical question answering (Li et al., 2025; Xie et al., 2025). These models achieve strong performance by capturing domain-specific knowledge and adapting to a broad range of medical tasks, representing a significant step toward AI-assisted healthcare. Nevertheless, current efforts remain predominantly clinical-centric: they are trained on hospital-grade data, tailored for professional use, and optimized for environments where high-quality imaging, electronic health records (EHRs), and expert annotations are readily available.

Although foundation models have achieved considerable success in clinical contexts, their application to the home care setting has remained largely **unexplored** to date. The home care setting holds significant promise for collecting multimodal health data and enabling convenient inference beyond clinical environments, facilitated by the widespread adoption of smartphones, wearables, and home

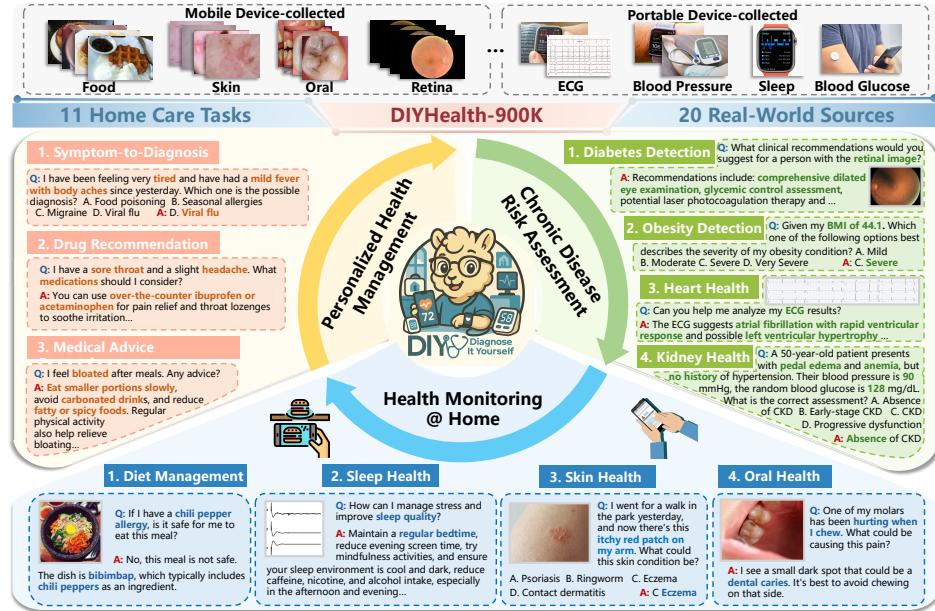


Figure 1: Overview of DIYHealth Suite, integrating DIYHealth-900K, DIYHealthGPT, and DIYHealthBench across 11 home care tasks towards health management at home.

sensors (Zaidan et al., 2018; Kruzan et al., 2023). Despite this opportunity, home care introduces distinct challenges that differ fundamentally from those encountered in clinical settings. To begin with, data collected at home often originates from consumer-grade devices and self-reported inputs, resulting in heterogeneous and lower-quality signals; the absence of standardized large-scale datasets further constrains the systematic development of foundation models in this context. Further, whereas population-level models may suffice in hospital settings, home care demands adaptation to highly variable personal health baselines and evolving individual conditions. Finally, home care spans a wide spectrum of tasks, from personalized health management to daily health monitoring, yet currently lacks a unified benchmark for evaluating model performance across such diverse applications.

To systematically unlock the potential for health management at home while addressing the aforementioned key challenges of data accessibility, personalization, and task diversity, we introduce **DIYHealth Suite**, a comprehensive ecosystem that integrates a large-scale multimodal dataset curated for home care, an adaptive foundation model designed to accommodate individual variability, and a unified benchmark spanning diverse tasks in everyday health management and monitoring.

Within the ecosystem, we propose three core components. We first construct **DIYHealth-900K**, a multimodal dataset curated via an LLM-powered data engine to aggregate heterogeneous inputs from home environments under rigorous quality control. To address variability across individuals, we propose **DIYHealthGPT**, an adaptive foundation model that employs a novel Parameter-Efficient Fine-Tuning (PEFT) technique, Hybrid Hyper Low-Rank Adaptation (H^2 LoRA), which combines low-rank expert mixtures for efficient cross-task knowledge sharing with hypernetwork-driven adaptation for instance-aware personalization. Finally, to enable systematic evaluation, we establish **DIYHealthBench**, a unified benchmark guided by a multi-dimensional evaluation protocol spanning both open-QA and closed-QA, thereby capturing the dual requirements of home care: adaptive dialogue for personalized advice and structured reasoning for decision support. Collectively, these components lay the groundwork for accessible, intelligent health management beyond clinical settings, advancing inclusive AI for everyday well-being. Our key contributions are summarized below:

- We curate DIYHealth-900K, a comprehensive multimodal dataset collected from everyday devices to reflect the complexity and variability of real-world home care scenarios.
- We propose DIYHealthGPT, an adaptive foundation model for home-based health management, powered by the innovative H^2 LoRA mechanism that enables personalized representations while maintaining robust generalization.
- We introduce DIYHealthBench, the first unified benchmark for evaluating foundation models in non-clinical settings, spanning tasks from daily health monitoring to chronic disease risk assessment and personalized health management, reflecting the diverse needs of home care.

108 • Extensive experiments on DIYHealthBench demonstrate that DIYHealthGPT consistently out-
 109 performs both state-of-the-art generalist and medical-specific baselines across diverse home care
 110 tasks, affirming its effectiveness in facilitating personalized health management at home.

112 **2 RELATED WORK**

114 **LLMs for General Reasoning and Dialogue.** LLMs have advanced natural language understanding
 115 and generation, enabling general-purpose reasoning and coherent dialogue (Chowdhery et al., 2023;
 116 Touvron et al., 2023). Models such as GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI, 2023),
 117 trained on large-scale corpora, exhibit remarkable zero-shot and few-shot generalization across tasks.
 118 These capabilities arise from their scale—with billions of parameters—and sophisticated pre-training
 119 and alignment techniques (Wei et al., 2022; Fedus et al., 2022). However, their use in specialized
 120 domains such as healthcare is limited by the lack of domain knowledge and grounding in real-world
 121 physiological data, particularly in low-resource and home-based settings.

122 **Medical Foundation Models.** To bridge the domain gap between general-purpose LLMs and medical
 123 applications, recent efforts have introduced medical foundation models, including text-only Med-
 124 LLMs and multimodal Med-LVLMs. Text-based models such as BiomedGPT (Luo et al., 2024b) and
 125 HuatuoGPT (Chen et al., 2024a) achieve strong performance on clinical question answering (QA)
 126 benchmarks by leveraging curated biomedical corpora and synthetic datasets. Med-LVLMs extend
 127 this paradigm to multimodal reasoning: LLaVA-Med (Li et al., 2023a), Med-Flamingo (Moor et al.,
 128 2023), and MedVLM-R1 (Pan et al., 2025) align visual encoders with LLMs for diagnostic tasks.
 129 More recently, HealthGPT (Lin et al., 2025) supports multimodal comprehension and generation
 130 on diverse medical tasks, while EyecareGPT (Li et al., 2025) devises specialized mechanisms for
 131 ophthalmic analysis. These models demonstrate potential in image captioning, visual question
 132 answering (VQA), and differential diagnosis (see Appendix B for a comprehensive review).

133 Despite these advances, existing Med-LVLMs rely primarily on data from professional medical
 134 devices (e.g., radiographic images, pathology slides), limiting their applicability in everyday contexts.
 135 Their lack of portability, weak adaptability to informal data, and insufficient support for personalized
 136 inference further constrain their use in home-based health management. To overcome these challenges,
 137 we propose DIYHealth Suite, an innovative solution with three core components—DIYHealth-900K,
 138 DIYHealthBench, and DIYHealthGPT—designed for effective operation on consumer-grade devices
 139 such as smartphones, wearables, and smart home sensors in home care settings.

140 **3 DIYHEALTH-900K**

142 **3.1 TASK LANDSCAPE AND DATA CURATION IN HOME CARE**

144 To reflect the diversity of real-world home care scenarios, we categorize the tasks in the DIYHealth-
 145 900K dataset into three groups: (i) *Personalized Health Management*, which includes core tasks such
 146 as symptom-based diagnosis, drug recommendation, and medical advice generation; (ii) *Chronic
 147 Disease Risk Assessment*, which targets conditions such as diabetes, obesity, cardiovascular, and
 148 kidney health through self-reported symptoms and home-acquired signals; and (iii) *Daily Health
 149 Monitoring*, which encompasses dietary intake, sleep, skin, and oral assessments. All tasks are
 150 curated or adapted to incorporate multimodal input, real-world variability, and nonclinical supervision,
 151 ensuring their relevance to home care environments.

152 To support these tasks, we construct DIYHealth-900K by collecting and integrating data from 20
 153 publicly available data sources, such as Kaggle, PhysioNet, and Figshare. Each dataset focuses on a
 154 specific medical task and contains data ranging from patient demographics, vital signs, and laboratory
 155 test results to medical conversations, questionnaires, and other clinically relevant records. Each task
 156 is aligned with one or more source datasets that have been adapted to the home care setting. The
 157 selection prioritizes modalities commonly observed in practice, including natural language symptom
 158 descriptions, wearable-derived signals (for heart and sleep health), and mobile-captured images (for
 159 dietary intake, skin conditions, and oral health). Further details regarding task design and dataset
 160 construction are provided in Appendix C.

162 3.2 DIYHEALTH DATA ENGINE
163

To construct a reliable data resource for home care, we develop an LLM-powered data engine with human-in-the-loop verification, consisting of four components: (i) *Linguistic and Signal Normalizer*: We standardize heterogeneous raw data by addressing common issues such as medical text abbreviations and preprocessing of physiological signals (e.g., ECG). (ii) *Prompt and Template Library*: We design a principled library of prompts and templates to guide QA pair generation. The library spans both text-only QA and VQA tasks, supports open-QA (free-form answers) and closed-QA (multiple-choice), and incorporates diverse user perspectives (first-person and third-person), simulating realistic home care interactions. (iii) *Semantic QA Synthesizer*: We employ Claude 3 Haiku to automatically synthesize large-scale QA pairs, guided by the prompt schema to maintain semantic consistency across tasks. (iv) *Human-in-the-Loop Validator*: To guarantee quality, we randomly sample 10% of the automatically generated QA pairs for inspection by human reviewers. Medical professionals focus on semantic validity, medical consistency, and format standardization. Each entry undergoes two rounds of independent review, providing fine-grained data quality control and ensuring reliability. Data statistics are summarized in Figure 2, with task abbreviations defined in Table 6.

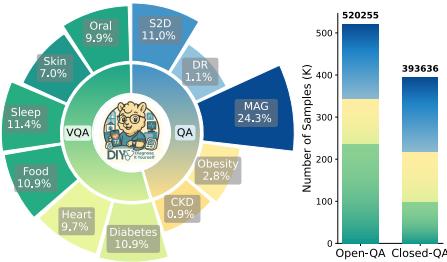


Figure 2: Data statistics of DIYHealth-900K

183 4 DIYHEALTHGPT
184185 4.1 MULTIMODAL PERCEPTION UNIFICATION
186

187 Home care scenarios naturally involve heterogeneous data sources, including food images, skin
188 images, and textual symptom descriptions, among others. To enable consistent reasoning across
189 such diverse modalities, DIYHealthGPT designs a multimodal perception unification mechanism that
190 projects both visual and textual inputs into a shared semantic embedding space.

191 **Visual Encoding.** Given an input image $\mathcal{I} \in \mathbb{R}^{H \times W \times 3}$, we employ a pretrained vision encoder $\mathcal{E}_v(\cdot)$
192 to extract a sequence of patch-level representations:

$$193 \mathcal{V} = \mathcal{E}_v(\mathcal{I}) \in \mathbb{R}^{L_v \times d_v} \quad (1)$$

194 where L_v denotes the number of visual tokens and d_v represents the visual embedding dimension.

195 **Textual Encoding.** For a textual symptom description $\mathcal{T} = \{t_1, \dots, t_{L_t}\}$, where $t_i \in \mathcal{V}_{txt}$, and
196 \mathcal{V}_{txt} represents the vocabulary of the backbone language model, we use a pretrained tokenizer and
197 embedding layer $\mathcal{E}_t(\cdot)$. This yields:

$$198 \mathcal{U} = \mathcal{E}_t(\mathcal{T}) \in \mathbb{R}^{L_t \times d} \quad (2)$$

199 where L_t is the text length and d is the language embedding dimension.

200 **Modality Projection and Unification.** To align heterogeneous modalities within a shared semantic
201 space, we introduce a learnable projection function $\mathcal{P}_v : \mathbb{R}^{d_v} \rightarrow \mathbb{R}^d$ that maps visual embeddings
202 into the language embedding space. The unified multimodal representation is then formulated as:

$$203 \mathcal{Z} = [\mathcal{P}_v(\mathcal{V}); \mathcal{U}] \in \mathbb{R}^{(L_v + L_t) \times d} \quad (3)$$

204 where $[\cdot; \cdot]$ denotes token concatenation and d is the shared embedding dimension in DIYHealthGPT.

205 This process defines a heterogeneous-to-homogeneous interface: $\Phi : (\mathcal{I}, \mathcal{T}) \mapsto \mathcal{Z}$, which ensures
206 that both visual and textual home care signals are embedded within a coherent semantic space. The
207 resulting unified representation \mathcal{Z} is subsequently provided as input to the backbone language model
208 \mathcal{M}_{LLM} for downstream adaptation and generation.

213 4.2 HYBRID HYPER LOW-RANK ADAPTATION
214

215 While LLMs provide strong general reasoning capabilities, they generally lack the domain- and
task-specific specialization required in home care scenarios. PEFT techniques (Ding et al., 2023),

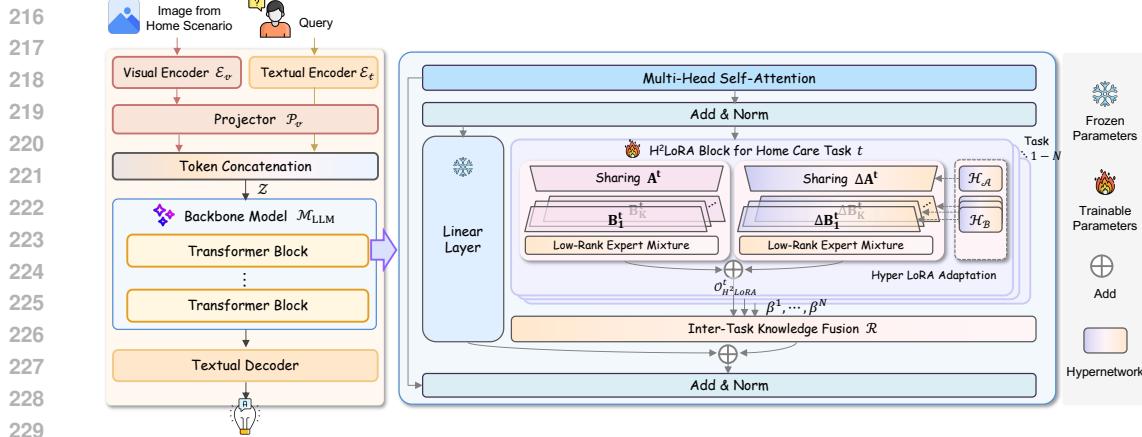


Figure 3: Model architecture of DIYHealthGPT, where H^2 LoRA integrates Low-Rank Expert Mixture with Hyper LoRA Adaptation to balance task generalization and instance-level personalization.

particularly Low-Rank Adaptation (LoRA) (Hu et al., 2022), offer a scalable approach by introducing trainable low-rank adapters into otherwise frozen pretrained weights. However, conventional LoRA strategies face inherent limitations: (i) allocating a distinct adapter for each task restricts cross-task knowledge sharing, whereas (ii) relying on a fully shared adapter overlooks the fine-grained task-specific distinctions. To overcome these limitations, we propose Hybrid Hyper Low-Rank Adaptation (H^2 LoRA), a novel mechanism designed to enable efficient parameter sharing while retaining adaptive task-specific specialization.

Given the unified multimodal embedding \mathcal{Z} , the backbone language model \mathcal{M}_{LLM} produces task-aware outputs \mathcal{O} by combining frozen parameters Θ with task-adaptive parameters Θ_{H^2L} introduced through our H^2 LoRA mechanism:

$$\mathcal{O}_{H^2LoRA} = \mathcal{M}_{LLM}(\mathcal{Z}; \Theta, \Theta_{H^2L}), \quad \Theta_{H^2L} = \{\mathcal{A}, \mathcal{B}, \mathcal{R}\} \quad (4)$$

where $\mathcal{A} = \{\mathbf{A}^t, \Delta\mathbf{A}^t\}_{t=1}^N$ and $\mathcal{B} = \{\mathbf{B}^t, \Delta\mathbf{B}^t\}_{t=1}^N$ denote the task-specific low-rank parameters associated with the home care tasks $T = \{1, \dots, N\}$. The routing parameters \mathcal{R} further integrate task-level outputs, as detailed in Section 4.3. To achieve cross-task knowledge sharing and task-level specialization simultaneously, the task-specific pair $(\mathbf{A}^t, \mathbf{B}^t)$ and $(\Delta\mathbf{A}^t, \Delta\mathbf{B}^t)$, $t \in T$ are internally structured through two complementary mechanisms: Low-Rank Expert Mixture and Hyper LoRA Adaptation.

Low-Rank Expert Mixture. At the task level, consider a weight matrix $\Theta \in \mathbb{R}^{d_{out} \times d_{in}}$ in the backbone model \mathcal{M}_{LLM} . H^2 LoRA augments this parameter with a shared low-rank projection $\mathbf{A}^t \in \mathbb{R}^{d_{out} \times r}$ and a set of K expert matrices $\{\mathbf{B}_1^t, \dots, \mathbf{B}_K^t\}$, where $r \ll \min(d_{out}, d_{in})$. Inspired by the Mixture of Experts (MoE) paradigm, a task embedding $\mathcal{Z} \in \mathbb{R}^d$ is processed by a routing layer to generate expert weights $\mathcal{W}^t \in \mathbb{R}^K$, typically normalized with a softmax function. To interface with the low-rank structure, these weights are expanded along the rank dimension as

$$\hat{\mathcal{W}}^t = K\mathcal{W}^t / r \otimes \mathbf{1}_r \quad (5)$$

where \otimes denotes the replication operation. The task-adaptive projection is then obtained as a convex combination of experts:

$$\mathbf{B}^t = \hat{\mathcal{W}}^t \odot \text{Concat}(\mathbf{B}_1^t, \dots, \mathbf{B}_K^t) \quad (6)$$

where \odot denotes element-wise multiplication. This design employs \mathbf{A}^t as a shared anchor across K expert matrices \mathbf{B}_k^t , encouraging subspace alignment. Meanwhile, the MoE-driven mixture of \mathbf{B}^t matrices provides the flexibility required for task-level specialization. During the subsequent multi-task training phase (Sec. 4.4 Stage 4), this structure further facilitates cross-task knowledge sharing. By integrating LoRA with expert routing, the low-rank expert mixture strikes a principled balance between efficiency and expressivity, providing greater adaptation capacity than either fully shared or fully task-isolated alternatives.

Hyper LoRA Adaptation. H^2 LoRA further incorporates hyper LoRA adaptation to capture the task-aware, instance-specific variations that frequently arise in home care scenarios, such as personalization

270 across patients. In this design, both the shared projection \mathbf{A}^t and the expert matrices \mathbf{B}_k^t are equipped
 271 with instance-dependent offsets, dynamically generated by dedicated hypernetworks:

$$272 \quad \Delta\mathbf{A}^t = \mathcal{H}_A(\mathcal{Z}), \quad \Delta\mathbf{B}_k^t = \mathcal{H}_B(\mathcal{Z}), \quad k = 1, \dots, K \quad (7)$$

274 The offset for MoE-driven mixture $\Delta\mathbf{B}^t$ is then computed via Eq.(6). Thus, the task-level output
 275 of H^2LoRA is $\mathcal{O}_{\text{H}^2\text{LoRA}}^t = \mathcal{Z}\mathbf{A}^t\mathbf{B}^t + \mathcal{Z}\Delta\mathbf{A}^t\Delta\mathbf{B}^t$. By conditioning the hypernetworks on \mathcal{Z} , this
 276 formulation renders the adaptation instance-aware, enabling flexible personalization that extends
 277 beyond coarse task-level specialization and better reflects the heterogeneity of home care contexts.

278 4.3 INTER-TASK KNOWLEDGE FUSION

280 While H^2LoRA equips each task with a specialized adapter, healthcare tasks in home care sce-
 281 narios are generally strongly correlated. For instance, dietary patterns directly affect the risks of
 282 diabetes and obesity, while early symptom recognition provides essential context for subsequent
 283 drug recommendation and personalized advice generation (Hu, 2011; Mozaffarian, 2016). To exploit
 284 such inter-dependencies, we introduce an inter-task knowledge fusion mechanism, where a global
 285 soft-MoE router \mathcal{R} dynamically integrates the outputs from the N task-specific H^2LoRA blocks.
 286 Specifically, the router \mathcal{R} assigns mixture weights β conditioned on the shared embedding \mathcal{Z} :

$$287 \quad \beta = (\beta^1, \dots, \beta^N) = \mathcal{R}(\mathcal{Z}), \quad \beta^t \geq 0, \quad \sum_{t=1}^N \beta^t = 1 \quad (8)$$

290 The overall H^2LoRA update is then expressed as: $\mathcal{O}_{\text{H}^2\text{LoRA}} = \mathcal{Z}\Theta + \sum_{t=1}^N \beta^t \mathcal{O}_{\text{H}^2\text{LoRA}}^t$. This
 291 design achieves a principled balance among efficiency, specialization, and personalization. Within
 292 each task, the shared projection \mathbf{A}^t promotes common representation learning, the expert matrices \mathbf{B}_k^t
 293 capture task-specific signals, and hypernetwork-driven offsets provide instance-aware modulation for
 294 fine-grained variation. Beyond task-level adaptation, the inter-task fusion layer treats each H^2LoRA
 295 block as an expert and leverages the global soft router \mathcal{R} to integrate them contextually, thereby
 296 exploiting correlations across healthcare tasks. Prior approaches account for only partial aspects:
 297 MoELoRA (Luo et al., 2024a) emphasizes feature-level expert diversity, whereas HyperLoRA (Lv
 298 et al., 2024) directly generates task-specific LoRA weights via a hypernetwork but suffers from
 299 optimization instability. In contrast, H^2LoRA broadens the design space by integrating expert
 300 mixtures, a residual hypernetwork-driven modulation, and cross-task soft fusion. As shown in
 301 Figure 3, this integration enables coherent, contextually grounded, and personalized health responses
 302 across diverse scenarios while adhering to strict parameter budgets.

303 4.4 TRAINING PIPELINE

304 To optimize DIYHealthGPT for diverse home care tasks, we design a four-stage training pipeline that
 305 progressively aligns modalities, adapts the backbone to the medical domain, specializes task-level
 306 experts, and integrates them into a unified framework.

307 **Stage 1: Cross-Modal Alignment.** We begin by training the projector \mathcal{P}_v , which maps visual embed-
 308 dings into the shared semantic space, using LLaVA-558k (Liu et al., 2024) and PubMedVision (Chen
 309 et al., 2024a). This stage establishes robust alignment between visual and language representations.

310 **Stage 2: Medical Domain Adaptation.** We then perform supervised fine-tuning by jointly training
 311 the projector \mathcal{P}_v and the backbone $\mathcal{M}_{\text{LLM}}(\cdot; \Theta)$ on our curated DIYHealth-900K dataset covering
 312 11 tasks. To balance efficiency and coverage, we sample 10% of training data per task, allowing the
 313 backbone to acquire medical knowledge while reducing overfitting risk. **The sampling is performed
 314 once prior to training to construct a fixed subset, which remains unchanged throughout the training
 315 process.**

316 **Stage 3: Task-Specific Expert Training.** For each task, we train a dedicated H^2LoRA block,
 317 parameterized by $(\mathbf{A}^t, \Delta\mathbf{A}^t, \mathbf{B}^t, \Delta\mathbf{B}^t)$, on its respective subset of DIYHealth-900K, while keeping
 318 all other parameters fixed. After individual training, we introduce a hard-MoE layer that activates
 319 a single expert at a time, and jointly optimize all experts on the full multi-task training set of
 320 DIYHealth-900K, ensuring integration under shared supervision.

321 **Stage 4: Cross-Task Knowledge Transfer.** Finally, we fine-tune the task-specific H^2LoRA expert
 322 blocks while replacing the hard-MoE layer with a global soft-MoE router \mathcal{R} on the multi-task training
 323 set of DIYHealth-900K. This stage facilitates cross-task knowledge transfer, enabling the model to
 324 exploit inter-task correlations while maintaining parameter efficiency.

324

5 DIYHEALTHBENCH

325
 326 **Standardized Benchmark for Home Care AI.** To enable a rigorous and fair evaluation of founda-
 327 tion models in non-clinical settings, we introduce DIYHealthBench, a benchmark dedicated to 11
 328 real-world home care tasks defined in DIYHealth-900K. These tasks span three major categories:
 329 personalized health management, chronic disease risk assessment, and daily health monitoring. The
 330 tasks are formulated in both open-QA and closed-QA formats, reflecting the dual requirements of
 331 home care: naturalistic dialogue for adaptive advice and structured reasoning for actionable decision
 332 support. [DIYHealthBench is derived from the designated test set of DIYHealth-900K and comprises 12,167 examples in total. For each task, we randomly sample 1% of the data for evaluation. For small datasets, a minimum of 1,000 samples is used to ensure statistical reliability and sufficient task coverage.](#) To ensure representativeness, the samples are balanced across task types, input modalities,
 333 and disease categories, providing a standardized basis for evaluation in home-based health manage-
 334 ment. By establishing the first benchmark tailored for home care AI, DIYHealthBench bridges the
 335 gap left by existing hospital-centric evaluations and lays a foundation for developing and assessing
 336 personalized health assistance beyond clinical settings.
 337
 338

339 **Multi-Dimensional Evaluation Protocol.** We evaluate both general-domain LVLMs and medical-
 340 specific LVLMs as baselines, establishing reference performance through a multi-dimensional evalua-
 341 tion suite. For closed-QA, we adopt accuracy (ACC) as the primary measure of diagnostic precision
 342 and complement it with Matthews Correlation Coefficient (MCC). For open-QA, we employ two
 343 complementary groups of metrics. *Content-level* metrics, including F1-RadGraph (F1-Rad) (Yu et al.,
 344 2023) and F1-BioBERT (F1-Bio) (Lee et al., 2020), quantify the semantic and biomedical fidelity of
 345 generated responses. *Language-level* metrics, namely BLEU (Papineni et al., 2002) and ROUGE-L
 346 (RL) (Lin & Hovy, 2003), assess surface-level fluency and textual overlap with ground-truth answers,
 347 providing a balanced assessment for medical applications. [Please refer to Appendix D.5 for details of](#)
 348 [evaluation metrics.](#)

349
 350

6 EXPERIMENTS

351

6.1 EXPERIMENTAL SETUP

352 **Data Details.** Following the DIYHealthBench protocol, we evaluate DIYHealthGPT on DIYHealth-
 353 900K, a multimodal QA dataset of approximately 900K samples spanning 11 home care tasks, split
 354 into training and test sets at a 99:1 ratio with strict user-level separation to prevent data leakage.

355 **Baselines.** We evaluate DIYHealthGPT against a broad set of baselines, including state-of-the-
 356 art generalist models (e.g., LLaVA-1.5 (Liu et al., 2023), InstructBLIP (Dai et al., 2023), Llama
 357 3.2 (Dubey et al., 2024), Yi-VL (Young et al., 2024), InternVL3 (Zhu et al., 2025), Qwen2.5-
 358 VL (Bai et al., 2025), Gemma 3 (Team et al., 2025), Claude 3 Haiku (Anthropic, 2024) and GPT-4o
 359 Mini (Achiam et al., 2023)) and medical-specific models (e.g., LLaVA-Med v1.5 (Li et al., 2023a),
 360 Med-Flamingo (Moor et al., 2023), HuatuoGPT-Vision (Chen et al., 2024b), MedGemma (Sellergren
 361 et al., 2025), HealthGPT (Lin et al., 2025), Med-R1 (Lai et al., 2025), Lingshu (Xu et al., 2025), and
 362 MedVLM-R1 (Pan et al., 2025)). Experiments are conducted on 11 home care tasks under open-QA
 363 settings, and 10 tasks are included for closed-QA, as the drug recommendation task is inherently
 364 multi-label and thus better suited to open-QA format. Please refer to Appendices C and D for details
 365 on the construction of DIYHealth-900K and the implementation of DIYHealthGPT.
 366
 367

368

6.2 MAIN RESULTS

369 The experimental results in closed- and open-QA settings are in Tables 1 and 2, with supplementary
 370 results of F1-Rad and BLEU-1 provided in Appendix E.1. From these results, we derive several key
 371 observations. **(i) State-of-the-art performance.** Despite its compact model size, DIYHealthGPT
 372 delivers the best performance across all tasks, with an average improvement of 22.7% in ACC
 373 under closed-QA and 16.7% in F1-Bio under open-QA, substantially surpassing both general and
 374 medical domain models. These results highlight DIYHealthGPT’s strong capability in producing
 375 accurate choices and generating faithful, coherent responses. **(ii) Narrow margin on MAG under**
 376 **closed-QA.** DIYHealthGPT’s gain over the runner-up (i.e., InstructBLIP) is marginal on MAG task,
 377 as MAG is inherently general and depends more on wide medical knowledge than on specialized

378 cues. Thus, models pretrained on large corpora transfer well, raising baselines and narrowing gaps.
379 Yet, DIYHealthGPT’s advantage becomes pronounced on the open-QA setting of MAG, where broad
380 knowledge alone is insufficient and robust medical reasoning is required. **(iii) Limitations of existing**
381 **Med-LVLMs.** Current models, though pretrained on extensive medical corpora, largely overlook
382 home care scenarios, where learning and prediction depend exclusively on data available outside
383 clinical settings. This omission results in suboptimal performance on home care tasks. In contrast, we
384 propose DIYHealth Suite, which integrates DIYHealth-900K, DIYHealthGPT, and DIYHealthBench,
385 offering a unified resource and a strong baseline for advancing health management at home.

386 **Table 1:** Comparison of DIYHealthGPT with baselines under *closed-QA* settings in DIYHealthBench.
387

Model	S2D		MAG		Diabetes		Obesity		Heart		CKD		Food		Sleep		Skin		Oral		Avg.	
	ACC	MCC																				
<i>General Domain Models</i>																						
LLaVA-1.5-7B	52.36	39.22	36.74	19.13	58.90	39.72	61.90	47.97	48.94	32.79	81.44	75.27	80.69	74.29	21.35	-0.56	40.21	16.68	52.35	32.29	52.87	35.39
InstructBLIP-7B	25.67	4.44	4.87	0.89	5.52	5.38	15.40	6.52	0.18	2.64	5.15	4.01	42.92	35.26	9.42	0.65	14.17	2.89	21.37	5.43	14.35	8.54
Llama 3.2-11B	60.99	49.89	46.48	33.66	64.23	47.03	54.12	39.58	25.35	6.91	59.61	48.42	74.03	66.96	20.96	2.53	38.54	17.55	41.03	25.97	47.42	33.12
Yi-VL-6B	75.56	67.39	48.49	33.49	75.27	59.01	65.47	52.78	48.59	31.71	73.20	64.38	76.39	68.63	25.38	7.65	45.83	19.12	69.23	51.75	59.46	46.08
InternVL3-8B	85.42	80.54	59.73	48.16	88.61	79.94	70.92	59.61	37.15	16.29	72.81	91.88	85.41	80.53	21.54	2.10	74.38	51.45	91.88	85.44	68.79	59.59
Qwen2.5-VL-7B	46.82	29.56	57.89	46.82	78.20	52.03	58.01	43.28	33.80	12.69	64.74	55.10	73.18	64.58	20.38	3.78	54.79	27.87	47.44	26.94	51.77	35.50
Gemma 3-4B	66.94	56.32	46.14	30.47	67.08	47.6	65.94	53.18	34.68	12.56	72.81	66.45	86.05	81.41	15.96	-4.25	48.13	27.06	66.45	54.28	57.02	42.51
Claude 3 Haiku	29.57	6.12	40.77	24.67	73.67	56.17	60.65	46.16	43.84	25.98	79.38	72.72	54.72	41.65	33.65	17.77	54.79	28.02	78.21	65.01	54.26	38.98
GPT-4o Mini	72.07	62.85	59.23	47.93	75.98	60.63	62.36	50.36	13.03	-5.17	70.97	68.59	86.48	82.34	26.73	9.03	60.63	32.67	68.59	50.26	59.61	45.95
<i>Medical Domain Models</i>																						
LLaVA-Med v1.5-7B	68.17	58.36	32.55	15.28	35.59	27.00	58.48	45.85	7.22	-6.96	48.04	39.72	37.12	22.08	20.19	0.08	41.88	21.82	46.37	30.96	38.73	26.08
Med-Flamingo-7B	28.54	6.04	16.78	0.97	11.74	5.47	17.42	3.60	20.42	-3.50	10.84	13.46	28.11	6.10	18.85	-0.48	3.33	-2.03	13.46	4.00	16.95	3.36
HuatuooGPT-Vision-7B	81.11	74.80	53.69	40.53	87.19	77.80	67.96	56.04	42.78	25.39	80.00	73.48	85.19	80.28	22.12	1.71	76.46	56.42	90.81	83.79	68.08	58.76
MedGemma-4B	61.40	49.26	53.69	40.35	76.16	61.71	70.30	58.68	48.94	32.66	70.00	86.32	70.82	61.03	15.58	-4.46	58.13	31.85	86.32	76.09	61.13	49.35
HealthGPT-3.8B	77.41	70.13	54.70	41.55	89.50	81.14	71.85	61.08	41.20	20.20	82.68	77.06	71.55	66.79	25.96	9.45	85.42	66.88	87.82	78.79	68.50	58.38
Med-R1-2B	77.41	69.87	48.83	33.88	84.16	72.20	65.94	52.23	37.32	17.19	84.33	92.21	83.26	77.63	46.73	34.00	64.58	38.06	90.60	83.78	67.80	56.94
Lingshu-7B	80.08	73.79	57.72	46.21	89.86	82.02	72.63	61.63	40.49	20.39	78.44	91.24	82.62	76.85	30.96	13.64	83.33	63.93	91.24	84.57	70.74	61.43
MedVLM-R1-2B	75.36	67.45	37.75	21.22	64.95	44.69	59.72	43.65	27.64	9.56	69.82	80.34	84.33	79.37	25.96	9.00	48.75	22.22	80.34	66.47	57.46	44.39
DIYHealthGPT-3.8B	97.74	96.98	59.73	48.26	95.02	90.76	85.23	78.89	83.10	77.57	99.73	99.57	97.85	97.14	51.90	40.02	98.13	95.21	99.57	99.19	86.80	82.36

401 **Table 2:** Comparison of DIYHealthGPT with baselines under *open-QA* settings in DIYHealthBench.
402

Model	S2D		DR		MAG		Diabetes		Obesity		Heart		CKD		Food		Sleep		Skin		Oral		Avg.	
	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL	Fl-Bio	RL
<i>General Domain Models</i>																								
LLaVA-1.5-7B	68.43	5.25	63.29	3.97	78.04	34.92	76.83	14.84	72.23	11.58	72.65	11.22	74.98	11.40	66.29	3.32	73.88	11.58	77.41	23.81	79.29	22.75	73.03	14.06
InstructBLIP-7B	58.24	2.28	58.96	4.02	69.21	5.91	66.46	8.75	60.68	4.48	69.02	2.65	70.33	17.02	40.81	11.78	65.45	8.35	45.91	8.73	63.37	11.42	60.77	7.76
Llama 3.2-11B	66.22	4.67	62.17	4.07	79.94	49.08	73.20	12.09	70.51	11.56	67.53	7.71	73.56	12.19	68.87	6.55	69.37	7.27	73.25	16.46	73.85	15.89	70.77	12.68
Yi-VL-6B	66.06	4.33	62.02	4.34	83.99	34.86	77.49	16.62	71.49	11.19	72.69	7.74	76.58	14.70	71.59	9.14	74.24	13.53	77.11	22.78	78.88	22.40	73.83	15.16
InternVL3-8B	63.63	2.85	60.97	3.03	76.97	35.01	75.89	17.78	67.84	6.24	68.91	9.26	73.01	8.63	67.64	4.92	66.46	7.14	74.06	21.78	74.61	20.09	70.00	12.43
Qwen2.5-VL-7B	64.90	3.14	65.01	6.76	76.36	23.16	76.06	15.31	68.80	8.46	69.97	8.75	70.57	7.00	78.00	26.61	71.03	7.00	76.57	24.09	77.66	22.32	72.28	13.93
Gemma 3-4B	62.48	1.84	60.57	2.14	71.17	26.14	69.55	8.14	65.87	6.18	64.31	5.43	64.38	3.17	67.66	5.44	65.14	5.06	68.28	10.09	68.74	10.30	66.20	7.63
Claude 3 Haiku	67.24	4.85	63.37	4.90	79.39	35.84	78.02	17.77	72.23	11.48	72.06	12.36	72.31	11.05	67.04	3.77	73.81	10.99	77.36	22.14	78.66	22.92	72.86	14.37
GPT-4o Mini	66.19	4.24	62.15	4.02	80.92	45.17	75.58	15.09	71.01	11.90	68.57	8.73	75.51	12.64	70.66	10.14	70.84	8.44	74.92	22.87	75.08	21.09	71.95	14.94
<i>Medical Domain Models</i>																								
LLaVA-Med v1.5-7B	72.11	9.09	65.98	7.93	76.33	24.31	77.93	17.77	74.94	15.95	74.66	18.76	77.27	17.14	70.75	4.97	75.72	19.08	78.58	26.32	79.12	24.82	74.82	16.88
Med-Flamingo-7B	59.70	2.51	56.57	3.36	59.98	7.80	65.47	8.70	57.95	5.80	59.68	2.44	62.64	5.24	51.91	0.45	54.83	3.71	61.87	8.14	62.43	7.49	59.12	5.06
HuatuooGPT-Vision-7B	67.77	4.13	64.39	4.41	71.18	13.03	77.16	15.18	72.56	10.80	70.14	8.01	73.27	8.61	68.08	2.04	72.55	8.23	77.58	21.53	80.39	26.83	72.12	11.17
MedGemma-4B	79.55	4.77	63.59	4.33	77.35	25.52	79.47	18.56	71.81	11.71	70.18	7.78	76.05	13.27	67.36	4.15	73.29	10.66	80.34	29.39	82.92	34.47	73.67	14.96
HealthGPT-3.8B	67.87	4.77	63.59	4.33	77.35	25.52	79.47	18.56	71.81	11.71	70.18	7.78	76.05	13.27	67.36	4.15	73.29	10.66	80.34	29.39	82.92	34.47	73.67	14.96
Med-R1-2B	64.42	3.53	61.54	3.20	76.02	27.94	74.94	14.22	68.68	9.43	63.15	5.45	74.72	10.99	66.30	3.26	65.26	5.15	75.11	20.71	77.25	20.32	69.76	11.29
Lingshu-7B	68.65	5.40	64.71	5.11	74.23	18.95	79.64	19.14	72.95	13.42	71.19	10.34												

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Table 3: Ablation study of H^2 LoRA within DIYHealthGPT.

	S2D		Heart		Food		Avg.		S2D		Heart		Food		Avg.			
			ACC	MCC	ACC	MCC	ACC	MCC	ACC	MCC	F1-Bio	RL	ACC	MCC	F1-Bio	RL	ACC	MCC
			95.28	93.71	64.79	53.02	94.42	92.65	84.83	79.79	85.14	40.30	81.01	30.75	96.41	83.17	87.52	51.41
w/o H^2 LoRA	97.33	96.43	80.28	73.80	97.00	96.01	91.54	88.75	85.74	43.22	81.68	31.26	97.84	89.79	88.42	54.76		
w/o Expert Mixture	97.33	96.43	79.93	73.30	97.42	96.57	91.56	88.77	85.73	43.27	81.63	31.40	97.71	89.13	88.36	54.60		
w/o HyperLoRA	97.33	96.43	83.10	77.57	97.85	97.14	92.90	90.56	86.45	45.41	82.26	33.01	97.92	90.28	88.88	56.23		
H^2 LoRA	97.74	96.98	83.10	77.57	97.85	97.14	92.90	90.56	86.45	45.41	82.26	33.01	97.92	90.28	88.88	56.23		

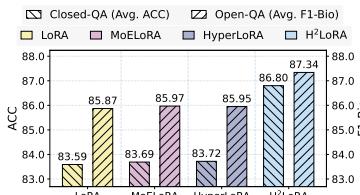
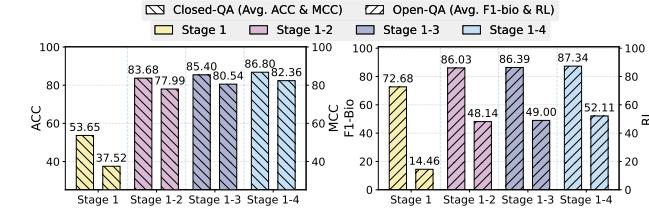
Figure 4: Comparison of H^2 LoRA with existing LoRA methods.

Figure 5: Performance across training stages.

transfer. To assess the contribution of each stage, we add them sequentially and report the results in Figure 5. As outlined in Section 4.4, the stages correspond to Cross-Modal Alignment → Medical Domain Adaptation → Task-Specific Expert Training → Cross-Task Knowledge Transfer, with each stage introducing a distinct capability. The progressive performance gains highlight both the necessity and complementarity of all four stages. In particular, Stage 2 achieves marked improvement through effective medical adaptation, Stage 3 specializes in task-specific patterns, and Stage 4 further enables knowledge sharing across experts rather than focusing on isolated tasks.

DIYHealthGPT’s Representation Visualization. We visualize the representations derived by DIYHealthGPT in open-QA in Figure 6 using t-SNE (Maaten & Hinton, 2008). Distinct clusters emerge for most tasks, reflecting low intra-task variance and large inter-task margins, which indicates that DIYHealthGPT captures task-aware features while preserving individual-level nuances. An overlap is observed between DR and MAG, which is reasonable since MAG often involves advice related to drug management. This aligns with the performance gains in both closed- and open-QA, underscoring that DIYHealthGPT yields both task-structured and personalized representations.

Clinical Expert Review. We conduct a clinical expert review by randomly sampling 500 open-QA pairs from DIYHealthBench and assigning them to clinical experts for assessment of clinical significance. Each answer was evaluated according to three criteria: (i) Conciseness: providing direct and succinct answers for non-expert readers while avoiding unnecessary details; (ii) Correctness: ensuring factual accuracy of the response; (iii) Relevance: evaluating the degree to which the response avoids introducing irrelevant content. The answers are rated on a 1–6 scale, with 1 indicating the best and 6 the worst. The results are shown in Figure 7. As illustrated in Figure 7(a), DIYHealthGPT is the clear first preference of clinical experts, demonstrating the highest clinical utility. Further, Figure 7(b) shows that DIYHealthGPT concentrates mass in the top ranks, whereas other models exhibit heavier tail ranks. Among competitors, Claude-3 Haiku is the strongest, achieving the largest share of Rank 2 answers, yet it trails DIYHealthGPT in decisive first-preference counts. Overall, clinical experts consistently judged open-QA answers of DIYHealthGPT to be the most faithful and clinically meaningful. In addition to clinical expert review, evaluations conducted with GPT-5 are provided in Appendix E.2.

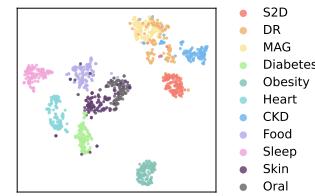


Figure 6: Visualization of representations learned by DIYHealthGPT.

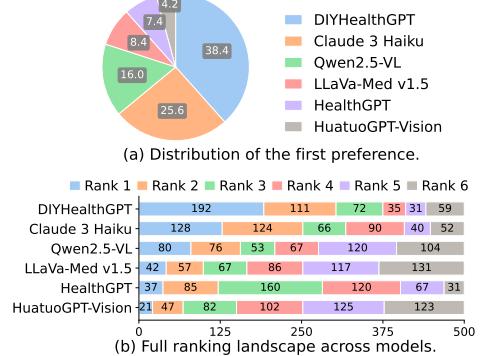


Figure 7: Results of the clinical expert review.

Comparison With Fine-tuned Baselines. To examine whether the performance gain of DIYHealthGPT is solely due to training on DIYHealth-900K, we conduct fine-tuning experiments on two representative models, Gemma 3-4B and LLaVA-Med v1.5-7B, using exactly the same training data with our limited computational resources. As shown in Table 4, DIYHealthGPT-3.8B consistently outperforms Gemma 3-4B and LLaVA-Med v metrics, despite LLaVA-Med having a larger improvements cannot be attributed only to the the training strategy, and the H^2 LoRA archite

Table 4: Comparison with fine-tuned baselines.

Model	Closed-QA		Open-QA	
	ACC	MCC	F1-Bio	RL
Gemma 3-4B	80.96	74.42	84.72	41.59
LLaVA-Med v1.5-7B	77.58	69.51	86.28	49.63
DIYHealthGPT-3.8B	86.80	82.36	87.34	52.11

7 CONCLUSIONS

The blossoming of generative AI signals new opportunities for accessible and personalized health-care beyond traditional clinical settings. In response, we propose DIYHealth Suite, a home-based health management framework comprising DIYHealth-900K, DIYHealthBench, and DIYHealthGPT. DIYHealth-900K curates diverse multimodal inputs from consumer-grade devices, enabling AI systems to operate in everyday home contexts. At the core, DIYHealthGPT leverages our proposed H²LoRA technique to balance cross-task generalization with instance-level personalization, delivering conversational and personalized support across health domains. DIYHealthBench establishes the first dedicated evaluation protocol for dynamic, non-clinical home environments, ensuring standardized and fair comparison. Comprehensive experiments on 11 home care tasks demonstrate that DIYHealthGPT consistently surpasses state-of-the-art in both open-QA and closed-QA. Notably, tasks including Sleep, Heart, Obesity, Diabetes, and DR continue to pose significant challenges for both general and medical VLMs. We highlight these tasks as priority areas for future research on home care reasoning and multimodal health understanding. Collectively, these components define a new paradigm for non-clinical healthcare AI, rooted in real-world scenarios and designed for extensibility, usability, and rigorous evaluation.

540
541
ETHICS STATEMENT542
543
544
545
546
547
This study is based exclusively on publicly available datasets collected from 20 open sources. No
hospital-held or proprietary clinical data are used. All datasets are distributed under their respective
licenses, and their use strictly adheres to the corresponding terms and conditions. The datasets are
de-identified by the original providers, and no personally identifiable information is accessible to the
authors. The data are used solely for the purposes of this research.548
549
REPRODUCIBILITY STATEMENT550
551
552
553
The code and data for our project are available at <https://anonymous.4open.science/r/DIYHealthGPT-codes-E71A>. Detailed descriptions of hyperparameters and experimental
settings are provided in Appendix D.554
555
REFERENCES556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.Fadi Aljamaan, Khalid H Malki, Khalid Alhasan, Amr Jamal, Ibraheem Altamimi, Afnan Khayat,
Ali Alhaboob, Naif Abdulkajeed, Fatimah S Alshahrani, Khaled Saad, et al. Chatgpt-3.5 system
usability scale early assessment among healthcare workers: Horizons of adoption in medical
practice. *Helijon*, 10(7), 2024.AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. *Claude-3 Model Card*, 1(1):4, 2024.Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for
training large autoregressive vision-language models. *arXiv preprint arXiv:2308.01390*, 2023.Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
2025.Aaron Bangor, Philip Kortum, and James Miller. Determining what individual sus scores mean:
Adding an adjective rating scale. *Journal of usability studies*, 4(3):114–123, 2009.Meryl Brod, Lise Højbjerre, Kathryn M Pfeiffer, Robyn Sayner, Henrik H Meincke, and Donald L
Patrick. Development of the weight-related sign and symptom measure. *Journal of patient-reported
outcomes*, 2(1):17, 2018.

John Brooke et al. Sus-a quick and dirty usability scale.

Tom Brosch, Roger Tam, and Alzheimer’s Disease Neuroimaging Initiative. Manifold learning
of brain mrис by deep learning. In *International conference on medical image computing and
computer-assisted intervention*, pp. 633–640. Springer, 2013.Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. *Advances in Neural Information Processing Systems*, 33:1877–1901, 2020.Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Chen, Xidong
Wang, Zhenyang Cai, Ke Ji, Xiang Wan, et al. Towards injecting medical visual knowledge into
multimodal llms at scale. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing*, pp. 7346–7370, 2024a.

594 Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong
 595 Wang, Ruifei Zhang, Zhenyang Cai, Ke Ji, et al. Huatuogpt-vision, towards injecting medical
 596 visual knowledge into multimodal llms at scale. *arXiv preprint arXiv:2406.19280*, 2024b.
 597

598 Jie-Zhi Cheng, Dong Ni, Yi-Hong Chou, Jing Qin, Chui-Mei Tiu, Yeun-Chung Chang, Chiun-
 599 Sheng Huang, Dinggang Shen, and Chung-Ming Chen. Computer-aided diagnosis with deep
 600 learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans.
 601 *Scientific Reports*, 6(1):24454, 2016a.

602 Yu Cheng, Fei Wang, Ping Zhang, and Jianying Hu. Risk prediction with electronic health records:
 603 A deep learning approach. In *Proceedings of the 2016 SIAM international conference on data
 604 mining*, pp. 432–440. SIAM, 2016b.

605 Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and Jimeng Sun. Doctor
 606 ai: Predicting clinical events via recurrent neural networks. In *Machine Learning for Healthcare
 607 Conference*, pp. 301–318. PMLR, 2016a.

608 Youngduck Choi, Chill Yi-I Chiu, and David Sontag. Learning low-dimensional representations of
 609 medical concepts. *AMIA Summits on Translational Science Proceedings*, 2016:41, 2016b.

610 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 611 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 612 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
 613 2023.

614 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
 615 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
 616 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
 617 2023.

618 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
 619 Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
 620 language models. *Nature machine intelligence*, 5(3):220–235, 2023.

621 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 622 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 623 *arXiv e-prints*, pp. arXiv–2407, 2024.

624 Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and
 625 Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
 626 *Nature*, 542(7639):115–118, 2017.

627 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 628 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
 629 2022.

630 Liyanan Fu, Wei Gao, Man-Lai Tang, and Ning-Zhong Shi. On modelling agreement and category
 631 distinguishability on an ordinal scale. *Communications in Statistics-Theory and Methods*, 41(24):
 632 4413–4426, 2012.

633 Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam Narayanaswamy,
 634 Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros, et al. Development
 635 and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus
 636 photographs. *jama*, 316(22):2402–2410, 2016.

637 Hadeer A Helaly, Mahmoud Badawy, and Amira Y Haikal. Deep learning approach for early detection
 638 of alzheimer’s disease. *Cognitive computation*, 14(5):1711–1727, 2022.

639 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
 640 et al. Lora: Low-rank adaptation of large language models. In *International Conference on
 641 Learning Representations*, 2022.

642 Frank B Hu. Globalization of diabetes: the role of diet, lifestyle, and genes. *Diabetes care*, 34(6):
 643 1249–1257, 2011.

648 Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven QH Truong, Du Nguyen Duong, Tan Bui, Pierre
 649 Chambon, Yuhao Zhang, Matthew P Lungren, Andrew Y Ng, et al. Radgraph: Extracting clinical
 650 entities and relations from radiology reports. *arXiv preprint arXiv:2106.14463*, 2021.
 651

652 Kaylee Payne Kruzan, Ada Ng, Colleen Stiles-Shields, Emily G Lattie, David C Mohr, and Madhu
 653 Reddy. The perceived utility of smartphone and wearable sensor data in digital self-tracking
 654 technologies for mental health. In *Proceedings of the 2023 CHI Conference on Human Factors in*
 655 *Computing Systems*, pp. 1–16, 2023.

656 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement learning
 657 for generalizable medical reasoning in vision-language models. *arXiv preprint arXiv:2503.13939*,
 658 2025.

659

660 J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical data.
 661 *biometrics*, pp. 159–174, 1977.

662 Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo
 663 Kang. Biobert: a pre-trained biomedical language representation model for biomedical text mining.
 664 *Bioinformatics*, 36(4):1234–1240, 2020.

665

666 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 667 Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision
 668 assistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 669 28541–28564, 2023a.

670

671 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 672 pre-training with frozen image encoders and large language models. In *International conference*
 673 *on machine learning*, pp. 19730–19742. PMLR, 2023b.

674

675 Ke Li, Abdelmotagaly Elgalad, Cristiano Cardoso, and Emerson C Perin. Using the apple watch to
 676 record multiple-lead electrocardiograms in detecting myocardial infarction: where are we now?
 677 *Texas Heart Institute Journal*, 49(4), 2022.

678

679 Sijing Li, Tianwei Lin, Lingshuai Lin, Wenqiao Zhang, Jiang Liu, Xiaoda Yang, Juncheng Li,
 680 Yucheng He, Xiaohui Song, Jun Xiao, et al. EyecareGPT: Boosting comprehensive ophthalmology
 681 understanding with tailored dataset, benchmark and model. In *Proceedings of the 33rd ACM*
 682 *international conference on Multimedia*, 2025.

683

684 Znaonui Liang, Gang Zhang, Jimmy Xiangji Huang, and Qmming Vivian Hu. Deep learning for
 685 healthcare decision making with emrs. In *2014 IEEE International Conference on Bioinformatics*
 686 *and Biomedicine (BIBM)*, pp. 556–559. IEEE, 2014.

687

688 Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram co-occurrence
 689 statistics. In *Proceedings of the 2003 human language technology conference of the North American*
 690 *chapter of the association for computational linguistics*, pp. 150–157, 2003.

691

692 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao
 693 Jiang, Mengze Li, Xiaohui Song, et al. HealthGPT: A medical large vision-language model for
 694 unifying comprehension and generation via heterogeneous knowledge adaptation. In *Proceedings*
 695 *of Forty-second International Conference on Machine Learning (ICML)*, 2025.

696

697 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 698 *Neural Information Processing Systems*, 36:34892–34916, 2023.

699

700 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 701 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 702 pp. 26296–26306, 2024.

703

704 Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
 705 Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large language
 706 models. *arXiv preprint arXiv:2402.12851*, 2024a.

702 Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Massimo Hong, Yushuai Wu, Mu Qiao, and Zaiqing
 703 Nie. Biomedgpt: An open multimodal large language model for biomedicine. *IEEE Journal of*
 704 *Biomedical and Health Informatics*, 2024b.

705 Chuancheng Lv, Lei Li, Shitou Zhang, Gang Chen, Fanchao Qi, Ningyu Zhang, and Hai-Tao Zheng.
 706 Hyperlora: Efficient cross-task generalization via constrained low-rank adapters generation. In
 707 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 16376–16393, 2024.

708 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 709 *learning research*, 9(Nov):2579–2605, 2008.

710 Riccardo Miotto, Li Li, Brian A Kidd, and Joel T Dudley. Deep patient: an unsupervised representa-
 711 tion to predict the future of patients from the electronic health records. *Scientific Reports*, 6(1):
 712 26094, 2016.

713 Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
 714 Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-shot
 715 learner. In *Machine Learning for Health (ML4H)*, pp. 353–367. PMLR, 2023.

716 Serena Moscato, Stella Lo Giudice, Giulia Massaro, and Lorenzo Chiari. Wrist photoplethysmography
 717 signal quality assessment for reliable heart rate estimate and morphological analysis. *Sensors*, 22
 718 (15):5831, 2022.

719 Dariush Mozaffarian. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity:
 720 a comprehensive review. *Circulation*, 133(2):187–225, 2016.

721 Huma Naz, Rahul Nijhawan, and Neelu Jyothi Ahuja. Clinical utility of handheld fundus and
 722 smartphone-based camera for monitoring diabetic retinal diseases: a review study. *International*
 723 *Ophthalmology*, 44(1):41, 2024.

724 OpenAI. Gpt-4 technical report, 2023. URL <https://openai.com/research/gpt-4>.

725 Jiazhen Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan Zhu, Hongwei Bran Li, Chen Chen, Cheng
 726 Ouyang, and Daniel Rueckert. Medvilm-r1: Incentivizing medical reasoning capability of vision-
 727 language models (vlms) via reinforcement learning. *arXiv preprint arXiv:2502.19634*, 2025.

728 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 729 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*
 730 *for Computational Linguistics*, pp. 311–318, 2002.

731 Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Deepcare: A deep dynamic memory
 732 model for predictive medicine. In *Advances in Knowledge Discovery and Data Mining: 20th*
 733 *Pacific-Asia Conference, PAKDD 2016, Auckland, New Zealand, April 19-22, 2016, Proceedings,*
 734 *Part II 20*, pp. 30–41. Springer, 2016.

735 Adhish Prasoon, Kersten Petersen, Christian Igel, François Lauze, Erik Dam, and Mads Nielsen. Deep
 736 feature learning for knee cartilage segmentation using a triplanar convolutional neural network.
 737 In *International conference on medical image computing and computer-assisted intervention*, pp.
 738 246–253. Springer, 2013.

739 Jianing Qiu, Kyle Lam, Guohao Li, Amish Acharya, Tien Yin Wong, Ara Darzi, Wu Yuan, and Eric J
 740 Topol. Llm-based agentic systems in medicine and healthcare. *Nature Machine Intelligence*, 6(12):
 741 1418–1420, 2024.

742 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 743 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 744 models from natural language supervision. In *International conference on machine learning*, pp.
 745 8748–8763. PmLR, 2021.

746 Pranav Rajpurkar and Matthew P Lungren. The current and future state of ai interpretation of medical
 747 images. *New England Journal of Medicine*, 388(21):1981–1990, 2023.

756 Thomas W Rogers, J Gonzalez-Bueno, R Garcia Franco, E Lopez Star, D Méndez Marín, J Vassallo,
 757 VC Lansingh, Sameer Trikha, and Nicolas Jaccard. Evaluation of an ai system for the detection of
 758 diabetic retinopathy from images captured with a handheld portable fundus camera: the mailor ai
 759 study. *Eye*, 35(2):632–638, 2021.

760 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 761 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, et al. Medgemma technical report.
 762 *arXiv preprint arXiv:2507.05201*, 2025.

763

764 Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
 765 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfahl, et al. Large language models encode
 766 clinical knowledge. *Nature*, 620(7972):172–180, 2023.

767

768 Steven E Stemler. A comparison of consensus, consistency, and measurement approaches to estimating
 769 interrater reliability. *Practical Assessment, Research, and Evaluation*, 9(1), 2004.

770

771 Renaud Bougueng Tchemeube, Jeffrey Ens, Cale Plut, Philippe Pasquier, Maryam Safi, Yvan Grabit,
 772 and Jean-Baptiste Rolland. Evaluating human-ai interaction via usability, user experience and
 773 acceptance measures for mmm-c: A creative ai system for music composition. In *IJCAI*, 2023.

774

775 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 776 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 777 report. *arXiv preprint arXiv:2503.19786*, 2025.

778

779 Omkar Thawkar, Abdelrahman Shaker, Sahal Shaji Mullappilly, Hisham Cholakkal, Rao Muhammad
 780 Anwer, Salman Khan, Jorma Laaksonen, and Fahad Shahbaz Khan. Xraygpt: Chest radiographs
 781 summarization using medical vision-language models. *arXiv preprint arXiv:2306.07971*, 2023.

782

783 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 784 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 785 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

786

787 Patrick Wagner, Nils Strothoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze, Wojciech
 788 Samek, and Tobias Schaeffter. PtB-XL, a large publicly available electrocardiography dataset.
 789 *Scientific data*, 7(1):1–15, 2020.

790

791 Wei Wang, Gang Chen, Anh Tien Tuan Dinh, Jinyang Gao, Beng Chin Ooi, Kian-Lee Tan, and Sheng
 792 Wang. Singa: Putting deep learning in the hands of multimedia users. In *Proceedings of the 23rd
 793 ACM international conference on Multimedia*, pp. 25–34, 2015.

794

795 Will Ke Wang, Jiamu Yang, Leeor Hershkovich, Hayoung Jeong, Bill Chen, Karnika Singh, Ali R
 796 Roghanizad, Md Mobashir Hasan Shandhi, Andrew R Spector, and Jessilyn Dunn. Addressing
 797 wearable sleep tracking inequity: a new dataset and novel methods for a population with sleep
 798 disorders. In *Proceedings of the fifth Conference on Health, Inference, and Learning (Proceedings
 799 of Machine Learning Research, Vol. 248)*, Tom Pollard, Edward Choi, Pankhuri Singhal,
 800 Michael Hughes, Elena Sizikova, Bobak Mortazavi, Irene Chen, Fei Wang, Tasmie Sarker, Matthew
 801 McDermott, and Marzyeh Ghassemi (Eds.). PMLR, pp. 380–396, 2024.

802

803 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 804 Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International
 805 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=gEZrGC0zdqR>.

806

807 Yihan Xie, Sijing Li, Tianwei Lin, Zhuonan Wang, Chenglin Yang, Yu Zhong, Wenqiao Zhang,
 808 Haoyuan Li, Hao Jiang, Fengda Zhang, et al. Heartcare suite: Multi-dimensional understanding of
 809 ecg with raw multi-lead signal modeling. *arXiv preprint arXiv:2506.05831*, 2025.

810

811 Weiwen Xu, Hou Pong Chan, Long Li, Mahani Aljunied, Ruifeng Yuan, Jianyu Wang, Chenghao
 812 Xiao, Guizhen Chen, Chaoqun Liu, Zhaodonghui Li, et al. Lingshu: A generalist foundation model
 813 for unified multimodal medical understanding and reasoning. *arXiv preprint arXiv:2506.07044*,
 814 2025.

810 Youngjin Yoo, Tom Brosch, Anthony Traboulsee, David KB Li, and Roger Tam. Deep learning
 811 of image features from unlabeled data for multiple sclerosis lesion segmentation. In *Machine*
 812 *Learning in Medical Imaging: 5th International Workshop, MLMI 2014, Held in Conjunction with*
 813 *MICCAI 2014, Boston, MA, USA, September 14, 2014. Proceedings* 5, pp. 117–124. Springer,
 814 2014.

815 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
 816 Li, Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open foundation models by 01. ai. *arXiv preprint*
 817 *arXiv:2403.04652*, 2024.

818 Feiyang Yu, Mark Endo, Rayan Krishnan, Ian Pan, Andy Tsai, Eduardo Pontes Reis, Eduardo Kaiser
 819 Ururahy Nunes Fonseca, Henrique Min Ho Lee, Zahra Shakeri Hossein Abad, Andrew Y Ng, et al.
 820 Evaluating progress in automatic chest x-ray radiology report generation. *Patterns*, 4(9), 2023.

821 Aws Alaa Zaidan, Bilal Bahaa Zaidan, MY Qahtan, Osamah Shihab Albahri, Ahmed Shihab Albahri,
 822 Mussab Alaa, Fawaz Mohammed Jumaah, Mohammed Talal, Kian Lam Tan, WL Shir, et al. A sur-
 823 vey on communication components for iot-based technologies in smart homes. *Telecommunication*
 824 *Systems*, 69:1–25, 2018.

825 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Jaspreet Bagga, Robert Tinn, Sam Preston, Rajesh Rao,
 826 Mu Wei, Naveen Valluri, Cliff Wong, et al. Large-scale domain-specific pretraining for biomedical
 827 vision-language processing. *arXiv preprint arXiv:2303.00915*, 2(3):6, 2023.

828 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 829 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 830 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864	APPENDIX
865	
866	Appendix A. Notation Table.
867	
868	Appendix B. Extended Related Work.
869	
870	Appendix C. Construction Details of DIYHealth-900K.
871	
872	Appendix C.1. Task Design and Functional Descriptions.
873	
874	Appendix C.2. Data Sources and Detailed Statistics.
875	
876	Appendix C.3. Prompt Design.
877	
878	Appendix D. Implementation Details.
879	
880	Appendix D.1. Model Details.
881	
882	Appendix D.2. Baseline Details.
883	
884	Appendix D.3. Training Details.
885	
886	Appendix D.4. Experimental Environment.
887	
888	Appendix D.5. Evaluation Metrics.
889	
890	Appendix E. Supplementary Experimental Results.
891	
892	Appendix E.1. Evaluation of DIYHealthGPT in Terms of Additional Metrics.
893	
894	Appendix E.2. Expert Evaluation with GPT-5.
895	
896	Appendix E.3. Hyperparameter Sensitivity Study on Number of Experts.
897	
898	Appendix E.4. User Feedback Analysis.
899	
900	Appendix E.5. Subgroup Study.
901	
902	Appendix E.6. Complete Comparison With Fine-tuned Baselines.
903	
904	Appendix E.7. Inter-rater Agreement Analysis.
905	
906	Appendix F. Discussion and Outlook.
907	
908	Appendix F.1. Broader Impact.
909	
910	Appendix F.2. Future Directions.
911	
912	Appendix G. The Use of LLMs.
913	
914	Appendix H. Case Study.
915	
916	
917	

918 A NOTATION TABLE
919920 To provide a comprehensive overview of the notations used throughout the paper, we present a
921 summary of notations in Table 5 as a quick reference to facilitate the understanding and recall of each
922 symbol.
923924 Table 5: Notations.
925

Notation	Description
$\mathcal{I} \in \mathbb{R}^{H \times W \times 3}$	Input image of height H , width W , and three RGB channels.
$\mathcal{T} = \{t_1, \dots, t_{L_t}\}$	Textual symptom description consisting of L_t tokens.
\mathcal{V}_{txt}	Vocabulary of the backbone language model.
$\mathcal{E}_v(\cdot)$	Pretrained vision encoder.
$\mathcal{E}_t(\cdot)$	Pretrained textual encoder.
$\mathcal{V} \in \mathbb{R}^{L_v \times d_v}$	Visual embeddings with L_v tokens, each of dimension d_v .
$\mathcal{U} \in \mathbb{R}^{L_t \times d}$	Textual embeddings with L_t tokens, each of dimension d .
$\mathcal{P}_v : \mathbb{R}^{d_v} \rightarrow \mathbb{R}^d$	Learnable projection function aligning visual and textual embeddings.
$\mathcal{Z} \in \mathbb{R}^{(L_v + L_t) \times d}$	Unified multimodal representation combining visual and textual embeddings.
\mathcal{M}_{LLM}	Backbone large language model.
Θ	Frozen pretrained parameters of \mathcal{M}_{LLM} .
$\Theta_{H^2L} = \{\mathcal{A}, \mathcal{B}, \mathcal{R}\}$	Task-adaptive parameters introduced in H ² LoRA.
N	Total number of home care tasks.
$T = \{1, \dots, N\}$	Set of home care tasks.
$\mathcal{A} = \{\mathbf{A}^t, \Delta\mathbf{A}^t\}_{t=1}^N$	Set of shared projection matrices in H ² LoRA.
$\mathcal{B} = \{\mathbf{B}^t, \Delta\mathbf{B}^t\}_{t=1}^N$	Set of expert matrices in H ² LoRA.
\mathcal{R}	Routing parameters for integrating task-level outputs.
\mathbf{B}_k^t	The k -th expert mixture matrix of task t .
K	Number of expert mixture matrices per task.
$\mathcal{W}^t \in \mathbb{R}^K$	Mixture weights over the K expert matrices $\{\mathbf{B}_1^t, \dots, \mathbf{B}_K^t\}$ for task t .
$\hat{\mathcal{W}}^t$	Expanded expert weight vector for task t .
$\mathcal{H}_A(\cdot)$	Hypernetwork of the shared projection.
$\mathcal{H}_B(\cdot)$	Hypernetwork of the expert mixture matrix.
$\Delta\mathbf{A}^t$	Instance-aware offset for the shared projection of task t .
$\Delta\mathbf{B}_k^t$	Instance-aware offset for the k -th expert mixture matrix \mathbf{B}_k^t of task t .
$\Delta\mathbf{B}^t$	Instance-aware offset for MoE-driven expert mixture matrix \mathbf{B}^t of task t .
$\beta = (\beta^1, \dots, \beta^N)$	Inter-task fusion mixture weights across N tasks.
$\mathcal{O}_{H^2LoRA}^t$	Output of H ² LoRA for task t .
\mathcal{O}_{H^2LoRA}	Overall output of H ² LoRA aggregated across all tasks.

959 B EXTENDED RELATED WORK
960961
962 The development of DIYHealth Suite is grounded on a broad and evolving body of research spanning
963 pre-LLM healthcare AI, general-purpose LLMs, and emerging medical foundation models. In this
964 section, we review key advances across these interconnected areas to contextualize our contributions.
965966 **Pre-LLM Healthcare Techniques.** Before the advent of LLMs, deep learning rapidly advanced
967 healthcare applications, particularly in medical imaging and EHR analysis. Early work—largely
968 driven by progress in computer vision—centered on interpreting medical images such as MRI,
969 ultrasound, and fundus photography for disease diagnosis and risk assessment. Prominent examples
970 include automated detection of Alzheimer’s disease from brain MRI (Brosch et al., 2013; Helaly et al.,
971 2022), segmentation of knee cartilage in osteoarthritis (Prasoon et al., 2013), and lesion analysis
972 for conditions such as multiple sclerosis and breast nodules (Yoo et al., 2014; Cheng et al., 2016a).
973 Convolutional neural networks (CNNs) achieved diagnostic performance comparable to that of clinical

972 experts, including dermatologists classifying skin lesions (Esteva et al., 2017) and ophthalmologists
 973 screening for diabetic retinopathy (Gulshan et al., 2016). In parallel, deep learning began reshaping
 974 EHR analysis by enabling predictive modeling over both structured inputs (e.g., diagnoses, laboratory
 975 tests) and unstructured clinical narratives. Supervised models, such as CNNs and Recurrent Neural
 976 Networks (RNNs) equipped with Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU)
 977 architectures, demonstrated superior performance in tasks including disease onset prediction for
 978 congestive heart failure (Cheng et al., 2016b), disease progression modeling (Pham et al., 2016), and
 979 automated diagnosis and medication recommendation (Choi et al., 2016a). Unsupervised approaches,
 980 including stacked denoising autoencoders (Miotto et al., 2016), restricted Boltzmann machines (Liang
 981 et al., 2014), and neural embedding methods (Choi et al., 2016b), facilitated the extraction of latent
 982 patient representations for downstream applications such as disease risk stratification and phenotype
 983 discovery. Although these innovations established a solid foundation for data-driven healthcare,
 984 they are typically limited by narrowly scoped tasks, institution-specific datasets, and the absence of
 985 standardized benchmarks for evaluation.

986 **LLMs for General Reasoning and Dialogue.** LLMs have become central to recent advances in
 987 natural language understanding and generation, fundamentally advancing the capabilities of machines
 988 to perform general-purpose reasoning and engage in coherent, human-like dialogue (Chowdhery
 989 et al., 2023; Touvron et al., 2023). Representative models such as GPT-3 (Brown et al., 2020) and
 990 GPT-4 (OpenAI, 2023), trained on large-scale corpora, exhibit remarkable zero-shot and few-shot
 991 generalization across diverse natural language tasks. Beyond text-only models, the emergence
 992 of multimodal LLMs (MLLMs) such as LLaVA-1.5 (Liu et al., 2023), Llama 3.2 (Dubey et al.,
 993 2024), Qwen2.5-VL (Bai et al., 2025), and GPT-4o (Achiam et al., 2023) further extends these
 994 capabilities by enabling joint reasoning across language and visual modalities. These capabilities
 995 stem from their architectural scale—often comprising hundreds of millions to hundreds of billions of
 996 parameters—as well as sophisticated pre-training and alignment techniques (Wei et al., 2022; Fedus
 997 et al., 2022). Despite such strengths, the application of general-purpose LLMs in specialized domains
 998 such as healthcare remains constrained by the absence of domain-specific knowledge and the lack of
 999 grounding in real-world physiological data, particularly in low-resource and home-based healthcare
 contexts.

1000 **Medical Foundation Models.** To bridge the domain gap between general-purpose LLMs and
 1001 medical applications, a new generation of medical foundation models has emerged. These include
 1002 both text-only architectures and multimodal frameworks, referred to as Med-LLMs and Med-LVLMs.
 1003 Text-based models such as Med-PaLM (Singhal et al., 2023), BiomedGPT (Luo et al., 2024b), and
 1004 HuatuoGPT (Chen et al., 2024a) have shown strong performance on clinical question answering
 1005 (QA) benchmarks by leveraging curated biomedical corpora and large-scale synthetic datasets.
 1006 BiomedGPT, in particular, achieves a compact yet competitive architecture through cross-modal
 1007 pre-training and decoder alignment techniques. In parallel, Med-LVLMs have advanced multimodal
 1008 medical understanding. Models such as LLaVA-Med (Li et al., 2023a), Med-Flamingo (Moor et al.,
 1009 2023), MedGemma (Sellergren et al., 2025), Med-R1 (Lai et al., 2025), Lingshu (Xu et al., 2025),
 1010 and MedVLM-R1 (Pan et al., 2025) align visual encoders with textual LLMs to enable diagnostic
 1011 reasoning over imaging data. HealthGPT (Lin et al., 2025) extends this direction by supporting
 1012 multimodal comprehension and generation on multiple medical tasks, while EyecareGPT (Li et al.,
 1013 2025) devises a resolution mechanism and a layer-wise dense connector to improve ophthalmic
 1014 visual understanding. These systems demonstrate potential for tasks such as image captioning, visual
 1015 question answering (VQA), and differential diagnosis.

1016 Despite these advances, the existing Med-LVLMs are trained and evaluated primarily on data from
 1017 professional medical devices, such as radiographic images and pathology slides, which are not
 1018 accessible in daily life scenarios. Consequently, their applicability to home-based health management
 1019 remains limited. The absence of portability, limited adaptability to informal data, and insufficient
 1020 support for personalized inference underscore the need to redesign medical AI architectures that
 1021 can operate effectively with consumer-grade devices such as smartphones, wearables, and smart
 1022 home sensors. To this end, we propose DIYHealth Suite as an innovative solution for home care
 1023 health management, comprising three core components—DIYHealth-900K, DIYHealthBench, and
 1024 DIYHealthGPT—which are elaborated in Sections 3, 4, and 5, respectively.

1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227

1026 **C CONSTRUCTION DETAILS OF DIYHEALTH-900K**
10271028 **C.1 TASK DESIGN AND FUNCTIONAL DESCRIPTIONS**
1029

1030 A detailed overview of the tasks included in the DIYHealth-900K dataset is provided in Table 6. To
1031 reflect the complexity and diversity of real-world home care scenarios, we categorize the tasks into
1032 three major groups: personalized health management, chronic disease risk assessment, and daily
1033 health monitoring. The first category, personalized health management, encompasses core tasks such
1034 as symptom-based diagnosis, drug recommendation, and tailored medical advice generation, which
1035 are essential for supporting early clinical decision-making. In the context of chronic conditions,
1036 DIYHealth-900K includes risk assessments for diabetes, obesity, cardiovascular disease, and kidney
1037 health, drawing on both self-reported symptoms and home-acquired signals. Daily health monitoring
1038 tasks address routine wellness dimensions, such as dietary intake analysis, sleep quality evaluation,
1039 skin condition assessment, and oral health screening. For each task, we curate or adapt relevant
1040 datasets to align with the characteristics of home care, with particular emphasis on multimodal inputs,
1041 real-world variability, and nonclinical supervision, to ensure their applicability to AI models deployed
1042 in home environments.

1043 Table 6: Home care task design in DIYHealth-900K with corresponding functional descriptions.

Task Category	Home Care Task	Task Description
Personalized Health Management	Symptom-to-Diagnosis (S2D)	Predict potential diagnoses based on symptom descriptions
	Drug Recommendation (DR)	Suggest appropriate medications based on symptoms and suspected conditions
	Medical Advice Generation (MAG)	Generate personalized medical advice tailored to individual health concerns
Chronic Disease Risk Assessment	Diabetes Detection (Diabetes)	Assess for potential diabetes risks based on retinal fundus images
	Obesity Detection (Obesity)	Identify obesity risk through lifestyle, dietary, and physical measurements
	Heart Health (Heart)	Monitor cardiovascular health and detect early signs of heart conditions
	Kidney Health (CKD)	Detect risks of chronic kidney disease through symptoms and home test inputs
Daily Health Monitoring	Diet Management (Food)	Manage dietary habits by analyzing intake and providing dietary recommendations
	Sleep Health (Sleep)	Evaluate sleep quality and patterns to provide improvement suggestions
	Skin Health (Skin)	Assess skin conditions and detect abnormalities from patient inputs or images
	Oral Health (Oral)	Screen for common oral issues and provide oral health recommendations

1056 **C.2 DATA SOURCES AND DETAILED STATISTICS**
1057

1058 The task-specific data sources and corresponding statistics of DIYHealth-900K are summarized in
1059 Table 7. To fully leverage real-world data, we curate DIYHealth-900K from 20 publicly available
1060 data sources selected for their alignment with the target QA tasks. All included data are readily
1061 obtainable in home settings, ensuring that the dataset reflects scenarios accessible to end users without
1062 reliance on specialized clinical equipment. For instance, in VQA tasks such as diet management, oral
1063 health, skin health, and diabetes detection (Naz et al., 2024; Rogers et al., 2021), the images consist
1064 of everyday photographs that can be captured using mobile devices, rather than specialized medical
1065 imaging. In heart health and sleep health tasks, the physiological signals are collected from portable,
1066 home-use devices, ensuring that the data reflect measurements users can realistically obtain outside
1067 clinical environments. Specifically, we develop a translation script to convert the raw physiological
1068 signals into images suitable for VQA tasks. For the heart health task, the data are derived from ECG
1069 recordings. Due to the hardware limitations of portable devices (e.g., Apple Watch) Li et al. (2022),
1070 only Lead-I signals are available; therefore, we extract the Lead-I channel from the original 12-lead
1071 ECG data. The extracted signals are subsequently processed using NeuroKit2’s¹ clean function
1072 to perform noise filtering, artifact removal, and baseline correction. For recordings exceeding 10
1073 seconds, a high-quality 10-second segment is selected for downstream processing (Wagner et al.,
1074 2020). For the sleep health task, which involves triaxial accelerometry data, we first extract a 30-
1075 second segment for each sample (Wang et al., 2024). Each segment is then subjected to a cleaning
1076 procedure to reduce noise and eliminate artifacts (Moscato et al., 2022).

1077 For text-only QA tasks, including drug recommendation, symptom-to-diagnosis reasoning, medical
1078 advice generation, obesity detection, and kidney health, we construct home-care-oriented datasets
1079 through a carefully designed multi-stage pipeline. In the first stage, we extract candidate samples

¹<https://github.com/neuropsychology/NeuroKit>

from a variety of publicly available medical and health-related datasets. We then apply a filtering procedure to exclude records, descriptions, or cases that are clearly irrelevant or impractical in a home setting (e.g., those requiring hospital-grade imaging or laboratory tests). After curating this subset, we generate corresponding question–answer pairs. Because many of the original data sources, such as questionnaires, are not naturally phrased as questions, we employ an LLM to rephrase them into fluent, conversational question formats. For VQA tasks covering diabetes detection, diet management, skin health, and oral health, we utilize publicly available image datasets and derive questions from their associated labels. These questions are likewise rephrased into fluent natural language by an LLM. Finally, human experts validate both generated questions and their associated answers to ensure correctness.

Table 7: Data sources and corresponding statistics for each task in DIYHealth-900K.

Task	Total	Open-QA	Closed-QA	Type	Data Source
Symptom-to-Diagnosis (S2D)	100861	50441	50420	QA	DDXPlus ²
Drug Recommendation (DR)	9949	9949	-	QA	MIMIC-III ³ and MIMIC-IV ⁴
Medical Advice Generation (MAG)	222190	180554	41636	QA	MedQuAD ⁵ , MedQA-USMLE ⁶ , PubMedQA ⁷ , MedAlpaca ⁸ , and MedMCQA ⁹
Diabetes Detection (Diabetes)	100000	42687	57313	VQA	Messidor Diabetic Retinopathy ¹⁰
Obesity Detection (Obesity)	25482	9367	16115	QA	ObesityDataSet ¹¹
Heart Health (Heart)	88454	42926	45528	VQA	PTB ¹² , PTB-XL ¹³ , and ECG-arrhythmia ¹⁴
Kidney Health (CKD)	8236	4118	4118	QA	CKD Source Dataset1 ¹⁵ and CKD Source Dataset2 ¹⁶
Diet Management (Food)	100000	49851	50149	VQA	Food-101 ¹⁷
Sleep Health (Sleep)	103902	51952	51950	VQA	Dreamt ¹⁸ and Applewatch ¹⁹
Skin Health (Skin)	64010	32065	31945	VQA	Fitzpatrick17k ²⁰
Oral Health (Oral)	90807	46355	44452	VQA	Oral Diseases ²¹
Total	913891	520255	393636	QA&VQA	20 Publicly Available Data Sources

C.3 PROMPT DESIGN

Claude 3 Haiku is employed to rephrase the source data of each dataset into first-person or third-person patient statements and descriptions. As an example, in the S2D open-QA setting, we illustrate the prompt design in Figure 8. To ensure reliability, we incorporate a human-in-the-loop validator to monitor and guarantee the quality of the rephrased data.

²https://figshare.com/articles/dataset/DDXPlus_Dataset_English_22687585

³<https://physionet.org/content/mimiciii/1.4/>

⁴<https://physionet.org/content/mimiciv/3.0/>

⁵<https://www.kaggle.com/datasets/pythonafroz/medquad-medical-question-answer-for-ai-research>

⁶<https://www.kaggle.com/datasets/moaaztameer/medqa-usmle>

⁷<https://pubmedqa.github.io/>

⁸<https://github.com/kbressem/medAlpaca>

⁹<https://medmcqa.github.io/>

¹⁰<https://www.kaggle.com/datasets/ascanipek/eyepacs-aptos-messidor-diabetic-retinopathy/data>

¹¹<https://www.kaggle.com/datasets/aravindpcoder/obesity-or-cvd-risk-classifyregressorcluster/data>

¹²<https://www.physionet.org/content/ptbdb/1.0.0/>

¹³<https://www.physionet.org/content/ptb-xl/1.0.3/>

¹⁴<https://www.physionet.org/content/ecg-arrhythmia/1.0.0/>

¹⁵<https://www.kaggle.com/datasets/rabieelkharoua/chronic-kidney-disease-dataset-analysis?resource=download>

¹⁶<https://archive.ics.uci.edu/dataset/336/chronic+kidney+disease>

¹⁷<http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz>

¹⁸<https://physionet.org/content/dreamt/2.1.0/>

¹⁹<https://physionet.org/content/sleep-accel/1.0.0/>

²⁰<https://github.com/mattgrob/fitzpatrick17k>

²¹<https://www.kaggle.com/datasets/salmansajid05/oral-diseases>

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

Question

Task: you are a medical expert, I am giving you a description of the symptoms:

I have pain somewhere, related to my reason for consulting. I have pain somewhere, related to my reason for consulting. Characterize my pain: haunting. I have pain somewhere, related to my reason for consulting. Characterize my pain: sensitive. I have pain somewhere, related to my reason for consulting. Characterize my pain: tugging. I have pain somewhere, related to my reason for consulting. Characterize my pain: burning. I have pain somewhere, related to my reason for consulting. I feel pain somewhere: lower chest. I have pain somewhere, related to my reason for consulting. I feel pain somewhere: upper chest. I have pain somewhere, related to my reason for consulting. I feel pain somewhere: hypochondrium(R). I have pain somewhere, related to my reason for consulting. How intense is the pain? Eleven levels, lower values mean less intense pain. 6. I have pain somewhere, related to my reason for consulting. The pain radiate to another location: lower chest. I have pain somewhere, related to my reason for consulting. The pain radiate to another location: upper chest. I have pain somewhere, related to my reason for consulting. How precisely is the pain located? Eleven levels, lower values mean less precisely. 3. I have pain somewhere, related to my reason for consulting. The speed of pain onset. Eleven levels, lower values indicate slower. 2. I am significantly overweight compared to people of the same height as me. I drink alcohol excessively or I have an addiction to alcohol. I have a hiatal hernia. I have recently had stools that were black (like coal). I think I am pregnant or I am currently pregnant. I have a burning sensation that starts in my stomach then goes up into my throat, and can be associated with a bitter taste in my mouth. I have a cough. My symptoms are worse when lying down and alleviated while sitting up

I want you to understand the symptoms and help me refine the description using a paragraph with the first or third-person symptom statement and follow the format <An individual has <symptoms>>.

Claude 3 Haiku

An individual has pain that is haunting, sensitive, tugging, and burning, located in the lower chest, upper chest, and right hypochondrium, with an intensity level of 6 out of 11. The pain radiates to the lower chest and upper chest, and is moderately precisely located. The pain has a slow onset, and the individual is significantly overweight, has an alcohol addiction, a hiatal hernia, has recently had black stools, is possibly pregnant, experiences a burning sensation that starts in the stomach and goes up into the throat, has a bitter taste in the mouth, and a cough. The symptoms are worse when lying down and alleviated while sitting up.

Figure 8: An example prompt to rephrase raw data into natural human conversational expressions for the S2D task in the open-QA setting.

D IMPLEMENTATION DETAILS

D.1 MODEL DETAILS

Details on DIYHealthGPT. DIYHealthGPT is built based on Phi-3-mini (Abdin et al., 2024), a publicly available, pre-trained, lightweight LLM with 3.8B parameters. We employ CLIP-L/14 (Radford et al., 2021) as the visual feature extractor to encode image representations. The extracted visual features are projected into a shared semantic space through two-layer MLPs, aligning them with text tokens. This alignment bridges the modality gap between vision and language, and the fused representations are subsequently fed into the LLM to support multimodal understanding and coherent language generation. The number of expert matrices per task K is 4 in the experiments. The ranks of Low-Rank Expert and Hyper LoRA are 16 and 8, respectively. [The model is optimized using a next-token prediction objective with the cross-entropy loss \(Liu et al., 2023\)](#).

Implementations on Training Stage 3. During task-specific expert training in Stage 3, each task t is assigned an H^2 LoRA block with parameters $(\mathbf{A}^t, \Delta\mathbf{A}^t, \mathbf{B}^t, \Delta\mathbf{B}^t)$, which are trained independently using task-specific data, while other parameters remain frozen. Each block is optimized using the same hyperparameter settings across tasks. The Low-Rank Expert Mixture and Hyper LoRA Adaptation modules within the H^2 LoRA block are inserted into the linear layers of the backbone LLM as lightweight training layers. Low-Rank Expert Mixture is implemented by a shared matrix \mathbf{A}^t and multiple matrices \mathbf{B}_k^t , with a router that aggregates the output of matrices \mathbf{B}_k^t . Hyper LoRA follows a similar structure, but its parameters are dynamically generated by hypernetworks \mathcal{H}_A and \mathcal{H}_B rather than learned directly through backward propagation. The hypernetworks learn how to generate parameters conditioned on the instance input. Overall, this implementation allows the model

1188 to acquire task-level specialization and parameter-efficient adaptation before cross-task fusion in
 1189 Stage 4.

1191 D.2 BASELINE DETAILS

1193 We provide detailed descriptions of all baseline models evaluated in this study below.

- 1195 • LLaVA-1.5 (Liu et al., 2023) leverages GPT-4 to generate multimodal instruction-following
 1196 data and tunes an end-to-end vision-language model, enabling general-purpose visual language
 1197 understanding.
- 1199 • InstructBLIP (Dai et al., 2023) enhances BLIP-2 (Li et al., 2023b) by tuning on 26 multimodal
 1200 datasets. InstructBLIP further introduces an instruction-aware Query Transformer to capture
 1201 informative features tailored to the provided instruction.
- 1202 • Llama 3.2 (Dubey et al., 2024) is part of Meta’s multimodal LLM series that integrates vision and
 1203 language in efficient models for both edge deployment and general-purpose AI. Llama 3.2 Vision
 1204 Instruct is used for comparison.
- 1205 • Yi-VL (Young et al., 2024) is an open-source multimodal extension of the Yi LLM that integrates
 1206 vision and language, supporting image understanding, text recognition, and multi-round visual
 1207 question answering.
- 1208 • InternVL3 (Zhu et al., 2025) is an open-source multimodal LLM natively pre-trained on both text
 1209 and multimodal data in a unified framework, enhanced with variable visual position encoding,
 1210 post-training, and test-time scaling.
- 1211 • Qwen2.5-VL (Bai et al., 2025) is Alibaba’s vision-language model that combines native-resolution
 1212 visual understanding, object localization, document parsing, and long-video comprehension with
 1213 general language capabilities.
- 1214 • Gemma 3 (Team et al., 2025) is Google’s open-weight multimodal LLM that supports multilingual,
 1215 visual understanding, and advanced reasoning capabilities.
- 1216 • Claude 3 Haiku (Anthropic, 2024) is Anthropic’s fastest and most lightweight Claude 3 model,
 1217 optimized for efficiency and low-latency reasoning while preserving strong language and compre-
 1218 hension abilities.
- 1219 • GPT-4o Mini (Achiam et al., 2023) is a lightweight, cost-efficient variant of GPT-4o. GPT-4o
 1220 Mini is optimized for speed while retaining multimodal reasoning across text, vision, and audio.
- 1221 • LLaVA-Med v1.5 (Li et al., 2023a) is a biomedical LVLM trained on PubMed (Zhang et al., 2023)
 1222 figure-caption pairs and GPT-4-generated instructions, enabling multimodal conversations.
- 1223 • Med-Flamingo (Moor et al., 2023) is a multimodal few-shot learner built on OpenFlamingo-
 1224 9B (Awadalla et al., 2023) and further pre-trained on medical image-text data, enabling generative
 1225 medical VQA and few-shot adaptation.
- 1226 • HuatuoGPT-Vision (Chen et al., 2024b) is a medical LVLM trained on refined PubMedVision, a
 1227 denoised and reformatted medical VQA dataset curated with GPT-4V.
- 1228 • MedGemma (Sellergren et al., 2025) is Google’s domain-adapted variant of Gemma that in-
 1229 corporates biomedical knowledge to support medical text understanding and vision-language
 1230 tasks.
- 1231 • HealthGPT (Lin et al., 2025) is a unified medical vision-language model trained with the H-LoRA
 1232 technique, hierarchical visual perception, and a three-stage learning strategy on the VL-Health
 1233 dataset.
- 1234 • Med-R1 (Lai et al., 2025) is an RL-enhanced medical vision-language model that employs Group
 1235 Relative Policy Optimization to improve reasoning quality, generalization, and reliability across
 1236 diverse medical imaging tasks.
- 1237 • Lingshu (Xu et al., 2025) is a medical LVLM trained on a curated multimodal dataset with
 1238 multi-stage learning and reinforcement learning for enhanced reasoning.
- 1239 • MedVLM-R1 (Pan et al., 2025)) is a medical LVLM trained with reinforcement learning to
 1240 generate explicit, human-interpretable reasoning paths.

Table 8: Summary of hyperparameter settings used for training DIYHealthGPT.

Hyperparameter	Stage 1	Stage 2	Stage 3	Stage 4
Optimizer	AdamW	AdamW	AdamW	AdamW
Adapter LR	1e-4	2e-5	/	/
Learning Rate	/	1e-5	1e-5	1e-5
Global Batch Size	64	32	32	32
Weight Decay	0.01	0.1	0.1	0.01
Dropout Rate	0	0.05	0.05	0.05
LR Scheduler	Constant	Warm Up	Warm Up	Constant
Max Sequence Length	2048	2048	2048	2048

D.3 TRAINING DETAILS

We display the detailed hyperparameter configurations for DIYHealthGPT’s four-stage training process. The specific settings used are listed in Table 8. These hyperparameters are set up following prior studies (Lin et al., 2025; Liu et al., 2023; Li et al., 2023a). The architectural parameters are listed in Table 9.

Table 9: Architectural parameters of DIYHealthGPT.

Module	Parameter	Value / Shape
Tokenizer	Vocabulary size	32,064
Backbone	Hidden size # Transformer blocks Self-attn projections MLP	3,072 32 qkv: (3072, 9216), o: (3072, 3072) gate_up: (3072, 16384); down: (8192, 3072)
CLIP	Input resolution Patch size Embedding dim # Transformer blocks	336×336 14×14 1,024 24
Expert Mixture of H²LoRA	LoRA rank Shared matrix A (up / down) Matrix B (up / down)	16 (3072,16) / (8192,16) (16,16384) / (16,3072)
Hyper LoRA of H²LoRA	Rank Input Up-path generator (down / up) Down-path generator (down / up)	8 (3072, 8) (8, 24576) / (8, 131072) (8, 65536) / (8, 24576)

D.4 EXPERIMENTAL ENVIRONMENT

All experiments are conducted on a server equipped with an AMD EPYC 9334 CPU @ 2.7 GHz (32 cores), 128 GB of memory, and an NVIDIA H100 NVL with CUDA 12.9. The operating system is Ubuntu 24.04 running Linux kernel 6.8.0-79-generic.

D.5 EVALUATION METRICS

D.5.1 EVALUATION METRICS FOR CLOSED-QA

- **Accuracy.** Accuracy (ACC) measures the proportion of predictions that exactly match the ground-truth labels. It is a standard metric for classification tasks and provides a straightforward indicator of overall correctness.

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} \quad (9)$$

where TP, TN, FP, and FN denote the numbers of true positives, true negatives, false positives, and false negatives, respectively.

1296 • **Matthews Correlation Coefficient.** Matthews Correlation Coefficient (MCC) measures the
 1297 correlation between the predicted and true labels across all classes by considering the full confusion
 1298 matrix. Unlike accuracy, which may be inflated under class imbalance, MCC provides a balanced
 1299 evaluation by jointly accounting for true positives, false positives, false negatives, and inter-class
 1300 misclassifications. It can be interpreted as a generalized correlation coefficient that reflects how
 1301 well the prediction distribution aligns with the true label distribution. A value of 1 indicates
 1302 perfect prediction, 0 corresponds to no better than random guessing, and -1 indicates complete
 1303 disagreement between predictions and ground truth.

$$1304 \quad \text{MCC} = \frac{\sum_k \sum_l \sum_m C_{kk} C_{lm} - C_{kl} C_{mk}}{\sqrt{(\sum_k T_k P_k) (\sum_k T_k^2 - \sum_k \sum_l C_{kl} C_{lk}) (\sum_k P_k^2 - \sum_k \sum_l C_{lk} C_{kl})}} \quad (10)$$

1305 where C is the confusion matrix. C_{kl} is the number of samples with ground truth class k and
 1306 predicted class l . $T_k = \sum_l C_{kl}$ and $P_k = \sum_l C_{lk}$.

1309 D.5.2 EVALUATION METRICS FOR OPEN-QA

1310 • **F1-RadGraph.** F1-RadGraph computes entity-level F1 scores based on RadGraph (Jain et al.,
 1311 2021) evaluation, evaluating the correctness of clinical entity extraction and relation grounding. It
 1312 is widely used in medical language generation and assesses whether the model generates clinically
 1313 valid content.

$$1314 \quad \text{F1-RadGraph} = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}, \quad (11)$$

1315 where $\text{Precision} = \frac{TP}{TP+FP}$, $\text{Recall} = \frac{TP}{TP+FN}$. TP, FP, and FN are computed based on RadGraph
 1316 entity matching.

1317 • **F1-BioBERT.** F1-BioBERT measures the semantic alignment between generated answers and
 1318 ground truth using BioBERT (Lee et al., 2020) embeddings. It captures domain-specific semantic
 1319 similarity, making it suitable to evaluate models of medical open-QA tasks. The computation of
 1320 F1-BioBERT is similar to F1-RadGraph, but TP, FP, and FN are computed by semantic matching
 1321 using BioBERT similarity.

1322 • **BLEU.** BLEU computes the precision of n-gram overlaps between predictions and ground truth to
 1323 assess lexical fidelity.

$$1324 \quad \text{BLEU} = \text{BP} \cdot \exp\left(\sum_{n=1}^N W_n \log(P_n)\right) \quad (12)$$

1325 where BP is brevity penalty. P_n is the modified n-gram precision. W_n is weight of n-gram precision
 1326 and N is the maximum n-gram order.

1327 • **ROUGE-L.** ROUGE-L evaluates the longest common subsequence between predicted and ground
 1328 truth answers, reflecting recall-oriented similarity. It captures global structural overlap and comple-
 1329 ments BLEU’s precision-based evaluation.

$$1330 \quad \text{ROUGE-L} = \frac{(1 + \beta^2) \cdot R_{lcs} \cdot P_{lcs}}{R_{lcs} + \beta^2 \cdot P_{lcs}}, \quad (13)$$

1331 where $R_{lcs} = \frac{\text{LCS}(X, Y)}{|X|}$, $P_{lcs} = \frac{\text{LCS}(X, Y)}{|Y|}$. X is the ground truth, Y is the predicted text.
 1332 $\text{LCS}(X, Y)$ is the length of the longest common subsequence. β controls the weighting of recall
 1333 versus precision.

1334 Together, these metrics, ACC, MCC, F1-RadGraph, F1-BioBERT, BLEU, and ROUGE-L, jointly
 1335 assess correctness, robustness, clinical grounding, semantic fidelity, and textual similarity, offering a
 1336 balanced and reliable evaluation across the diverse tasks in DIYHealthBench.

1337 E SUPPLEMENTARY EXPERIMENTAL RESULTS

1338 E.1 EVALUATION OF DIYHEALTHGPT IN TERMS OF ADDITIONAL METRICS

1339 In this section, we report detailed results for supplementary evaluation metrics, namely F1-RadGraph
 1340 (F1-Rad) (Yu et al., 2023) and BLEU-1 (Papineni et al., 2002), across 11 home care tasks in the

open-QA settings. The comparative results of DIYHealthGPT against baseline models are shown in Table 10. Overall, DIYHealthGPT achieves superior performance on both F1-RadGraph and BLEU-1, underscoring its capacity to generate accurate and contextually appropriate responses to open-ended instructions. An exception is observed in the MAG task, where DIYHealthGPT underperforms relative to LLaVA-Med v1.5. This discrepancy can be partly attributed to the nature of BLEU-1 and F1-RadGraph, which emphasize exact lexical overlap and structural correspondence (e.g., token repetition, entity mentions, and relation extraction). Models such as LLaVA-Med, which are trained and tuned extensively on medical corpora, are naturally more adept at reproducing domain-specific terminology and relation templates. In contrast, F1-BioBERT and ROUGE-L place greater emphasis on semantic consistency and contextual alignment. On these metrics, DIYHealthGPT consistently attains higher scores, reflecting its ability to capture underlying clinical meaning and preserve semantic fidelity even when surface forms differ. These results suggest that DIYHealthGPT is particularly effective at producing semantically coherent and clinically relevant responses, which are essential for real-world medical advice and patient-facing applications.

Table 10: Comparison of DIYHealthGPT with baselines under *open-QA* settings in DIYHealthBench.

Model	S2D		DR		MAG		Diabetes			Obesity			Heart			CKD			Food			Sleep			Skin			Oral			Avg.	
	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1	F1-Rad	BLEU-1		
General Domain Models																																
LLaVA-1.5-7B	0.84	4.53	0.21	5.44	11.90	18.58	13.59	13.71	8.87	9.99	1.48	7.77	13.73	7.96	1.18	1.16	0.62	7.49	18.16	29.31	18.38	27.68	8.09	12.15								
InstuctBLIP-7B	0.56	1.31	0.47	4.30	0.83	0.00	4.80	6.79	3.63	2.77	0.47	5.12	16.27	16.10	1.27	5.69	0.58	6.07	9.46	1.37	10.46	5.94	4.44	5.04								
Llama 3.2-11B	0.62	3.41	0.90	4.69	13.59	20.50	9.95	8.59	8.91	8.68	0.92	2.76	9.48	7.28	1.35	1.37	0.49	2.97	11.74	15.09	11.38	14.45	6.30	8.16								
Vi-VL-6B	0.62	2.83	0.22	4.58	12.83	17.83	14.45	16.40	8.18	8.49	2.19	8.21	13.93	9.41	1.51	3.21	0.67	9.39	18.09	28.26	16.71	26.03	8.13	12.24								
InternVL-8B	0.58	2.00	0.73	3.18	10.75	13.69	15.43	13.25	7.00	5.34	1.58	5.15	10.52	5.15	1.35	1.49	0.35	3.25	15.41	16.70	14.96	14.24	7.15	7.59								
Qwen2.5-VL-7B	0.55	2.18	1.14	13.24	10.72	14.21	10.71	17.37	7.04	5.78	1.24	5.29	8.41	4.04	2.06	5.29	0.37	4.23	17.71	34.91	15.37	32.17	6.85	12.61								
Gemma 3-4B	0.39	1.23	1.11	2.20	6.29	5.95	10.51	4.73	5.08	3.97	0.79	2.65	5.03	1.61	1.02	1.28	0.43	2.64	8.06	6.88	8.20	6.58	4.27	3.61								
Claude 3 Haiku	0.96	4.20	0.83	6.55	14.45	22.39	16.69	14.70	10.48	9.46	1.17	7.81	10.14	7.03	0.93	1.46	0.51	6.99	18.62	28.83	18.74	27.16	8.50	12.42								
GPT-4o Mini	0.77	3.24	1.00	4.75	15.25	22.89	14.97	11.54	9.86	8.64	1.14	5.16	12.69	9.46	1.99	3.39	0.43	4.81	17.59	21.21	15.83	19.45	8.52	10.41								
Medical Domain Models																																
LLaVA-Med v1.5-7B	0.86	9.49	0.30	10.88	17.20	28.41	15.64	18.70	11.22	15.14	3.97	12.94	8.76	14.78	1.57	1.96	1.20	14.72	22.38	40.24	17.45	36.28	9.14	18.50								
Med-Flamingo-7B	0.82	2.65	1.57	4.51	7.85	6.71	9.33	5.91	7.92	4.91	1.41	1.89	5.22	3.51	0.30	0.14	0.35	2.23	6.08	8.06	8.79	6.60	4.44	4.28								
HuatuoGPT-Vision-7B	0.68	3.80	0.38	6.44	9.04	13.18	14.43	16.02	7.92	10.46	0.95	6.10	7.75	6.13	0.50	0.66	0.43	5.79	17.44	26.59	23.82	29.99	7.58	11.38								
MedGemma-4B	0.45	3.90	0.36	6.55	10.94	15.59	11.25	8.88	6.27	6.02	1.81	4.40	8.08	5.04	1.01	0.76	0.45	4.81	11.03	10.00	13.11	14.02	5.88	7.27								
HealthGPT-3.8B	0.89	4.14	0.30	5.95	14.71	20.26	18.33	18.58	10.28	9.43	0.98	8.07	13.01	8.64	1.25	1.26	0.63	8.60	21.67	38.23	29.96	39.81	10.18	14.82								
Med-R1-2B	0.43	2.34	0.56	3.65	11.82	17.78	14.04	8.56	7.71	6.71	0.74	2.63	10.47	7.11	0.76	1.15	0.38	2.57	14.93	17.63	14.63	20.97	6.95	8.28								
Lingshu-7B	0.89	4.60	0.37	6.77	13.88	18.08	18.21	20.71	9.83	11.16	1.26	8.59	13.26	12.21	1.05	1.45	0.45	7.32	19.59	36.87	23.92	38.18	9.34	15.09								
MedVLM-R1-2B	0.60	2.21	0.20	3.82	13.81	17.97	13.69	8.97	9.02	7.11	1.54	3.26	14.48	8.43	1.99	2.24	0.51	5.31	14.91	20.68	12.83	19.61	7.60	9.06								
DIYHealthGPT-3.8B	42.97	60.84	15.92	31.63	16.01	19.25	40.72	57.65	31.87	54.09	12.34	36.31	57.32	66.98	15.73	87.93	3.16	46.24	44.60	63.76	66.89	77.89	30.07	51.76								

E.2 EXPERT EVALUATION WITH GPT-5

Beyond clinical expert review, we perform an additional evaluation using GPT-5, following the same sampling procedure and ranking guidelines described in Section 6.3. As shown in Figure 9, the results are consistent with the clinical expert assessment. GPT-5 favors DIYHealthGPT as the first preference model, with rankings concentrated at the top. Moreover, GPT-5 consistently identifies DIYHealthGPT as providing the most faithful and comprehensive responses.

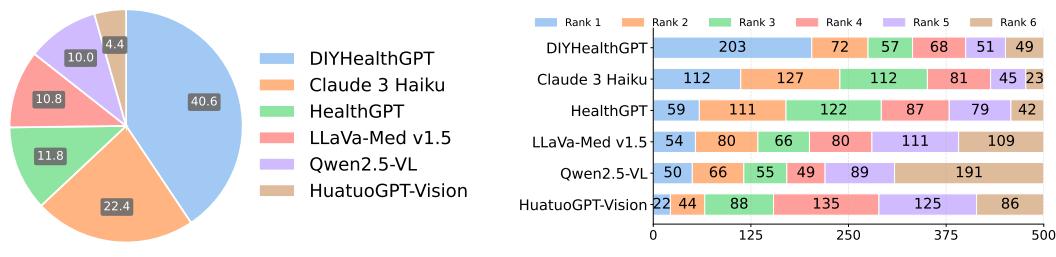


Figure 9: Results of the GPT-5 review.

E.3 HYPERPARAMETER SENSITIVITY STUDY ON NUMBER OF EXPERTS

We examine the impact of the number of experts on model performance, using MAG, Heart, and Skin tasks, along with the average performance as representative cases. The results are summarized in Figure 10. The Rouge-L remains stable in the closed-QA MAG task, which could be attributed to its reliance on broad knowledge, as discussed in Section 6.2. On average, four experts achieve the optimal balance between Rouge-L and MCC.

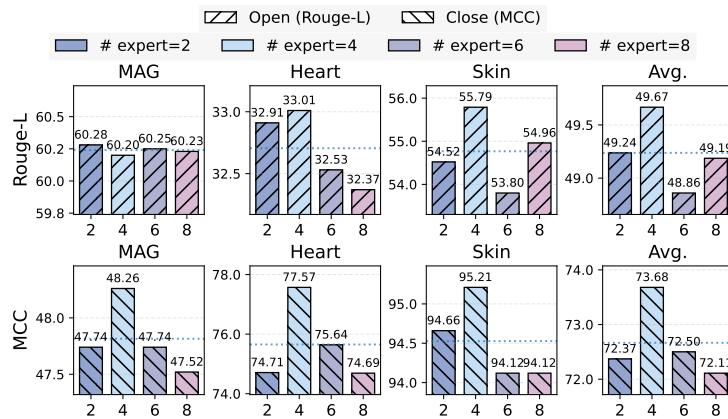


Figure 10: Sensitivity study on the number of experts in DIYHealthGPT.

E.4 USER FEEDBACK ANALYSIS

To assess real-world usability, we conduct a human-centered user study with 36 participants spanning diverse characteristics, such as age, gender, and self-rated health status. The study comprises two components: answer-level evaluation and system-level evaluation. All items are assessed using a 5-point scale, where 1 indicates strongly disagree and 5 indicates strongly agree.

For answer-level evaluation, participants are asked to rate the quality of the model-generated answers from DIYHealthGPT across six dimensions related to usability and interaction:

- **Clarity:** This answer is easy to understand.
- **Usefulness:** This answer is useful.
- **Conciseness:** The length is appropriate, not overly long or short.
- **Safety:** It's safe to follow the answer.
- **Willingness:** I would be willing to follow this answer.
- **Trust:** I would trust the answer.

As shown in Figure 11a, all six dimensions received scores close to or above 4.0 on average, indicating high perceived clarity, usefulness, conciseness, safety, willingness to follow, and trustworthiness. This suggests that the generated answers are not only considered reliable and contextually appropriate for practical use but also well aligned with users' expectations in real-world home care scenarios.

To evaluate the overall system usability, we employ the System Usability Scale (Brooke et al.), a widely used standardized evaluation for assessing system usability. Following prior studies (Tchemeube et al., 2023; Aljamaan et al., 2024), participants are asked to complete the following SUS items:

- Q1: I think that I would like to use this system frequently.
- Q2: I found the system unnecessarily complex.
- Q3: I thought the system was easy to use.
- Q4: I think that I would need the support of a technical person to be able to use this system.
- Q5: I found the various functions in this system were well integrated.
- Q6: I thought there was too much inconsistency in this system.
- Q7: I would imagine that most people would learn to use this system very quickly.
- Q8: I found the system very cumbersome to use.
- Q9: I felt very confident using the system.
- Q10: I needed to learn a lot of things before I could get going with this system.

1458
1459
1460 Table 11: Subgroup results for CKD, heart, and obesity tasks in open-QA settings.
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482

Subgroup	Size	CKD		Heart	
		F1-Bio	RL	F1-Bio	RL
Age < 18	7	93.08	72.45	81.50	29.67
18 < Age < 40	134	90.51	65.24	83.05	34.38
41 <= Age < 65	212	91.64	68.32	82.54	32.95
Age ≥ 65	158	90.06	62.13	82.47	33.42
Gender: Male	193	89.64	61.49	82.47	32.90
Gender: Female	205	89.93	62.18	82.67	33.62

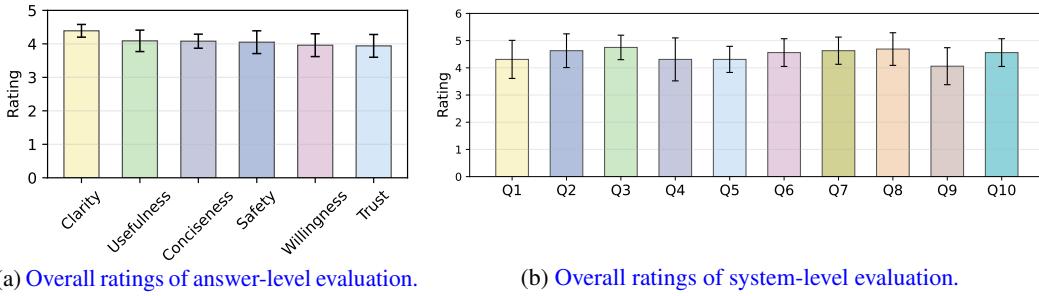
(a) Subgroup results for CKD and heart tasks.
(b) Subgroup Results for the Obesity Task.

Subgroup	Size	Obesity			
		F1-Bio	RL	F1-Rad	BLEU
BMI < 18.5	36	85.66	43.11	34.62	52.67
18.5 <= BMI < 25	57	84.77	41.37	35.64	53.97
25 <= BMI < 30	98	84.34	45.81	26.95	52.13
BMI ≥ 30	166	85.20	47.15	32.89	55.14
Vegetable: 1	44	85.65	49.07	32.23	55.68
Vegetable: 2	201	84.84	45.73	31.92	54.31
Vegetable: 3	112	84.85	43.41	31.64	52.97

The final SUS score is calculated by first converting each rating to an adjusted score and then scaling the total to a 0–100 range. The score is computed as follows:

$$SUS = 2.5 \times \sum_{i=1}^{10} score'_i, \quad \text{where} \quad score'_i = \begin{cases} rating_i - 1, & \text{if } i \text{ is odd (positive item)} \\ 5 - rating_i, & \text{if } i \text{ is even (negative item)} \end{cases} \quad (14)$$

For visualization clarity, Figure 11b presents the ratings of negative items that have been rescaled to the same direction as positive ones (i.e., higher scores indicate better). Based on participants’ responses, DIYHealthGPT achieved a SUS score of 87.03. According to established interpretation guidelines (Bangor et al., 2009; Brooke et al.), this score falls in the excellent usability, indicating that DIYHealthGPT is not only effective in generating answers but also user-friendly and has strong potential for practical deployment.



(a) Overall ratings of answer-level evaluation. (b) Overall ratings of system-level evaluation.

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
Figure 11: Results of user feedback analysis.

E.5 SUBGROUP STUDY

To assess the robustness of DIYHealthGPT across different subgroups and to support safe deployment in healthcare scenarios, we conducted a preliminary subgroup analysis. Due to dataset de-identification and the nature of home-care data acquisition, demographic attributes such as race, ethnicity, skin tone, and device type are not consistently annotated, which makes comprehensive subgroup evaluation infeasible at this stage. Therefore, we focus on open-QA tasks where relevant metadata are available and perform subgroup analyses on (1) age and gender subgroup analysis for the CKD and Heart tasks, and (2) BMI and vegetable-consumption level subgroup analysis for the Obesity task.

As shown in Table 11, across all subgroups, the performance remains stable, with fluctuations within a small margin. For instance, the variation in F1-Bio across different age subgroups is within 3%, and the differences between male and female subgroups are below 1%. Similarly, the obesity task shows only moderate variation across BMI and vegetable-consumption levels.

Regarding the large variation in the RL metric for the Age < 18 subgroup and the Age ≥ 65 subgroup (72.45 vs. 62.13), we note that the Age < 18 subgroup contains only seven samples, which makes

1512 the results statistically unstable and sensitive to individual cases. Therefore, the difference is more
 1513 likely attributable to insufficient cohort size rather than systematic model bias. Besides, although the
 1514 F1-Rad for the $25 \leq \text{BMI} < 30$ subgroup is much lower than that for the $18.5 \leq \text{BMI} < 25$ subgroup
 1515 (26.95 vs. 35.64), this variation is consistent with clinical expectations rather than indicating model
 1516 bias: individuals in the overweight subgroup ($25 \leq \text{BMI} < 30$) often present subtle or non-specific
 1517 symptoms, making their cases harder to detect (Brod et al., 2018). Since F1-Rad is highly sensitive to
 1518 biomedical terminology, such cases naturally require stronger reasoning and interpretation ability.
 1519 This suggests an opportunity for future personalized adaptation, rather than revealing a systematic
 1520 risk.

1521 Overall, the subgroup results indicate that DIYHealthGPT generally maintains consistent performance
 1522 across different user populations, supporting its potential for real-world deployment.

1525 E.6 COMPLETE COMPARISON WITH FINE-TUNED BASELINES

1527 To examine whether the performance gain of DIYHealthGPT is solely due to training on DIYHealth-
 1528 900K, we conduct fine-tuning experiments on two representative models, Gemma 3-4B and LLaVA-
 1529 Med v1.5-7B, using exactly the same training data with our limited computational resources. As
 1530 shown in Table 12, DIYHealthGPT-3.8B consistently outperforms Gemma 3-4B by a substantial
 1531 margin on all six evaluation metrics and even surpasses LLaVA-Med v1.5-7B on ACC, MCC, F1-Bio,
 1532 and RL, despite LLaVA-Med having a larger model size. These results indicate that the observed
 1533 improvements cannot be attributed only to the dataset. Instead, the combination of DIYHealth-900K,
 1534 the training strategy, and the H²LoRA architecture contributes to the model’s effectiveness.

1535
 1536 Table 12: Complete Comparison with fine-tuned baselines.

1538 Model	1539 Closed-QA		1540 Open-QA			
	1541 ACC	1542 MCC	1543 F1-Bio	1544 RL	1545 F1-Rad	1546 BLEU
Gemma 3-4B	80.96	74.42	84.72	41.59	26.67	45.35
LLaVA-Med v1.5-7B	77.58	69.51	86.28	49.63	30.85	53.21
DIYHealthGPT-3.8B	86.80	82.36	87.34	52.11	30.07	51.76

1548 E.7 INTER-RATER AGREEMENT ANALYSIS

1551 To ensure the reliability of clinical expert review for different models, we conduct a comprehensive
 1552 inter-rater agreement analysis based on the rankings provided by five independent raters. Each
 1553 question consists of six model-generated outputs, and raters are asked to assign an ordinal rank
 1554 from 1 to 6. As the annotations follow an ordinal preference-ranking scheme, we assess the degree
 1555 of agreement using soft agreement criterion (Stemler, 2004; Fu et al., 2012) rather than strict rank
 1556 matching. Two raters are considered to be in agreement on a given answer if the absolute difference
 1557 between their assigned ranks is no greater than one, i.e. $r_1 - r_2 \leq 1$.

1558 Under this soft agreement criterion, we compute Cohen’s kappa score to quantify inter-rater agree-
 1559 ment. The results are summarized in Figure 12. Based on the results, Cohen’s kappa score ranges
 1560 from [0.645, 0.808], [0.692, 0.846], [0.663, 0.839], [0.585, 0.830] for all tasks, personalized health
 1561 management tasks, chronic disease risk assessment tasks, and daily health monitoring tasks, respec-
 1562 tively. Notably, only one rater pair (rater 0 and rater 4) in the daily health monitoring tasks shows
 1563 a kappa value of 0.585, which is slightly below but still close to 0.600. Overall, according to the
 1564 widely adopted interpretation guideline by Landis and Koch (Landis & Koch, 1977), the majority of
 1565 kappa values fall within the substantial agreement range from 0.61 to 0.80, indicating a strong level
 1566 of reliability in expert judgments.

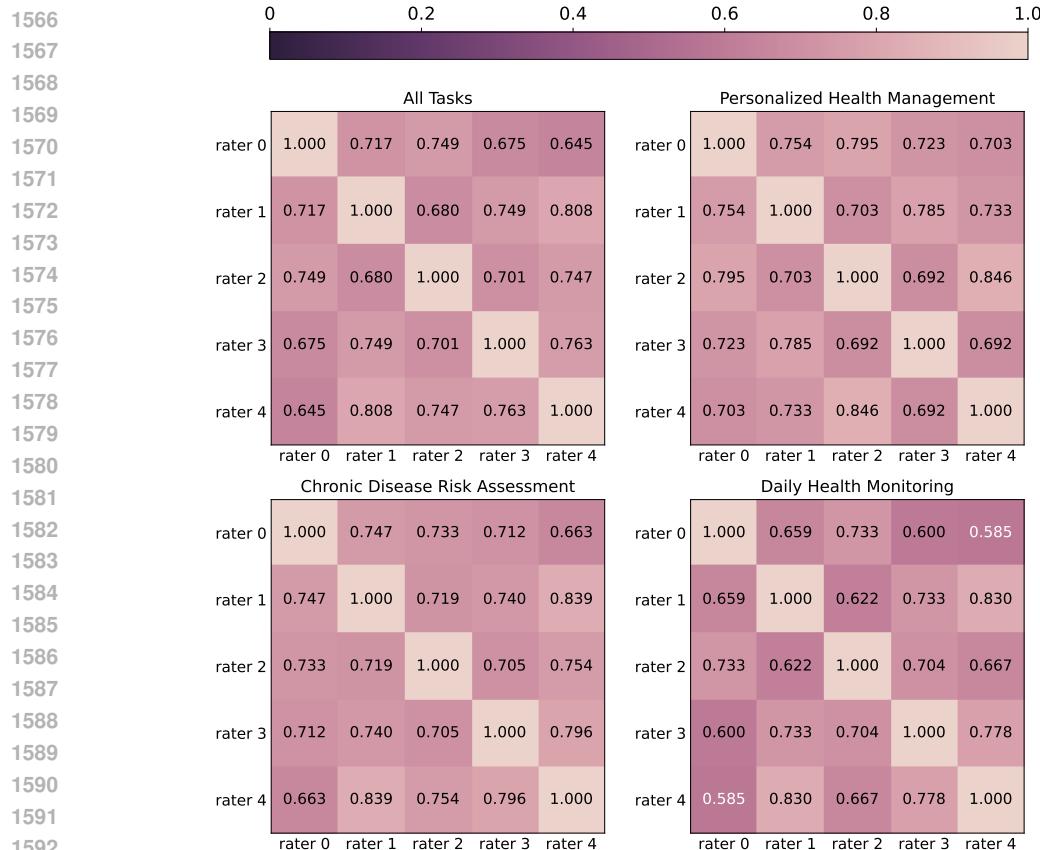


Figure 12: Results of inter-rater agreement analysis.

F DISCUSSION AND OUTLOOK

F.1 BROADER IMPACT

Beyond its technical innovations, DIYHealth Suite has the potential to deliver significant impact across age groups and health domains. For children, it can promote dietary education, support oral hygiene tracking, and facilitate developmental health monitoring. For middle-aged individuals, it can assist with stress management, enable early screening for chronic diseases, and provide guidance for lifestyle optimization. For elderly users, it offers continuous health monitoring, early detection of geriatric syndromes, and chronic disease management. By reasoning over diverse multimodal signals, including dietary patterns, oral health, visceral functions, dermatological changes, among others, DIYHealth Suite enables personalized and context-aware health management. Through these capabilities, DIYHealth Suite lays the groundwork for a new generation of AI-driven, human-centered healthcare frameworks that are comprehensive, responsive to individual needs, and accessible beyond conventional clinical environments.

F.2 FUTURE DIRECTIONS

In this work, we envision a future where intelligent health assistants function as daily companions—proactive, trustworthy, and seamlessly integrated into personal health routines. Moving forward, we call for a collaborative agenda spanning AI, medicine, public health, and human-computer interaction to realize this vision. Promising directions include lifelong personalization through federated and continual learning, integration of clinician oversight to ensure medical alignment, and development of robust privacy-preserving mechanisms for secure large-scale deployment. We believe these advances have the potential to reshape the global health landscape by augmenting care delivery and expanding broad access to health expertise at home.

1620 G THE USE OF LLMs

1621
 1622 In this work, we employ LLMs in two strictly controlled manners. First, we use LLMs to rephrase
 1623 source data during dataset construction (see Section 3 and Appendix C), adapting the content to
 1624 home care while preserving its clinical context. Second, we leverage LLMs as evaluators to compare
 1625 our model with baselines (see Appendix E.2), following clearly defined criteria for consistency and
 1626 fairness.

1628 H CASE STUDY

1629
 1630 In this section, we present case studies comparing the responses generated by our proposed DIY-
 1631 HealthGPT with three open-source medical foundation models (LLaVa-Med v1.5, HuatuoGPT-Vision,
 1632 HealthGPT), one open-source general-purpose model (Qwen2.5-VL), and one closed-source general-
 1633 purpose model (Claude 3 Hiku), under both closed-QA and open-QA settings. Figures 13 to 22
 1634 illustrate the results for all closed-QA tasks (excluding DR, which does not support closed-QA).
 1635 Across these cases, DIYHealthGPT consistently produces responses aligned with the ground truth
 1636 answers, demonstrating strong task-specific understanding in home care scenarios. Figures 23 to 33
 1637 show the results for eleven tasks in open-QA settings. For example, in Figure 23, DIYHealthGPT
 1638 generates answers closer to the ground truth than other models, indicating its ability to produce
 1639 accurate and contextually appropriate responses to open-ended queries.

1640 @article{li2025otter, title={Otter: A multi-modal model with in-context instruction tuning}, author={Li,
 1641 Bo and Zhang, Yuanhan and Chen, Liangyu and Wang, Jinghao and Pu, Fanyi and Cahyono, Joshua
 1642 Adrian and Yang, Jingkang and Li, Chunyuan and Liu, Ziwei}, journal={IEEE Transactions on Pattern
 1643 Analysis and Machine Intelligence}, year={2025}, publisher={IEEE}

1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

S2D Closed-QA**Question**

I have difficulty swallowing, or have a feeling of discomfort/blockage when swallowing. I am experiencing shortness of breath or difficulty breathing in a significant way. My symptoms of muscle weakness increase with fatigue and/or stress. I previously, or I currently, have any weakness/paralysis in one or more of my limbs or in my face. Which of the following diagnoses is most likely given the symptoms?
 A. Chagas B. Spontaneous rib fracture C. Myocarditis D. Epiglottitis

Ground Truth

C. Myocarditis.

DIYHealthGPT

C. Myocarditis.

Claude 3 Haiku

Based on the provided symptoms, the most likely diagnosis is D. Epiglottitis.
 The key symptoms mentioned in the question are:
 - Difficulty swallowing or feeling of discomfort/blockage when swallowing
 - Shortness of breath or difficulty breathing
 - Muscle weakness that increases with fatigue and/or stress
 - Previous or current weakness/paralysis in limbs or face
 These symptoms are characteristic of epiglottitis, which is an inflammation of the epiglottis, the small flap of tissue at the base of the tongue that covers the entrance to the windpipe. Epiglottitis can cause swelling and obstruction of the airway, leading to the difficulties in swallowing and breathing.
 The other options are less likely:
 A. Chagas is a parasitic infection that primarily affects the heart and digestive system, but does not typically present with the specific symptoms described.
 B. Spontaneous rib fracture would not explain the swallowing and breathing difficulties, as well as the muscle weakness.
 C. Myocarditis is inflammation of the heart muscle, which would not directly cause the swallowing and respiratory issues.
 Therefore, based on the information provided, epiglottitis is the most likely diagnosis.

HealthGPT

D

LLaVA-Med v1.5

The most likely diagnosis given the symptoms is Chagas.

Qwen2.5-VL

Given the symptoms of difficulty swallowing, discomfort/blockage, breathlessness, muscle weakness, and potential limb/face paralysis, one of the diagnoses mentioned is most likely Spontaneous Rib Fracture (option B). Symptoms such as difficulty swallowing, feeling of discomfort/blockage, shortness of breath, muscle weakness, and possible paralysis in limbs or face could be indicative of a rib fracture that has disrupted the diaphragm, which is essential for breathing. Spontaneous rib fractures often occur predominantly on the upper ribs and can lead to muscular weakness, especially after muscle fatigue or stress. The symptoms described here do not align with Chagas disease (option A), which primarily involves chronic endocarditis, digestive tract disorders, and may not present with primary respiratory issues; myocarditis (option C), which is primarily cardiac and may present with chest pain, shortness of breath, and fatigue but not specifically the described swallowing and respiratory issues; and epiglottitis (option D), which is a viral or bacterial infection affecting the epiglottis, often causing severe difficulty breathing and hoarseness, not typically presenting with limb or facial paralysis.

However, for a precise diagnosis, further medical evaluation by a healthcare provider including imaging studies and possibly other diagnostic tests like blood tests, X-rays, or other imaging techniques would be necessary.

HuatuoGPT-Vision

D

Figure 13: A case study of the S2D task under *closed-QA* settings.

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

MAG Closed-QA

Question

Difference between neuropraxia and neuronotomesis is:
A: EMG finding B: Sensory loss C: Motor loss D: All

Ground Truth

A: EMG finding

DIYHealthGPT

A: EMG finding

HealthGPT

D

Qwen2.5-VL

C. Motor loss

Claude 3 Haiku

The correct answer is:
C. Motor loss

The difference between neuropraxia and neuronotomesis lies in the type of nerve injury and the resulting motor loss. Neuropraxia is a temporary, mild nerve injury that causes a conduction block without structural damage to the nerve. This results in motor loss, but no sensory loss. Neuronotomesis, on the other hand, is a more severe nerve injury involving complete transection or disruption of the nerve. This results in both motor and sensory loss. Therefore, the primary difference between neuropraxia and neuronotomesis is the extent of motor loss, not the EMG findings or sensory loss.

LLaVA-Med v1.5

The image shows the differences between neuropraxia and neuronotomesis in terms of EMG findings, sensory loss, and motor loss. To answer the question, you would need to identify the specific differences between the two conditions based on the image.

HuatuoGPT-Vision

D: All

Figure 14: A case study of the MAG task under *closed-QA* settings.

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Diabetes Closed-QA

Question

Which diabetic retinopathy severity grade best describes this image?
A. Mild nonproliferative diabetic retinopathy
B. Moderate nonproliferative diabetic retinopathy
C. Severe nonproliferative diabetic retinopathy
D. Proliferative diabetic retinopathy

Ground Truth

B. Moderate nonproliferative diabetic retinopathy

DIYHealthGPT

B. Moderate nonproliferative diabetic retinopathy

Claude 3 Haiku

Based on the image provided, which appears to show retinal changes consistent with diabetic retinopathy, the best descriptor for the severity grade is C. Severe nonproliferative diabetic retinopathy.

HealthGPT

C

LLaVA-Med v1.5

The image best describes the severity grade of A. Mild nonproliferative diabetic retinopathy.

Qwen2.5-VL

The image provided does not contain the details necessary to accurately diagnose the specific severity of diabetic retinopathy. A healthcare professional would need to review the image in person to determine the grade of diabetic retinopathy, which would be based on clinical evaluation, including the identification of microaneurysms, hard exudates, hemorrhages, and signs of proliferative diabetic retinopathy. Since this question is for a research test purpose, and not a real-world diagnostic scenario, it's important to note that a definitive answer cannot be provided based on this single image. Always consult an ophthalmologist or a healthcare provider for an accurate diagnosis.

HuatuoGPT-Vision

A

Figure 15: A case study of the Diabetes task under *closed-QA* settings.

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797

Obesity Closed-QA

1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

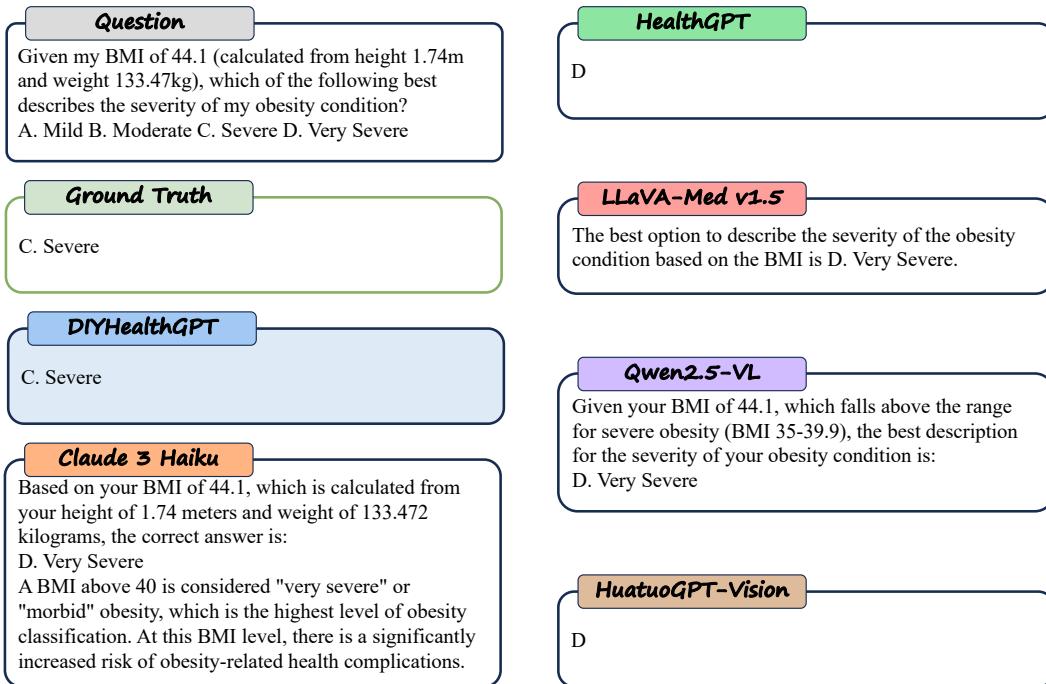


Figure 16: A case study of the Obesity task under *closed-QA* settings.

1836

1837

1838

1839

1840

1841

1842

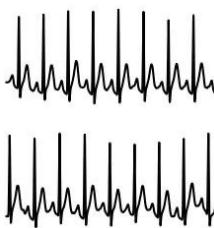
1843

1844

1845

1846

1847

Heart Closed-QA**Question**

ECG (10 seconds). The ECG is for a male aged 49. How does the subject's ECG pattern relate to rhythm?
 A. SVARR (Supraventricular Arrhythmia);
 B. SARRH (Sinus Arrhythmia);
 C. STACH (Sinus Tachycardia);
 D. SR (Sinus Rhythm).

Ground Truth

C. STACH (Sinus Tachycardia).

DIYHealthGPT

C. STACH (Sinus Tachycardia).

HealthGPT

D

Qwen2.5-VL

D. SR (Sinus Rhythm)

Claude 3 Haiku

Based on the 10-second ECG pattern shown in the image, the correct answer is B. SARRH (Sinus Arrhythmia).

The ECG pattern displays variability in the R-R intervals, which is characteristic of sinus arrhythmia. In sinus arrhythmia, the heart rate fluctuates with respiration, usually increasing during inhalation and decreasing during exhalation.

The other options are not accurate descriptions of the ECG pattern presented:

A. SVARR (Supraventricular Arrhythmia) - The ECG does not show any clear signs of a supraventricular arrhythmia.

C. STACH (Sinus Tachycardia) - The heart rate does not appear to be consistently elevated, as would be seen in sinus tachycardia.

D. SR (Sinus Rhythm) - The variability in the R-R intervals indicates this is not a regular sinus rhythm.

LLaVA-Med v1.5

The subject's ECG pattern is related to rhythm as follows:

- A. SVARR (Supraventricular Arrhythmia)
- B. SARRH (Sinus Arrhythmia)
- C. STACH (Sinus Tachycardia)
- D. SR (Sinus Rhythm)

These are different types of heart rhythms that can be observed in an ECG. The subject's ECG pattern is likely showing one of these rhythms, which can help healthcare professionals understand the patient's heart function and identify any potential abnormalities or issues.

HuatuoGPT-Vision

D

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Figure 17: A case study of the Heart task under *closed-QA* settings.

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

1900 **CKD Closed-QA**

1901 **Question**

1903 A 50-year-old patient presents with pedal edema and
1904 anemia, but no history of hypertension or diabetes.
1905 Their blood pressure is 90 mmHg, and random blood
1906 glucose is 128 mg/dL. What is the most appropriate
1907 clinical assessment for this patient?

1908 A. Absence of chronic kidney disease
1909 B. Early-stage chronic kidney disease
1910 C. Chronic kidney disease
1911 D. Progressive kidney dysfunction

1912 **Ground Truth**

1913 A. Absence of chronic kidney disease

1916 **DIYHealthGPT**

1917 A. Absence of chronic kidney disease

1920 **HealthGPT**

1921 B

1925 **LLaVA-Med v1.5**

1926 The most appropriate clinical assessment for this patient
1927 is option B: Early-stage chronic kidney disease.

1929 **HuatuoGPT-Vision**

1930 B

1933 **Claude 3 Haiku**

The most appropriate clinical assessment for this patient is B. Early-stage chronic kidney disease.

Explanation:

The patient presents with pedal edema and anemia, which are commonly associated with chronic kidney disease (CKD). Additionally, the patient has a random blood glucose of 128 mg/dL, which is slightly elevated but does not necessarily indicate diabetes.

The absence of a history of hypertension or diabetes, along with the relatively normal blood pressure of 90 mmHg, suggests that the patient may be in the early stages of CKD, rather than having established chronic kidney disease (choice C) or progressive kidney dysfunction (choice D).

In the early stages of CKD, the kidneys may still be functioning, but there are signs of kidney damage, such as the presence of edema and anemia. This is consistent with the clinical presentation described in the scenario. Therefore, the most appropriate clinical assessment for this patient is B. Early-stage chronic kidney disease.

1934 **Qwen2.5-VL**

The most appropriate clinical assessment for the patient given the information provided would be:

C. Chronic kidney disease

This is because the patient presents with pedal edema and anemia, which are common manifestations of chronic kidney disease (CKD). The blood pressure of 90 mmHg does not indicate hypertension, and the random blood glucose of 128 mg/dL may suggest impaired glucose tolerance or diabetes, but there is not enough information to make a definitive diagnosis of diabetes. The symptoms and blood pressure levels are consistent with early-stage CKD.

It is essential to perform further testing, such as an ESR tests, hemoglobin A1c, and urine protein/creatinine ratio to confirm the diagnosis.

Figure 18: A case study of the CKD task under *closed-QA* settings.

1935
1936
1937
1938
1939
1940
1941
1942
1943

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Food Closed-QA

Question

This dish is best classified under which dietary category?
 A. High-fiber, low-calorie
 B. High-protein, high-sodium
 C. Low-fat, high-calcium
 D. Low-sodium, low-carbohydrate

Ground Truth

B. High-protein, high-sodium

DIYHealthGPT

B. High-protein, high-sodium

Claude 3 Haiku

High-protein, high-sodium

HealthGPT

A

LLaVA-Med v1.5

B

Qwen2.5-VL

D. Low-sodium, low-carbohydrate

HuatuoGPT-Vision

The dish is best classified under category D, which is low-sodium and low-carbohydrate.

Figure 19: A case study of the Food task under *closed-QA* settings.

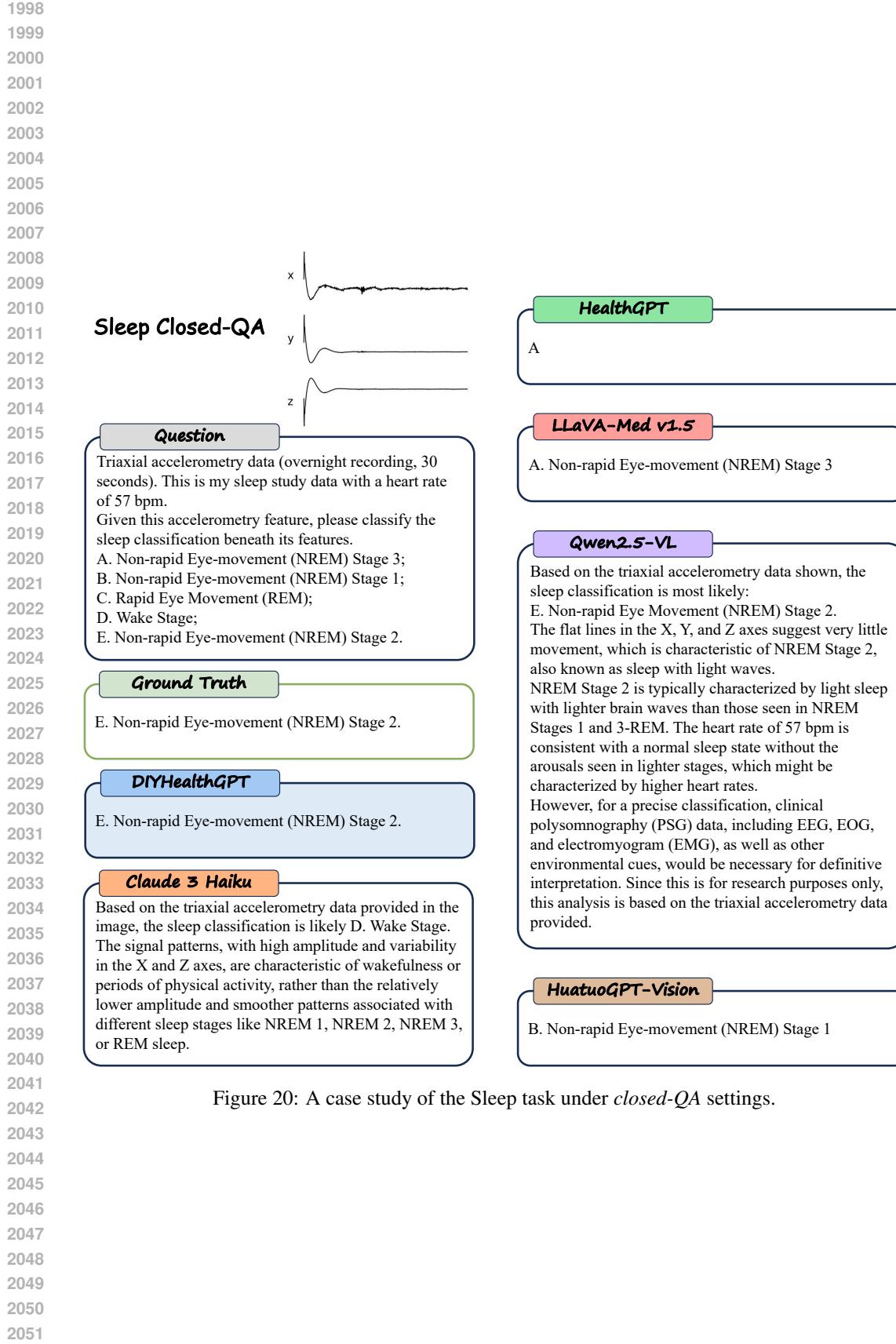
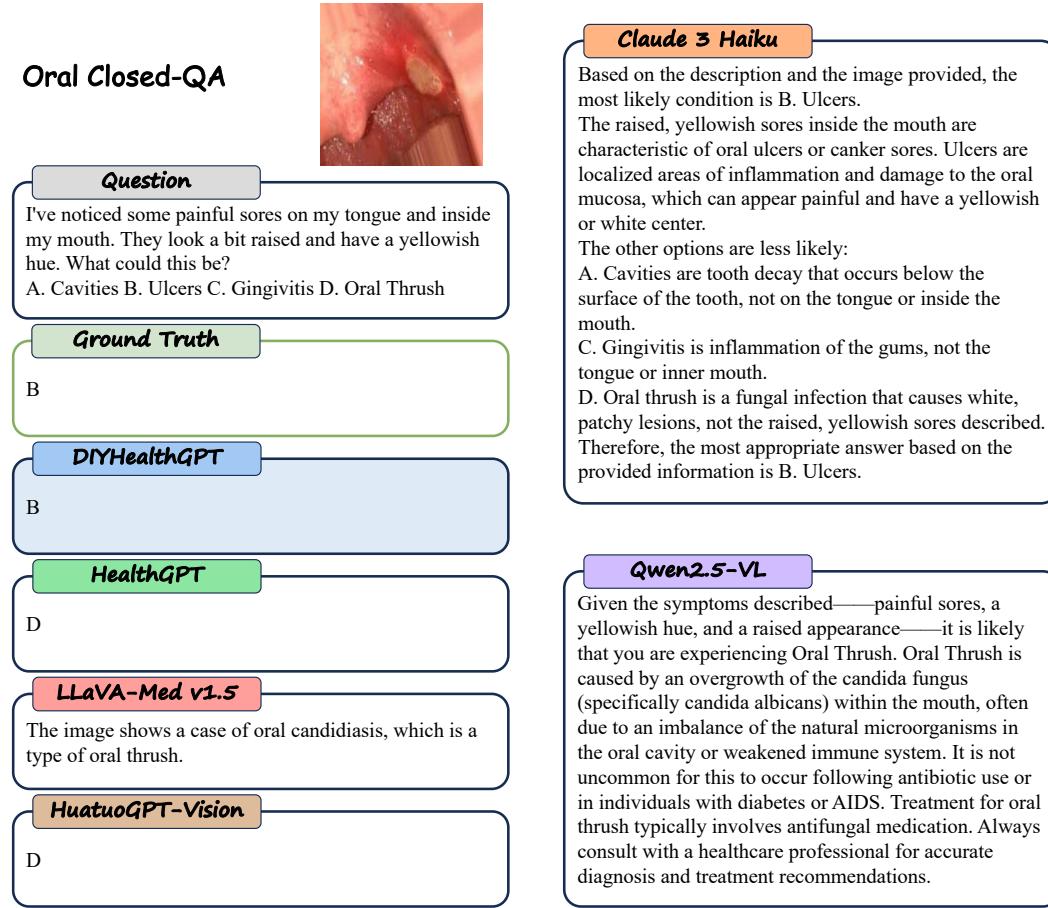
Figure 20: A case study of the Sleep task under *closed-QA* settings.

Figure 21: A case study of the Skin task under *closed-QA* settings.Figure 22: A case study of the Oral task under *closed-QA* settings.

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

S2D Open-QA

2116

Question

2117

I have been in contact with a person with similar symptoms in the past 2 weeks. I live with 4 or more people. I have pain related to my reason for consulting that is burning in nature. I feel pain in my tonsil (right), thyroid cartilage, pharynx, and under the jaw, with an intensity of 5 on a scale of 11. The pain does not radiate to another location and is moderately precisely located. The pain had a slow onset, with a speed of 3 on a scale of 11. I have nasal congestion or a clear runny nose and a cough. I have not traveled out of the country in the last 4 weeks.

2118

Suppose a patient presents with these symptoms, what would you consider?

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

LLAVA-Med v1.5

Based on the provided information, the patient's symptoms are consistent with **COVID-19**. However, it is important to note that a definitive diagnosis should be made by a healthcare professional after considering the patient's clinical history, symptoms, and additional diagnostic tests, such as a PCR test for COVID-19.

Ground Truth

Based on current symptoms, these are likely diagnoses: **Viral pharyngitis, Bronchitis, URTI**.

DIYHealthGPT

Based on current symptoms, these are likely diagnoses: **Viral pharyngitis, Bronchitis, Acute laryngitis, URTI**.

Claude 3 Haiku

Based on the information provided, the key symptoms and factors to consider for this patient would be:

...

Considering these factors, the primary considerations for this patient's condition could include:

1. **Viral upper respiratory tract infection (e.g., common cold, influenza, COVID-19)**
2. **Streptococcal pharyngitis** (strep throat)
3. **Viral or bacterial tonsillitis**
4. **Laryngitis or pharyngitis**
5. **Inflammatory conditions affecting the throat or neck (e.g., thyroiditis)**

Further evaluation, including physical examination, laboratory tests, and potentially imaging studies, would be necessary to establish a more definitive diagnosis. However, based on the presented symptoms and history, a viral or bacterial upper respiratory tract infection would be a reasonable initial consideration for this patient.

HealthGPT

Based on the symptoms you described, it is possible that you may have a **viral infection, such as the flu or a common cold**. The pain in your throat, nasal congestion, and cough are all common symptoms of these types of infections. However, it is important to note that these symptoms can also be caused by other conditions, such as a **sore throat or a sinus infection**.

To determine the underlying cause of your symptoms, it would be important to consult with a healthcare professional. They may recommend a physical examination, as well as additional tests, such as a throat swab or blood test, to help identify the specific cause of your symptoms.

In the meantime, it is important to take steps to manage your symptoms and prevent the spread of any potential infection. This may include getting plenty of rest, staying hydrated, and taking over-the-counter medications to help relieve your symptoms. If your symptoms persist or worsen, it is important to seek medical attention as soon as possible.

Qwen2.5-VL

Based on the symptoms described, the following considerations are important:

1. **Throat Pain and Sore Throat**: The patient presents with pain in the right tonsil, pharynx, and possibly complications related to the thyroid cartilage (laryngopharyngeal symptoms). This could be indicative of a variety of conditions such as:...
2. **Potential Pharyngitis**: The patient's symptoms may also correspond to a pharyngitis, an inflammation of the pharynx (back of the throat), which can be caused by either a virus (as in the common cold) or bacteria (as in strep throat).
3. **Other Considerations**: Since the patient feels moderate pain that does not radiate, other possibilities may include **minor musculoskeletal tension** to the throat, though this does not seem very likely given the intensity and location of the pain ...
4. **General Consideration of Viral Symptoms**....

Conclusion:

For this research purpose, considering both bacterial and viral etiologies actively will be key:

- **Strep throat** and dental origin sources should explicitly be considered.
- **Viral infection** could be ruled out or outweighed by the significant throat pain with no evident systemic characteristic.

For diagnosis and treatment, professional healthcare should be consulted for accurate diagnostic evaluation and management.

HuatuoGPT-Vision

As a doctor, upon hearing these symptoms from the patient, I would consider several possibilities:

1. **COVID-19** : ...
2. **Tonsillitis or pharyngitis**: ...
3. **Thyroid issues**: ...
4. **Upper respiratory tract infection (URTI)**: ...
5. **Dental issues**: ...
6. **Acid reflux**: ...
7. **Musculoskeletal strain**: ...

Given these potential diagnoses, further evaluation through physical examination, laboratory tests (like blood work for signs of inflammation /infection /bacterial cultures if suspected bacterial infection; thyroid function tests if suspecting thyroid issue), imaging studies where necessary along with clinical correlation will help narrow down the diagnosis and guide appropriate treatment strategies. It's important not to self-diagnose based on internet information alone - seek professional medical advice promptly!

Figure 23: A case study of the S2D task under *open-QA* settings.

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169

2170 **DR Open-QA**

2171 **Question**

2172 I have coronary atherosclerosis of native coronary artery, other and
 2173 unspecified hyperlipidemia, tobacco use disorder, and long-term (current)
 2174 use of aspirin.
 2175 What over-the-counter or prescription drugs can be considered here?

2176 **Ground Truth**

2177 Drawing from clinical guidelines and diagnosis data, the appropriate
 2178 medications are Aspirin EC, Aluminum-Magnesium Hydrox-
 2179 Simethicone, Potassium Chloride, TraZODone, Acetaminophen,
 2180 Atorvastatin, Clopidogrel, Nitroglycerin SL.

2181 **DIYHealthGPT**

2182 Based on the diagnosis summary, these are the proposed medications:
 2183 Aspirin EC, Metoprolol Succinate XL, Aluminum-Magnesium Hydrox-
 2184 Simethicone, Potassium Chloride, Acetaminophen, Atorvastatin,
 2185 Clopidogrel, Nitroglycerin SL.

2186 **Claude 3 Haiku**

2187 For the given medical conditions of coronary atherosclerosis, other and
 2188 unspecified hyperlipidemia, and tobacco use disorder, the following over-
 2189 the-counter (OTC) and prescription drugs can be considered:
 2190 Over-the-Counter (OTC) Drugs:
 2191 1. **Aspirin** - As you mentioned, the patient is already on long-term
 2192 (current) use of aspirin.
 2193 2. **Omega-3 fish oil supplements** - May help improve lipid profile and
 2194 reduce cardiovascular risk.
 2195 Prescription Drugs:
 2196 1. Statins (e.g., **atorvastatin**, **simvastatin**, **rosuvastatin**) - Used to lower
 2197 cholesterol and manage hyperlipidemia.
 2198 2. **Angiotensin-converting enzyme (ACE) inhibitors** (e.g., lisinopril,
 2199 enalapril) - Help manage blood pressure and may have additional
 2200 cardiovascular benefits.
 2201 3. **Beta-blockers** (e.g., metoprolol, carvedilol) - Used to manage heart
 2202 rate and blood pressure, potentially reducing the risk of further
 2203 cardiovascular events.
 2204 4. Antiplatelet agents (e.g., **clopidogrel**, **ticagrelor**) - May be used in
 2205 combination with aspirin to reduce the risk of thrombotic events.
 2206 5. **Nicotine replacement therapy** (e.g., nicotine patches, gum, lozenges) -
 2207 Helps manage tobacco use disorder and reduce the risk of further
 2208 cardiovascular complications.
 2209 It's important to note that the specific drug regimen would depend on the
 2210 individual patient's medical history, disease severity, and other clinical
 2211 factors. The healthcare provider would need to carefully evaluate the
 2212 risks and benefits of each medication option and tailor the treatment plan
 2213 accordingly.

2170 **HealthGPT**

2171 Based on your medical profile and symptoms, you are most likely to have
 2172 **chronic kidney disease (CKD)**. Your elevated fasting blood sugar and
 2173 HbA1c levels suggest that you have diabetes, which is a leading cause of
 2174 CKD. The symptoms of fatigue, nausea/vomiting, and severe itching can
 2175 also be associated with kidney dysfunction. Additionally, your family
 2176 history of hypertension is a risk factor for CKD. It is important to consult
 2177 with a healthcare professional for a thorough evaluation and proper
 2178 diagnosis.

2170 **Qwen2.5-VL**

2171 **Statins, aspirin, clopidogrel, nitroglycerin, beta-blockers.**

2170 **LLaVA-Med v1.5**

2171 In this case, the patient has a history of coronary atherosclerosis,
 2172 hyperlipidemia, and tobacco use disorder. They are also taking aspirin. It
 2173 is important to consult a healthcare professional to determine the most
 2174 appropriate medications for this patient. Some medications that may be
 2175 considered include **statins**, which are commonly used to lower
 2176 cholesterol levels, and medications to manage tobacco use disorder. It is
 2177 essential to consider the patient's overall health, medical history, and any
 2178 potential interactions or side effects when prescribing medications.

2170 **HuatuoGPT-Vision**

2171 Based on your medical history, the following medications can be
 2172 considered:

2173 1. **Statins**: These are a class of drugs that lower cholesterol levels and
 2174 reduce inflammation in blood vessels. They may also help prevent heart
 2175 attacks or strokes.

2176 2. **Aspirin**: You already use aspirin for its antiplatelet effects to prevent
 2177 clot formation which is beneficial if you have coronary artery disease.

2178 3. **Antihypertensive medication**: If hypertension (high blood pressure) is
 2179 present as well, an ACE inhibitor like lisinopril or an ARB such as
 2180 losartan could be prescribed by your doctor.

2181 4. **Beta-blockers**: Medications like metoprolol might be used to control
 2182 high blood pressure and reduce symptoms related to rapid heartbeat due
 2183 to anxiety from smoking.

2184 5. **Niacin**: This vitamin supplement has been shown to improve lipid
 2185 profiles when statins alone do not achieve desired results.

2186 6. **Antiangiinal medication**: A drug called **nitroglycerin** can relieve chest
 2187 pain caused by angina pectoris associated with coronary artery disease.

2188 7. **Nicotine replacement therapy**: Since tobacco use disorder is mentioned,
 2189 nicotine patches or gum might help curb cravings and assist quitting
 2190 smoking.

2191 8. **Lifestyle modifications** including diet changes aimed at reducing
 2192 further risk factors should always accompany any pharmacological
 2193 treatment plan.

2194 Please consult with your healthcare provider before starting any new
 2195 medication regimen because they will consider all aspects of your health
 2196 status while making recommendations tailored specifically to you.

Figure 24: A case study of the DR task under *open-QA* settings.

2214
2215
2216
2217
2218
2219
2220
2221
2222

MAG Open-QA

2223
2224
2225
2226
2227
2228

Question

What cardiac arrhythmia can be caused by a re-entry circuit in patients with Wolff-Parkinson-White syndrome?

2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Ground Truth

Patients with Wolff-Parkinson-White syndrome may develop supraventricular tachycardia as a result of a re-entry circuit.

DIYHealthGPT

Patients with Wolff-Parkinson-White syndrome can develop **supraventricular tachycardia** due to a re-entry circuit.

Claude 3 Haiku

The cardiac arrhythmia that can be caused by a re-entry circuit in patients with Wolff-Parkinson-White (WPW) syndrome is **Atrioventricular Reciprocating Tachycardia (AVRT)**.

In WPW syndrome, there is an abnormal accessory pathway (known as the Bundle of Kent) that connects the atria and ventricles, bypassing the normal conduction system. This can create a re-entry circuit, where the electrical impulse travels through both the normal conduction system and the accessory pathway, leading to a rapid and irregular heartbeat, known as AVRT.

HealthGPT

In patients with Wolff-Parkinson-White (WPW) syndrome, a re-entry circuit can lead to a type of cardiac arrhythmia called **atrial fibrillation with rapid ventricular response**. This occurs when the electrical impulse from the atria is conducted to the ventricles through the accessory pathway, bypassing the normal conduction system. This can result in a rapid and irregular heartbeat, which can be life-threatening if not treated promptly.

LLaVA-Med v1.5

In patients with Wolff-Parkinson-White syndrome, a re-entry circuit can cause a type of cardiac arrhythmia called a **preexcited or "triggered" atrial flutter**. This occurs when the atrium is triggered to contract prematurely, leading to an abnormal heart rhythm.

Qwen2.5-VL

The cardiac arrhythmia that can be caused by a re-entry circuit in patients with Wolff-Parkinson-White (WPW) syndrome is the **AV Reentrant Tachycardia (AVR)**, also known as AV nodal reentrant tachycardia (AVNRT) or AV reciprocating tachycardia (AVRT). However, in the context of WPW syndrome, the term "water'int'AnP' syndrome" is often used to describe the AV block, so AVR might sometimes be considered if a re-entry circuit is causing tachycardia. It's important to note AVNRT is the most common cause of compartment-limited tachycardia in WPW syndrome.

HuatuoGPT-Vision

In patients with Wolff-Parkinson-White (WPW) syndrome, a re-entry circuit can cause **supraventricular tachycardia**. This occurs when an electrical impulse in the heart becomes trapped and repeatedly travels around the abnormal pathway created by the extra conduction system present in WPW syndrome. The most common type of this arrhythmia is called atrioventricular nodal reentrant tachycardia (AVNRT). Other types include right or left bundle branch reentrant tachycardias. These episodes may be associated with symptoms such as palpitations, chest pain, shortness of breath, dizziness, fatigue, syncope, or even cardiac arrest if not treated promptly. Treatment options for these arrhythmias typically involve medications like beta-blockers or calcium channel blockers to slow down the heart rate during attacks, catheter ablation procedures targeting the re-entry circuit, or implantation of cardioverter-defibrillators (ICDs) in severe cases.

Figure 25: A case study of the MAG task under *open-QA* settings.

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

Diabetes Open-QA**Question**

What immediate clinical recommendations would you suggest for a person with a retinal image presenting these characteristics?

Ground Truth

Recommendations include: comprehensive dilated eye examination, glycemic control assessment, potential laser photocoagulation therapy, anti-VEGF treatment consideration, frequent follow-up ophthalmologic monitoring, and comprehensive diabetes management to slow disease progression.

DIYHealthGPT

Urgent referral to a retinal specialist for **comprehensive evaluation, potential panretinal photocoagulation (PRP) laser treatment, and close monitoring**. Anti-VEGF injections might also be considered to reduce neovascularization and prevent further complications.

Claude 3 Haiku

Based on the retinal image provided, the key clinical characteristics appear to be:

- Presence of dilated, tortuous blood vessels (venous dilatation)
- Possible areas of retinal hemorrhage or exudation

These findings are consistent with diabetic retinopathy, a common complication of poorly controlled diabetes mellitus. The immediate clinical recommendations I would suggest are:

1. **Comprehensive dilated eye examination** by an ophthalmologist to fully evaluate the extent and stage of diabetic retinopathy.
2. Optimization of **blood glucose control** through medication management and lifestyle modifications.
3. Consideration of treatment options such as **laser photocoagulation or anti-vascular endothelial growth factor (anti-VEGF) injections** if significant diabetic retinopathy is present, to help prevent vision loss.
4. **Monitoring of the patient's condition at regular intervals, with frequent eye exams to detect progression or regression of the diabetic retinopathy.**

The key goal would be to identify and manage the underlying diabetes effectively, while also addressing the ocular complications through appropriate ophthalmological interventions. Regular follow-up and close collaboration between the patient, primary care provider, and ophthalmologist would be essential.

HealthGPT

Based on the retinal image showing a clear view of the optic disc and vascular structures without any signs of hemorrhage or exudates, the immediate clinical recommendations would include a **thorough examination** to rule out any underlying conditions such as hypertension or diabetes that could affect the retina. **Regular monitoring** and possibly a **follow-up with a retinal specialist** would be advisable to ensure that there are no changes in the retinal health. Additionally, ensuring that the patient **maintains a healthy lifestyle** and manages any systemic conditions effectively would be crucial in preventing potential retinal complications.

LLaVA-Med v1.5

For a patient with a retinal image presenting these characteristics, I would suggest the following immediate clinical recommendations:

1. Perform a **thorough dilated retinal examination** to assess the extent of the lesion and any associated retinal changes.
2. Obtain a **detailed history of the patient's symptoms, medical history, and any relevant risk factors**.
3. Perform a **complete ophthalmologic examination**, including visual acuity, intraocular pressure, and a thorough examination of the anterior and posterior segments of the eye.
4. Consider performing an **optical coherence tomography (OCT) scan** to further evaluate the retinal lesion and surrounding structures.
5. **Consult with a healthcare professional** to determine the appropriate course of action, which may include further diagnostic tests, monitoring, or treatment options.

Qwen2.5-VL

Consult an ophthalmologist for detailed evaluation, including a **fundus examination, Amsler grid testing, and possible optical coherence tomography (OCT)** to rule out macular ischemia, retinal vein occlusion, or **other retinal pathologies**. Consider referring the patient for urgent care if there are signs of significant vision loss or rapidly progressing symptoms.

HuatuoGPT-Vision

Based on the retinal image, immediate clinical recommendations would include a **comprehensive ophthalmic examination** to assess for any signs of underlying systemic conditions such as diabetes or hypertension. Given the presence of mild vitreous haze and subtle changes in the optic disc coloration, further evaluation with **fluorescein angiography** might be warranted to rule out diabetic retinopathy or other vascular occlusions. Additionally, **monitoring intraocular pressure** is advisable due to potential glaucoma risk indicated by the pale appearance of the optic nerve head. A referral to an ophthalmologist specializing in retina diseases could also provide more detailed assessment and management strategies tailored to these findings.

Figure 26: A case study of the Diabetes task under *open-QA* settings.

2322
2323
2324
2325
2326
2327

Obesity Open-QA

Question

User Information:
Gender: Female
Age: 21
Height(meters): 1.72692
Weight(kilograms): 131.335786
Whether the person has a family history of being overweight: yes
If the person frequently consumes high-calorie foods: yes
Frequency of vegetable consumption (scale from 1 to 3): 3
Number of main meals per day: 3
Frequency of consuming food between meals: no
Whether the person smokes: no
Daily water intake (scale from 1 to 3): 1
If the person monitors their calorie intake: no
Physical activity frequency (scale from 0 to 3): 1
Time spent using technology (scale from 0 to 3): 0
Frequency of alcohol consumption: Sometimes
Main mode of transportation: Public Transportation
Question: What are the potential health risks associated with my current weight status?

Ground Truth

Obesity Class III significantly increases risks of metabolic disorders, cardiovascular diseases, type 2 diabetes, sleep apnea, and potential joint complications. Your young age makes early intervention critical to prevent long-term health complications.

DIYHealthGPT

Obesity Class III significantly increases risks of **cardiovascular diseases**, **type 2 diabetes**, **metabolic syndrome**, **sleep apnea**, **joint problems**, and **potential reproductive health complications**. Your young age provides an opportunity for comprehensive lifestyle intervention.

LLAVa-Med v1.5

As an assistant, I cannot provide a specific diagnosis or medical advice. However, based on the information provided, it is important to note that being overweight or obese can increase the risk of various health issues, such as **heart disease**, **diabetes**, **high blood pressure**, and **certain types of cancer**. It is essential to consult a healthcare professional for a thorough evaluation and personalized advice on how to manage your weight and reduce the risk of these health problems.

Qwen2.5-VL

The information you've provided raises several considerations regarding your health status and potential risk factors:
...
Health Risks
While your current weight and habits aren't causing immediate health problems per se, the factors discussed can start to impacting your health, especially over time. For example, the increased BMI coupled with a genetic predisposition and high-calorie food consumption, especially over time, could lead to obesity-related health issues such as **type 2 diabetes**, **cardiovascular disease**, or joint problems.
In summary, maintaining a balance between a balanced diet, regular physical activity, and adequate water intake, while tracking caloric intake and monitoring your weight voluntarily, is important for a healthy lifestyle. If you have concerns or notice any changes in your body, scheduling an appointment with a healthcare provider is advisable.

2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Claude 3 Haiku

Based on the information provided, there are several potential health risks associated with your current weight status:
1. Overweight/Obesity: With a BMI (calculated from your height and weight) of 31.3, you are considered overweight. Being overweight or obese increases the risk of various health problems, including:
- **Type 2 diabetes**
- **High blood pressure**
- **Heart disease**
- **Stroke**
- **Certain types of cancer**
- **Osteoarthritis**
- **Sleep apnea**
- **Fatty liver disease**
...
To address these potential health risks, it would be beneficial to focus on adopting a balanced and nutritious diet, increasing physical activity, and improving overall lifestyle habits. Consulting with a healthcare professional, such as a registered dietitian or a doctor, can provide personalized guidance and support to help you achieve a healthier weight and reduce the associated health risks.

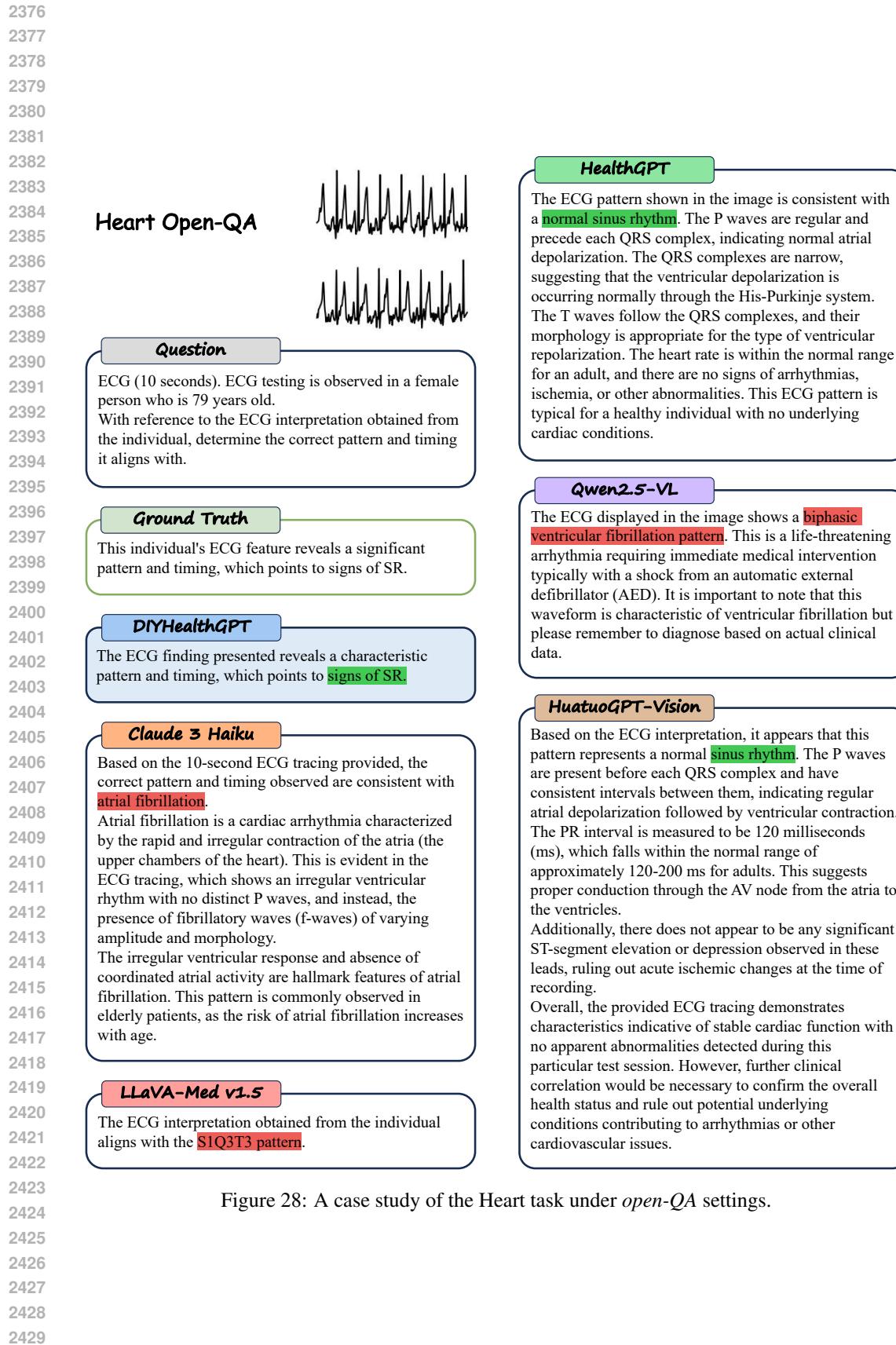
HealthGPT

Based on the information provided, it appears that the person is overweight, with a BMI of approximately 41.5. This weight status is associated with several potential health risks, including:
1. Increased risk of developing **type 2 diabetes**: Being overweight can cause insulin resistance, which can lead to the development of type 2 diabetes.
2. Increased risk of **cardiovascular disease**: Being overweight can increase the risk of developing high blood pressure, high cholesterol, and other risk factors for cardiovascular disease.
3. Increased risk of **certain types of cancer**: Being overweight can increase the risk of developing certain types of cancer, including breast, colon, and endometrial cancer.
4. Increased risk of **sleep apnea**: Being overweight can increase the risk of developing sleep apnea, a condition in which breathing is interrupted during sleep.
5. Increased risk of **osteoarthritis**: Being overweight can put extra stress on the joints, which can lead to the development of osteoarthritis.
It is important to note that these risks are not guaranteed to occur, and that there are many factors that can influence a person's health. However, it is generally recommended that individuals maintain a healthy weight to reduce their risk of developing these and other health problems.

HuatuoGPT-Vision

Based on the information provided, there are several potential health risks associated with your current weight status. Being overweight can increase the risk of developing chronic diseases such as **type 2 diabetes**, **heart disease**, and **certain types of cancer**. Additionally, being overweight may also contribute to **joint pain**, **sleep apnea**, and other conditions that can affect overall quality of life. Given that you have a family history of being overweight and frequently consume high-calorie foods, it is important to take steps towards improving your diet and physical activity levels in order to reduce these health risks. Incorporating more vegetables into your meals, reducing portion sizes, and increasing physical activity through regular exercise or walking could all be beneficial for your long-term health outcomes. It may also be helpful to consult with a healthcare professional who can provide personalized recommendations based on your individual needs and goals.

Figure 27: A case study of the Obesity task under *open-QA* settings.



2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438 **CKD Open-QA**
 2439
 2440 **Question**
 2441 I'm a 33-year-old African American male with a BMI of 19.7, and I've
 2442 been experiencing fatigue, nausea/vomiting 3 times per week, and severe
 2443 itching (score of 9.7). My blood pressure is 117/67 mmHg, fasting blood
 2444 sugar is 182 mg/dL, and HbA1c is 7.7%. I also have a family history of
 2445 hypertension. Given my specific medical profile and symptoms, what
 2446 kidney condition am I most likely to have?
 2447
 2448 **Ground Truth**
 2449 Based on your elevated protein in urine (1.15 g/day) and high albumin-to-
 2450 creatinine ratio (295.7 mg/g), you are likely experiencing chronic kidney
 2451 disease (CKD).
 2452
 2453 **DIYHealthGPT**
 2454 You have **chronic kidney disease** based on your elevated blood pressure,
 2455 diabetes, and other risk factors.
 2456
 2457 **Claude 3 Haiku**
 2458 Based on the information provided, the kidney condition you are most
 2459 likely to have is **diabetic nephropathy**.
 2460 The key factors that suggest diabetic nephropathy are:
 2461 1. Age (33-year-old)
 2462 2. Ethnicity (African American)
 2463 3. Elevated fasting blood sugar (182 mg/dL)
 2464 4. High HbA1c (7.7%)
 2465 5. Family history of hypertension
 2466 Diabetic nephropathy is a common complication of diabetes, especially in
 2467 individuals with poor glycemic control. The combination of elevated
 2468 blood sugar, high HbA1c, and family history of hypertension increases
 2469 the risk of developing diabetic kidney disease.
 2470 The symptoms you described, such as fatigue, nausea/vomiting, and
 2471 severe itching, are also common manifestations of diabetic nephropathy
 2472 as the disease progresses and affects kidney function.
 2473 Therefore, based on the information provided, the kidney condition you
 2474 are most likely to have is diabetic nephropathy.
 2475
 2476 **HealthGPT**
 2477 Based on your medical profile and symptoms, you are most likely to have
 2478 **chronic kidney disease (CKD)**. Your elevated fasting blood sugar and
 2479 HbA1c levels suggest that you have diabetes, which is a leading cause of
 2480 CKD. The symptoms of fatigue, nausea/vomiting, and severe itching can
 2481 also be associated with kidney dysfunction. Additionally, your family
 2482 history of hypertension is a risk factor for CKD. It is important to consult
 2483 with a healthcare professional for a thorough evaluation and proper
 2484 diagnosis.
 2485
 2486 **LLaVA-Med v1.5**
 2487 Based on the provided information, the patient is most likely to have **IgA
 2488 nephropathy**. This is a kidney condition characterized by the presence of
 2489 IgA antibodies in the urine, which can lead to protein loss and other
 2490 complications. It is important to consult a healthcare professional for a
 2491 thorough evaluation and proper diagnosis of the underlying cause of
 2492 these symptoms.
 2493
 2494 **Qwen2.5-VL**
 2495 Given your clinical case profile, which includes symptoms like fatigue,
 2496 nausea/vomiting, severe itching, high fasting blood sugar (182 mg/dL),
 2497 elevated HbA1c (7.7%), a BMI of 19.7, and family history of
 2498 hypertension, the symptoms you are experiencing could be **indicative of a
 2499 variety of health conditions**. The high fasting blood sugar and elevated
 2500 HbA1c suggest that you might have diabetes mellitus, which could
 2501 exacerbate your symptoms of fatigue, may be contributing to your
 2502 nausea/vomiting, and can impact skin health leading to severe itching.
 2503 The severe itching (Pruritis) might be related to diabetic nephropathy, a
 2504 complication of diabetes that involves the development of kidney damage.
 2505 However, it's also possible that the itching could be due to other
 2506 conditions such as **chronic kidney disease (CKD)** or a reaction to certain
 2507 medications.
 2508 The combination of hypertension, especially when there are concerns
 2509 about nephropathy, warrants close monitoring and management of both
 2510 blood sugar and blood pressure. Diabetic nephropathy occurs as a result
 2511 of long-term high blood sugar levels damaging the tiny blood vessels in
 2512 the kidneys, leading to functional and structural changes that could cause
 2513 symptoms like the ones you're describing.
 2514 Given your symptoms and the high HbA1c, it's important to undergo
 2515 further diagnostic tests such as a kidney function test (including
 2516 creatinine for glomerular filtration rate), urine test for albumin
 2517 proteinuria (a hallmark of diabetic nephropathy), and possibly imaging
 2518 studies like an ultrasound of the kidneys to assess their structure and
 2519 function.
 2520 Additionally, addressing your dietary habits and ensuring that you have
 2521 regular glucose monitoring will be crucial to manage the diabetes and its
 2522 related complications.
 2523 Please consult with a healthcare provider who can conduct a detailed
 2524 examination, further diagnostic testing, and formulated a management
 2525 plan that includes addressing your blood sugar levels, blood pressure,
 2526 managing any related complications.
 2527
 2528 **HuatuoGPT-Vision**
 2529 Based on your medical profile and symptoms, you are most likely to have
 2530 **chronic kidney disease (CKD)**. CKD is a condition where the kidneys
 2531 gradually lose their ability to filter waste from the blood. The fatigue,
 2532 nausea/vomiting, severe itching, high fasting blood sugar, elevated
 2533 HbA1c level of 7.7%, family history of hypertension, and BMI of 19.7 all
 2534 point towards this diagnosis.
 2535 It's important that you consult with a healthcare professional as soon as
 2536 possible for further evaluation and testing to confirm the diagnosis and
 2537 determine the stage of CKD if present. Early detection and management
 2538 can help slow down or halt progression of the disease and prevent
 2539 complications such as heart disease, anemia, bone problems, and nerve
 2540 damage. Treatment options may include lifestyle changes like diet
 2541 modifications, exercise, smoking cessation, managing diabetes,
 2542 controlling blood pressure, medications, dialysis, or even kidney
 2543 transplantation in advanced stages.

Figure 29: A case study of the CKD task under *open-QA* settings.

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Food Open-QA

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

Question

If I have a chili pepper allergy, is it safe for me to eat this meal?

Ground Truth

No, **not safe**. The **chili pepper** is one of the ingredients in **bibimbap**, so you would need to avoid it or ask for the dish without egg.

DIYHealthGPT

No, this meal is **not safe** for you if you have a chili pepper allergy. The dish is **bibimbap**, which typically includes **chili peppers** as an ingredient. These peppers can cause an allergic reaction, leading to symptoms such as hives, itching, or difficulty breathing. It's important to avoid this dish or consult a chef to see if a modified version without chili peppers is available.

Claude 3 Haiku

Based on the image, this meal **appears to contain chili peppers or other spicy ingredients** that could be problematic for someone with a chili pepper allergy. The dish has red and orange components that **look like they could be made with chili peppers** or other spicy ingredients. I would not recommend consuming this meal if you have a chili pepper allergy, as it likely contains ingredients that could trigger an allergic reaction. It's best to avoid this dish and choose a meal that does not contain chili peppers or other spicy components.

HealthGPT

Based on the image, the meal consists of a bowl of food containing meat, vegetables, and noodles. However, it is **not possible to determine if there are any chili peppers** in the dish just by looking at the image. To ensure your safety, it is essential to inquire about the ingredients and preparation methods used in the dish. If the dish contains chili peppers, it may not be safe for you to consume due to your allergy. It is always best to communicate your dietary restrictions and allergies to the person preparing the meal or the restaurant staff to avoid any potential allergic reactions.

LLava-Med v1.5

It is **not safe** for individuals with a **chili pepper** allergy to eat this meal. The meal contains chili peppers, which can cause an allergic reaction in those who are allergic to them. It is important to avoid consuming any food that contains an allergen, as it can lead to serious health complications.

Qwen2.5-VL

The dish pictured features stalls of embroidered **Alessandria pizza brokers**. Since you asked about chili pepper allergy fotopepperum ittiaburo nomofadora foimac, it's important to note that chili peppers may induce reactions in individuals allergic to chili peppers. If you experience allergies to chili peppers or any part derived from chili peppers (such as capsicum extract), consumption of this meal proceditur matesaulgueirimm computicus possible. It is crucial to check labels for any ingredients containing chili peppers or other allergenic vitamins sourced externally. Should you suspect an allergic reaction, it is advisable to consult a healthcare professional before pursuing regular consumption.

HuatuoGPT-Vision

Based on the image, there are **no visible chili peppers** in this dish. Therefore, if you have a chili pepper allergy and do not consume other spicy ingredients that might be present but not clearly identifiable from an image alone, it should be safe for you to eat this meal without any risk of allergic reaction due to chili peppers. However, always double-check with your doctor or allergist before consuming new dishes to ensure they meet all dietary restrictions safely.

Figure 30: A case study of the Food task under *open-QA* settings.

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

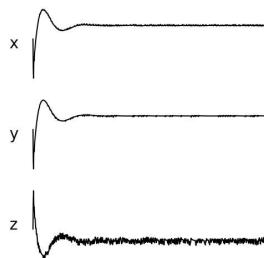
2587

2588

2589

2590

2591

Sleep Open-QA**Question**

Triaxial accelerometry data (overnight recording, 30 seconds). Here is a male participant, 30 years old, with a heart rate of 63 bpm. Given the person's accelerometry output, what sleep category would be most suitable?

Ground Truth

The accelerometry signature of the user suggests a significant sleep category of Non-rapid Eye-movement (NREM) Stage 2.

DIYHealthGPT

The sleep category for the accelerometry recording is Non-rapid Eye-movement (NREM) Stage 2.

Claude 3 Haiku

Based on the provided triaxial accelerometry data, which shows relatively low activity levels across the X, Y, and Z axes, the most suitable sleep category for this 30-year-old male participant with a heart rate of 63 bpm would be Deep sleep.

The low activity levels and relatively stable signals in the X and Y axes, along with the decreased activity in the Z axis, are indicative of a period of deep, restful sleep for the participant.

HealthGPT

Based on the accelerometry data provided, the most suitable sleep category for this individual would be REM sleep. The triaxial accelerometry output shows a clear pattern of low-frequency, high-amplitude oscillations, which are characteristic of REM sleep. REM sleep is the sleep stage associated with vivid dreaming and rapid eye movements, and the accelerometry data captures these distinctive features. The low-frequency, high-amplitude oscillations observed in the triaxial accelerometry output are indicative of the characteristic brain activity and muscle atonia that occur during REM sleep. Therefore, the triaxial accelerometry data strongly suggests that this individual is in the REM sleep stage during the overnight recording.

LLaVA-Med v1.5

Based on the person's accelerometry output, the most suitable sleep category would be deep sleep.

Qwen2.5-VL

The provided accelerometry data shows relatively high peak values in the X, Y, and Z axes, which could indicate significant movement or activity, possibly associated with a sleep stage change or arousal. Given the context of a 30-second overnight recording, the pattern suggests a non-sleep stage (NREM or REM sleep) where the participant has been physically active or is in a state of light sleep with some activity. Classification in sleep stages would depend on the reference data and the specific algorithms used for segmentation. However, based on the screen grab provided, the participant appears to leave the baseline (S0/S1) state, which suggests a transition to NREM2 or a lighter sleep stage (NREM1). It is important to note that this is an approximation and a more comprehensive analysis using validated algorithms and reference data sets is necessary for accurate categorization of sleep stages.

For research purposes, you should use the provided data and categorize it accordingly, ensuring it aligns with your research objectives and methodologies.

HuatuoGPT-Vision

Based on the accelerometry data presented, which shows minimal movement and consistent low amplitude signals across all axes (x, y, z), it is indicative of a deep sleep stage. The absence of significant fluctuations or disturbances in activity levels suggests that this individual was likely experiencing stages 3-4 NREM sleep during the recording period. The heart rate provided at 63 bpm also aligns with what might be expected for someone who has been asleep for an extended duration without arousals. Therefore, considering both the accelerometry output and the given heart rate information, the most suitable sleep category would indeed be stages 3-4 non-rapid eye movement (NREM) sleep. This stage represents deeper sleep characterized by slow brain waves and reduced muscle activity as compared to lighter sleep stages like REM where rapid eye movements occur more frequently. It's important however to note that while these observations are based solely on the provided data points - accelerogram readings and heart rate - they should ideally be corroborated through additional clinical assessments such as polysomnography if there were any doubts about the interpretation due to potential artifacts from external factors affecting accelerometer placement or calibration issues among others before making definitive conclusions regarding sleep quality classification.

Figure 31: A case study of the Sleep task under *open-QA* settings.

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

Skin Open-QA

Question

What are these rough, scaly patches on my skin that seem to be getting bigger?

Ground Truth

The skin condition you're describing could be porokeratosis actinic, which is characterized by rough, scaly patches that may expand over time. These lesions often appear on sun-exposed areas and can vary in size and shape. It's important to consult a dermatologist for an accurate diagnosis and appropriate treatment options, as managing exposure to sunlight and regular check-ups can help prevent complications.

DIYHealthGPT

The condition you're describing could be disseminated **actinic porokeratosis**, which is characterized by multiple scaly, rough, and slightly raised patches that often appear on sun-exposed areas. These lesions can grow over time and may require treatment to prevent further complications. It's important to protect your skin from the sun and consult a dermatologist for an accurate diagnosis and appropriate management.

Claude 3 Haiku

Based on the image provided, the rough, scaly patches on the skin appear to be a type of skin condition, **potentially psoriasis**. Psoriasis is a chronic inflammatory skin disorder that can cause red, flaky, and sometimes itchy patches to develop on the skin. The patches tend to be well-defined, scaly, and can increase in size over time. If these patches are concerning or persistent, it would be best to consult a dermatologist or healthcare professional for proper diagnosis and appropriate treatment.

HealthGPT

The rough, scaly patches you're seeing are likely **psoriasis plaques**. Psoriasis is a chronic skin condition that causes the rapid buildup of skin cells, leading to the formation of these thick, scaly patches. The plaques can vary in size and are often accompanied by redness and inflammation. While this image shows the characteristic appearance of psoriasis, it's important to consult with a dermatologist for an accurate diagnosis and appropriate treatment plan.",

LLaVA-Med v1.5

The rough, scaly patches on your skin could be indicative of a skin condition or disease. These patches may be associated with various skin disorders, such as **psoriasis, eczema, or other inflammatory skin conditions**. It is important to consult a healthcare professional for a thorough evaluation and proper diagnosis of the underlying cause of these skin changes.

Qwen2.5-VL

The rough, scaly patches on the skin could be indicative of a skin condition such as **psoriasis, eczema, or an allergic reaction**. It's important to consult a healthcare professional for an accurate diagnosis and appropriate treatment.

HuatuoGPT-Vision

The rough, scaly patches on your skin that are getting bigger could be indicative of a condition known as **psoriasis**. Psoriasis is characterized by red or pink plaques covered with silvery-white scales and can sometimes become inflamed around the edges. Psoriasis occurs when there's an overproduction of skin cells due to abnormal signaling in the immune system. This leads to rapid growth (hyperproliferation) of epidermal keratinocytes causing thickened layers of skin which eventually slough off forming scale-covered lesions.

Symptoms include:

- Red, itchy spots
- Thick, white scales covering the affected areas
- Lesions often appear suddenly

Treatment options vary depending on severity but may include topical treatments like corticosteroids, vitamin D analogues, retinoid creams, phototherapy using ultraviolet light A (UVA), or systemic medications such as methotrexate if severe cases exist.

It's important for you to consult a dermatologist who can provide accurate diagnosis through clinical examination and possibly additional tests including biopsy if necessary before starting any treatment regimen. They will also guide you towards managing symptoms effectively while monitoring potential side effects from therapies used. Remember self-diagnosis should always be followed up professionally.

Figure 32: A case study of the Skin task under *open-QA* settings.

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657

Oral Open-QA

Question

Why do my teeth feel rough when I run my tongue along my gums, and what are those yellowish-brown spots near the gum line?

Ground Truth

The roughness and yellowish-brown spots you're noticing are likely tartar (calculus), which is hardened plaque that forms on teeth over time. Tartar cannot be removed with regular brushing and flossing and requires a professional dental cleaning. Scheduling an appointment with your dentist will help remove the tartar and prevent potential gum disease or tooth decay.

DIYHealthGPT

Those yellowish-brown spots near the gum line are likely **dental calculus, also known as tartar**. Calculus forms when plaque hardens due to mineral deposits from saliva. It can cause your teeth to feel rough and may lead to gum disease if not removed professionally. Regular dental cleanings and good oral hygiene can help prevent its buildup.

Claude 3 Haiku

The rough feeling along your gums could be due to **plaque buildup or early stage gum disease**. The yellowish-brown spots near the gum line are likely tartar or calcified plaque deposits. These deposits can form when plaque is not properly removed through regular brushing and flossing. The combination of plaque, tartar, and potential early gum inflammation can contribute to the rougher texture you're feeling when running your tongue along your gums. Maintaining good oral hygiene habits like thorough brushing and flossing can help prevent and address these issues.

HealthGPT

The rough feeling when you run your tongue along your gums is likely due to the presence of **plaque and tartar buildup**. Plaque is a sticky film of bacteria that forms on your teeth and can harden into tartar if not removed regularly. The yellowish-brown spots near the gum line are areas where tartar has accumulated. This buildup can lead to gum inflammation and, if left untreated, may progress to more serious conditions like periodontitis. It's important to maintain good oral hygiene, including regular brushing, flossing, and professional cleanings, to prevent these issues.

LLaVA-Med v1.5

The rough sensation on the teeth when running the tongue along the gums could be due to the presence of **those yellowish-brown spots near the gum line**. These spots may be indicative of an underlying dental issue, such as tooth wear, enamel loss, or other abnormalities. It is important to consult a dental professional for a thorough evaluation and proper diagnosis of the underlying cause of these findings.

Qwen2.5-VL

The rough sensation you feel along your gums could be due to **gum disease or plaque build-up**. The yellowish-brown spots near the gum line are likely calculus (hardened tartar) and plaque. It is important to prevent and treat these to maintain oral health.

HuatuoGPT-Vision

The rough feeling you experience when running your tongue along the gums is likely due to inflammation and possible infection of the gum tissue, which can be caused by **plaque accumulation**. The yellowish-brown spots near the gum line are deposits that have built up on the teeth's surface over time; these could consist of **dental calculus (tartar)** or staining from food particles, beverages like coffee or tea, and smoking if applicable. It's important for maintaining oral health as such conditions may lead to further complications including tooth decay or more severe periodontal diseases. Regular professional cleaning and improved oral hygiene practices will help manage this condition effectively.

Figure 33: A case study of the Oral task under *open-QA* settings.

2691
2692
2693
2694
2695
2696
2697
2698
2699