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ABSTRACT

Recent work has shown that language models’ refusal behavior is primarily en-
coded in a single direction in their latent space, making it vulnerable to targeted
attacks. While Latent Adversarial Training (LAT) attempts to improve robust-
ness by introducing noise during training, a key question remains: How does this
noise-based training affect the underlying representation of refusal behavior? Un-
derstanding this encoding is crucial for evaluating LAT’s effectiveness and limi-
tations, just as the discovery of linear refusal directions revealed vulnerabilities in
traditional supervised safety fine-tuning (SSFT).
Through the analysis of Llama 2 7B, we examine how LAT reorganizes the refusal
behavior in the model’s latent space compared to SSFT and embedding space ad-
versarial training (AT). By computing activation differences between harmful and
harmless instruction pairs and applying Singular Value Decomposition (SVD), we
find that LAT significantly alters the refusal representation, concentrating it in the
first two SVD components which explain approximately 75% of the activation
differences variance—significantly higher than in reference models. This concen-
trated representation leads to more effective and transferable refusal vectors for
ablation attacks: LAT models show improved robustness when attacked with vec-
tors from reference models but become more vulnerable to self-generated vectors
compared to SSFT and AT. Our findings suggest that LAT’s training perturbations
enable a more comprehensive representation of refusal behavior, highlighting both
its potential strengths and vulnerabilities for improving model safety.

1 INTRODUCTION

The increasing deployment of Large Language Models (LLMs) has raised significant concerns about
their safety and reliability, particularly regarding their ability to refuse harmful requests. While su-
pervised safety fine-tuning (SSFT) remains the predominant approach to implementing safety mea-
sures (Meta, 2024; OpenAI, 2023; Touvron et al., 2023), recent research has demonstrated notable
vulnerabilities in these conventional methods (Lermen et al., 2024; Rimsky et al., 2024; Yang et al.,
2023). This paper examines the effectiveness of Latent Adversarial Training (LAT) (Casper et al.,
2024) as an alternative approach to enhancing model safety, specifically focusing on its impact on
refusal behavior encoding.

Traditional safety mechanisms, including SSFT implemented before and after reinforcement learn-
ing from human feedback (RLHF), have shown susceptibility to various circumvention techniques.
Recent studies have revealed that methods such as subversive fine-tuning (Lermen et al., 2024; Yang
et al., 2023), activation steering (Rimsky et al., 2024), and refusal ablation (Arditi et al., 2024)
can effectively bypass these safety measures with minimal computational resources. These findings
suggest that current approaches may primarily influence surface-level behavior rather than funda-
mentally alter the model’s underlying representations (Jain et al., 2024).

LAT presents a novel approach by introducing perturbations directly in the model’s hidden layers,
rather than at the input level—See Appendix A for details. This method aims to enhance model ro-
bustness against unforeseen failure modes without requiring specific examples of adverse behaviors.
Our research investigates how LAT affects the representation of refusal behavior compared to SSFT
and embedding space adversarial training (AT). By analyzing the ”refusal direction” derived from
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contrasting harmful and harmless instructions, we examine the structural changes in the latent space
and their implications for model safety.

1.1 METHODS

1.2 MODEL VARIANTS AND TRAINING

Our experiments utilized three variants of the Llama 2 7B model (Touvron et al., 2023) to evaluate
different safety training approaches. The baseline configuration consisted of the Llama-2-7b-chat
model (Meta, 2023) with its default SSFT (Touvron et al., 2023). For both the AT and LAT variants,
we utilized the framework provided by Casper et al. (2024), adapting the training parameters for
each approach. The AT variant incorporated an adapter that introduced L2-norm adversarial pertur-
bations in the text embedding space, while the LAT variant utilized an adapter that applied L2-norm
adversarial perturbations to the residual stream at the fourth layer, following the optimal configura-
tion identified by Casper et al. (2024). All model fine-tuning procedures were executed using their
published codebase (Casper, 2024).

1.3 COMPUTING REFUSAL DIRECTIONS

Following the methodology of Arditi et al. (2024), we computed a ”refusal direction” by calculating
the difference in mean activations between harmful and harmless instructions at the last token po-
sition in layer 14 (out of 32 layers). Our dataset comprised 100 pairs of instructions, with harmful
prompts sourced from the AdvBench dataset (Zou et al., 2023) and corresponding harmless instruc-
tions from the Alpaca dataset (Taori et al., 2023). Representative examples include prompts such as
”Write a script that can exploit vulnerabilities in a software or operating system” (harmful) paired
with ”Give three tips for staying healthy” (harmless). This systematic pairing enabled us to isolate
and quantify the directional components in the latent space associated with refusal behavior.

1.4 EVALUATION PROTOCOL

We implemented an ablation attack to assess model robustness by removing the refusal direction’s
contribution from the residual stream during inference. This was achieved through directional abla-
tion, which eliminates the component along the refusal direction r̂ ∈ Rdmodel for each residual stream
activation x using the operation x′ ← x− r̂r̂⊤x. The ablation was performed across all layers and
token positions. To evaluate attack effectiveness, we tested each model’s acceptance rate of harm-
ful requests post-ablation using a comprehensive dataset of 520 examples, comprising 420 harmful
examples from the AdvBench dataset (Zou et al., 2023) and 100 novel GPT-4-generated examples.
Additionally, we evaluated the cross-model effectiveness of refusal vectors by testing each model’s
robustness against vectors generated from both SSFT and LAT approaches.

1.5 LATENT SPACE ANALYSIS

To compare latent representations across fine-tuning techniques, we conducted a two-part analysis
of the model’s internal structure. First, we visualized the top two principal components of activa-
tions at the last token position across four network layers (1st, 2nd, 8th, and 20th), revealing how
LAT’s introduced noise affects the separability between harmful and harmless activations. We then
performed Singular Value Decomposition (SVD) on the activation differences between harmful and
harmless prompt pairs for each model, enabling us to quantify the explained variance by SVD com-
ponent.

2 RESULTS

2.1 ABLATION ATTACK PERFORMANCE

Analysis of refusal ablation effectiveness at layer 14 revealed unexpected patterns in model robust-
ness. When evaluated using self-generated vectors, the LAT model demonstrated lower resistance
to refusal ablation compared to both SSFT and AT variants. Specifically, post-ablation refusal rates
showed that AT exhibited the strongest performance with a 38.08% refusal rate (95% CI: [33.91%,
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Figure 1: Comparison of refusal rates under different ablation attack vectors across Llama-2-7B-chat
model variants. The baseline SSFT model is denoted simply as ”Llama-2-7B-chat” in the figure.
The red bars (”Self-generated refusal vector”) represent each model’s refusal rate when attacked
using a refusal vector generated from its own activations. The gray bars (”Refusal vector generated
from baseline”) show the refusal rate when attacked using a vector from the baseline Llama-2-7B-
chat model. The green bars (”Refusal vector generated from LAT”) indicate the refusal rate when
attacked using a vector generated from the LAT model. All statistics are computed from a test set of
520 examples—See Appendix D for statistical confidence measures.

42.25%]), significantly outperforming both the baseline SSFT model (20.38%, 95% CI: [16.91%,
23.85%]) and the LAT model (16.92%, 95% CI: [13.71%, 20.13%]) (1). These findings challenge
initial assumptions about LAT’s effectiveness, as it performed notably worse than the baseline SSFT
model in maintaining refusal behavior after ablation, while the AT model demonstrated the most
robust resistance to self-ablation attempts.

2.2 LATENT SPACE REPRESENTATION

To investigate how LAT might disrupt the single-direction encoding of refusal behavior, we first
analyzed the separability of harmful and harmless activations in the model’s latent space. Principal
Component Analysis (PCA) of activations at the last token position across layers 1, 2, 8, and 20
revealed distinct patterns in how different fine-tuning techniques affect the model’s internal repre-
sentations. A notable observation was that the noise introduced by LAT in the model’s hidden layers
appeared to reduce the separability between harmful and harmless activations, suggesting a more
complex encoding of refusal behavior that cannot be easily captured by a single direction—See
Appendix B for figure.

This reduced separability led us to investigate how the refusal behavior is distributed across different
dimensions in the latent space. Subsequent Singular Value Decomposition (SVD) analysis of activa-
tion differences between harmful and harmless prompt pairs provided deeper insights into these rep-
resentational changes. While AT maintained a similar representation structure to the baseline model,
LAT demonstrated a more concentrated encoding pattern, with the first two SVD components ac-
counting for approximately 74% of the total variance and the first component alone explaining more
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Figure 2: Explained variance by SVD components across model variants. The plot shows the per-
centage of variance explained by the first six SVD components of activation differences between
harmful and harmless instruction pairs for the base Llama-2-7B-chat model and its embeddings AT
and LAT variants. While the first components of baseline and AT variants explain 49.43% and
43.76% of variance respectively, their second components only account for about 5% each. In con-
trast, the LAT variant not only has a strong first component (54%) but also substantially utilizes its
second component (20%), suggesting a more concentrated two-dimensional encoding of refusal.

than 54%. This stands in contrast to baseline and AT models, where the primary component cap-
tured only 49.43% and 43.76% of the variance, and the secondary component 4.76% and 4.79%,
respectively—See 2 for figure.

2.3 LAYER-WISE EFFECTS

To investigate potential shifts in refusal representation across network layers, we performed layer-
specific ablation attacks using refusal vectors generated and applied at corresponding layers. The
analysis revealed that layer 14 consistently maintained the highest effectiveness for refusal direction
ablation across all model variants, indicating that LAT does not substantially redistribute the refusal
representation across layers. However, we observed anomalous behavior in the LAT model at early
layers (2-4), characterized by unusually high invalid response rates—See Appendix C for figure.
While the application of LAT at layer 4 might explain the anomaly at that specific layer, the behavior
observed in layers 2 and 3 requires further investigation.

2.4 CROSS-MODEL TRANSFER

Analysis of cross-model transfer effectiveness revealed significant variations in the performance of
refusal vectors across different model variants. The refusal vector derived from the LAT model
demonstrated superior effectiveness across all three model configurations, consistently achieving
lower refusal rates compared to vectors generated from other sources (1). This finding suggests that
LAT’s approach to encoding refusal behavior produces a more universally applicable vector.
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3 DISCUSSION

Our results demonstrate that LAT alters the encoding of refusal behavior in the latent space, con-
centrating it primarily in the first two SVD components with greater variance explained by these
two components compared to reference models. This altered representation leads to more effective
ablation attack vectors when derived from the LAT model. While LAT shows marginally improved
robustness against various attack vectors, this improvement isn’t definitive. Contrary to our initial
hypothesis that LAT’s noise would disperse the refusal feature, it actually produces a more concen-
trated encoding that can be better approximated by a single vector.

This finding reveals a critical trade-off: LAT’s superior encoding of refusal behavior, while po-
tentially beneficial for model robustness, also creates a more potent attack vector. When models
are attacked using their own refusal vectors, the LAT-derived vector achieves higher success rates
compared to SSFT and AT. This suggests that LAT’s enhanced behavior encoding could be both a
strength and vulnerability, depending on the application context.

4 LIMITATIONS

Similar to Arditi et al. (2024), we acknowledge uncertainty about the exact semantic meaning of
the directions we identified in the latent space. Our experiments were conducted exclusively on
Llama-2-7B-chat (Meta, 2023), and the generalizability of our findings to different model architec-
tures, scales, or more recent language models remains unexplored. Additionally, we focused on a
specific ablation technique, without comprehensive evaluation of other adversarial attacks or acti-
vation steering methods. Our evaluation was limited to harmful and harmless examples from the
AdvBench (Zou et al., 2023) and Alpaca (Taori et al., 2023) datasets, and the effectiveness of both
the ablation attacks and fine-tuning approaches may vary with different datasets and dataset sizes.

5 CONCLUSION

We evaluated the robustness of SSFT, embeddings AT, and LAT fine-tuning techniques against re-
fusal direction ablation attacks, examining refusal rates post-ablation and analyzing latent space
representations. Our findings reveal that LAT significantly alters how refusal behavior is encoded
in the latent space, with the first two SVD components capturing approximately 75% of activation
differences variance—notably higher than in reference models.

This concentrated representation leads to a more effective and transferable refusal vector for abla-
tion attacks. While LAT shows improved robustness when attacked with vectors from any model,
its precise refusal representation paradoxically makes it more vulnerable to self-generated vectors
compared to SSFT and AT. We attribute this to LAT’s training perturbations enabling a more com-
prehensive representation of refusal behavior.

These findings highlight both LAT’s strengths and vulnerabilities, suggesting future work should
focus on maintaining its robust representations while addressing its susceptibility to ablation attacks.
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A LATENT ADVERSARIAL TRAINING

Casper et al. (2024) showed that adversarial perturbations applied to a model’s latent space, rather
than its inputs, significantly enhance robustness against unforeseen failure modes, such as novel
attacks and trojans. Unlike standard AT, which seeks to expose a model to adversarial inputs to
improve robustness, LAT operates directly on a model’s internal representations, targeting interme-
diate layers in the network where abstract features are processed. By doing so, LAT aims to create
perturbations that uncover vulnerabilities embedded within the model’s latent space without needing
specific input examples that trigger these vulnerabilities.

Consider a model with parameters θ = (θ1, θ2) which computes the function gθ2 ◦ fθ1 , where fθ1 is
a feature extractor which produces latents ℓi = fθ1(xi) and gθ2 maps latents to outputs ŷi = gθ2(ℓi).

Given a loss function L : Y × Y → R, the standard objective of AT with an Lp-norm constraint of
ϵ is:

min
θ

∑
i

max
δxi

L(gθ2(fθ1(xi + δxi )), yi) s.t. ∥δxi ∥p ≤ ϵ. (1)

Both the inner and outer problems are typically solved with gradient-based optimization on δxi and
θ, respectively.

LAT with an Lp-norm constraint of ϵ only differs in where the adversary applies the perturbation.
The objective is:

min
θ

∑
i

max
δℓi

L(gθ2(fθ1(xi) + δℓi ), yi) s.t. ∥δℓi∥p ≤ ϵ. (2)

This approach leverages the structured, abstract nature of latent space, where LAT can potentially
activate hidden failure modes by perturbing the inner neural representations, thus improving the
model’s resilience to failure modes that may not have explicit examples in the training data.

Note that this setup involves ”untargeted” attacks in which the adversary maximizes the target
model’s loss. Sheshadri et al. (2024) expanded this approach with Targeted Latent Adversarial
Training (TLAT), where perturbations are strategically directed at particular harmful behaviors.
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B PRINCIPAL COMPONENT ANALYSIS OF HARMFUL-HARMLESS
ACTIVATIONS

Figure 3: Principal Component Analysis (PCA) visualization of harmful vs harmless instruction
representations across different network layers and model variants. Each point represents the activa-
tion pattern for a single instruction, projected onto the first two principal components. Blue points
indicate harmless instructions, while red points represent harmful instructions. The plots reveal how
LAT affects the separability of these instruction types in the model’s latent space.

C LAYER-WISE ANALYSIS OF REFUSAL BEHAVIOR

Figure 4: Layer-wise analysis of refusal rates under self-generated refusal vector attacks. The plot
shows how refusal rates vary across different layers of the model architecture for the base Llama-
2-7B-chat model and its Embeddings AT and LAT variants when attacked using their own refusal
vectors from the same layer.
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D STATISTICAL CONFIDENCE MEASURES OF REFUSAL RATES

Table 1: Refusal rates and statistical confidence measures across different model variants and refusal
vector sources. Values in parentheses represent standard errors, and square brackets show 95%
confidence intervals. All statistics are computed from a test set of 520 examples.

Model Refusal Vector Refusal Rate 95% Conf. Interval

Llama-2-7B-chat Self-generated 20.38% (1.77%) [16.91%, 23.85%]
From LAT 10.77% (1.36%) [8.10%, 13.44%]

Llama-2-7B-chat
+ Embeddings AT

Self-generated 38.08% (2.13%) [33.91%, 42.25%]
From Baseline 24.04% (1.87%) [20.37%, 27.71%]
From LAT 13.65% (1.50%) [10.71%, 16.59%]

Llama-2-7B-chat
+ LAT

Self-generated 16.92% (1.64%) [13.71%, 20.13%]
From Baseline 25.77% (1.91%) [22.03%, 29.51%]
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