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Abstract—As modern complex neural networks keep breaking records and solving harder problems, their predictions also become less

and less intelligible. The current lack of interpretability often undermines the deployment of accurate machine learning tools in sensitive

settings. In this work, we present a model-agnostic explanation method for image classification based on a hierarchical extension of

Shapley coefficients–Hierarchical Shap (h-Shap)–that resolves some of the limitations of current approaches. Unlike other Shapley-based

explanation methods, h-Shap is scalable and can be computed without the need of approximation. Under certain distributional

assumptions, such as those common in multiple instance learning, h-Shap retrieves the exact Shapley coefficients with an exponential

improvement in computational complexity. We compare our hierarchical approach with popular Shapley-based and non-Shapley-based

methods on a synthetic dataset, a medical imaging scenario, and a general computer vision problem, showing that h-Shap outperforms

the state of the art in both accuracy and runtime. Code and experiments are made publicly available.

Index Terms—Interpretable Machine Learning, Shapley coefficients, Image Explanations.
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1 INTRODUCTION

EXPLAINABILITY has become a question of increasing
relevance in machine learning, where the growing com-

plexity of deep neural networks often renders them opaque to
us, the humans interacting with them. This issue is commonly
referred to as the black-box problem and comprises theoretical,
technical, and regulatory questions [1], [2]. As deep neural
networks take on sensitive tasks in medical, legal, and
financial settings, they need to achieve both high accuracy
and high transparency for a safe deployment. For example,
uninterpretable predictions could mislead clinicians in their
decision making rather than support it [3]. Furthermore, it
is sometimes required by law [4] to provide an explanation
of how data lead an automated algorithm, for example, to
reject a loan application [4], [5], [6]. Finally, opaque models
can conceal dataset bias, and lead to socially unfair models
[7].

In this work, we are particularly interested in explaining
models in supervised learning scenarios in order to gain
further insights about the concept related to a specific
response. For example, assume one has a model that predicts
the presence of brain tumor in MRI scans with very high
accuracy. What are the most relevant morphological features
that indicate the presence of tumor, and where are they
located? Can we discover new features of the disease from
what the model has learned? Many important problems
of this kind exist, but the necessary tools to answer these
questions effectively and efficiently are still lacking.

The foundational work by Ribeiro et al. [8] spurred ex-
citing advances in local feature attribution methods, such as
Grad-CAM [9], Integrated Gradients [10], and DeepLIFT [11].
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Lundberg and Lee [12] provide a unified framework for sev-
eral different approaches under their SHAP method, which
leverages Shapley coefficients–a game-theoretic measure [13]–
and feature removal strategies. Unlike other perturbation-
based alternatives [14], these methods enjoy of important
consistency results and theoretical properties that the result-
ing attributions satisfy. Since then, a plethora of different
explanation methods has been developed1 for different
kinds of data (tabular, sequential, imaging), both based on
Shapley coefficients [16] as well as other information theoretic
quantities [17], [18], [19]. Although previous work explores
structured and hierarchical approaches [16], [20], [21], they
remain limited for high-dimensional data.

Notwithstanding the recent advances in image attribution
methods based on Shapley coefficients, several limitations
hinder their use for “large” images–a standard image con-
tains ⇡ 106 pixels, and larger images are used in several
important applications. We focus on problems that satisfy
a certain multiple instance learning assumption [22], which
can be found in many relevant fields. We show that in these
problems, the computation of Shapley coefficients can be
solved efficiently and without the need of approximation
by exploring a hierarchical partition of the input image.
The contribution of this work is three-fold: first, we present
a fast explanation method based on Shapley coefficients
that is exponentially faster than popular SHAP methods.
Second, under some distributional assumptions similar to
those in multiple instance learning problems, we show that
the coefficients provided by h-Shap are exact, and can be
further approximated in a controlled manner by trading
off computational cost. Third, we compare h-Shap with
other popular explanation methods on three benchmarks, of
varied complexity and dimension, demonstrating that h-Shap

1. To our knowledge, Covert et al. [15] compiled the most comprehen-
sive review of currently available explanation methods based on feature
removal.
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outperforms the state of the art both in terms of runtime and
retrieval of relevant features in all experiments.

This paper is organized as follows. In Sec. 2 we briefly
summarize the necessary background. We present h-Shap in
Sec. 3, including results on computational complexity and
approximation. We present experiments in Sec. 4 and their
results in Sec. 5. Finally, we discuss our limitations in Sec. 6,
and we conclude in Sec. 7.

2 BACKGROUND

In supervised learning scenarios, we are interested in ap-
proximating a response or label, Y 2 Y , from a given input
random sample X 2 X . Herein we assume a realizable
setting where the response Y = f⇤(X) 2 Y , for some
f⇤ : X ! Y , and denote the joint distribution of (X,Y )
as D. We look for a function f : X ! Y

0 that approximates
f⇤(X). Given a loss function L : Y ⇥ Y

0
! R that penalizes

the dissimilarity between the predicted and real label, we
look for f in a suitable functional class with minimal risk,
R = ED[L(Y, f(X))]. However, D is typically unknown and
instead we are provided with a training set {(X(i), Y (i))}N

i=1
of observed data. As a result, we search for a function that
minimizes the empirical risk,

f̂ = argmin
f2F

1

N

NX

i=i

L(Y (i), f(X(i))), (1)

where F = {f✓ : ✓ 2 ⇥}, with parameters ✓ (such as a
neural network model). We focus on binary classification
problems, where Y = {0, 1} and Y

0
2 R, though our general

methodology is applicable to multi-class settings as well. We
will refer to images–matrices of size (

p
n⇥
p
n)–as vectors

in the n-dimensional real space, i.e. X ✓ Rn.

2.1 Explaining predictions via Shapley coefficients
Modern machine learning models, in particular those based
on deep neural networks, can often provide solutions that
perform remarkably well. In many settings, however, one
would like to know the contribution of xi, the ith entry of X ,
towards the output. Let us define by C a subset of the entries
of X , so that C ✓ [n] := {1, . . . , n}, and define XC 2 Rn the
input that coincides with X in the entries denoted by C but
takes a different, baseline, value in its complement, C̄ . In the
context of interpretability, we look for a vector �(X,f̂) 2 Rn,
where the ith coordinate reflects the importance of xi in
producing the output f̂(X). Broadly speaking, the features
in C provide an explanation for the local prediction f̂(X)
if f̂(X) ⇡ f̂(XC). Different measures of importance have
been proposed to study model interpretability, and thus
to compute �(X,f̂). In this work we focus on the general
approach presented originally by [12] that employs Shapley
coefficients [13] as the measure of contribution of every pixel
toward the output, which has gained great popularity [23].
We now briefly introduce some game theory notation to
define Shapley coefficients.

Let g = (X, f, [n]) be an n-person cooperative game
with players [n] and characteristic function f : X 7! R
which maps the input space X to a score. In particular,
f(XC) is the score that the players in C would earn by

collaborating in the game, with f(X;) = 0 by convention2.
A solution concept is a rule that assigns a fair contribution
to each player in the game. Notably, Shapley coefficients,
denoted by �1(f), . . . ,�n(f), are the only solution concept
of (X, f, [n]) that simultaneously satisfy the properties of
efficiency, linearity, symmetry, and nullity [13]. In the context
of model explanations, input features are regarded as players,
and these properties imply that: i) feature attributions sum
up to the model prediction; ii) the attributions of features
playing a convex combination of games are equal to the
convex combination of the attributions of the features playing
the individual games independently; iii) the attributions of
irrelevant features are simply 0; and iv) the attributions
of equally important features are equal, respectively. These
equip Shapley-based methods with a useful set of properties,
which are not generally satisfied by others attributions
methods [14].

Shapley coefficients can be derived axiomatically [13],
and they are defined as

�i(f) =
X

C✓[n]\{i}

|C|!(n� |C|� 1)!

n!

⇥
f(XC[{i})� f(XC)

⇤
.

(2)
This way, �i(f) represents the averaged marginalized con-
tribution of xi over all possible subsets of [n]. Eq. (2) also
illustrates what is arguably the most important limitation
of Shapley coefficients: their computational cost is expo-
nential in the dimension of the input features (as there are
exponentially many distinct subsets C) requiring 2n unique
evaluations of f . This quickly becomes intractable in image
classification problems when f is a convolutional neural
network and n ⇡ 106, or larger. As a result, all state-of-the-
art image explanation methods based on Shapley coefficients
rely on some approximation strategy to work around this
computational limitation. For instance, GradientExplainer
[12] extends Integrated Gradients [10] by sampling multiple
references from the background dataset to integrate on.
Similarly, DeepExplainer [12], [25] builds upon DeepLIFT [11]
by choosing a per-node attribution rule that can approximate
Shapley coefficients when integrated over many background
samples. Finally, PartitionExplainer employs a hierarchical
clustering approach inspired by Owen coefficients [26], [27],
[28], which generalize Shapley coefficients to cooperative
games with a-priori coalition structures. Given a game
(X, f, [n]), let G = {G1, . . . , Gm} be a coalition structure
such that

S
G2G = [n], and Gq \Gu = ; for q 6= u. Then, the

Owen coefficient of xi is defined as

'i(f) =
X

H✓[m]\{q⇤}
C✓Gq⇤\{i}

wH,M,C,Gq⇤

⇥
f(XQ[C[{i})� f(XQ[C)

⇤
,

(3)
where wH,M,C,Gq⇤ is an appropriate constant, [m] :=
{1, . . . ,m}, Q =

S
q2H

Gq , and i 2 G, q⇤ 2 [m]. Similarly to
Shapley coefficients, Owen coefficients are the only solution
concept that satisfy similar properties of efficiency, marginal-
ity, and symmetry both across and within coalitions [29].
Intuitively, when looking at feature i from the perspective

2. Formally speaking, game theory [24] requires a characteristic
function v : P(X) ! R, where P(X) is the power set of X . Herein, and
following prior work [12], we assume v(C) = f(XC), 8C ✓ X , and
therefore use f for the sake of simplicity.
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of Shapley coefficients (i.e. Eq. (2)), one has to consider
all possible subsets of the remaining players. On the other
hand, when considering the Owen coefficient of feature i
in coalition Gq⇤ (i.e. Eq. (3)), one can only observe other
coalitions participate in the game together as a whole, while
still being able to observe all possible subsets of players
within coalition Gq⇤ . This a-priori coalition structure reduces
the number of subsets of players to explore. Given the close
relation between PartitionExplainer and h-Shap, we include
a detailed comparison in Appendix C.

To conclude, while the methods above provide approx-
imations that can sometimes work in practice, they only
provide consistency results and lack accuracy guarantees
when they are run with a few model evaluations [19]. Hence,
it is hard to understand when they will and will not be
effective. We will compare extensively with these approaches
later in Sec. 4.

We remark that one of the most important details of any
explanation method based on feature removal is the baseline,
which defines the value that XC takes in the entries not in C .
There are different approaches to removing features, ranging
from using the default value of 0, to using their conditional
distribution (refer to [15] for further details). Computing the
latter can be challenging, and recent work has explored
various approximations [30], [31]. The effects of using
different baselines have also been investigated in images
[32] and tabular data [33]. We follow the standard approach
of setting the baseline to the unconditional expected value
over the training dataset [12], [34], and comment on potential
extensions later.

2.2 Multiple Instance Learning
In this work, we focus on problems with particular joint
distributions of samples and labels. Our guarantees will
apply to settings broadly known as Multiple Instance Learning
(MIL) [22], [35]. In MIL, each instance xi is assumed to have
an instance-label, and the sample X is regarded as a bag
that aggregates all instances. The bag, X , has its own label
Y 2 {0, 1} determined by its constituent instances. In its
simplest version, the bag is assumed to be positive if at least
one of its instances is positive. As an example, an image
of cells will be labeled with infection if at least one cell
in it is infected. Importantly, the learner does not have
access to the instance-labels, but only to the global label Y .
Such an MIL setting appears in several important problems
[36], [37], [38]. In the context of our work, we assume that
the prediction rule satisfies such an MIL assumption. More
precisely, we will assume that

f⇤(X) = 1 () 9 C ✓ [n] : f⇤(XC) = 1. (4)

In words, Eq. (4) implies that f⇤(X) will be 1 as soon as
there is at least one subset C of [n] that contains the concept
we are interested in detecting. This is simply a formalization
of the setting we were describing earlier, where the concept
can be a specific morphological feature in a brain scan, a sick
cell in a blood smear, or something as general as a traffic
light in a street image.

As a partial summary of this section, f̂ is trained to
detect a binary concept in a sample image, and we would
like to detect which subsets of the input, XC , are relevant

for this task. While this could in principle be done via
Shapley coefficients, this is computationally intractable. We
now move on to present our approach, which will address
this limitation.

3 HIERARCHICAL-SHAP

Our motivating observation is that if an area of an image
is uninformative (i.e. it does not contain the concept), so
will be its constituent sub-areas. Therefore, the exploration
of relevant areas of an image can be done in a hierarchical
manner. There exists extensive literature on hierarchies of
games and their properties [39], [40]. Our contribution is to
deploy these ideas for the purpose of image explanations.

We now make this more precise. Let T0 = (S0, T1, . . . , T�)
be a recursive �-partition tree of X , where S0 is the root
node containing all features of X , i.e. S0 = [n], |S0| = n,
and T1, . . . , T� are the subtrees branching off of S0. Let
c(Si) = {C1, . . . , C�} denote the children of Si, and
h
f̂
: Si 7! (X, f̂ , c(Si)) be a mapping from the node Si of

Ti to the �-person cooperative game (X, f̂ , c(Si)). Succinctly,
G0 = h

f̂
(T0) is a hierarchy of �-person games, and we

denote by �i,1(f̂), . . . ,�i,�(f̂) the Shapley coefficients of
gi 2 G0. In simpler words, we partition an image X into a
few disjoint components, compute the Shapley coefficients �i of
each component, and then partition further in a hierarchical
manner. In particular, the number of such partitions per level
(specified by �) is very small: if X is a one dimensional vector,
we set � = 2 and T0 is a binary tree; when X is a (

p
n⇥
p
n)

image, � = 4 and T0 is a quadtree. As a result, computing
all 2� unique evaluations of f̂ required for each game
(X, f̂ , c(Si)) is trivial. For images, each coefficient requires
only 16 model evaluations. In fact, the remaining coefficients
(for the same node) involve the same terms but in different
permutations, so no extra model evaluations are needed. We
have chosen to employ symmetric disjoint partitions in this
work (i.e. halves for vectors, quadrants for images, etc) for
simplicity only. More sophisticated (and potentially data-
dependent) hierarchical partitions are possible as well. We
will comment on this in the discussion.

Given such nested partitions, h-Shap relies on evaluating
the resulting hierarchy of games while only visiting nodes
that are relevant. More precisely, beginning at S0, it computes
the coefficients �0,1, . . . ,�0,� of g0. Under Eq. (4), if any
�0,i = 0, all features in the corresponding subtrees will also
be irrelevant. As a result, they can be ignored altogether, and
we only proceed by exploring the Si for which �i > 0. This
process finishes when all relevant leaves have been visited. In
practice, we introduce two parameters to add flexibility. We
set a relevance tolerance, ⌧ , which determines the threshold
to be used to declare a partition relevant, and therefore
expand on its subtrees. We further introduce a minimal
feature size, s, that serves as a condition for termination.
These two parameters are naturally motivated by application
and easy to set. For example, it might not be that useful for
a domain expert to know the exact pixel-level explanation
of a given input. Rather, it would be more informative to
have a coarser aggregation of the features that inform the
model prediction. Later in this section, we will precisely
characterize how the minimal feature size s affects the
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Algorithm 1 Depth-first h-Shap (dh-Shap)

1: procedure dH-SHAP(X, T0, f̂ )
2: inputs: image X , threshold ⌧ � 0, trained model f̂
3: g0  (X, f̂ , c(S0))
4: �0,1, . . . ,�0,�  shap(g0)
5: for all �i do
6: if �i > ⌧ then
7: if |Si|  s then
8: return Si

9: else
10: return dh-Shap(X, Ti, f̂ )
11: end if
12: end if
13: end for
14: end procedure
15: L dh-Shap(X, T0, f̂)

dissimilarity between h-Shap’s attributions and the exact
Shapley coefficients. On the other hand, model deviations
and noise in the input may result in positive coefficients very
close to 0. Requiring �i > ⌧ > 0 provides control over the
sensitivity of the method. Finally, when ⌧ = 0, s = 1, h-Shap
simply explores all relevant nodes in T0 as described above.

Fixed ⌧ and s, h-Shap explores T0 starting from S0, and
it visits all relevant nodes Si : �i > ⌧, |Si| � s. This tree
exploration can be naturally done in a depth-first or breadth-
first manner; Algorithm 1 presents dh-Shap (depth-first h-
Shap). Please refer to Algorithm 2 in Appendix A for bh-Shap
(breadth-first h-Shap). The only difference between the two
algorithms is that the former defines ⌧ as an absolute value
(e.g. 0), whereas the latter does so relative to the pooled
Shapley coefficients of all nodes at the same depth (e.g. 50th
percentile). Both algorithms return the set of relevant leaves
L ✓ [n] with coefficients greater than ⌧ , and the saliency
map b�(X,f̂) is finally computed as

b�i =

(
1/|L| if i 2 L,

0 otherwise.
(5)

This choice will ensure that b�(X,f̂) is consistent with the
exact Shapley attributions �(X,f̂) under the MIL assumption,
as we will formalize shortly.

To mask features out (i.e. as baseline), h-Shap uses
their expected value (or unconditional distribution [34]) for
simplicity, as done by other works [15]. As pointed out
by [12], [15], this is valid under the assumptions of model
linearity and feature independence3. Yet, as we will argue
later in Sec. 7, the feature independence property holds
approximately in the cases we are interested in this work,
whereas our MIL assumptions are enough to provide specific
guarantees without requiring linearity of the model. We will
also show in Sec. 4 that these assumptions are sufficient for
h-Shap to work well in practice. More generally, our contri-
bution is independent of the particular method employed for
sampling the baseline, and follow-up work can employ better

3. We refer to [19], [23], [34], [41] for recent discussion on the use of
observational vs interventional conditional distributions in the context of
removal-based explanation methods.

approximations of both the observational and interventional
conditional distributions in appropriate tasks [41].

3.1 Computational analysis

The benefit of h-Shap relies in decoupling the dimensionality
of the sample X (i.e. n), from the number of players in each
game (i.e. �). As we will explain in this section, this leads
to an exponential computational advantage over the general
expression in Eq. (2) in explaining f̂ . In the analysis that
follows, we do not include the computation of the baseline
value–which we assume fixed, see discussion in Sect. 7–and
we refer the reader to the proofs of all the results in this
section to the Appendix B. Let us denote by T̂0 the subtree
of T0 explored by h-Shap (i.e. the one with the visited nodes
only). We will also assume in this section that n is a power
of � for simplicity of the expressions4. We begin by making
the following remark.

Remark 3.1 (Computational cost). Given X 2 Rn, h-Shap
requires at most 2�k log

�
(n) model evaluations, where k is the

number of relevant leaves in T̂0.

This result follows directly by noting that the cost of
splitting each node is always 2� , and by realizing that
each important leaf takes, at most, log

�
(n) nodes, which

is exponentially better than the cost of Eq. (2). The reader
should recall that the number of internal nodes of a full
and complete �-partition tree is (n � 1)/(� � 1). Then, the
above result is relevant whenever k log

�
n < (n� 1)/(�� 1).

This implies that further benefit is obtained whenever
k = O(n/ log

�
n), which is only a mild requirement in the

number of relevant features.
Moreover, it is of interest to know the expected compu-

tational cost, which can be significantly smaller than the
upper bound above. Throughout the rest of this section, and
to provide more precise results, we will let the data X be
drawn from a distribution of important and non-important
features. A distribution is “important” in the sense that it
leads to positive responses.

Assumption A1. The data X 2 Rn is drawn so that each entry
xi ⇠ aiI + (1 � ai)Ic, where ai ⇠ Bernoulli(⇢) is a binary
random variable that indicates whether the feature xi comes from
an important distribution I , or its non-important complement
I
c, so that

f̂(XC) = 1 () 9i 2 C : xi ⇠ I, C ✓ [n]. (6)

With these elements, we present the following result.

Theorem 3.2 (Expected number of visited nodes). Assume
X and f̂(X) satisfy A1, ⌧ = 0, and s = 1. Then, the expected
number of visited nodes in T̂0 is

E[|T̂0|] = 1 + �(1� p(S0))E[|T̂1|], (7)

where

p(Si) =

8
><

>:

(1� ⇢)
|Si|
� if i = 0,

(1� ⇢)
|Si|
�

✓
1�(1�⇢)

|Si|
��1
�

1�(1�⇢)|Si|

◆
otherwise.

4. Note that it is trivial to accommodate cases where this is not true.
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Fig. 1: Expected number of visited nodes as a function of ⇢
when n = 64, � = 2, s = 1.

See Proof B.1. This result does not provide a closed-form
expression for the expected number of visited nodes (and,
correspondingly, computational cost), but it does provide
a simple recurrent formula that can be easily computed.
Naturally, this cost depends on the Bernoulli probability ⇢,
the average number of important features in X . We present
the resulting E[|T̂0|] for a specific case in Fig. 1 as a function
of ⇢, showing that indeed the expected cost can be much
lower than the worst-case bound. While this result (and,
centrally, Assumption A1) was presented for the case where
the relevant features are of size 1, similar results can be
provided for the case when the minimal features size s > 1.

3.2 Accuracy and Approximation

Recall that h-Shap provides image attributions by means of a
hierarchy of collaborative games. As a result, the attributions
are different, in general, from those estimated by analyzing
the grand coalition directly–that is, by the general Shapley
approach in Eq. (2). We remark that computing the Shapley
coefficients directly from Eq. (2) quickly becomes intractable
in image classification tasks. For example, even for a toy-
like dataset of small 10 ⇥ 10 pixels images, assuming that
each model computation takes 1 nanosecond (which is
unrealistically fast), computing the exact Shapley coefficients
would take ⇡ 3 ⇥ 1013 years. Yet, we now show that un-
der A1, h-Shap can in fact provide exact Shapley coefficients
while being exponentially faster. Additionally, h-Shap can
provide controlled approximations by trading computational
efficiency with accuracy.

We begin by noting that under the MIL assumption, all
positive features have the same importance. This agrees
with intuition that the number of times the positive concept
appears in the input image does not affect its label. We denote
as � and b� the exact and hierarchical Shapley coefficients,
respectively, for simplicity.

Remark 3.3. Under A1, and denoting k = k�k0, it holds that
the exact saliency map � satisfies

�i =

(
1/k if xi ⇠ I

0 otherwise.
(8)

This remark follows simply from the nullity and symme-
try properties of Shapley coefficients. As a result, the saliency
map computed by h-Shap, b�, as in Eq. (5), coincides with �
under the MIL assumption. We now derive a more general
similarity lower bound between � and b� that allows for
minimal feature sizes s > 1. For simplicity, we assume that n
and s are powers of �, and 1  s  n. First of all, because of
the MIL assumption, h-Shap will only keep exploring nodes
that have at least one important feature in them at each level
of the hierarchy. Thus, for each important feature i with
�i = 1/k there will be a non-zero coefficient produced by
h-Shap. The following result precisely quantifies to what
extent these two vectors � and b� match.

Theorem 3.4 (Similarity lower bound). Assume X 2 Rn and
f̂(X) satisfy A1, and k = k�k0. Then

h�, b�i
k�k2kb�k2

� max{1/
p
s,
q
k/n}. (9)

See Proof B.2. This result shows that not only does h-
Shap provide faster image attributions, but it retrieves the
exact Shapley coefficients defined in Eq. (8) under the MIL
assumption if s = 1. Notwithstanding, one can employ a
larger minimal feature size, s > 1, while still providing
attributions that are similar to the original ones. In light of
the result in Theorem 3.2, the latter attributions will naturally
result in improved (smaller) computational costs.

4 EXPERIMENTS

We now move to demonstrate the performance of h-Shap
and of other state-of-the-art methods for image attributions.
Our objective is mainly to compare with other Shapley-based
methods, such as GradientExplainer [12], DeepExplainer
[12], [25], and PartitionExplainer5. We also include LIME6

[8] given its relation to Shapley coefficients, and Grad-CAM7

[9] because of its popularity. We study three complementary
binary classification problems of different complexity and
input dimension: a simple synthetic benchmark, a medical
imaging dataset, and a general computer vision task. We
focus on scenarios where the ground truth of the image
attributions (i.e. what defines the label) is well defined and
available for evaluation. All experiments were conducted on
a workstation with NVIDIA Quadro RTX 5000. Our code is
made available for the purpose of reproducibility8. When
possible, each method was set to use as much GPU memory
as possible, so as to minimize their runtime. DeepExplainer
and GradientExplainer were constrained the most by mem-
ory, reflecting their limitation in analyzing large images. We
use h-Shap with both an absolute threshold ⌧ = 0, and a
relative threshold ⌧ equal to the 70th percentile, which we
refer to as ⌧ = 70% with abuse of notation. Finally, we
perform full model randomization sanity checks [42] on the
network used in the synthetic dataset for all explanation
methods. We refer the reader to Appendix E for these results.

5. The implementation of GradientExplainer, DeepEx-
plainer and PartitionExplainer are openly available at
https://github.com/slundberg/shap.

6. https://github.com/marcotcr/lime.
7. https://github.com/jacobgil/pytorch-grad-cam.
8. https://github.com/Sulam-Group/h-shap
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PartitionExp (m= 500)

(a) Synthetic dataset.
PartitionExp (m= 500)

(b) BBBC041 dataset.
PartitionExp (m= 128)

(c) LISA dataset.

Fig. 2: A few saliency maps for the three settings studied in this work, where blue pixels have negative, white pixels
have negligible, and red pixels have positive Shapley coefficients. The color mapping is adapted to each saliency map and
centered around 0. For h-Shap, we show the saliency map before the normalization step.

(a) (b) (c) (d)

PartitionExp (m= 500)

(e) (f) (g)

Fig. 3: Ablation examples for all explanation methods removing all important pixels from the original image 3a. The model
is trained to predict if a given image does contain a cross or not.

4.1 Synthetic dataset
We created a controlled setting where the joint data distribu-
tion is completely known, giving us maximal flexibility for
sampling. We generate images of size 100⇥ 120 pixels with
a random number of non-overlapping geometric shapes of
size 10 ⇥ 10 and of different colors, uniformly distributed
across the image. Each image that contains at least one cross
receives a positive label, and each image without any crosses
receives a negative label. Alongside with the images, we
generate the ground truth saliency maps by setting all pixels
that precisely lie on a cross to 1, and every other pixel to
0. We generate 8000 positive and negative images, and we
randomly sample train, validation, and test splits, with size
5000, 1000 and 2000 images, respectively. We train a simple
ConvNet architecture, optimizing for 50 epochs with Adam
[43], learning rate of 0.001 and cross-entropy loss. We achieve
an accuracy greater than 99% on the test set–implying that
the model has effectively satisfied the MIL assumption for
this problem. From the true positive predictions on the test
set, we choose 300 example images with 1 cross and as
many with 6 crosses to evaluate the saliency maps. Fig. 2a
presents a qualitative demonstration of h-Shap and other
related methods on this task.

4.2 P. vivax (malaria) dataset
Moving on to a real and high-dimensional problem, we
explore the BBBC041v1 dataset, available from the Broad

Bioimage Benchmark Collection9 [44]. The dataset consists of
1328, 1200⇥ 1600 pixels blood smears with uninfected (i.e.
red blood cells and leukocytes) and infected (i.e. gametocytes,
rings, trophozoites, and schizonts) blood cells. The dataset
also comprises bounding-box annotations of both healthy
and sick cells. We consider the binary problem of detecting
images that contain at least one trophozoite, yielding 655
positive and 673 negative samples. Given the small amount
of data available, we augment the training dataset with
random horizontal flips, and we randomly choose 120
positive, and equally many negative images as the testing
set. We apply transfer learning to a ResNet18 [45] network
pretrained on ImageNet. We optimize all parameters of the
pretrained network for 25 epochs with Adam [43]–learning
rate 0.0001. We use cross-entropy loss and learning rate decay
of 0.2 every 10 epochs. After training, our model achieves
a test accuracy greater than 99%. We finally aggregate
all 112 true positive predictions for evaluation, without
distinction on the number of trophozoites in the image.
Fig. 2b shows a sample image and the corresponding saliency
maps produced by the various methods.

4.3 LISA traffic light dataset.

We finally look at a general computer vision dataset consist-
ing of driving sequences collected in San Diego, CA, available

9. https://www.kaggle.com/kmader/malaria-bounding-boxes.
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(a) Synthetic dataset. Results for n = 1, 6 crosses.
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(b) BBBC041 dataset.
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(c) LISA dataset.

Fig. 4: f1 scores as a function of runtime for all explanation methods in all three experiments. To account for noise in
the explanations, we threshold saliency maps at 1 ⇥ 10�6 and compute f1 scores on the resulting binary masks. For
PartitionExplainer, m indicates the maximal number of model evaluations.

from10 [46], [47]. The complete dataset counts 43 007 frames
of size 960⇥1280 pixels, and 113 888 annotated traffic lights.
From this set, we take daytime traffic images, and train a
model to predict the presence of a green light in a sample
image. We respect the original train/test splits, providing
6108 train, 3846 test positive samples, and 6667 train, 3627
test negative samples. As before, we use data augmentation
and apply transfer learning on a pretrained ResNet18. We
optimize all parameters of the pretrained network for 25
epochs with Adam [43]–learning rate 0.0001. We use cross-
entropy loss and learning rate decay of 0.2 every 10 epochs.
After training, we achieve a test accuracy of ⇡ 95%. Finally,
we randomly sample 300 true positive examples to evaluate
the different attribution methods on. Fig. 2c illustrates a
positive sample image, and the corresponding saliency maps.

5 RESULTS

Fig. 2 shows a visual comparison of some saliency maps
obtained in the three experiments (for more examples, see
Fig. F.1). Note that while the saliency maps produced by
GradientExplainer and DeepExplainer appear empty in
Fig. 2b and 2c, they are not, and instead the single pixels are

10. https://www.kaggle.com/mbornoe/lisa-traffic-light-dataset.

too small to be visible (these are large images). This illustrates
how current Shapley-based explanation methods fall short
of producing informative saliency maps in problems with
large images. We further evaluate the explanation methods
by means of three performance measures: ablation tests,
accuracy, and runtime.

5.1 Ablation tests
As commonly done in literature [12], [32], [33] we remove
the top k scoring features of all methods by setting them
to their expected value, and plot the logit of the prediction
as a function of k. For these experiments, we use ⌧ = 0 so
as to find all the features that are relevant for the model.
Fig. 3 shows ablation results on one example image from the
synthetic dataset for all explanation methods. We expect a
perfect method to remove all crosses from the image–and
only those. We can appreciate how h-Shap removes mostly
only the crosses, while other methods also erase other shapes
which should not be identified as important. Furthermore,
removing more relevant features should produce a steeper
drop of the prediction logit. We include the respective curves
in Fig. F.2, depicting that h-Shap’s logit curves either quickly
drop towards 0 or provide a logit ⇡ 0 at complete ablation.
Indeed, h-Shap quickly identifies the most relevant features
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(a) Original image. (b) s = 80 pixels.

50px

(c) s = 20 pixels. (d) s = 5 pixels.

Fig. 5: Degradation of h-Shap’s maps as the minimal feature size s becomes smaller than the target concept.

in the image. Naturally, as tasks become harder, the accuracy
of f̂ decreases, and the model gets further away from the
oracle function f⇤. In these cases (for the real datasets), f̂
might not satisfy Eq. (4), resulting in noisier saliency maps,
and correspondingly, non-monotonic curves.

5.2 Accuracy and Runtime
Since we have ground-truth explanations in all these cases
(i.e. a cross, a sick cell, or a green traffic light), we use f1
scores as a measure of goodness of explanation. We argue
that f1 scores are a particularly informative measure for
explanations (when ground-truth is known), and consistent
with previous work [48]. Fig. 4 depicts the f1 scores as
a function of runtime for every explanation method and
experiment. The advantage of setting a relative relevance
tolerance ⌧ is clear: to detect the most relevant features
and discard the noisy ones, taking into account the risk
of the model f̂ , while also decreasing runtime. These results
reflect how the computational cost and accuracy guarantees
described earlier translate into application. Not only does
h-Shap decrease runtime compared to current Shapley-based
explanation methods–by one to two orders of magnitude–
but it also increases the f1 score. Fig. 4a shows that h-Shap’s
accuracy is not affected by the number of crosses in the image,
while other methods deteriorate when there is only one
cross to detect in the image. Importantly, in all experiments–
both synthetic and real–h-Shap consistently provides more
accurate and faster saliency maps compared to other Shapley-
based methods, and it is only beaten in speed by Grad-CAM,
which provides less accurate saliency maps.

6 DISCUSSION

6.1 Limitations
Before concluding, we want to delineate the limitations of
h-Shap, the most important of which is its MIL assumption
on the data distribution. The methodology proposed in this
work is designed to identify local findings that produce a
positive global response, accurately and efficiently. These are
precisely the important features C analyzed in Sec. 3. This
setting is controlled by the ratio of the size of the actual object
that defines the label, and the minimal feature size of the
algorithm. As an example, Fig. 5 depicts a zoomed-in version
of the map produced by h-Shap for one of the samples from
the P. vivax dataset, for different values of s. We see that
even when s is somewhat smaller than the object, h-Shap
still recognizes the important features in the image. Once s
is too small, however, the resulting map breaks down, as our
assumption does not hold any more. Indeed, small (5 ⇥ 5
pixels) image patches break Assumption A1 because a small

patch of a cell is not sufficient for the model to recognize
it. In practice, these failure cases can easily be identified
by deploying simple conditions searching over decreasing
sizes of s (which would not increase the computational cost).
We note that Eq. (6) can also be phrased as an OR function
across features. Intuitively, when the minimal feature size s
is smaller that the concept of interest, the OR function is no
longer appropriate.

A second limitation of h-Shap pertains the way hierarchi-
cal partitions are created. We have chosen to use quadrants
for their effectiveness and elegance, but this could be sub-
optimal: important features may fall in-between quadrants,
impacting performance. This limitation is minor, as it can
be easily fixed by applying ideas of cycle spinning and
averaging the resulting estimates. Furthermore, and more
interestingly, hierarchical data-dependent partitions could
also be employed. We regard this as future work.

6.2 Baseline and assumptions
Recall that all explanation methods based on feature removal–
like Shapley-based explanation methods–are sensitive to the
choice of baseline, i.e. the reference value used to mask
features. Then, we now turn our attention to h-Shap’s
masking strategy, or alternatively, how to sample a reference.
We recall that in this work we defined the variable XC as

(XC)i =

(
Xi if i 2 C

Ri otherwise,
(10)

where R 2 Rn�|C| is a baseline value. Throughout this work,
we have treated R as a fixed, deterministic quantity. However,
more generally, reference inputs are random variables. Let
this masked input be the random variable XC = [X̄C , R] 2
Rn, where X̄C 2 R|C| is fixed, and R is a random variable.
Here, we want to identify what relationships in the data
distribution are important for the model, so we follow the
original approach in [12]. Indeed, the definition of Shapley
values for the ith coefficient in Eq. (2) can be made more
precise by writing its expectation E[f̂(XC[{i})� f̂(XC)] as

ER[f̂([X̄C[{i}, R]) | X̄C[{i}]� ER[f̂([X̄C , R]) | X̄C ]. (11)

As it can be seen, if the model f̂ is linear, and the features
are independent, then Eq. (11) simplifies to

f̂([X̄C[{i},E[R]])� f̂([X̄C ,E[R]]), (12)

where E[R] is an unconditional expectation which can be
easily computed over the training data, and is precisely the
fixed baseline we employed in this work.

How realistic are these assumptions in our case? First,
the cases that we study here approximately satisfy feature
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independence in a local sense, and it is therefore reasonable
to consider the input features as independent when s–the
minimal feature size–is greater or similar to the size of
the concept we are interested in detecting. Indeed, this is
precisely true in the synthetic dataset, where each 10 ⇥ 10
pixels shape is sampled independently from the others. This
assumption is still approximately valid in the other two
experiments, where, for example, the presence or absence
of a cell does not affect the content of the image so many
pixels apart. On the other hand, while we have chosen very
general models f̂ which are far from linear, we argue that
A1 is enough to obtain a weaker sense of interpretability:
looking at

f̂([XC ,E[R]]), (13)

and under the MIL assumption, there are only two mutually
exclusive events for the subset C : (a) C contains at least one
relevant feature, and (b) C does not contain any relevant
features. When event (a) occurs, Eq. (13) will necessarily
yield a high value ⇡ 1, regardless of the value of the baseline
E[R]. It follows that if both C [ {i} and C contain important
features, Eq. (12) will be ⇡ 0; which agrees with intuition
that all important features are equally important. As a result,
because E[R] is fixed and A1 holds, a positive value of Eq.(12)
is only attained if (i.e. implies that) i is an important feature
(and it also implies that E[R] is not important).

To summarize, the choice of using the unconditional ex-
pectation as a baseline value is approximately valid because
feature independence approximately holds on a local sense,
and although the models we study are highly non-linear,
Assumption A1 guarantees a weaker sense of interpretability.
However, when these two conditions are not satisfied,
one should deploy different methods to approximate the
conditional distribution as in Eq. (11). Lastly, note that our
method relies on f̂ satisfying A1, and one should wonder
when this holds. Such an assumption is true when f⇤–the
true classification rule Y = f⇤(X)–satisfies A1 (which is
true for a variety of problems, including the ones studied in
our experiments), and f̂ constitutes a good approximation
for f⇤. As demonstrated in this work, such assumptions are
reasonable in practical settings.

6.3 Multi-class extensions

Even though we have focused on binary classification tasks
in this work, h-Shap can also be applied to multi-class
settings. We now briefly demonstrate this by modifying
the P. vivax experiment. We let Y 2 Y = {0, 1}2, such that
Y = (trophozoite,ring). Then, trophozoite = 1 if
and only if there is at least one trophozoite in the image,
and ring = 1 if and only if there is at least one ring cell
in the image. Note that in this setting, these two classes
are not mutually exclusive, as is typically the case for
traditional image classifications problems. The latter setting is
simply a particular case of the former. We randomly choose
a training split that contains 80% of each class, and we
finetune a ResNet18 pretrained on ImageNet. We optimize
all parameters for 60 epochs with Adam [43], using binary
cross-entropy loss per class (as the classes are not mutually
exclusive), learning rate of 0.0001, weight decay of 0.00001,
and learning rate decay of 0.7 every 7 epochs. After training,

(a) trophozoite = 1. (b) Explanation for label
trophozoite.

(c) ring = 1. (d) Explanation for label
ring.

Fig. 6: Example saliency maps for different labels in a
multiclass setting.

the model achieves an accuracy of ⇡ 87% on each label
across the held-out test set. Fig. 6 shows saliency maps for
two example images from the test set, one containing 6
trophozoites, and one containing 1 ring cell. h-Shap can
explain every class, and it retrieves the desired, different
types of cells. We regard studying the full implications and
capabilities of h-shap in multi-class MIL problems as future
work.

7 CONCLUSION

We presented a fast, scalable, and exact explanation method
for image classification based on a hierarchical extension
of Shapley coefficients. We showed that when the data
distribution satisfies a multiple instance learning assumption,
our method gains an exponential computational advantage
while producing accurate–or approximate, if desired–results.
Furthermore, we studied synthetic and real settings of
varying complexity, demonstrating that h-Shap outperforms
the current state-of-the-art methods in both accuracy and
runtime, and suggesting that h-Shap acts as a weakly-
supervised object detector. We have also presented and
illustrated limitations of our approach, and addressing them
is matter of future work.
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