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Data Generation Scheme for Thermal Modality with Edge-Guided
Adversarial Conditional Diffusion Model

Anonymous Authors

ABSTRACT
In challenging low-light and adverse weather conditions, thermal
vision algorithms, especially object detection, have exhibited re-
markable potential, contrasting with the frequent struggles encoun-
tered by visible vision algorithms. Nevertheless, the efficacy of
thermal vision algorithms driven by deep learning models remains
constrained by the paucity of available training data samples. To
this end, this paper introduces a novel approach termed the edge-
guided conditional diffusion model (ECDM). This framework aims
to produce meticulously aligned pseudo thermal images at the pixel
level, leveraging edge information extracted from visible images.
By utilizing edges as contextual cues from the visible domain, the
diffusion model achieves meticulous control over the delineation
of objects within the generated images. To alleviate the impacts
of those visible-specific edge information that should not appear
in the thermal domain, a two-stage modality adversarial training
(TMAT) strategy is proposed to filter them out from the generated
images by differentiating the visible and thermal modality. Exten-
sive experiments on LLVIP demonstrate ECDM’s superiority over
existing state-of-the-art approaches in terms of image generation
quality. The pseudo thermal images generated by ECDM also help
to boost the performance of various thermal object detectors by up
to 7.1 mAP.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Object detec-
tion.

KEYWORDS
Diffusion model, Thermal image generation, Thermal object detec-
tion
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1 INTRODUCTION
In scenarios characterized by low-light or dark conditions, vis-
ible sensors often fail to yield substantial information, whereas
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(a) Ground truth (b) UGATIT

(c) DDIM (d) ECDM (Ours)

Figure 1: A sample comparison of generated thermal im-
ages between different methods and ground truth. (a) A
ground truth thermal image, (b) a generated thermal im-
age by UGATIT, (c) a generated thermal image by DDIM and
(d) a generated thermal image by ECDM (Ours).

thermal sensors capitalize on thermal radiation and temperature
differentials. This sensitivity renders them particularly proficient
in detecting temperature-related entities, notably livings and ve-
hicles, within obscured settings. The superiority of thermal vision
motivates numerous studies [10, 12, 17] dedicated to thermal vi-
sion applications, particularly thermal object detection, and yield
noteworthy enhancements in this domain.

However, the efficacy of thermal vision applications remains
notably curtailed by the paucity of available training samples. For
example, the LLVIP dataset [16] only contains a mere 12,000 train-
ing thermal images, constituting only one-ninth of the visible sam-
ples contained within the COCO dataset [23]. The procurement
of expansive training data and the meticulous labeling of precise
annotations necessitate extensive human labor and substantial time
investment. To address this challenge, extant studies mainly harness
two methodologies for augmenting training datasets to facilitate
deep model training: 3D synthesis and deep generative models. The
3D synthesis methods [3, 28] commence by generating a subset
of 3D objects, followed by the application of a rudimentary ther-
mal shader to render these objects, thereby engendering synthetic
thermal images. Nevertheless, the images produced by the latest
thermal sensor simulators still exhibit significant disparities when
compared to those captured using real equipments. Recent studies
in the domain of generative models, particularly within the realm

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: The performance of RetinaNet trained with various
amounts of generated pseudo training data. The x-axis indi-
cates the augmentation multiple. For example, 0.2 indicates
that the generated pseudo training data in the entire training
sample is only 20% of the real data.

of Generative Adversarial Networks (GANs) [15, 25], serves as an
impetus for the generation of training data for thermal object de-
tection [18, 26]. However, existing GAN-based methods necessitate
the availability of paired visible and thermal images for training
deep models. The constraint often proves challenging to meet in
practical contexts.

This study delves into the applicability of the diffusion model to
the task of generating thermally-aligned pixel-level images, obviat-
ing the need for supervisory guidance from paired visible-thermal
counterparts. To this end, we propose an edge-guided adversarial
condition diffusion model (ECDM) for thermal data generation. The
basic idea of ECDM is learning the conditional probabilistic density
of thermal images under the condition of the given visible image
edge information. By incorporating the idea of adversarial learning
to ease detrimental impacts stemming from extraneous and irrele-
vant edge details in the visible domain. As illustrated in Figure 1d,
our ECDM can simultaneously reconstruct object shape and object
thermal radiation characteristics while other methods are only good
in one aspect. As shown in Figure 1b, GAN-based methods often
tend to reconstruct object shapes but introduce irrelevant edges and
abnormal details in thermal modality. As shown in Figure 1c, other
Diffusion-based methods often tend to reconstruct object thermal
radiation characteristics. In summary, the main contributions of
ECDM are threefold:

(1) ECDMengenders pixel-level thermally-aligned images through
the generation process, bypassing the necessity for anno-
tated visible-thermal pairs. This innovation augments the
available datasets for thermal object detection by effectively
generating thermal images from their visible counterparts.

(2) We devise a conditional diffusion model to estimate the con-
ditional probabilistic density of thermal images under the
constraints of the given visible image edges. Furthermore,
we develop an adversarial training strategy to filter out the

extraneous edge information from the visible domain that
should not appear in the thermal domain.

(3) Extensive experiments on LLVIP demonstrate ECDM’s su-
periority over existing state-of-the-art approaches in terms
of image generation quality. The applicability of ECDM in
generating training samples is also evaluated on the classical
object detection task, wherein ECDM brings up to 7.1% mAP
improvement for the detectors (as shown in Figure 2).

2 RELATEDWORK
To solve the lacking of thermal images, some studies attempt to
employ the domain adaptation techniques [17], by fine-tuning the
pretrained visible object detectors into the thermal domain. The
main promising ideas are multi-level feature alignments [29] and
style consistency constraints [30]. Nonetheless, while domain adap-
tation methods may mitigate the issue of insufficient annotations,
they continue to face challenges in the absence of thermal images.

Another mainstream of studies rely on generative-based meth-
ods to generate synthetic thermal images. In [2, 3, 28], there is a
discussion of the use of virtual environments to create synthetic
thermal images. These methods rely on intricate 3D models now
focusing only on objects rather than whole scenes and employ in-
frared physics-based rendering. In [5, 18], generative models are
discussed to create synthetic thermal images. But these generative
models-based methods can not generate pixel-level alignments of
thermal images from visible images.

Deep generative models (DGMs) are neural networks trained to
approximate the probability distributions of data. After training
successfully, we can generate new samples from the underlying dis-
tribution. Generative Adversarial Networks (GANs) [11], as a type
of DGMs, have been extensively employed in the image-to-image
translation tasks [15, 21, 24, 48]. Basic GANs consist of a generator
and a discriminator under an adversarial training framework. The
adversarial training process can be modeled as a min-max game.
However, they have drawbacks such as poor convergence charac-
teristics, especially on the thermal modality with rare textures.

Recently, diffusion models (DMs) [14] as a novel paradigm in the
generative model, were shown impressive generative capabilities
in high level of details [4]. Compared to GANs, this approach has a
more stable training process and produces a greater range of diverse
images. Recent advancements in DMs have demonstrated the ability
to control the generation process, including details, through various
conditions like image [20, 35, 45], class [6], and text [33]. DMs
and their variants possess intriguing properties, such as stable
training, generative diversity in images, and details control through
conditions. These properties make them suitable for generating
training data from visible images for the thermal object detection
task.

Diffusion-GAN [40] attempt utilize the advantage of the flexible
diffusionmodel to stability the training process of GANs. In contrast
to [40] which injects adaptive noise via diffusion at various time
steps to provide higher training stability over strong GAN base-
lines, our two-stage modality adversarial training (TMAT) strategy
utilizes adversarial training to mitigate the distribution mismatch
in generating images under diverse conditions.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Data Generation Scheme for Thermal Modality with Edge-Guided Adversarial Conditional Diffusion Model ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 3: Illustration of our Two-stage Modality Adversarial Training (TMAT) strategy. During the first stage, we only use
𝑥𝑡𝑖𝑟 as input and train the ECDM to learn the distribution of 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡𝑖𝑟 |𝜁 𝑡𝑖𝑟 ). In the second stage, we use unpaired 𝑥𝑣𝑖𝑠 and
𝑥𝑡𝑖𝑟 as input and utilize GANs to reduce the gap between visible and thermal domains. This helps us learn the distribution of
𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡𝑖𝑟 |𝜁 𝑣𝑖𝑠 ) for approximating 𝑝𝑡𝑖𝑟 (𝑥𝑡𝑖𝑟 ).

3 METHODOLOGY
3.1 Framework Overview
In this section, we first formalize the problem of generating pseudo
training data for thermal object detection. As visible object detection
datasets typically exhibit greater scale than their thermal counter-
parts, we leverage existing visible datasets to craft pseudo training
samples for thermal object detection. Given a real visible object
detection dataset D𝑣𝑖𝑠 = {𝑥𝑣𝑖𝑠

𝑖
, 𝑦𝑣𝑖𝑠

𝑖
}𝑁
𝑖=1 contains 𝑁 visible images

and a dataset D𝑡𝑖𝑟 = {𝑥𝑡𝑖𝑟
𝑖

, 𝑦𝑡𝑖𝑟
𝑖
}𝑀
𝑖=1 contains 𝑀 real thermal in-

frared images, where each 𝑥𝑣𝑖𝑠
𝑖

, 𝑥𝑡𝑖𝑟
𝑖

is an image sampled from a
distribution 𝑝𝑣𝑖𝑠 (𝑥𝑣𝑖𝑠 ) or 𝑝𝑡𝑖𝑟 (𝑥𝑡𝑖𝑟 ), respectively. The correspond-
ing annotations for each image are labeled as 𝑦𝑣𝑖𝑠

𝑖
and 𝑦𝑡𝑖𝑟

𝑖
. In

training generative models, the goal is to learn a model distribution
𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡𝑖𝑟 |𝑥𝑣𝑖𝑠 ) that matches 𝑝𝑡𝑖𝑟 (𝑥𝑡𝑖𝑟 ).

However, different from the task of image generation or image-
to-image translation, our generated pseudo images are prepared
for thermal object detection. Consequently, generative thermal im-
ages necessitate pixel-level alignment with their corresponding
visible images to accurately represent objects. To attain this pre-
cise alignment, we introduce the Edge Condition Diffusion Model
(ECDM) rooted in conditional diffusion models. In our approach,
edge images play a crucial role as the guiding condition during the
sampling process for the creation of training samples.

Although edge information can bridge the thermal and visible
domains, some discrepancies persist between the corresponding

edge images in these domains. To address this challenge, we intro-
duce a two-stage modality adversarial training strategy instead of
a direct end-to-end training approach for the ECDM. Initially, we
utilize thermal edge images to train the ECDM, enabling it to trans-
late thermal edge images into thermal images. Subsequently, we
leverage the trained ECDM as a generator and devise a discrimina-
tor. Through adversarial training resembling a GAN approach, we
work towards minimizing the disparity between synthetically gen-
erated thermal images under visible edge conditions and authentic
thermal images.

3.2 Edge-guided Conditional Diffusion Model
Texture, shape, and color stand as the paramount visual cues in
visual recognition [9]. However, due to the substantial differences
in primary radiation, a considerable gap exists between thermal
infrared and visible images. Specifically, thermal images have lack
color information and exhibit lower texture than their visible coun-
terparts. Shape information exhibits notable similarity between
thermal and visible images within the same scene. We posit that this
shape information serves as a bridge, mitigating the gap between
the thermal and visible domains to some degree. The shape infor-
mation in the images can be roughly extracted by high-frequency
filtering

𝜁𝑚𝑖 = H(𝑥𝑚𝑖 ), (1)

where𝑚 ∈ {𝑣𝑖𝑠, 𝑡𝑖𝑟 } is a modality indicator superscript, andH(·) is
an edge extracted operator contains a fast Fourier transform, a high
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Figure 4: The architecture of ECDM. The numbers over the
light blue rectangle blocks denote the channels of feature
maps. The yellow rectangle block denotes an attention layer.

pass filtering, and an inverse fast Fourier transform. The extracted
shape information is also termed as edge images. Different from
image generation task in vanilla diffusion models [14, 37, 40] or
conditioned on the class label, text, or natural images, the proposed
ECDM introduces prior knowledge related to the fine-granularity
content of objects, i.e., edge images.

The ECDM comprises both the diffusion process and the re-
verse process. It destroys the input thermal image 𝑥𝑡𝑖𝑟0 ∈ D𝑡𝑖𝑟 to a
standard Gaussian noise 𝑥𝑡𝑖𝑟

𝑇
∼ N(0, I) by gradually adding small

Gaussian noise in𝑇 diffusion steps in forward process. The forward
process of ECDM is presented as follows

𝑞(𝑥𝑡𝑖𝑟1:𝑇 |𝑥
𝑡𝑖𝑟
0 ) =

𝑇∏
𝑡=1

𝑞(𝑥𝑡𝑖𝑟𝑡 |𝑥𝑡𝑖𝑟𝑡−1), (2)

𝑞(𝑥𝑡𝑖𝑟𝑡 |𝑥𝑡𝑖𝑟𝑡−1) ∼ N (𝑥
𝑡𝑖𝑟
𝑡 ;

√︁
1 − 𝛽𝑡𝑥𝑡𝑖𝑟𝑡−1, 𝛽𝑡 I), (3)

where 𝛽𝑡 is a small positive constant to control the variants of the
added noise in diffusion step 𝑡 (0 ≤ 𝑡 ≤ 𝑇 ). Following[14], the
variance schedule is predefined linearly increasing from 𝛽1 = 10−4

to 𝛽𝑇 = 0.02 and diffusion steps is seted 𝑇 = 1000. The noised
sample at diffusion step 𝑡 can be directly calculated by

𝑥𝑡𝑖𝑟𝑡 =
√
𝛼𝑡𝑥

𝑡𝑖𝑟
0 +

√
1 − 𝛼𝑡𝜅, 𝜅 ∼ N(0, I), (4)

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 .
The reverse process of ECDM is conditioned on the edge images

to bridge the gap between the thermal domain and the visible
domain while capturing the fine-granularity content of objects.
Note that the different training stages use edge images in different
domains. The reverse process is written as

𝑝𝜃 (𝑥𝑡𝑖𝑟0:𝑇−1 |𝑥
𝑡𝑖𝑟
𝑇 , 𝜁𝑚) =

𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡𝑖𝑟𝑡−1 |𝑥
𝑡𝑖𝑟
𝑡 , 𝜁𝑚), (5)

𝑝𝜃 (𝑥𝑡𝑖𝑟𝑡−1 |𝑥
𝑡𝑖𝑟
𝑡 , 𝜁𝑚) ∼ N (𝑥𝑡𝑖𝑟𝑡−1; 𝜇𝜃 (𝑥𝑡𝑖𝑟𝑡 , 𝜁𝑚, 𝑡), 𝜎2

𝑡 I). (6)
The parameterizations of 𝜇𝜃 and 𝜎𝜃 are defined by

𝜇𝜃 (𝑥𝑡𝑖𝑟𝑡 , 𝜁𝑚, 𝑡) = 1
√
𝛼𝑡

(
𝑥𝑡𝑖𝑟𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜅𝜃 (𝑥𝑡𝑖𝑟𝑡 , 𝜁𝑚, 𝑡)
)
, (7)

𝜎2
𝑡 =

1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡 , (8)

where 𝜅𝜃 is a neural network parameterized by 𝜃 , implemented by
a modified UNet [14, 34]. In our work, 𝜅𝜃 takes the noised image
𝑥𝑡𝑖𝑟𝑡 , the conditional edge image 𝜁𝑚 , and the diffusion step 𝑡 as
input. The the diffusion step 𝑡 are fed into a Transformer sinusoidal
position embedding layer [39] with a given embedding dimension,
followed by a Linear + sigmoid layer. Then, for each downsample
and upsample block, an additional Linear + sigmoid layer is em-
ployed to align the channel dimensions of the feature maps. Figure 4
shows the architecture of ECDM.

3.3 Two-stage Modality Adversarial Training
Our goal is to learn the distribution of 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡𝑖𝑟 |𝜁 𝑣𝑖𝑠 ). However,
attempting to manually train the ECDM in a straightforward end-
to-end manner, such as 𝜁𝑚 = 𝜁 𝑣𝑖𝑠 in (7), while theoretically feasible,
becomes challenging in practice due to the substantial divergence
between the thermal and visible domains.

To address this challenge, we propose a two-stage modality ad-
versarial training strategy. As illustrated in Figure 3, in the first
stage, we set 𝜁𝑚 = 𝜁 𝑡𝑖𝑟 and train the model to learn the distribution
of 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡𝑖𝑟 |𝜁 𝑡𝑖𝑟 ). The condition 𝜁 𝑡𝑖𝑟 and generative images 𝑥𝑡𝑖𝑟
all remain within the thermal domain, simplifying the distribution
learning process. In the second stage, we incorporate the principles
of GANs, employing the ECDM previously trained in the first stage
as the generator and employing a thermal modality authenticity
indicator as the discriminator. At this stage, we begin by generating
images from the generator under a distinct condition 𝜁𝑚 = 𝜁 𝑣𝑖𝑠 ,
which introduces modality bias due to the incongruity between
𝑝 (𝜁 𝑡𝑖𝑟 ) and 𝑝 (𝜁 𝑣𝑖𝑠 ). We then mitigate this modality bias through
adversarial training. The complete two-stage modality adversarial
training procedure is detailed in Algorithm1.

Specifically, in the first stage, we focus on training the ECDM
by optimizing the standard variational bound on negative log-
likelihood. Following the reparameterization trick in [14], the train-
ing objective of ECDM in the first stage training process is

L𝑑𝑖 𝑓 𝑓 = E𝑥𝑡𝑖𝑟0 ,𝜅,𝑡 ∥ 𝜅 − 𝜅𝜃 (𝑥
𝑡𝑖𝑟
𝑡 , 𝜁 𝑡𝑖𝑟 , 𝑡) ∥22 . (9)

In the second stage, we leverage the ECDM as a generator𝐺 and
introduce a discriminator 𝐷 by PatchGAN [15], where 𝐺 aims to
generate synthetic thermal images 𝑥𝑣𝑖𝑠 ∼ 𝑝𝑡𝑖𝑟 (𝑥𝑡𝑖𝑟 ) the condition
of visible edge images, 𝐷 aims to distinguish the real and synthetic
thermal images. To ensure that the generated thermal images are
indistinguishable from authentic ones, we employ an adversarial
loss [11]

L𝑎𝑑𝑣 =𝜆𝑟𝑒𝑎𝑙E𝑥𝑡𝑖𝑟 [log(𝐷 (𝑥𝑡𝑖𝑟 ))]+
E𝜅,𝜁 𝑣𝑖𝑠 [log(1 − 𝐷 (𝐺 (𝜅, 𝜁 𝑣𝑖𝑠 )))],

(10)

where 𝜆𝑟𝑒𝑎𝑙 is a hyper-parameter to balance the adversarial loss
components. We set 𝜆𝑟𝑒𝑎𝑙 = 10 in our experiments. To further
narrow the gap between the generated thermal images and actual
ones, we incorporate a style-consistency loss defined as

L𝑠𝑡𝑦𝑙𝑒 = ∥𝑥𝑡𝑖𝑟 − 𝑥𝑡𝑖𝑟 ∥22, (11)

and design a modality-consistency loss

L𝑚𝑜𝑑 = ∥1 − 𝐷 (𝑥𝑣𝑖𝑠 )∥22, (12)
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Algorithm 1 Two-stage Modality Adversarial Training

Require: the thermal image 𝑥𝑡𝑖𝑟 , the visible images 𝑥𝑣𝑖𝑠 , the first
stage training epochs 𝑆𝑑𝑖 𝑓 𝑓 , the second stage training epochs
𝑆𝑎𝑑𝑣 , the steps of generating 𝑆𝐺 , the steps of discriminating
𝑆𝐷 .

1: 𝑥𝑇 ∼ N(0, I)
2: 𝜁 𝑡𝑖𝑟 = H(𝑥𝑡𝑖𝑟 ), 𝜁 𝑣𝑖𝑠 = H(𝑥𝑣𝑖𝑠 )
3: for 𝑖 = 0 to 𝑆𝑑𝑖 𝑓 𝑓 do
4: Update 𝜅𝜃 by descending its gradient:
5: ▽𝜅𝜃 ∥ 𝜅 − 𝜅𝜃 (𝑥𝑡𝑖𝑟𝑡 , 𝜁 𝑡𝑖𝑟 , 𝑡) ∥22
6: end for
7: 𝑥𝑡𝑖𝑟 ← 𝐺 (𝜅, 𝜁 𝑡𝑖𝑟 ), 𝑥𝑣𝑖𝑠 ← 𝐺 (𝜅, 𝜁 𝑣𝑖𝑠 )
8: for 𝑗 = 0 to 𝑆𝑎𝑑𝑣 do
9: for 𝑘 = 0 to 𝑆𝐺 do
10: Update 𝜅𝜃 by descending its gradient:
11: ▽𝜅𝜃 ∥ 𝜅 − 𝜅𝜃 (𝑥𝑡𝑖𝑟𝑡 , 𝜁 𝑡𝑖𝑟 , 𝑡) ∥22
12: ▽𝜅𝜃 ∥𝑥𝑡𝑖𝑟 − 𝑥𝑡𝑖𝑟 ∥22
13: ▽𝜅𝜃 ∥1 − 𝐷 (𝑥𝑣𝑖𝑠 )∥22
14: ▽𝜅𝜃 ∥H (𝑥𝑣𝑖𝑠 ) − H (𝑥𝑣𝑖𝑠 )∥22
15: end for
16: for 𝑙 = 0 to 𝑆𝐷 do
17: Update 𝐷 by descending its gradient:
18: ▽𝐷 [𝜆𝑟𝑒𝑎𝑙 ∥ log(𝐷 (𝑥𝑡𝑖𝑟 ))∥22
19: + ∥ log(1 − 𝐷 (𝑥𝑣𝑖𝑠 ))∥22]
20: end for
21: end for
22: return ECDM (𝜅𝜃 ).

where 𝑥𝑡𝑖𝑟 := 𝐺 (𝜅, 𝜁 𝑡𝑖𝑟 ) and 𝑥𝑣𝑖𝑠 := 𝐺 (𝜅, 𝜁 𝑣𝑖𝑠 ) represent synthetic
thermal images under conditions of thermal edge images or visible
edge images, respectively. Additionally, we utilize an edge loss to
preserve accurate boundaries and highly detailed shapes, which is
defined as

L𝑒𝑑𝑔𝑒 = ∥H (𝑥𝑣𝑖𝑠 ) − H (𝑥𝑣𝑖𝑠 )∥22 . (13)
Finally, we express the objective functions to optimize 𝐺 and 𝐷 ,

respectively, as follows
L𝐺 =𝜆𝑑𝑖 𝑓 𝑓 L𝑑𝑖 𝑓 𝑓 + 𝜆𝑠𝑡𝑦𝑙𝑒L𝑠𝑡𝑦𝑙𝑒+

𝜆𝑚𝑜𝑑L𝑚𝑜𝑑 + 𝜆𝑒𝑑𝑔𝑒L𝑒𝑑𝑔𝑒 ,
(14)

L𝐷 = L𝑎𝑑𝑣, (15)
where 𝜆𝑑𝑖 𝑓 𝑓 , 𝜆𝑠𝑡𝑦𝑙𝑒 , 𝜆𝑚𝑜𝑑 , 𝜆𝑒𝑑𝑔𝑒 are hyper-parameters to control
theweight of different loss.We use 𝜆𝑑𝑖 𝑓 𝑓 = 0.1, 𝜆𝑠𝑡𝑦𝑙𝑒 = 100, 𝜆𝑚𝑜𝑑 =

1, 𝜆𝑒𝑑𝑔𝑒 = 1000 in all our experiments. Moreover, we use dpm-
solver++ [27] to improve the sampling speed of ECDM. The sam-
pling parameters of DPM-solver++ are listed in the supplementary
material.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. Our experiments are mainly on the Low-Light
Visible-Infrared Paired Dataset (LLVIP) [16], FLIR thermal dataset
(FLIR) [8], and Person Re-identification in theWildDataset (PRW) [47].
LLVIP consists of 15,488 pairs of visible-thermal images, captured
under low-light conditions using a binocular surveillance camera.

These paired images are precisely aligned both spatially and tem-
porally. For brevity, we refer to this dataset asD𝑙𝑙𝑣𝑖𝑝 . FLIR has two
versions: v1.3 (2019) and v2.0 (2021). We utilize v2.0 for its expanded
training dataset. Our analysis focuses on five categories: person,
bike, car, light, and sign. PRW comprises 11,816 frames captured
during the summer months using a visible camera. These frames
were extracted from theMarket-1501 dataset [46]. This dataset is an-
notated for both person re-identification and pedestrian detection
tasks. We refer to this dataset D𝑝𝑟𝑤 .

4.1.2 Metrics. Weuse Fréchet InceptionDistance (FID) [13], Learned
Perceptual Image Patch Similarity (LPIPS) [44], peak-noise-to-signal
ratio (PSNR), the structural similarity index measure (SSIM), and
Kernel Inception Distance (KID) [1] to measure the quality of gener-
ated thermal images. FID is a widely adopted non-reference percep-
tual metric that assesses the similarity between two sets of images.

We denote the standard implementation in [36] as FID. Besides,
the FID implemented in [31] is FID-C, and the FID implemented
using CLIP instead of InceptionV3 is FID-C𝑐𝑙𝑖𝑝 . Additionally, we
employ KID, a metric similar to FID but with a polynomial kernel
for an unbiased estimator.

We use standard mean Average Percision [23] (mAP) under dif-
ferent Intersection over Union (IoU) thresholds as the metrics to
measure the gain of generated pseudo training data to the perfor-
mance of thermal detectors.

4.2 Implementation Details
We train the ECDM on four NVIDIA 3090 24GB GPUs, utilizing
a batch size of 4 and resizing the input images to a resolution of
512 × 640. The generator 𝐺 and discriminator 𝐷 are optimized
using Adam with 𝛽1 = 0.9 and 𝛽2 = 0.999. The learning rate is
set to 0.00002. Our training procedure involves setting 𝑆𝑑𝑖 𝑓 𝑓 = 70,
𝑆𝑎𝑑𝑣 = 20, 𝑆𝐺 = 2, and 𝑆𝐷 = 1. Further details can be found in the
supplementary material.

Our training process in Sec. 4.7 utilizes two NVIDIA 3090 24GB
GPUs with a batch size of 32 and employs SGD as the optimizer. We
set the base learning rate to 0.0002, momentum to 0.99, and weight
decay to 0.0001. To ensure a fair comparison, we train them for 40k
iterations and use a multistep learning rate scheduler with steps at
12000, 18000, and 32000 iterations.

4.3 Quantitative and Qualitative Comparison to
Visible-to-thermal Translation Task

We demonstrate that ECDM can deliver competitive results in
visible-to-thermal translation tasks. We compare our method with
several state-of-the-art methods: pix2pixGAN [15], CycleGAN [48],
UGATIT [19], LPTN [21], VSAIT [38], DDIM [37] and BBDM [20].
We also benchmark some energy-based/flow-based models in our
experiments, but their performance was inferior to the GAN-based
methods presented in Table 1. We report the performance under
512× 640 resolution which specifically addresses thermal object de-
tections. For DDIM, we modified the original architecture as shown
in Figure 4. However, in our case, we used visible images from the
LLVIP dataset as the conditioning input for the visible-to-thermal
image translation task. We evaluate BBDM’s performance by up-
sampling generated images from 256×256, due to its difficulty in
converging at 512×640.
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As can be seen in Table 1, ECDM achieves superior performance
to SOTA thermal image generators on the LLVIP dataset. It sug-
gests that by introducing visible edge conditions to guide diffusion
modeling, our proposed ECDM effectively generates high-quality
pixel-level aligned pseudo thermal images with visible edge images.

Table 1: Quantitative comparison on the LLVIP dataset. § in-
dicates upsampling from the 256×256 resolution. Best results
highlighted in bold, second best in underline.

Method FID↓ LPIPS↓ SSIM↑ PSNR↑
pix2pixGAN (CVPR 2017) 317.38 0.474 0.211 11.251
CycleGAN (ICCV 2017) 183.80 0.354 0.283 12.196
UGATIT (ICLR 2020) 178.71 0.359 0.285 12.970
LPTN (CVPR 2021) 209.84 0.396 0.245 11.658
VSAIT (ECCV 2022) 211.30 0.360 0.277 13.050

DDIM (ICLR 2021) 325.87 0.454 0.393 11.741
BBDM§ (CVPR 2023) 265.06 0.436 0.311 11.728

ECDM (Ours) 139.91 0.141 0.507 13.130

We also show qualitative comparison with other methods in
Figure 5. Our qualitative comparison is based on two key princi-
ples: object shape reconstruction and object thermal radiation
characteristic reconstruction. The latter principle is based on the
thermal imaging mechanism. Thermal imaging relies on emitting
radiation from objects. The higher the temperature, the brighter
the object in the thermal image.

In Figure 5, although some methods can reconstruct full objects
like cars, they still fail to capture the thermal radiation characteris-
tic of objects in generated images. For example, the tires of moving
vehicles and the exposed skin of pedestrians should appear brighter
in thermal images. GAN-based methods, such as CycleGAN and
UGATIT, excel in object shape reconstruction but fall short in object
thermal radiation characteristic reconstruction. These GAN-based
methods also tend to reconstruct the object texture rather than
the object thermal radiation characteristics, such as stationary ve-
hicles and sidewalks. Conversely, diffusion-based methods, such
as DDIM and BBIM, demonstrate proficiency in thermal radiation
characteristic reconstruction but struggle with shape reconstruc-
tion. Our proposed method stands out by achieving both shape
reconstruction and thermal radiation characteristic reconstruction
simultaneously. More visual results can be found in supplementary
material.

4.4 Model Complexity Comparison
We compare the complexity of ECDM with other methods in terms
of the number of parameters (#params) and FLOPs. All results
computed using the calflops package [41].

As can be seen in Table 2, our method is comparable to GAN-
based method except LPTN in #params. Compared with DDIM,
our method introduces an additional discriminator, resulting in an
increase of 2.765M #params. Diffusion-based methods generally
require higher FLOPs because of multisteps reversal process com-
pared with GAN-based methods. However, our method benefits

Table 2: Comparison of model complexity and parameters.
#params denotes the number of parameters. G and T after
the values represent the unit of FLOPs. Different colors are
used for better distinguish.

Type Method #params (M) ↓ FLOPs ↓

GAN-based

pix2pixGAN 60.290 44.598G
CycleGAN 28.286 496.415G
UGATIT 32.946 134.577G
LPTN 0.871 13.629G
VSAIT 65.492 642.878G

Diffusion-based
DDIM 34.431 733.246T
BBDM 273.095 806.380T
ECDM (Ours) 37.196 120.986T

from the application of DPM-Solver++, which results in the lowest
FLOPs among diffusion-based methods.

We also report that generating 512 × 640 of one thermal image
needs about 14.7s on a NVIDIA 3090 GPU. However, we can apply
some acceleration schemes of diffusion to tackle the efficiency
problem. Besides, the data generation is a one-time operation, and
any other downstream tasks can use them.

4.5 Transferability of ECDM
In the experimental setup described above, the visible edge images
and target generated thermal images are from the same dataset (all
in the LLVIP dataset), resulting in a small gap between them. In
practice, generating pseudo thermal images that can yield gains
for downstream tasks such as thermal object detection poses a
challenging problem: will the generated training data be useful
when the conditions are far from the target domain? This raises
the issue of model transferability.

Table 3: Ablation study for transferability of ECDM.

Condition FID↓ FID-C↓ FID-C𝑐𝑙𝑖𝑝 ↓ KID↓
Training Sampling

D𝑡𝑖𝑟
𝑙𝑙𝑣𝑖𝑝

D𝑝𝑟𝑤 306.66 305.00 66.59 0.2881
𝜁 𝑡𝑖𝑟
𝑙𝑙𝑣𝑖𝑝

𝜁𝑝𝑟𝑤 249.49 245.84 36.84 0.2265
D𝑣𝑖𝑠

𝑙𝑙𝑣𝑖𝑝
D𝑝𝑟𝑤 267.59 264.56 41.43 0.2744

𝜁 𝑣𝑖𝑠
𝑙𝑙𝑣𝑖𝑝

𝜁𝑝𝑟𝑤 278.38 280.99 44.75 0.3198
D𝑝𝑟𝑤 D𝑝𝑟𝑤 294.32 285.56 38.85 0.3255
𝜁𝑝𝑟𝑤 𝜁𝑝𝑟𝑤 266.97 267.29 44.35 0.2997

To evaluate the transferability of ECDM, we train our model
under various conditions, including thermal image conditions (de-
noted asD𝑡𝑖𝑟

𝑙𝑙𝑣𝑖𝑝
), thermal edge conditions (denoted as 𝜁 𝑡𝑖𝑟

𝑙𝑙𝑣𝑖𝑝
), visible

images in the LLVIP dataset (denoted as D𝑣𝑖𝑠
𝑙𝑙𝑣𝑖𝑝

), visible edge im-
ages in the LLVIP dataset (denoted as 𝜁 𝑣𝑖𝑠

𝑙𝑙𝑣𝑖𝑝
), and visible images

in the PRW dataset (denoted as D𝑝𝑟𝑤 ), visible edge images in the
PRW dataset (denoted as 𝜁𝑝𝑟𝑤 ). We directly sample thermal images
underD𝑝𝑟𝑤 or 𝜁𝑝𝑟𝑤 conditions from the aforementioned cases. As
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Figure 5: Qualitative comparison of our proposed method with other state-of-the-art methods on the LLVIP test dataset. To
ensure fairness and randomness, we use Python’s random module with a fixed seed (1234) to select four images from the
dataset. The selected images are ‘190145.jpg’, ‘190345.jpg’, ‘190373.jpg’, ‘190405.jpg’, ‘190480.jpg’, ‘220224.jpg’, ‘260261.jpg’. More
visual results can be found in supplementary material.

shown in Table 3, substantial degradations in various metrics are
evident due to domain and dataset disparities. Nonetheless, well-
trained ECDM attains a minimal FID-C score under cross-domain
and cross-dataset sampling conditions.

4.6 Effects of TMAT with Different Edge
Information

To validate the effectiveness of our TMAT strategy in the face
of transferability, we train the ECDM with TMAT under diverse
edge inputs. As shown in Table 4, the trends of various metrics are
consistent, demonstrating that TMAT diminishes the gap between
disparate domains and datasets.

4.7 A Showcase of ECDM on Thermal Object
Detection

To investigate the impact of the number of pseudo thermal images
on thermal object detection performance, we select RetinaNet [22]
as our baseline and train it under the same settings, except for the
training data. The training data consists of two parts: real thermal

Table 4: Ablation study for TMAT.

Condition TMAT FID↓ FID-C↓ FID-C𝑐𝑙𝑖𝑝 ↓ KID↓

Thermal edge images ✘ 249.49 245.84 36.84 0.2265
✔ 248.36 241.96 38.98 0.2292

Visible edge images (night time) ✘ 278.38 280.99 44.75 0.3198
✔ 264.70 259.63 37.02 0.2499

Visible edge images (day time) ✘ 266.97 267.29 44.35 0.2997
✔ 258.59 251.82 43.18 0.2485

images from the training set of LLVIP and pseudo thermal images
generated by our ECDM using PRW edge images. The number of
real thermal images is fixed in the training data and the number
of pseudo thermal images generated by our ECDM is controled by
the augmentation multiple ratio. For instance, an augmentation
multiple ratio of 0.2 signifies that the generated pseudo training
data constitutes only 20% of the real data in the entire training set.
We experiment with diverse augmentation multiple ratios, namely
0, 0.2, 0.4, 0.6, 0.8, and 1.0, and observe the impact on mAP. As
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depicted in Figure 2, the mAP improves gradually from 0 to 7.1,
with the most significant enhancement occurring at a ratio of 1.0.

To further effective the generalization of pseudo training data
generated by our ECDM, we train various object detectors, includ-
ing Faster RCNN [32], RetinaNet [22], CenterNet [7], VFNet [43],
and DINO [42]. For a fair comparison, wemaintain an augmentation
multiple ratio of 1.0 throughout this experiment.

Our generated pseudo training data yield mAP improvements
ranging from 1.1 (CenterNet) to 7.1 (RetinaNet) across different
detectors on the LLVIP dataset. Notably, most detectors, excluding
VFNet, exhibit mAP improvements between 0.7 and 1.8, demon-
strating the effectiveness of our pseudo training data on the FLIR
dataset.

Table 5: Using pseudo data training different detectors on
LLVIP dataset and FLIR dataset. The red color means perfor-
mance improvement while the green color represents per-
formance decrease.

Method Batch size Backbone Dataset Pseudo data mAP mAP@50 mAP@75

Faster RCNN 32 Resnet-50
LLVIP ✘ 49.0 89.2 48.4

✔ 50.3 (+1.3) 89.2 51.6

FLIR ✘ 23.5 42.7 22.6
✔ 24.4 (+0.9) 44.0 23.1

RetinaNet 32 Resnet-50
LLVIP ✘ 45.8 90.3 40.7

✔ 52.5 (+7.1) 92.8 53.6

FLIR ✘ 14.5 29.4 12.4
✔ 15.2 (+0.7) 30.8 13.2

CenterNet 32 Resnet-50
LLVIP ✘ 53.4 91.3 56.3

✔ 54.5 (+1.1) 93.1 57.7

FLIR ✘ 25.5 48.9 22.8
✔ 27.3 (+1.8) 52.1 24.5

VFNet 32 Resnet-50
LLVIP ✘ 52.2 91.3 54.1

✔ 54.7 (+2.5) 92.9 58.6

FLIR ✘ 15.1 32.0 12.2
✔ 13.0 (-2.1) 27.8 10.7

DINO 2 Swin-L
LLVIP ✘ 40.2 72.9 39.8

✔ 44.2 (+4.0) 74.9 46.9

FLIR ✘ 7.6 16.0 6.5
✔ 9.2 (+1.6) 20.8 6.8

The Varifocal Loss in VFNet focuses the training on those high-
quality positive examples that are more important for achieving
a higher AP than those low-quality ones [43]. Considering the
dataset characteristics, FLIR comprises objects of different scales,
with a predominant presence of small-scale objects. LLVIP primar-
ily consists of medium-scale objects, while PRW contains a mix of
medium- and large-scale objects. The unique design of the Varifo-
cal Loss in VFNet places more emphasis on the generated pseudo
objects compared to other detectors since large-scale objects are
more easily identified as positive examples than small-scale objects.
This design also explains the performance decrease of VFNet on
the FLIR dataset and its performance improvement on the LLVIP
dataset.

We also evaluate the performance of pseudo-training data gener-
ated by ECDM or other image-to-image translation techniques on
the RetinaNet. As shown in Table 6, when compared to the absence
of any additional training data, the utilization of generated pseudo-
training data proves effective in enhancing the performance of
RetinaNet. Notably, our ECDM achieves the highest improvement
(+7.1 mAP) compared with other methods.

Table 6: Comparing the impact of pseudo training data gener-
ated by different methods on the performance of RetinaNet.
‘None’ indicates that no generated training data is used, while
‘PRW’ denotes the utilization of the PRW dataset as addi-
tional training data. Best results highlighted in bold, second
best in underline.

Generating Method mAP mAP@50 mAP@75

None (baseline) 45.8 90.3 40.7
PRW 48.0(+2.2) 91.4 44.8
CycleGAN 51.9(+6.1) 92.6 52.9
UGATIT 51.1(+5.3) 89.7 53.8
LPTN 52.4(+6.6) 92.0 54.4
VSAIT 52.6(+6.8) 93.0 54.6
DDIM 50.6(+4.8) 92.4 49.9
ECDM (Ours) 52.9(+7.1) 92.7 55.3

5 LIMITATIONS AND FUTUREWORKS
Our ECDM currently requires high-quality edge images, which
limits its applicability in certain scenarios. Furthermore, we also
noticed that the generated images often have global color levels
error, especially on the ground, traffic lights, and woods, which
may account for the large FID score in Table 1. Additionally, as
illustrated in Fig 5, our method and DDIM tend to generate brighter
thermal images compared to the ground truth or the CycleGAN
result. Notably, BBDM, also a diffusion-based method, does not
exhibit this trend. Considering the comparison of model parameters
in Table 2. We attribute this issue to the U-Net’s limitations in
parameter count and learning capacity.

Considering the relationship between the thermal object detec-
tion and other downstream tasks which also suffer the lacking of
training samples like thermal object tracking, thermal semantic
segmentation, and thermal image super resolution, our method
is expected to bring performance improvements to them. How-
ever, tracking tasks typically require image sequences as input,
necessitating the design of additional modules to ensure frame-
inter consistency for generated images. It also exhibits potential
applicability to image-to-image translation where edges can act
as connectors between the source and target domain, particularly
when the texture information in the target domain is relatively
sparse.

6 CONCLUSION
In this paper, we introduce a novel data generation scheme for
the thermal modality, called ECDM, which leverages a diffusion
model to generate pixel-level aligned thermal images. Our approach
utilizes edge images extracted from visible images as a condition
to guide the diffusion model in learning the fine control of object
boundaries in the generated image. To address the domain gap
between thermal and visible images, we propose TMAT, a method
that trains our ECDM to generate thermal images from visible edge
images. Our extensive experiments demonstrate the promising
performance of ECDM, and we conduct an exhaustive ablation
study to analyze its effectiveness.
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