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ABSTRACT

While the field of inverse graphics has been witnessing continuous growth, tech-
niques devised thus far predominantly focus on learning individual scene represen-
tations. In contrast, learning large sets of scenes has been a considerable bottleneck
in NeRF developments, as repeatedly applying inverse graphics on a sequence of
scenes, though essential for various applications, remains largely prohibitive in
terms of resource costs. We introduce a framework termed “scaled inverse graph-
ics”, aimed at efficiently learning large sets of scene representations, and propose
a novel method to this end. It operates in two stages: (i) training a compression
model on a subset of scenes, then (ii) training NeRF models on the resulting smaller
representations, thereby reducing the optimization space per new scene. In practice,
we compact the representation of scenes by learning NeRFs in a latent space to
reduce the image resolution, and sharing information across scenes to reduce NeRF
representation complexity. We experimentally show that our method presents both
the lowest training time and memory footprint in scaled inverse graphics compared
to other methods applied independently on each scene. Our codebase is publicly
available as open-source.

1 INTRODUCTION

Training Time (min)

Memory
Footprint

(MB)

Ours

Instant-NGP
K-Planes

TensoRF

Vanilla-NeRF

Tri-Planes

Figure 1: Resource Costs. Comparison of resource costs and novel view synthesis (NVS) quality of
recent works when naively scaling the inverse graphics problem (N = 2000 scenes). Circle sizes
represent the NVS quality of each method. Our method presents similar NVS rendering quality
compared to Tri-Planes, our base representation, while demonstrating the lowest training time and
memory footprint of all methods. The data behind this figure can be found in Appendix A.

The inverse graphics problem has proven to be a challenging quest in the domain of Computer Vision.
While many methods have historically emerged (Cohen & Szeliski, 2014; Park et al., 2019; Niemeyer
et al., 2020), particularly following the introduction of Neural Radiance Fields (Mildenhall et al.,
2020, NeRF), the question has mostly remained unchanged: how to model an object or scene, using
only its captured images? While this question continues to be an active area of research, our work
targets a scaled version of the original problem. In this paper, we introduce “scaled inverse graphics”
as the task of concurrently applying inverse graphics over a set of numerous scenes.
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We identify scaled inverse graphics as an increasingly prominent challenge in recent works. Notably,
works tackling 3D generative models (Shue et al., 2023; Müller et al., 2023; Erkoç et al., 2023;
Liu et al., 2024) typically require the creation of NeRF datasets, which serve as a prerequisite for
training. This is prohibitive, as creating large-scale datasets of implicit scene representations entails
significant computational costs. This problem also emerges in practical applications, where efficiently
scaling inverse graphics unlocks new ways in which 3D modeling techniques could be leveraged (e.g.
modeling product inventories). While this problem has traditionally been tackled in a naive manner
where scenes are independently learned, we propose a more efficient alternative to learning scenes in
isolation, thereby reducing overall computational costs, without compromising rendering quality.

In this paper, we present a novel technique that addresses scaled inverse graphics. We adopt Tri-Plane
representations (Chan et al., 2022b), as they are efficient and lightweight representations that are
well-suited for the framework of scaled inverse graphics, and as they have been the primary choice of
representations when learning NeRF datasets. Our primary objective is to compact the information
required to learn individual scenes when learning large sets of scenes. To this end, we propose a
Micro-Macro decomposition of Tri-Planes that splits learned features into shared features modeling
general information about the scenes in the dataset, and scene-specific features. Concurrently,
we learn our scenes in a 3D latent space, thereby alleviating the NeRF rendering bottleneck, and
accelerating our training. Our method operates in two stages. In the first stage, we train on a subset
of scenes the compression model, comprised of the autoencoder and the shared (Macro) Tri-Planes
features. In the second stage, we utilize these trained components to learn the remaining scenes on
smaller representations, thereby reducing the optimization space per scene.

We conduct extensive experiments to evaluate our method in terms of both resource costs and
rendering quality when learning large sets scenes, and compare it against the current naive baseline.
We further provide an expansive illustration of the resource costs of our method, alongside an ablation
study, hence justifying our design choices. As illustrated in Fig. 1, our method presents both the
lowest training time and memory footprint in scaled inverse graphics as compared to other methods
applied independently on each scene, all while demonstrating comparable NVS quality to Tri-Planes.

A summary of our contribution can be found below:

• We identify the problem of scaled inverse graphics and address it through a novel method,
• We present a novel Micro-Macro decomposition that captures common structures across

scenes in shared representations,
• We propose a two-stage training approach that compacts scene representations and enables

efficient large-scale scene learning,
• We conduct extensive experiments showing that our method presents the lowest resource

costs in scaled inverse graphics while maintaining comparable rendering quality, and justify
our design choices through an ablation study

2 RELATED WORK

NeRF resource reductions. Neural Radiance Fields (Mildenhall et al., 2020, NeRF) achieve
impressive performances on the task of Novel View Synthesis (NVS) by adopting a purely implicit
representation to model scenes. Following the introduction of NeRFs, several methods have been
proposed to improve upon training times and memory costs. Barron et al. (2021; 2022) achieve
exceptional quality while requiring low memory capacity to store scenes, as they represent scenes
through the weights of neural networks. This however comes with the downside of high training and
rendering times due to bottlenecks in volume rendering. To alleviate these issues, some works trade-
off compute time for memory usage by explicitly storing proxy features for the emitted radiances and
densities in 3D structures (e.g. voxel-based representations (Sun et al., 2022; Chen et al., 2022; Yu
et al., 2021; Müller et al., 2022) or plane-based representations (Chan et al., 2022a; Fridovich-Keil
et al., 2023; Cao & Johnson, 2023)). Kerbl et al. (2023) and Fridovich-Keil et al. (2022) completely
forgo neural networks, achieving real-time rendering but at high memory costs. While previous works
have primarily focused on reducing resource costs when learning individual scenes, we propose a
method that presents both the lowest training time and memory footprint when learning large sets of
scenes, while maintaining rendering quality comparable to that of our base representation. This is
partly done by utilizing parts of our pipeline to learn base features that are shared among scenes and
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utilized in the second stage of our training, which has proven to be advantageous in previous works
(Dupont et al., 2022; Tancik et al., 2021).

Latent NeRFs. Latent NeRFs extend NeRFs to render latent image representations in the latent
space of an auto-encoder. Several recent work have utilized Latent NeRFs for 3D generation (Metzer
et al., 2023; Seo et al., 2023; Ye et al., 2023; Chan et al., 2023), scene editing (Khalid et al., 2023; Park
et al., 2024), and scene modeling (Aumentado-Armstrong et al., 2023). However, as latent spaces are
not directly compatible with NeRF learning, previous works have resorted to special scene-dependent
adaptations, which prevent the concurrent modeling of numerous scenes within a common latent
space. In a separate contribution, Anonymous (2024) propose an Inverse Graphics Autoencoder
(IG-AE) that embeds a universal 3D-aware latent space compatible with latent NeRF training. While
our method is agnostic to the chosen latent space, we build upon the IG-AE architecture to train a
3D-aware latent space that is adapted for scaled inverse graphics, as it currently stands as the only
available approach to build NeRF-compatible 3D-aware latent spaces. Accordingly, we adapt the
Latent NeRF Training Pipeline to train our decomposed representations in the 3D-aware latent space.

3 METHOD

In this section, we present our method for tackling the scaled inverse graphics problem. We start
by presenting Tri-Planes (Chan et al., 2022b) and our Micro-Macro Tri-Planes decomposition that
allows to compact information. This is done by learning a set of base representations that is shared
across scenes (Section 3.1). Next, we present our full training strategy to tackle scaled inverse
graphics (Section 3.2). Our approach consists of learning our Micro-Macro decomposed Tri-Planes
in a 3D-aware latent space. It operates in two stages. The first stage carries out the computationally
intensive task of learning the 3D-aware latent space, while jointly training a subset of scenes and our
shared base representations. The second stage benefits from the reduced computational costs enabled
after the first stage to learn the remaining scenes.

We denote S = {S1, ..., SN} a large set of N scenes drawn from a common distribution. Each scene
Si = {(xi,j , pi,j)}Vj=1 consists of V posed views. Here, xi,j and pi,j respectively denote the j-th
view and pose of the i-th scene Si. We denote T = {T1, ..., TN} the set of scene representations
modeling the scenes in S. We subdivide S and T into two subsets (S1,S2) and (T1, T2) at random,
respectively containing N1 and N2 scenes, with N1 < N2.

3.1 MICRO-MACRO TRI-PLANES DECOMPOSITION

Tri-Plane representations (Chan et al., 2022a) are explicit-implicit scene representations enabling
scene modeling in three axis-aligned orthogonal feature planes, each of resolutionK×K with feature
dimension F . To query a 3D point x ∈ R3, it is projected onto each of the three planes to retrieve
bilineraly interpolated feature vectors. These feature vectors are then aggregated via summation and
passed into a small neural network with parameters α to retrieve the corresponding color and density,
which are then used for volume rendering (Kajiya & Von Herzen, 1984).

We adopt Tri-Plane representations due to their efficient and lightweight architectures, as well as as
their widespread use in previous works for constructing NeRF datasets (Shue et al., 2023; Liu et al.,
2024). Additionally, the explicit nature of Tri-Planes enables their modularity, an essential property
for our Micro-Macro decomposition. While Tri-Planes are traditionally used to model scenes in the
RGB space, we utilize them to learn scenes in the latent space of an auto-encoder, defined by an
encoder Eϕ and a decoder Dψ . Given a camera pose p, we render a latent Tri-Plane Ti as follows:

z̃i,j = Rα(Ti, pj) , x̃i,j = Dψ(z̃i,j) , (1)

where Rα is the Tri-Plane renderer with trainable parameters α, z̃i,j is the rendered latent image, and
x̃i,j is the corresponding decoded rendering.

To learn a common structure across our large set of scenes, we introduce a novel approach that
splits Tri-Planes into scene-specific features, and features representing global structures. As such,
we decompose Tri-Plane representations Ti into “Micro” planes Tmic

i integrating scene specific
information, and “Macro” planes Tmac

i that encompass global information, as follows:

Ti = Tmic
i ⊕ Tmac

i , (2)

3
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Volume
Rendering

Tiny MLP

...... ...

Stage 1 Stage 2

Figure 2: Learning a large set of scenes. We learn a large set of scenes using a two-stage approach.
Stage 1 jointly learns a small subset of scenes by training the micro-planes T mic

1 , the shared base
planes B, the weights Wi, as well as the encoder Eϕ and decoder Dψ. Stage 2 learns the rest of the
scenes by training T mic

2 and Wi while fine-tuning Dψ and B. This stage exclusively uses L(latent),
and then switches to L(RGB). Note that Tmac

i is computed by a weighted summation over the M
shared base planes B, with weights Wi.

where ⊕ concatenates two Tri-Planes along the feature dimension. We denote by Fmic the number of
local features in Tmic

i and by Fmac the number of global features in Tmac
i , with the total number of

features F = Fmic + Fmac.

The micro planes Tmic
i are scene-specific, and are hence independently learned for every scene. The

macro planes Tmac
i represent globally captured information that is relevant for the current scene.

They are computed for each scene from globally shared Tri-Plane representations B = {Bk}Mk=1 by
the weighted sum:

Tmac
i =WiB =

M∑
k=1

wki Bk , (3)

where Wi are learned coefficients for scene Si, and Bk are jointly trained with every scene. With
this approach, the number of micro planes N scales directly with the number of scenes, while the
number of macro planes M is a chosen hyper-parameter. We take M > 1 in order to capture
diverse information, which our experiments showed to be beneficial for maintaining rendering quality.
Overall, our Micro-Macro decomposition allows to accelerate our training and reduce its memory
footprint, as we divide the number of trainable features by a factor of F

Fmic , asymptotically.
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3.2 LEARNING A LARGE SET OF 3D SCENES

This section outlines our two-stage training approach to learn a large set of scenes. Fig. 2 provides
an overview of our training pipeline. For clarity, the corresponding detailed algorithm is written in
Appendix C.

Stage 1: Learning the latent space and T1. The goal in this stage is to train our auto-encoder,
while simultaneously learning the representations T1 modeling the scenes S1. It is important to note
that training the representations T1 implies training both their scene-specific micro planes, and the
globally shared base planes that will also be utilized in the next stage. To learn our latent space and
T1, we implement the 3D regularization losses from Anonymous (2024) recalled below – which
could be equivalently replaced by any other 3D-compatible autoencoding method. We supervise a
Tri-Plane Ti and the encoder Eϕ in the latent space with the loss L(latent):

L
(latent)
i,j (ϕ, Ti, α) = ∥zi,j − z̃i,j∥22 , (4)

where zi,j = Eϕ(xi,j) is the encoded ground truth image, and z̃i,j = Rα(Ti, pi,j) is the rendered
latent image. This loss optimizes the encoder parameters and the Micro-Macro Tri-Plane parameters
to align the encoded latent images zi,j and the Tri-Planes rendering z̃i,j . We also supervise Ti and
the decoder Dψ in the RGB space via L(RGB):

L
(RGB)
i,j (ψ, Ti, α) = ∥xi,j − x̃i,j∥22 , (5)

where xi,j is the ground truth image, and x̃i,j = Dψ(z̃i,j) is the decoded rendering. This loss ensures
a good Tri-Plane rendering quality when decoded to the RGB space, and finds the optimal decoder
for this task. Finally, we adopt the reconstructive objective L(ae) supervising the auto-encoder:

L
(ae)
i,j (ϕ, ψ) = ∥xi,j − x̂i,j∥22 , (6)

where x̂i,j = Dψ(Eψ(xi,j)) is the reconstructed ground truth image.

Overall, our full training objective is composed of the three previous losses summed over S1 to
optimize the Micro-Macro Tri-Planes T1, the encoder Eϕ and the decoder Dψ:

min
T1,α,ϕ,ψ

N1∑
i=1

V∑
j=1

λ(latent)L
(latent)
i,j (ϕ, Ti, α) + λ(RGB)L

(RGB)
i,j (ψ, Ti, α) + λ(ae)L

(ae)
i,j (ϕ, ψ) , (7)

where λ(latent), λ(RGB), and λ(ae) are hyper-parameters. In practice, we start this optimization
process with a warm-up stage where the auto-encoder is frozen and only L(latent) is activated. This is
done to warm-up the Tri-Planes T1 and avoid backpropagating random gradients into the auto-encoder.

By the end of this stage, we obtain a custom 3D-aware latent space as well as shared Tri-Planes
B that are specialized on the dataset at hand. These components are passed onto the next stage to
allow for an accelerated training of the remaining scenes T2. These accelerations come from the
reduced image resolution enabled by the 3D-aware latent space on the one hand, and the compact
scene representations enabled by our Micro-Macro Tri-Planes which reduce the number of trainable
features on the other hand.

Stage 2: Learning T2. The goal in this stage is to train the remaining scenes T2 with alleviated
resource costs thanks to the optimizations obtained in the previous stage. To do so, we adapt the Latent
NeRF Training Pipeline from Anonymous (2024) to Tri-Planes and scale it via our Micro-Macro
decomposition. In this stage, we use the learned autoencoder and the global planes B from stage 1.
In order to relax our optimization objective, we continue to fine-tune the learned global planes. We
first optimize the representations T2 via a Latent Supervision objective as follows:

min
T2,α

N∑
i=N1+1

V∑
j=1

L
(latent)
i,j (ϕ, Ti, α) . (8)

This objective optimizes the representations in T2 to reproduce the latent images. Subsequently, we
continue with an RGB Alignment which also fine-tunes the decoder for the current scenes:

min
T2,α,ψ

N∑
i=N1+1

V∑
j=1

L
(RGB)
i,j (ψ, Ti, α) . (9)
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(a) Ours

(b) Tri-Planes (RGB)

(c) Ground Truth

Figure 3: Qualitative results. Visual comparison on the Basel Faces dataset of novel view synthesis
quality between our method and Tri-Planes (RGB). Our method demonstrates similar rendering
quality as compared to Tri-Planes.

Table 1: Quantitative comparison. NVS metrics demonstrated by our method and a comparison to
standard Tri-Planes. All metrics are averaged over 50 randomly sampled scenes. Our method exhibits
NVS quality comparable to that of Tri-Planes.

ShapeNet Cars Basel Faces

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Tri-Planes (RGB) 28.56 0.9512 0.0346 36.44 0.9791 0.0127
Ours 28.64 0.9498 0.0367 36.82 0.9706 0.0057

The end of this stage marks the end of our training where all the scenes in T = T1 ∪ T2 are now
learned. Note that the trained components of our pipeline can still be utilized after this training to
learn additional scenes with alleviated resource costs.

4 EXPERIMENTS

We assess our method by employing it for the task of scaled inverse graphics. We utilize our method
to learn two distinct large-scale datasets: ShapeNet Cars and Basel Faces. For each case, we start
by training our method on a subset of scenes, and then utilize it to train the remaining scenes.
We evaluate the rendering quality and resource costs of our method and compare it to our base
representation. Moreover, we provide a comparison of our resource costs with recent methods when
trained independently in large-scale settings. Finally, we present an ablation study to assess the added
value of each element of our pipeline.

Dataset. We evaluate our method on two datasets: the Cars dataset from ShapeNet (Chang et al.,
2015) and the front-facing Basel-Face dataset (Walker et al., 2018). For each dataset, each scene
Si is rendered at a 128× 128 resolution. We take V = 160 views for cars, sampled from the upper
hemisphere surrounding the object. For faces, we take V = 50 front-facing views. In all experiments,
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(a) Ours

(b) Tri-Planes (RGB)

(c) Ground Truth

Figure 4: Qualitative results. Visual comparison on the ShapeNet Cats dataset of novel view
synthesis quality between our method and Tri-Planes (RGB). Our method demonstrates similar
rendering quality as compared to Tri-Planes.

we take 90% of views for training and 10% for testing. The test views are reserved to evaluate the
NVS performances of Tri-Planes.

Implementation details. For all experiments, we learn the 3D-aware latent space on N1 = 500
scenes. Then, we utilise it to learn N2 = 1500 scenes in the second phase. We take Fmic = 10,
Fmac = 22, and M = 50. We detail our hyper-parameters in Appendix D. We adopt the pre-trained
VAE from Stable Diffusion (Rombach et al., 2022). Our training is done on 4× NVIDIA L4 GPUs.
Our losses are computed on mini-batches of 32 images. Our code is available in the supplementary
material and will be open-sourced upon publication.

4.1 EVALUATIONS

In this section, we detail our evaluation scheme to assess the NVS quality and the resource costs in
terms of training time and memory footprint.

NVS Quality. To evaluate the NVS quality of the learned scenes T , we compute the Peak
Signal-to-Noise Ratio (PSNR ↑), the Strutural Similarity Index Measure (SSIM ↑) and the Learned
Perceptual Image Patch Similarity (Zhang et al., 2018, LPIPS ↓) on never-seen test views. Table 1
and Figs. 3 and 4 illustrate our quantitative and qualitative results. We compare our results with a
classical training of Tri-Planes in the image space, denoted “Tri-Planes (RGB)”. Our method achieves
similar NVS quality as compared to Tri-Planes (RGB). For a fair comparison, we use the same plane
resolutions K = 64 and the same number of plane features F = 32 in all our experiments. All
methods are trained until convergence. Note that, due to the long training times of Tri-Planes (RGB),
we carry out our comparison on a subset of 50 scenes randomly sampled from S. Furthermore, we
present in Appendix B a comparison of the NVS quality of our method between stages 1 and 2. Both
stages exhibit similar NVS performances.

Time costs. As presented, our method starts by jointly training the autoencoder and N1 scenes,
and then utilizes the trained autoencoder for the remaining N2 = N −N1 scenes. For N ≥ N1, our

7
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Figure 5: Resource costs comparison. Comparison of the training time and memory costs required
by our method and classic Tri-Planes when scaling the number of training scenes N in the ShapeNet
Cars dataset. Our method demonstrates more favorable scalability as N increases.

Table 2: Resource Costs. Comparison of per-scene resource costs in scaled inverse graphics between
our method and independently trained RGB Tri-Planes on ShapeNet Cars. Our method presents
significantly alleviated per-scene resource costs following the first stage of our training.

τ (min) µ (MB) Rendering
Time (ms)

Decoding
Time (ms)

Tri-Planes (RGB) 16.02 1.50 23.30 0
Our method 2.23 0.48 0.36 9.71

total training time is written as:

t(ours)(N) = t1 + (N −N1)τ
(ours) , (10)

where t1 is the time required in the first stage of our training and τ (ours) is the training time per scene
in our second phase.

We also denote by t(rgb)(N) the time required to learnN scenes with regular Tri-Planes independently
trained on RGB images:

t(rgb)(N) = Nτ (rgb) , (11)

where τ (rgb) is the training time per RGB scene for Tri-Planes.

Memory costs. We denote m1 the memory cost to store the components of the first phase of our
training (i.e. the encoder, decoder, global Tri-Planes, micro Tri-Planes, and corresponding learned
coefficients). Our total memory footprint when learning N ≥ N1 scenes is written as:

m(ours)(N) = m1 + (N −N1)µ
(ours) , (12)

where µ(ours) is the memory cost to store one scene (i.e. a micro plane and the learned macro
coefficients) in the second stage. We also denote by m(rgb)(N) the memory cost to store N scenes
with regular Tri-Planes:

m(rgb)(N) = Nµ(rgb) , (13)

where µ(rgb) is the memory cost to store one RGB Tri-Plane.

The first stage of our training necessitates t1 = 31.2 hours and m1 = 361 MB when training
N1 = 500 scenes. Table 2 details our resource costs in the second stage. When N is large, our
method asymptotically reduces the training time required to learn individual scenes by 86% and
memory costs by 68%. Moreover, rendering using our method requires 98% less time. While this is
followed by a decoding time of 9.61 ms, producing an RGB image using our method overall requires
56% less time. Fig. 5 illustrates the evolution of the training time and memory cost of our method and
our baseline as N grows. Our method demonstrates favorable scaling when learning a large number

8
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Table 3: Ablation Study. Quantitative results of our ablation study. NVS metrics are computed on
the same 50 randomly sampled scenes from the ShapeNet Cars dataset. Our method presents similar
NVS performances to Tri-Planes, while outperforming our ablations.

Latent
Space

Micro
Planes

Macro
Planes PSNR↑ SSIM↑ τ (min) µ (MB)

Ours-Micro ✓ ✓ ✗ 27.64 0.9409 3.21 1.50
Ours-Macro ✓ ✗ ✓ 27.51 0.9346 1.79 0.0008
Ours-M = 1 ✓ ✓ ✓ 27.69 0.9416 2.12 0.48
Ours-RGB ✗ ✓ ✓ 27.71 0.9418 15.88 0.48

Tri-Planes (RGB) ✗ ✓ ✗ 28.56 0.9512 16.02 1.50
Ours ✓ ✓ ✓ 28.64 0.9498 2,23 0.48

of scenes. However, it is only accessible after training the first set of N1 scenes. Reducing N1 would
allow leveraging our alleviated resource cost earlier, which we see as a direction of future work.

Fig. 1 provides an overview comparison of our method with recent methods when used for scaled
inverse graphics. Our approach demonstrates the lowest resource costs in both training time and
memory footprint, while maintaining a comparable NVS quality to Tri-Planes. The data associated
with this figure can be found in Appendix A.

4.2 ABLATIONS

To justify our choices and explore further, we present an ablation study of our method, for which the
results are presented in Table 3. The first ablation, “Ours-Micro”, eliminates the Micro-Macro de-
composition, and consequently global information sharing (i.e. Fmac = 0, Fmic = F ). This ablation
showcases a slight degradation of quality as compared to our full method, but more importantly, it
would result in higher resource costs as it eliminates the shared base representations and requires
more learnable features per scene. The second ablation, “Ours-Macro”, eliminates local features
from Tri-Planes and relies only on global features (i.e. Fmic = 0, Fmac = F ). This setting also
showcases a degradation in NVS quality as compared to our method, as it only relies on shared
planes to represent individual scenes. The third ablation, “Ours-M = 1” reduces the set of shared
planes B to one Tri-Plane. This ablation demonstrates NVS performances that are slightly higher
than Ours-Micro, but still lower than our method, highlighting the necessity for a set of global planes.
The fourth ablation, “Ours-RGB” ablates the latent space and trains Micro-Macro decomposed
Tri-Planes in the RGB space. It also presents decreased performances as compared to our method,
and thus highlighting the advantage of doing our Micro-Macro decomposition on latent scenes. Note
that ablating the latent space as well as information sharing is equivalent to the vanilla “Tri-Planes
(RGB)” setting, which presents a comparable rendering quality with respect to our method, with
significantly higher resource costs.

5 CONCLUSION

In this paper, we introduce scaled inverse graphics and recognize the necessity for methods that
efficiently tackle this problem. We propose a novel method that learns scenes in a custom 3D-aware
latent space, and uses a novel Micro-Macro Tri-Plane decomposition that compacts the represen-
tation of individual scenes by adopting a set of shared representations. Our method demonstrates
significantly lower training time and memory costs in scaled inverse graphics as compared to recent
methods, while maintaining a comparable rendering quality. We consider this work to be an initial
step in the direction of efficiently scaling inverse graphics methods.
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A RESOURCE COSTS COMPARISON

For transparency, Table 4 presents the data behind Fig. 1.

Table 4: Resource Costs Comparison. This table presents the underlying data behind Fig. 1. Our
method showcases the lowest training time and memory costs when training N = 2000 scenes,
and a comparable NVS quality to Tri-Planes, our base representation. All models are trained on
4× NVIDIA L4 GPUs.

Training
Time

(min ×103)

Memory
Footprint

(MB ×103)
PSNR↑

Vanilla-NeRF 318.40 25.14 40.16
Instant-NGP 5.50 359.40 37.71
TensoRF 34.47 397.78 40.38
K-Planes 37.68 801.48 32.59

Tri-Planes 32.04 3.00 30.03
Ours 5.22 1.08 31.20

B SUPPLEMENTARY RESULTS

Tables 5 and 6 present our NVS metrics in both stages of our training for the ShapeNet Cars and
the Basel Faces datasets, respectively. All metrics are computed on never-seen test views from
50 randomly sampled scenes from each dataset. Both stages of our training present similar NVS
performances.

Table 5: Quantitative comparison. NVS performances on ShapeNet Cars in both stages of our
training.

ShapeNet Cars

S1 S2
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Tri-Planes (RGB) 28.49 0.9539 0.0291 28.58 0.9505 0.0360
Ours 28.14 0.9505 0.0301 28.77 0.9496 0.0383

Table 6: Quantitative comparison. NVS performances on Basel Faces in both stages of our training.

Basel Faces

S1 S2
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Tri-Planes (RGB) 36.82 0.9807 0.0122 36.35 0.9787 0.0129
Ours 36.17 0.9678 0.0062 36.99 0.9712 0.0056

C TWO-STAGE TRAINING ALGORITHM

For clarity, Algorithm 1 provides a detailed outline of our two-stage training method.

D HYPERPARAMETERS

For reproducibility purposes, Tables 7 and 8 expose our hyperparameter settings respectively for
stage 1 and stage 2 of our training. A more detailed list of our hyperparameters can be found in the
configuration files of our open-source code.
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Algorithm 1: Training a large set of scenes.

Input: S1, S2, N1, N2, V , Eϕ, Dψ ,Rα, N (1)
epoch, N (2)

epoch, N (LS)
epoch, λ(latent), λ(RGB), λ(ae),

optimizer
Random initialization: T mic

1 , T mic
2 , W , B

// Stage 1

1 for N (1)
epoch steps do

2 for (i, j) in shuffle(J1, N1K× J1, V K) do
// Compute Micro-Macro decomposition

3 T
(mic)
i , T

(mac)
i ← T (mic)

1 [i], WiB
4 Ti ← T

(mic)
i ⊕ T (mac)

i
// Encode, Render & Decode

5 xi,j , pi,j ← S1[i][j]
6 zi,j ← Eϕ(xi,j)
7 z̃i,j ← Rα(Ti, pi,j)
8 x̂i,j ← Dψ(zi,j)
9 x̃i,j ← Dψ(z̃i,j)

// Compute losses

10 L
(latent)
i,j ← ∥zi,j − z̃i,j∥22

11 L
(RGB)
i,j ← ∥xi,j − x̃i,j∥22

12 L
(ae)
i,j ← ∥xi,j − x̂i,j∥22

13 Li,j ← λ(latent)L
(latent)
i,j + λ(RGB)L

(RGB)
i,j + λ(ae)L

(ae)
i,j

// Backpropagate

14 T
(mic)
i ,Wi,B, α, ϕ, ψ ← optimizer.step(Li,j)

15

// Stage 2
16 epoch = 1

17 for N (2)
epoch steps do

18 for (i, j) in shuffle(JN1 + 1, N1 +N2K× J1, V K) do
// Compute Micro-Macro decomposition

19 T
(mic)
i , T

(mac)
i ← T (mic)

2 [i], WiB
20 Ti ← T

(mic)
i ⊕ T (mac)

i
// Encode, Render & Decode

21 xi,j , pi,j ← S2[i][j]
22 zi,j ← Eϕ(xi,j)
23 z̃i,j ← Rα(Ti, pi,j)
24 x̃i,j ← Dψ(z̃i,j)
25

26 if epoch ≤ N (LS)
epoch then

// Latent Supervision

27 L
(latent)
i,j ← ∥zi,j − z̃i,j∥22

28 T
(mic)
i ,Wi,B, α← optimizer.step(L

(latent)
i,j )

29 else
// RGB Alignment

30 L
(RGB)
i,j ← ∥xi,j − x̃i,j∥22

31 T
(mic)
i ,Wi,B, α, ψ ← optimizer.step(L

(RGB)
i,j )

32 epoch← epoch + 1

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Stage 1 hyperparameters.

Parameter Value

General

Number of scenes N1 500
Pretraining epochs 50
Training epochs 50

Tri-Planes

Number of micro feature Fmic 10
Number of macro feature Fmac 22
Number of base plane M 50
Tri-Planes resolution 64

Loss

λ(latent) 1
λ(RGB) 1
λ(ae) 0.1

Optimization (warm-up)

Optimizer Adam
Batch size 512

Learning rate (Tri-Planes T (mic)
i ) 10−2

Learning rate (Triplane renderer Rα) 10−2

Learning rate (Coefficients wki ) 10−2

Learning rate (Base planes Bk) 10−2

Scheduler Multistep
Decay factor 0.3
Decay milestones [20, 40]

Optimization (training)

Optimizer Adam
Batch size 32
Learning rate (encoder) 10−4

Learning rate (decoder) 10−4

Learning rate (Tri-Planes T (mic)
i ) 10−4

Learning rate (Triplane renderer Rα) 10−4

Learning rate (Coefficients wki ) 10−2

Learning rate (Base planes Bk) 10−2

Scheduler Multistep
Decay factor 0.3
Decay milestones [20, 40]
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Table 8: Stage 2 hyperparameters.

Parameter Value

General

Number of scenes N2 1500

Number of Latent Supervision epochs N (LS)
epoch 30

Number of RGB Alignment epochs N (RA)
epoch 50

Tri-Planes

Number of micro feature Fmic 10
Number of macro feature Fmac 22
Number of base plane M 50
Tri-Planes resolution 64

Loss

λ(latent) 1
λ(RGB) 1

Optimization (Latent Supervision)

Optimizer Adam
Batch size 32

Learning rate (Tri-Planes T (mic)
i ) 10−2

Learning rate (Triplane renderer Rα) 10−2

Learning rate (Coefficients wki ) 10−2

Learning rate (Base planes Bk) 10−2

Scheduler Exponential decay
Decay factor 0.941

Optimization (RGB Alignment)

Optimizer Adam
Batch size 32
Learning rate (decoder) 10−4

Learning rate (Tri-Planes T (mic)
i ) 10−3

Learning rate (Triplane renderer Rα) 10−3

Learning rate (coefficients wki ) 10−2

Learning rate (nase planes Bk) 10−2

Scheduler Exponential decay
Decay factor 0.941
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