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Abstract

End-to-end Relation Extraction (RE) is a fun-001
damental problem of information extraction,002
which includes two tasks: identifying named003
entities from text and classifying relations be-004
tween entities. In this work, we propose a sim-005
ple but effective method to extract entities and006
relations from text jointly by designing the tar-007
get output of a BART-based generative model008
for Named Entity Recognition (NER) without009
changing its architecture. Compared to exist-010
ing methods on ChEMU, our method performs011
better on RE and produces comparable results012
on NER. Our experimental results also demon-013
strate that the generative model designed for a014
single task is capable of joint learning.015

1 Introduction016

To obtain necessary information from natural lan-017

guage text, it is common to perform Named Entity018

Recognition (NER) and Relation Extraction (RE)019

on the same text. This task of identifying both en-020

tities and the relations between entities is called021

End-to-End RE.022

In recent times, joint models have gained pop-023

ularity as a way to utilize the interaction between024

entities and relations. A joint model is often more025

complicated than a pipeline model. The joint ap-026

proach can be implemented using higher-level data027

structures, such as transforming tasks into table-028

filling tasks (Wang and Lu, 2020) or graph-based029

methods (Sun et al., 2019). Another option is to030

share parameters (Miwa and Bansal, 2016) and031

representations (Wadden et al., 2019) or to add032

cross-task constraint (Lin et al., 2020).033

The brilliance of the joint model does not mean034

that the traditional pipeline method is obsolete. A035

pipeline frame of end-to-end RE usually consists036

of two models for two different tasks. (Zhong and037

Chen, 2020) proposed a pipeline method PURE,038

which outperforms most of joint models by adding039

special tokens to introduce entity position and type040

information. PL-Marker (Ye et al., 2021) is also a 041

pipeline extractor that advanced in three datasets, 042

provides a novel span representation approach to 043

consider the dependencies between the spans. 044

Models built for end-to end RE task are often 045

complex and difficult to be implemented for more 046

practical tasks. Most well-performing models treat 047

the task as a span-based problem, so that their 048

computation complexity is high. Even though the 049

length of input text does not exceed the limit of the 050

pre-trained language model (PLM), if there are far 051

more entities and relations in the input than those 052

at the sentence-level, the model may have difficulty 053

handling new datasets due to its complexity. 054

Inspired by a recent generative framework 055

BARTNER (Yan et al., 2021) developed for the 056

NER task, we convert the end-to-end RE task into 057

a generation problem. Formulating a span-based 058

problem to a generation problem can effectively 059

reduce the computational complexity - there is no 060

need to enumerate all possible entity spans, and 061

to pair entities one by one to extract the relation 062

triple. BARTNER exploits BART-large as encoder- 063

decoder and achieves state-of-the-art (SOTA) per- 064

formance on multiple NER benchmarks. Since 065

BART-large is a PLM with a large set of trainable 066

parameters, we make a wild guess that BARTNER 067

can serve as a simple and efficient model for end- 068

to-end RE if it is trained with appropriate target 069

outputs, without any change in its architecture. 070

Our method achieves competitive results on 071

ChEMU (Nguyen et al., 2020) compared to ex- 072

isting powerful methods. In summary, the main 073

contributions of this work are listed as follows: 074

• We adopt a generative framework for NER to 075

end-to-end RE by providing proper represen- 076

tations, without any change in model architec- 077

ture. This proves that generative models can 078

jointly learning for NER and RE given proper 079

target outputs. 080
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Figure 1: Examples of target output under different representation schemes. With three entities and two relations in
the input, the target output consists of two relation spans in REL scheme while five spans (three for entities and
two for relations) in ENT+REL scheme. "[...]" indicates the content in one span. Relation spans in ENT+REL are
highlighted by green. Details of all representations are in 2.2.

• Under the representations we designed, we081

achieve comparable or better performance082

than the SOTA methods for ChEMU.083

• Our method is more efficient and flexible in084

prediction than others - It is no need to enu-085

merate all possible entity spans and relation086

triples, or limit the length of the span.087

2 Method088

2.1 Task definition089

A golden sample in the ChEMU dataset has the090

following components: All words in a chemical091

reaction snippet is concatenated as input. Each092

mention in the input is an entity. Each entity may093

or may not be related to other entities in the same094

snippet.095

The target output of each sample is a sequence096

of spans according to our defined representation.097

Regardless of the kind of representation we use,098

the target output should contain the boundary and099

type information for each entity, as well as the100

information to indicate two entities and the type for101

each relation.102

2.2 Representation103

This section explains how the entities and relations104

are represented in our generative model. Please105

refer to the examples in Fig.1.106

2.2.1 Entity107

We followed the three types of entity representa-108

tions proposed in (Yan et al., 2021), namely WORD,109

BPE, BPE_SPAN, and added a new type of repre-110

sentation, WORD_SPAN.111

• WORD The position indexes of each word 112

in the entity are included in the entity span, 113

concatenated with the entity type tag. 114

• BPE The position indexes of each subtoken 115

in the entity are included in the entity span, 116

concatenated with the entity type tag. 117

• WORD_SPAN The position indexes of the 118

first subtokens of the first and last words in 119

the entity are included in the entity span, con- 120

catenated with the entity type tag. 121

• BPE_SPAN The position indexes of the first 122

and last subtokens in the entity are included in 123

the entity span, concatenated with the entity 124

type tag. 125

2.2.2 Relation (REL) 126

To make directly generation of relations possible, 127

we tried a representation scheme as follows. The 128

relation representation combines corresponding en- 129

tity spans in [Head, Tail, Relation type] or [Tail, 130

Head, Relation type] format. [Head, Tail, Relation 131

type] are directly named after the entity represen- 132

tation type (e.g. BPE). When we used the latter 133

format, we indicate it with (r) (e.g. BPE(r)). 134

2.2.3 Entity+Relation (ENT+REL) 135

In some end-to-end RE tasks, entities that do not ap- 136

pear in any relations may also need to be identified. 137

To cope with this situation, we propose the repre- 138

sentation scheme of Entity+Relation. If we do the 139

entity-first generation, the model will generate all 140

entity spans (in WORD_SPAN or BPE_SPAN that 141

are consistent with 2.2.1 ). After that, the model 142

generates all relation spans in following way. 143
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DOC ENT REL
Train 900 23210 14310
Dev 225 5439 5448
Test 375 9435 5803
All 1500 38084 25561

Table 1: Statistics of the ChEMU dataset.

• Start The position indexes of the first subto-144

kens in the head and tail entities are included,145

concatenated with the relation type.146

• Start(r) The position indexes of the first147

subtokens in the tail and head entities are in-148

cluded, concatenated with the relation type.149

Alternatively, when we do the relation-first gen-150

eration, the model generates all relation spans and151

then all entity spans ((e.g. BPE_SPAN + Start(r)152

(Relation-first))).153

2.3 Generative model154

Following (Yan et al., 2021), we concatenate the155

representations of all spans in each text as the gen-156

erated output. The order of spans is determined by157

the appearance order of entities in the text when158

generating entities or by the appearance order of159

the head entities when generating relations. We use160

the model developed by (Yan et al., 2021) but a161

rewritten version by us.162

3 Experiment163

3.1 Dataset164

We experiment on the ChEMU dataset, which in-165

volves entity and event annotations of 1500 chemi-166

cal reaction snippets. The event triggers are anno-167

tated as entities, and event arguments are treated as168

relations between an event trigger and an argument.169

Some entities may not be part of any events. The170

end-to-end RE on ChEMU is extracting 12 types of171

entities and 2 types of relations. We use the official172

data split that training:development:test = 7:1:2.173

This dataset is chosen for two reasons: 1) Each174

sample contains rich entity and relation informa-175

tion, while most of entities are shown in annotated176

relations. So that the joint model requires equal177

effort to learn both entity and relation extraction in-178

formation. 2) We hope to experiment on a practical179

data and help the development of automatic extrac-180

tion of chemical domains, not only on sentence-181

level end-to-end task.182

3.2 Baseline 183

We compare our method with the SOTA mod- 184

els on end-to-end RE task. DyGIE++ (Wadden 185

et al., 2019) is a general framework for several 186

information extraction tasks including NER, RE, 187

and EE. It is a span-based method using the dy- 188

namic span graph for better span representation. 189

We implemented DyGIE++ in the default setting, 190

with the PLM: RoBERTa. Since many samples in 191

ChEMU would exceed the maximum input length 192

of RoBERTa, we limited the task to the sentence- 193

level when we apply DyGIE++. 1 2 194

The SOTA of end-to-end RE on ChEMU is a 195

pipeline model provided by Melaxtech (Zhang 196

and Zhang, 2020). Melaxtech adopts BioBERT 197

and BiLSTM-CRF for sentence-level NER while 198

adds a linear classification layer on top of the 199

BioBERT to predict the label of a candidate en- 200

tity pair. The cross-sentence relations are extracted 201

by post-processing not deep learning model. We 202

directly report the values published on that paper. 203

3.3 Evaluation 204

The evaluation is similar to previous works. If 205

the type and offsets of the entity match the gold 206

entity, the prediction is correct; if the types and 207

offsets of two entities and the relation type match 208

the gold relation, the predicted relation is correct. 209

All relations are directed. We report the precision 210

(P), recall (R) and micro F1 score (F). 211

4 Results 212

The result of end-to-end RE (Tab.2) shows several 213

representations we provided exceed the baselines, 214

whether generating relation spans containing all 215

entity information (Ours-REL) or generating entity 216

and relation spans together (Ours-ENT+REL). Ent- 217

first + B_S + Start achieves the new SOTA RE F1 218

of 92.61% 3. 219

4.1 Representation matters 220

We found performance differences among different 221

combinations. There is a huge gap between span 222

and non-span representations. The F1 scores of 223

1This setting makes DyGIE++ inaccessible to cross-
sentence relations, so 0.88% of the relations in the test set
are not seen.

2Due to the limitation of PLM input length, 1.65% of
the relations in test set are unreachable when we perform
document-level task by our approach.

3Give a null hypothesis: Melaxtech has the same RE per-
formance as Ours-Ent-first + B_S + Start,the p-value < .00001.
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ENT REL NER RE
Model First Rep Rep P R F P R F
DyGIE++ x x x 94.86% 87.22% 90.88% 95.07% 86.49% 90.58%
Melaxtech x x x 95.71% 95.70% 95.70% 92.01% 91.47% 91.74%

Ours-
REL

x x W 94.64% 80.34% 86.91% 91.34% 83.78% 87.40%
x x W (r) 94.17% 80.79% 86.97% 91.02% 84.58% 87.68%
x x B 95.53% 81.02% 87.68% 86.45% 84.96% 85.69%
x x B (r) 95.88% 81.79% 88.27% 87.26% 85.71% 86.48%
x x W_S 94.80% 84.09% 89.13% 91.58% 89.56% 90.56%
x x W_S (r) 94.83% 84.50% 89.37% 91.51% 89.92% 90.71%
x x B_S 96.03% 85.21% 90.30% 93.20% 91.44% 92.31%
x x B_S (r) 95.91% 84.96% 90.10% 93.23% 91.09% 92.15%

Ours-
ENT+REL

Ent W_S Start 95.04% 93.27% 94.15% 95.52% 89.20% 92.25%
Rel W_S Start 94.79% 93.68% 94.23% 93.15% 86.77% 89.85%
Ent B_S Start 95.41% 94.43% 94.91% 94.98% 90.35% 92.61%
Rel B_S Start 95.59% 94.55% 95.07% 93.71% 87.78% 90.65%
Ent W_S Start (r) 94.45% 93.40% 93.92% 95.30% 88.76% 91.92%
Rel W_S Start (r) 94.78% 93.84% 94.31% 93.21% 88.04% 90.55%
Ent B_S Start (r) 95.39% 94.72% 95.05% 94.72% 89.99% 92.29%
Rel B_S Start (r) 95.83% 94.75% 95.29% 93.19% 88.97% 91.03%

Table 2: Results for the ChEMU dataset. "W": WORD; "B": BPE; "W_S": WORD_SPAN; "B_S": BPE_SPAN.
"r" indicates that when generating a relation span, the information of the tail entity is generated before the head
entity. Ours-REL means that the target output follows the setup in 2.2.2, and "Ours-ENT+REL" generates the target
output under the definition in 2.2.3.

RE between B(r) and B_S(r) in Ours-REL differ by224

nearly 6 points. We speculate that representations225

in the form of spans are stronger because they are226

lesser affected by the length of the entities. There227

are many long chemical substance names that may228

be divided into dozens of subtokens in ChEMU,229

making the task faced by non-span representation230

more difficult. In the case of REL, losing a subto-231

ken in the middle will cause a relation and an entity232

falsely predicted simultaneously. However, when233

entity generation is not that closely tied with rela-234

tion generation (ENT+REL), both the performance235

on NER and RE get better. Another reason for the236

low NER recalls by Ours-REL is that not every237

entity is included in relations. In addition, revers-238

ing the generation order of head and tail entities,239

or reversing the generation order of entities and240

relations, also have clear effects.241

4.2 Joint learning: DyGIE++ vs. Ours242

All representations in ENT+REL outperform Dy-243

GIE++ with differences between 3 to 4 points of244

NER F1 scores. Under the default setting of Dy-245

GIE++, the loss weight of RE is 1.0 and the weight246

of NER is 0.2, which can guarantee the effect of RE,247

but the part of NER is far inferior to our method.248

Except for Rel-first + W_S + Start and Rel-first + 249

W_S + Start(r), other representations in ENT+REL 250

outperform DyGIE++. The low recall of DyGIE++ 251

is primarily responsible for this gap. The limitation 252

on span length makes DyGIE++ incapable of pre- 253

dicting long entities in the ChEMU. Overall these 254

results, demonstrate that our method is a stronger 255

joint model than DyGIE++ on ChEMU4. 256

5 Conclusions 257

By proposing representations suitable for end- 258

to-end RE, our approach allows the generative 259

model designed for NER tasks to learn both entity- 260

and relation-level information without increasing 261

model complexity. This method provides SOTA 262

results on the ChEMU dataset. Our work is still in 263

progress - as we have only experimented on texts 264

rich in entity and relation information. In the future, 265

we will find out how well this method performs on 266

more practical tasks, such as a task with higher 267

proportion of cross-sentence relations, or event ex- 268

traction. Also, we will keep exploring the potential 269

of generative models in joint learning. 270

4Give a null hypothesis: DyGIE++ has the same RE per-
formance as Ours-Ent-first + B_S + Start, p-value < .00001.
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Hyper Value
adam_epsilon 1e-06
batch_size 1
betas [0.9, 0.999]
decoder_drop_rate 0.3
grad_clip 5.0
hidden_size 1024
learning_rate 1e-05
num_epochs 30
reset 5
vocab_size 50280
warmup_ratio 0.01
weight_decay 0.001

Table 3: Part of hyperparameters used in experiments.

A Implementation details 322

We rewrote the BARTNER (Yan et al., 2021) using 323

NumPy, PyTorch and Hugging Face’s Transform- 324

ers referring to Yan’s public code. https:// 325

github.com/yhcc/BARTNER The codes of 326

pre-processing and evaluation are written with 327

NumPy and PyTorch. 328

The generative model is trained with max se- 329

quence length 1024 and batch size 1 for 30 epochs, 330

without limitation on the length of each span. Only 331

a single run for each representation. 332

No hyperparameter search and early stopping in 333

our experiments. The details of hyperparameters 334

are in Tab.3. We do not apply beam search during 335

decoding. 336

All the entity and relation tags are set as special 337

tokens and be initiated by prompt initiation. The 338

parameter size of the model we implemented is 339

1633.624064M when we use BART-large (Lewis 340

et al., 2020) as the encoder-decoder. All ex- 341

periments are conducted on are trained on a 20- 342

core(CPU) machine with 1 GPU (NVIDIA A100 343

for NVLink 40GiB HBM2). The wallclock time 344

of training one representation is approximately 345

15000s (30 epochs in total), maximum memory 346

reaches 28.802G on the ChEMU dataset. 347
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