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Abstract

Most current domain adaptation methods address either covariate shift or label shift, but
are not applicable where they occur simultaneously and are confounded with each other.
Domain adaptation approaches which do account for such confounding are designed to adapt
covariates to optimally predict a particular label whose shift is confounded with covariate
shift. In this paper, we instead seek to achieve general-purpose data backwards compatibility.
This would allow the adapted covariates to be used for a variety of downstream problems,
including on pre-existing prediction models and on data analytics tasks. To do this we
consider a modification of generalized label shift (GLS), which we call confounded shift. We
present a novel framework for this problem, based on minimizing the expected divergence
between the source and target conditional distributions, conditioning on possible confounders.
Within this framework, we provide concrete implementations using the Gaussian reverse
Kullback-Leibler divergence and the maximum mean discrepancy. Finally, we demonstrate
our approach on synthetic and real datasets.

1 Introduction

The heterogeneity of scientific data is a major obstacle to training useful AI models for scientific research
(Bronstein & Naef, 2024). The recent success of AlphaFold (Jumper et al., 2021) for protein structure
prediction is in large part due to the availability of a large-scale standardized dataset in the form of the
Protein Data Bank (Burley et al., 2019). In contrast, for many other biological problems, data is obtained
from a variety of settings which vary due to both scientifically-relevant di�erences and also due to di�erences
in experimental conditions which give rise to “batch e�ects” (Leek et al., 2010). And unlike protein structure
data, for which ground-truth quantities are absolute distances, many other scientific data modalities report
relative quantities (Bronstein & Naef, 2024). These reported quantities that are relative to some detection
threshold or noise level are particularly subject to batch e�ects caused by technical di�erences in experimental
setups, assays, and even computational techniques for processing raw sensor data (Cai et al., 2018).

Within various scientific fields, such as genomics (Johnson et al., 2007; Sprang et al., 2022), proteomics
(Gregori et al., 2012; Pelletier et al., 2024), and neuroscience (Yamashita et al., 2019; Torbati et al., 2021),
there exist separate preexisting literatures on domain adaptation methods for combining multiple datasets
a�ected by technical artifacts. We cannot hope to discuss all of them in detail, but generally speaking, these
methods seek to align datasets so that they have similar feature distributions (Johnson et al., 2007; Shaham
et al., 2017) or similar intra-dataset sample-sample relationships (Haghverdi et al., 2018). This objective is
dangerous when the to-be-combined datasets not only di�er for technical reasons, but also due to variables
that are to be scientifically investigated or predicted (Hicks et al., 2018; Antonsson & Melsted, 2024). In this
case, the feature distributions of the two datasets should not be aligned to be equal, because the di�erence in
feature distributions is confounded with a di�erence in distributions for some scientifically-relevant variable.

In this work, we propose a feature-space domain adaptation method (Pan et al., 2010; Kouw et al., 2016),
aiming to provide scientists with general-purpose backwards-compatible data. This backwards compatibility
constraint is especially useful in situations where features are used by a downstream model that cannot be
updated for organizational or regulatory reasons. In other words, we will try to estimate what the features
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would have looked like, had they been obtained using the same technical process as the reference dataset. This
use-case rules out previous domain adaptation methods (Huang et al., 2006; Zhang et al., 2013; Tachet des
Combes et al., 2020) that reweight samples to match distributions, instead of transforming their features.
This also rules out the substantial literature (Wang & Mahadevan, 2009; Liu & Tuzel, 2016; Tzeng et al.,
2017; Chen et al., 2022) that aims to learn a new (often lower-dimensional) domain-invariant representation.

Our proposed method for feature-space confounded domain adaptation, which we dub ConDo, comes with
another unusual twist. We make the assumption that the user observes the confounding variables, sidestepping
the problem of latent confounders, but only at training time, and not at inference time. This means that the
feature-space transformation function must map from one feature-space representation to another, without
also taking in the confounding variable as input. This imposition notably rules out ComBat (Johnson et al.,
2007) and its many variants (Zhang et al., 2020; Torbati et al., 2021; Radua et al., 2020), which are commonly
used for batch correction in genomics, neuroscience, and elsewhere. We motivate and illustrate this key
assumption in Section 2.1.

To begin to address this challenge we assume a modification of generalized label shift (GLS) (Tachet des
Combes et al., 2020) which we call confounded shift. Confounded shift does not assume that the confounding
variable(s) are identically distributed in the source and target domains, or that the covariates are identically
distributed in the source and target domains. Rather, it assumes that there exists an adaptation from
target covariates to source covariates such that the source’s conditional distribution of covariates given
confounders is equal to that of the adapted-target’s conditional distribution. However, we do not assume that
the adapted-target’s covariates and source’s covariates have the same distribution.

In the rest of the paper, we describe and empirically evaluate the ConDo framework for adapting the target
to the source, based on minimizing the expected divergence between adapted-target and source conditional
distributions, i.e. conditioning on the confounding variables. We show how to compute the expectation with
respect to a prior distribution over the confounders, and for the prior we propose an estimator of the product
of the source and target confounder distributions. We propose using the Gaussian reverse Kullback–Leibler
divergence (KLD) and the maximum mean discrepancy (MMD) as divergence functions. Furthermore, using
this framework we provide concrete implementations based on the assumption that the source-vs-target batch
e�ect is “simple”. In particular, we restrict the adaptation to be a�ne, or even location-scale (i.e. with a
rotation representable by a diagonal matrix). This assumption is especially intended to adapt structured
data, such as biometric sensor outputs, genomic sequencing data, and financial market data, where domain
shifts are typically simple, yet where the input-output mapping is often nonlinear. We are not, in this paper,
attempting to enable an image classification model for photographs to be adapted to hand drawnings, though
we hope our framework can be extended to such nonlinear transformations.

2 Preliminaries

We begin by providing a concrete motivating example. We then introduce our notation, describe standard
approaches to linear domain adaptation, and provide background on generalized label shift.

2.1 A motivating example

Suppose you have patient health outcome data and EEG data from the first version of an EEG device,
depicted as “V1 training data” in Figure 1. Using this dataset, you have already conducted various statistical
analyses and trained health outcome prediction models, including for seizure and depression. But then the
EEG machine gets updated to V2, and we obtain a small amount of EEG data collected from the V2 machine,
along with patient seizure status, depicted as “V2 training data”. The V2 data distribution appears shifted
relative to that from the V1 machine. At this point, it seems appropriate to perform covariate shift domain
adaptation, to learn an explicit feature-space transformation that adapts the V1 and V2 data to look alike.
Yet additionally, while the V1 dataset comes from a large number of low-risk and high-risk patients, the V2
dataset thus far is mostly comprised of seizure-free individuals. Ignoring the aforementioned covariate shift
problem, this latter problem in isolation would fall into the label shift domain adaptation problem setting.
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Figure 1: Diagram depicting our motivating scenario. The di�erent shades of blue of the EEG data portray
the feature shift. The seizure confounding variable di�ers in distribution between source and target. Neither
it nor depression status are available at test time.

Our hypothetical scenario combines these two problems: it has both covariate shift and label shift which are
confounded with each other.

Our goal is to learn a feature-space transformation correcting for the technical e�ects between source (V1
machine) and target (V2 machine) domains, while being aware of the actual neurological di�erences between
the two datasets. We would like to learn a single feature-space transformation (and transformed dataset)
that can be used not only for a single prediction task, but for multiple downstream tasks and statistical
analyses. For example, we might want to combine the V1 and (adapted) V2 data and then assess for statistical
correlation between EEG features and patient age.

The key restriction will be that, at inference time, we will not observe these confounding biological variables.
To see why the feature transformation may take in only the EEG data as input, consider the fact that we
may want to predict seizure and depression risk on incoming V2 test samples. Even though we could use
our confounder (seizure) in the training data to learn a transformation, on test samples we do not yet know
health outcomes: indeed, it is what we want to predict! However, we will have access to seizure status while
learning the feature transformation, which we will assume fully accounts for the confounding between V1 and
V2, as will be formalized in Section 3.

The aforementioned example also illustrates why standard domain adaptation approaches may not be
applicable. A new EEG embedding space invariant to the V1-vs-V2 domain shift would not be a “general-
purpose” solution for a variety of downstream prediction and statistical inference tasks. In contrast, we would
like to preserve as much information as possible, and not only the principal components of variation, or only
the subspaces that are relevant for seizure prediction. Transfer learning (Caruana, 1997; Daume III & Marcu,
2006) and model fine-tuning (Girshick et al., 2014) may also be inapplicable, since the preexisting seizure and
depression diagnostic models might be the responsibility of other organizations, or may be non-accessible or
non-updatable for regulatory reasons.

2.2 Notation

X and Z respectively denote the feature (covariate) space and the confounder space. X and Z denote
random variables which take values in X and Z, respectively. A joint distribution over covariate space X and
confounder space Z is called a domain D. In our setting, there is a source domain DS and a target domain
DT ; we assume NS and NT samples from the source and target domain, respectively. D

X
S , D

X
T denote the
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marginal distributions of covariates under the source and target domains, respectively; D
Z
S , D

Z
T denote the

corresponding marginal distributions of confounders.

We assume that feature variables are real-valued vectors, so denote samples as xS œ RMS , xT œ RMT . We
make no such assumption for the confounders, denoting each observation as z, but we assume the existence
of a user-specified confounder-space kernel function kZ(z(n1)

, z
(n2)). We will seek to optimize the mapping

g : XT æ XS from target feature-space to source feature-space. We will also sometimes consider a target
variable (output label) Y œ Y , for which we have a classification hypothesis h : X æ Y that has been trained
on data from the source domain, corresponding to the standard unsupervised domain adaptation (UDA)
setting.

For arbitrary distributions P and Q, we assume we have been given a distance or divergence function denoted
by d(P, Q). By N (µ, �) we denote the Gaussian distribution with mean µ and covariance �. By | · | we denote
the absolute value; by det(·) we denote the matrix determinant. By A€ we denote the matrix transpose.

2.3 A�ne domain adaptation based on Gaussian Optimal Transport

Domain adaptation has a closed-form a�ne solution in the special case of two multivariate Gaussian
distributions. The optimal transport (OT) map under the type-2 Wasserstein metric for x ≥ N (µS , �S) to a
di�erent Gaussian distribution N (µT , �T ) has been shown (Dowson & Landau, 1982; Knott & Smith, 1984)
to be the following:

x ‘æ µT + A(x ≠ µS) = Ax + (µT ≠ AµS), (1)

where

A = �≠1/2
S

1
�1/2

S �T �1/2
S

21/2
�≠1/2

S = A€
. (2)

This mapping has been applied to a variety of uses (Flamary et al., 2019; Mallasto & Feragen, 2017; Muzellec
& Cuturi, 2018; Shafieezadeh Abadeh et al., 2018; Peyré et al., 2019) in OT and machine learning. For
univariate Gaussians N (µS , ‡

2
S) and N (µT , ‡

2
T ), the above transformation simplifies to

x ‘æ µT + ‡T

‡S
(x ≠ µS) = ‡T

‡S
x + (µT ≠

‡T

‡S
µS). (3)

2.4 A�ne domain adaptation minimizing the maximum mean discrepancy

An alternative approach can be derived from representing the distance between target and source distributions
as the distance between mean embeddings. This leads to minimizing the (squared) maximum mean discrepancy
(MMD), where the MMD is defined by a feature map „ mapping features x œ X to a reproducing kernel Hilbert
space H. We denote the feature-space kernel corresponding to „ as kX (x(n1)

, x(n2)) = È„(x(n1)), „(x(n2))Í.
Because the feature-space vectors are assumed to be real, MMD-based adaptation methods typically use the
radial basis function (RBF) kernel, which leads to the MMD being zero if and only if the distributions are
identical.

If the transformation is a�ne from source to target, the loss can be written as follows:

MMD2(DT , DS) =Ex(n1),x(n1)Õ ≥DT
kX (x(n1)

, x(n1)Õ
)

≠ 2Ex(n1)≥DT ,x(n2)≥DS
kX (x(n1)

, Ax(n2) + b)

+ Ex(n2),x(n2)Õ ≥DS
kX (Ax(n2) + b, Ax(n2)Õ

+ b). (4)

Prior work has sometimes instead assumed a location-scale transformation (Zhang et al., 2013), or a nonlinear
transformation (Liu et al., 2019a). Notably, while previous MMD-based domain adaptation methods have
matched feature distributions (Zhang et al., 2013; Liu et al., 2019a; Singh et al., 2020; Yan et al., 2017),
joint distributions of features and label (Long et al., 2013), or the conditional distribution of label given
features (Long et al., 2013), they have generally not considered matching the conditional distribution of
features given labels. One exception to this is IWCDAN (Tachet des Combes et al., 2020), which however
aligns datasets via sample importance weighting rather than a feature-space transformation.
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2.5 Background on Covariate Shift, Label Shift, and Generalized Label Shift

Domain adaptation methods typically assume either covariate shift or label shift. With covariate shift, the
marginal distribution over covariates di�ers between source and target domains. However, for any particular
covariate, the conditional distribution of the label given the covariate is identical between source and target.
With label shift, the marginal distribution over labels di�ers between source and target domains. However,
for any particular label, the conditional distribution of the covariates given the label is identical between
source and target domain.

More recently, generalized label shift was introduced to allow covariate distributions to di�er between source
and target domains (Tachet des Combes et al., 2020). Generalized label shift (GLS) instead assumes that,
given a transformation function X̃ := g(X) applied to inputs from both source and target domains, the
conditional distributions of X̃ given Z = z are identical for all z. This is a weak assumption, and it applies
to our problem setting as well. However, it is designed for the scenario where we simply need g to preserve
information only for predicting Y given X ≥ D

X
S .

3 Confounded Domain Adaptation

Consider our motivating scenario in which our ultimate goal is to reuse a classification hypothesis h : X æ Y

in a new deployment setting. We treat the deployment setting as the target domain. And instead of learning
an end-to-end predictor for the deployment domain, we learn an adaptation g from it to the source domain for
which we have a large number of labeled examples. Then, to perform predictions on the deployment (target)
domain, we first adapt them to the source domain, and then we apply the prediction model trained on the
source domain. In other words, we do not need to retrain h, and instead apply h ¶ g to incoming unlabeled
target samples. Similarly, other prediction tasks and statistical analyses can be applied after combining
adapted-target feature data and source feature data.

In many real-world structured data applications, new data sources are designed with “backwards-compatibility”
in mind, with the goal that updated sensor and assays provide at least as much information as the earlier
versions. We therefore assume the existence of a “true” noise-free mapping g from the deployment (target)
domain to the large labeled dataset (source) domain. The algorithms developed under our framework could
instead be applied when treating the deployment setting as the target domain and the labeled dataset as the
source domain. However, this easier setting would allow retraining h on adapted data, and is thus not the
focus of this paper.

3.1 Our Assumption: Confounded Shift

In our case, given X ≥ D
X
T , we instead want to recover what it would have been had we observed the same

object from the data generating process corresponding to the source domain X ≥ D
X
S . In other words, the

mapping g(X) should not only preserve information in X useful for predicting Y , but ideally all information
in X ≥ D

X
T that is contained in X ≥ D

X
S .

Relation to Generalized Label Shift Suppose GLS intermediate representation g(X) were extended to
be a function of both X and an indicator variable D specifying whether a sample is taken from the target or
the source domain. Then, given this extended representation {X, D}, we restrict g̃({X, D}) as follows,

g̃({X, D}) =
I

g(X) D = T

X D = S
(5)

so that samples from the target distribution are adapted by g(·), while those from the source distribution
pass through unchanged. With this extended representation, as well as the restriction on g̃, confounded shift
and GLS coincide. Note that while confounded shift is stronger than GLS, both allow D

X
S ”= D

X
T ; and just as

GLS allows D
g(X)
S ”= D

g(X)
T , we analogously allow D

g(X)
S ”= D

X
T .
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Table 1: Domain adaptation settings
Name Shift Assumed Invariant
Covariate Shift D

X
S ”= D

X
T ’x œ X , DS(Z|X = x) = DT (Z|X = x)

Label Shift D
Z
S ”= D

Z
T ’z œ Z, DS(X|Z = z) = DT (X|Z = z)

Generalized Label Shift D
Z
S ”= D

Z
T ’z œ Z, DS(g(X)|Z = z) = DT (g(X)|Z = z)

Confounded Shift D
Z
S ”= D

Z
T ’z œ Z, DS(X|Z = z) = DT (g(X)|Z = z)

Graphical representation We may formulate our setting with latent variables X̃ corresponding to features
before the target-to-source mapping. We may depict our assumption with the following graphical model

D

X̃X Z

where latent features X̃ always follow the target domain distribution pDT (X̃ = x̃|Z = z), while observed
features follow

p(X = x|D, X̃ = x̃) =
I

”
!
x ≠ x̃

"
D = T

”
!
x ≠ g(x̃)

"
D = S

(6)

where ” is the Dirac delta. By inspection of the graphical model, our setting is a combination of prior
probability shift and covariate observation shift as defined in (Kull & Flach, 2014). Note that latent features
X̃ are generated from confounders Z, which motivates using a generative model for domain adaptation.

The previous assumptions as well as our confounded shift assumption are summarized in Table 1.

3.2 Main Idea

Our primary aim is to infer a transformation that is broadly applicable, so given observed source domain
features X = x we will seek to reconstruct z with minimal error. Our secondary aim is to minimize error
on downstream prediction tasks, which for simplicity is assumed to be binary classification. Formally, the
hypothesis is a fixed binary classification function h : X æ {0, 1}. We seek to choose ĝ which minimizes the
accuracy loss induced (by unknown shift g

≠1) on hypothesis h under distribution D
X
T :

pDX
T

1
h ¶ ĝ

!
g

≠1(X)
"

”= h(X)
2

. (7)

As in typical domain adaptation settings, we expect that NT < NS , with an abundance of prediction labels
on our source dataset (i.e. from the V1 sensor).

Our proposal, which we dub ConDo, is to minimize the expected distance (or divergence) d between the
conditional distributions of source and target given confounders, under some specified prior distribution over
the confounders.

min
f◊

Ez≥D̂Z
d

1
DT (x|Z = z), DS(f◊(x)|Z = z)

2
. (8)

Four ingredients are needed to turn this into a concrete algorithm: a feature-space transformation f◊ : X æ X

(Section 3.3), a prior confounder distribution D̂Z (Section 3.4), a sampler from the conditional distributions
D·(x|Z = z) (Section 3.5), and a distance/divergence function d (Section 3.6).

3.3 Feature-space transformation function

Our goal is to find the optimal linear transformation g(x) = Ax+b of the target to source. In certain scenarios,
particularly scientific analyses, it is important for explainability that each ith adapted feature [Ax(n) + b]i
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be derived only from the original feature [x(n)]i. So we will examine both full a�ne transformations and also
transformations where A is restricted to be diagonal A = diag(a). The latter is sometimes referred to as a
location-scale adaptation (Zhang et al., 2013); this further requires that the source and target features have
the same dimension.

3.4 The product prior over confounding variable(s)

Our approach is motivated by the desire to minimize the distance between the conditional distributions
DS(x|Z = z) and DT (x|Z = z) only where we can estimate them both with high accuracy. These conditional
distribution estimators may be poor extrapolators, with noisy estimates in low-density regions of D

Z
S and D

Z
T .

This suggests choosing to perform minimization over confounder values that are likely under both source D
Z
S

and target D
Z
T distributions, which motivates using the product of the two distributions.

We estimate the product of D
Z
S and D

Z
T as follows. For e�cient sampling, we use a non-parametric estimator

of the product prior, with non-negative support over the union of confounder values in the source and
target datasets, so that it can be represented as probabilistic weights attached to each sample. We note
that empirical distributions may have non-intersecting support, such as if Z is a continuous variable. This
motivates smoothing the estimators of D

Z
S and D

Z
T before taking their product; this avoids taking the product

of two Dirac delta functions, which is undefined.

Given a kernel kZ over the confounder space, we compute,

D̂
Z
◊ :=

NSÿ

n

w(n)
S ”(z ≠ Z

(n)
S ) +

NTÿ

n

w(n)
T ”(z ≠ Z

(n)
T ), where (9)

w(n)
S Ã

qNS

i=1 kZ(Z(i)
S , Z

(n)
S )

qNS

j=1
qNS

i=1 kZ(Z(i)
S , Z

(j)
S )

◊

qNT

i=1 kZ(Z(i)
T , Z

(n)
S )

qNT

j=1
qNT

i=1 kZ(Z(i)
T , Z

(j)
T )

and

w(n)
T Ã

qNS

i=1 kZ(Z(i)
S , Z

(n)
T )

qNS

j=1
qNS

i=1 kZ(Z(i)
S , Z

(j)
S )

◊

qNT

i=1 kZ(Z(i)
T , Z

(n)
T )

qNT

j=1
qNT

i=1 kZ(Z(i)
T , Z

(j)
T )

. (10)

where wS and wT are normalized so
q

n w(n)
S +

q
n w(n)

T = 1. In practice, we will use an RBF kernel for
continuous confounders and a Dirac delta kernel for categorical confounders.

3.5 Sampling from the conditional distributions

When the confounding variable is discrete, and each value occurs in multiple examples in our dataset, then
we merely sample from these datapoints with replacement. Otherwise (i.e. the confounding variable is
continuous), we instead need to sample from conditional generative models for DS(x|Z = z) and DS(x|Z = z).
While di�usion modeling (Sohl-Dickstein et al., 2015) is possible, we found that multiple imputation with
chained equations (MICE) (Van Buuren et al., 1999), as implemented in MICE-Forest (Wilson et al., 2022)
with LightGBM (Ke et al., 2017), provided better conditional generation results, replicating the experimental
results in (Jolicoeur-Martineau et al., 2024). To do this, we concatenate the original dataset and a second
copy with all features masked and all confounder(s) unmasked. We then request KX multiple imputations,
which are then used as conditionally-generated features per each observed Z = z. This process is performed
separately for source and target.

3.6 Conditional distribution distance/divergence function

Below, we propose using the reverse-KLD and the MMD in our loss function. Both yield simple, e�cient
algorithms, including a closed-form solution for the reverse KLD with location-scale adaptation. Note that,
as we discuss in Future Work, other divergences are possible within our framework. In particular, optimal
transport (OT)-based distances are likely to o�er higher accuracy at greater computational expense. However,
we limit ourselves to these two divergences for their low computational cost, and to focus on the overall
proposed framework rather than the computational challenges and opportunities that arise from combining
ConDo with OT.
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3.6.1 Reverse Kullback-Leibler divergence under Gaussianity

It can be straightforwardly shown that the linear map Eq. (1) derived from OT leads to adapted data being
distributed according to the target distribution. That is, µP + A(x ≠ µQ) ≥ N (µP , �P ). Therefore, the
Gaussian KLD from the target distribution to the adapted source data distribution is minimized to 0, and
similarly for the KLD from the adapted source data distribution to the target distribution. This motivates
using the Gaussian KLD as a loss function, with either the forward KLD d(P, Q) := dKL(P ||Q) or reverse
KLD d(P, Q) := dKL(Q||P ). Note that we do not model the features as being Gaussian distributed, but
rather that the conditional distribution of each sample’s features given confounders as having Gaussian noise.

Whether forward or reverse KLD, minimizing Eq. (8) requires estimating the conditional means and
conditional covariances, according to both the source and target domain estimators, evaluated at each
z ≥ D̂Z . (If the transformation is location-scale rather than full a�ne, KLD minimization requires only the
conditional variances for each feature.) Given N samples in the prior distribution, each with weight given
by wn, 1 Æ n Æ N , let the source and target estimated conditional means be given by µ(n)

S , µ(n)
T , and the

conditional covariances be given by �(n)
S , �(n)

T , respectively.

For the forward-KLD, this leads to the following objective:

min
A,b

2 log
1

| det(A)|
2

+
Nÿ

n=1
wn ú

C
tr

1#
A�(n)

S A€$≠1�(n)
T

2

+
1

Aµ(n)
S + b ≠ µ(n)

T

2€Ë
A�(n)

S A€
È≠11

Aµ(n)
S + b ≠ µ(n)

T

2D
. (11)

While the forward KLD from target to adapted-source appears to be the natural choice, we instead propose
to use the reverse KLD. Due to its computational tractability and well-conditioned behavior, the reverse KLD
has found wide use in variational inference (Blei et al., 2017), knowledge distillation (Agarwal et al., 2023),
and reinforcement learning (Kappen et al., 2012; Levine, 2018). We will see that it also confers benefits in
domain adaptation. The reverse-KLD leads to the following:

min
A,b

≠2 log
1

| det(A)|
2

+
Nÿ

n=1
wn ú

C
tr

1
�(n)

T

≠1
A�(n)

S A€
2

+
1

Aµ(n)
S + b ≠ µ(n)

T

2€
�(n)

T

≠11
Aµ(n)

S + b ≠ µ(n)
T

2D
. (12)

This is more e�cient to optimize, requiring a single matrix inversion per sample, rather than once per sample
after each optimization update to A. This also minimizes the negative log-abs-determinant of A, which
functions as a log-barrier away from 0, maintaining the same sign of the determinant across optimization
iterations. This is useful, because the linear mapping between two Gaussians is not unique. The reverse-KLD,
combined with an initial iterate (e.g. the identity matrix) with a positive determinant, chooses the mapping
which preserves rather than reverses the orientation. In contrast, the forward-KLD objective is liable to
produce iterates with oscillating signs of det(A).

That the (≠ log | det(A)|) term arises naturally out of the reverse-KLD is of potential independent interest.
Preventing collapse into trivial solutions is a known problem with MMD-based domain adaptation (Singh
et al., 2020; Wu et al., 2021). The reverse-KLD objective may inspire a new regularization penalty for this
problem. The log-det heuristic was previously proposed (Fazel et al., 2003) as a smooth concave surrogate for
matrix rank minimization, while here it prevents rank collapse.

Furthermore, in the case of a location-scale adaptation, the reverse-KLD can be obtained via a fast exact
closed-form solution. Further details are given in Appendix A.

Using the Gaussian KLD requires an estimate of the mean and covariance of the features given each value
z of the confounder. We obtain this by generating KX samples of x ≥ DS(·|Z = z) and x ≥ DT (·|Z = z)
per each z, then computing the empirical means and covariances. We optimize the ConDo-KLD objective
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with the PyTorch-minimize (Feinman, 2021) implementation of the trust-region Newton conjugate gradient
method (Lin & Jorge, 1999).

3.6.2 The conditional maximum mean discrepancy

We extend MMD-based domain adaptation to match conditional distributions by sampling from the prior
confounder distribution. For a particular z œ Z sampled from the prior, suppose we have a way of sampling
from DT (x|Z = z) and DS(x|Z = z). Then, we have

d

1
DT (·|Z = z), DS(·|Z = z)

2
:=MMD2(DT (·|Z = z), DS(·|Z = z)) (13)

=Ex(n1),x(n1)Õ ≥DT (·|Z=z)kX (x(n1)
, x(n1)Õ

)

≠ 2Ex(n1)≥DT (·|Z=z),x(n2)≥DS(·|Z=z)kX (x(n1)
, Ax(n2) + b)

+ Ex(n2),x(n2)Õ ≥DS(·|Z=z)kX (Ax(n2) + b, Ax(n2)Õ
+ b). (14)

For the feature-space kernel kX , we use the RBF kernel by default. We minimize this objective with stochastic
optimization. For each minibatch, we sample KZ values from the confounder prior; for each confounder value
we sample KX feature-vectors from each of DT (x|Z = z) and DS(x|Z = z).

Additional implementation details Further implementation details and computational complexity
analysis are provided in Appendix B. Our software, with a Scikit-learn (Pedregosa et al., 2011) compatible
API, is available at https://github.com/another-anonymous-account/tmlr-submission.

4 Experiments

We compare ConDo to baseline methods on three synthetic, two hybrid, and three real data settings. When
available, we evaluate against the latent ground-truth features by measuring the root-mean-squared error
(rMSE) between these and the adapted features. We also compare the di�erent methods on unsupervised
domain adaptation (UDA), measuring the performance of source-trained classifiers on adapted target test data,
to evaluate our ability to adapt data for use by non-retrainable downstream models. For these experiments,
we employ TabPFN (Hollmann et al., 2022), a state-of-the-art pretrained Transformer-based tabular classifier.

We optimize the MMD and ConDo-MMD objectives with AdamW (Loshchilov & Hutter, 2017), with weight
decay = 10≠4, —1 = 0.9, and —2 = 0.999. We set KX = 20 (for ConDo-KLD and ConDo-MMD) and KZ = 8
(for ConDo-MMD); for MMD, each step also uses 8 evaluations of the MMD loss with 20 samples. We run for
5 epochs (with an early stopping patience of 3 epochs) with learning rate = 10≠3, unless otherwise indicated
in the Appendix; for both MMD and ConDo-MMD, an epoch is defined as min(NS , NT )/8 steps.

4.1 Synthetic 1d features with 1d continuous confounder

We first examine confounded domain adaptation in the context of a single-dimensional feature confounded by
a 1d continuous confounder. We analyze the performance of vanilla and ConDo adaptations, when the e�ect
of the continuous confounder is linear homoscedastic (left column), linear heteroscedastic (middle column),
and nonlinear heteroscedastic (right column). In each case there is confounded shift, because confounder is
distributed as Uniform[0, 8] in the target domain, and as Uniform[4, 8] in the source domain. This setting is
illustrated in the top row of subplots in Figure 2.

For each of the the three settings, we apply the baseline linear domain adaptation methods, Gaussian OT
and MMD, and our ConDo versions of these methods, ConDo Gaussian KLD and ConDo MMD. We then
evaluate the di�erent methods via root-mean-squared-error (rMSE) on a heldout dataset of 100 samples,
comparing the known ground-truth to the estimates from each adaptation method. Note that in this and all
following settings in the rest of the paper, neither the baseline nor the ConDo methods have access to the
confounding variable values of the heldout test samples. The results are shown on each of the remaining rows
of subplots in Figure 2.

9
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Figure 2: ConDo methods are superior to Gaussian OT when confounded label shift and feature shift are
present. The columns, in order, correspond to a confounder with a linear homoscedastic e�ect, a confounder
with a linear heteroscedastic e�ect, and a confounder with a nonlinear heteroscedastic e�ect. The first row
depicts the problem setup, while the remaining rows depict the performance of Gaussian OT and our ConDo
methods. Red points overlapping with green points is indicative of high accuracy. In each subplot, we provide
the rMSE on training source data (depicted), and in parentheses, the rMSE on heldout source data (not
depicted) generated with confounder sampled from target prior D

Z
T . The printed rMSEs are averaged over 10

independent random simulation runs, while the plots depict the results from the final simulation run.
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Figure 3: Test errors for experiment with synthetic 1d features with 1d continuous confounder. For each
adaptation method, we compute the rMSE of true target feature values vs inferred target feature values after
adaptation, then average over 10 simulations.

We repeat the above experimental setup, but with modifications to verify whether our approach can be
accurate even when its assumptions no longer apply. We run experiments with-and-without label shift (i.e.
di�erent distributions over the confounder between source and target), with-and-without feature shift (i.e.
with and without batch e�ect), and with-and-without additional iid N (0, 1) noise, for a total of 8 settings.
Heldout test errors are shown in Figure 3. ConDo strongly outperforms vanilla adaptation whenever there is
target shift, and is non-inferior otherwise. (This pattern also holds on training data, shown in Figure S1.)

4.2 Synthetic 1d features with multi-dimensional continuous confounders

We extend the previous experiment to consider the scalability of ConDo to multidimensional confounders. For
the noise-free, label-shift, feature-shift setting, keeping all other experimental settings and hyperparameters
identical, we vary the number of confounders from 1 to 32. We first augment the number of confounders by
appending additional irrelevant “confounders”, sampled from N (0, 1), to our inputs to the ConDo method.
The results, shown in Figure 4(A), indicate that ConDo is very robust to the inclusion of a moderate number
of non-confounders.

We next augment the number of confounders by generating a noisy additive decomposition of our original
confounder. We first uniformly sample the “true” confounder as before, and generate the feature from it as
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(A)

(B)

Figure 4: Results for transforming 1d data with multiple continuous confounders, with extra irrelevant
N (0, 1) confounders, shown in (A), and with noisy additive decomposition, shown in (B). The rMSEs are
averaged over 10 random simulations are shown for heldout test data (100 samples per simulation). The
columns, in order, correspond to a confounder with a linear homoscedastic e�ect, a confounder with a linear
heteroscedastic e�ect, and a confounder with a nonlinear heteroscedastic e�ect.

before. We then generate a random multidimensional confounder summing to the “true” confounder of the
desired dimensionality (Dickinson, 2010), and provide this to the ConDo methods. The results, provided in
Figure 4(B), show that ConDo is still e�ective in spite of this subtle relationship between the feature and the
multi-dimensional confounders.

4.3 Synthetic 1d and 2d features with 1d categorical confounder

Here, we generate 1d features based on the value of a 1d binary confounder. The source distribution is
a mixture of Gaussians 0.25N (5, 12) + 0.75N (0, 22), while the target is 0.75N (5, 12) + 0.25N (0, 22), and
the confounder variable indicates the true mixture component. We also use this setting to analyze the
performance of ConDo for a variety of sample sizes. For each sample size under consideration, we run 10
random simulations, and report the rMSE compared to the actual pre-feature shift values.

Results are shown in Figure 5. In Figure 5(A) we see that the ConDo methods outperform the baselines, and
that they are robust to small sample sizes. As the number of samples increases, ConDo MMD converges to
the correct transformation. We see in Figure 5(B) that ConDo Gaussian KLD is not as fast as the closed
form Gaussian OT solution, but still scales nicely with sample size; meanwhile MMD and ConDo MMD have
comparable runtimes. The data and results are plotted in Figure S3 in the Appendix.

We extend the previous experiment to use 2d features and evaluate classification accuracy, with results in
Figure S4 in the Appendix.
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(A) (B)

Figure 5: Results for transforming 1d data with a 1d categorical confounder. (A) Plot of rMSE vs sample
size for each of the domain adaptation methods. Each rMSE was averaged over 10 simulations, with the
vertical lines indicating 1 standard deviation over the simulations. (B) Plot of runtime vs sample size for
each of the domain adaptation methods.

(A) (B)

(C) (D)

Figure 6: Results on ANSUR II for a�ne perturbation (A-B) and location-scale perturbation (C-D). Model
accuracies depict the average over 10 simulations, with error bars depicting the standard deviation. Kernel
density plots in (B,D) depict the density of pre-adaptation rMSE divided by post-adaptation rMSE, averaged
over simulations, measured against ground truth data. We see that ConDo is less likely to produce worsened
data (i.e. relative rMSE > 1).
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4.4 ANSUR II anthropometric survey data

We next evaluated approaches on the ANSUR II (Gordon et al., 2014) dataset, comprising 93 anthropometric
measurements spanning the gamut from ankle circumference to wrist height of 6068 military personnel. We
then synthetically created source and target datasets with known ground-truth feature-space transformations
as follows. We generated the source (and the target) dataset as a random subsample of 500 individuals with
a 75%-25% (and a 25%-75%) male-female split. Then, we linearly perturbed the target dataset, as either a
random a�ne or random location-scale transform. For random a�ne, we use random positive-determinant
matrix A = Udiag(d)V €, where U , V are each Haar-distributed orthogonal matrices and di ≥ Unif[0.5, 2];
for random location-scale, Aii ≥ Unif[0.5, 2], bi ≥ Unif[0.5, 2]. We then trained TabPFN (Hollmann et al.,
2022) models for MaleOrFemale and Height > 5ft6in (the median height) on source data. We applied
domain adaptation methods, with ConDo methods having access to male-vs-female as the confounding
variable. Prediction models are then applied on adapted target-to-source features. In Figure 6, we show
accuracies of the prediction models and rMSEs for the target dataset features, from 10 independent random
simulations. We see that ConDo improves upon vanilla adaptation, with ConDo Gaussian KLD providing the
best performance across all metrics.

In the Appendix, we include results in additional settings. Similar performance is shown for when TabPFN
prediction models are instead trained on adapted source-to-target features in Figure S5. Furthermore, results
for only shift in confounder (gender) distribution in Figure S7, for only feature shift in Figure S6, and
for neither shift in Figure S8 are also provided, showing improvement, noninferiority, and noninferiority,
respectively, for our approach.

4.5 Image color adaptation

We here apply domain adaptation to the problem of image color adaptation, treating each image as a dataset
with 3 features (for the RGB components). We start by adapting back and forth between two ocean pictures
taken during the daytime and sunset (the Python Optimal Transport library (Flamary et al., 2021) Gaussian
OT example), depicted in the top row of Figure 7(A). In this scenario, there is no confounding, since the
images contains water and sky in equal proportions. Thus, conditioning on each pixel label (categorical,
either “water” or “sky”), is expected to be unnecessary. Below the top row, we show the results of a�ne
adaptation for each of the di�erent methods. On the left column of Figure 7(A), we show the result of
applying the learned source-to-target transform. On the right column of Figure 7(A), compute the inverse
of the aforementioned source-to-target transform, and treat it as a target-to-source transform. We see that
both Gaussian OT and Condo Gaussian KLD learn adaptations that work properly on both source-to-target
and target-to-source. MMD produces images with appropriate color balances, but with colors applied to
inappropriate parts of the image. ConDo MMD produces a good source-to-target image, but its inverse
mapping is bad.

Next, we attempted color adaptation between the ocean daytime photo and another sunset photo including
beach, water, and sky, shown in Figure 7(B). Here, there is confounded shift, so ConDo utilizes pixels labeled
as “sky”, “water”, or “sand”. Now the source-to-target adapted images have poor (grayish) color balances
for the baseline methods, while they have good color balances for the ConDo methods. For the inverse
target-to-source mapping, both MMD and ConDo MMD struggle.

More results are given in the Appendix Section C.5.

4.6 California housing price prediction

Here, we apply ConDo to an unsupervised domain adaptation setting derived from the California housing
dataset (Pace & Barry, 1997). We split the data into source and target domains based on the first feature,
Median Income, defining the source domain as being the housing districts with income less than or equal to
the median. The geographical results of this source-target split are shown in Figure 8(A), with examples
plotted according to their LatLon features. As our classification task, we predict whether the mean house
value in each district exceeds the median over the entire dataset, 1.797 (in $100k). As features, we use all
remaining features aside from Median Income.
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(A) (B)

Figure 7: Image color adaptation results without (A) and with (B) confounded shift. We see that ConDo
is non-inferior in (A). In (B), we see that non-ConDo methods produce gray-ish Day æ Beach images.
Meanwhile, ConDo methods produces light blue sky and yellow clouds in Day æ Beach images. ConDo
Gaussian KLD is the only method to produce normal-looking images for all four tasks.

We train a TabPFN classifier on the source domain, and evaluate it on target domain, repeated over 10
random simulations, each with 500 source training samples and 500 target test samples in each simulation.
We perform location-scale domain adaptation to make the target features resemble the source features before
applying the classifier. As shown in Figure 8(B-C), vanilla Gaussian OT and MMD methods make the
performance even worse than no adaptation. We also see that the ConDo methods better than the vanilla
methods, and that ConDo Gaussian KLD improves upon no adaptation. In the Appendix Section C.6, we
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show similar results for training a classifier on adapted-source-to-target data, with ConDo outperforming the
baselines.

(A) (B) (C)

Figure 8: Results on CA Housing. (A) Source-target split based on median income. Accuracy (B) and
F1-score (C) on target test data, over 10 random simulations. Error bars depict the standard deviation over
simulations.

4.7 SNAREseq single-cell multi-omics dataset

We apply domain adaptation to a SNAREseq single-cell dual-omics dataset (Demetci et al., 2022). In the
dataset, 1047 cells are co-assayed with RNA-seq for gene expression and ATAC-seq for chromatin accessibility.
Each sequenced cell is associated with one of four cell types; unique cell identities are also given, so matched
sample pairs across the two modalities are known. We treat ATAC-seq assay features as source domain and
RNA-seq assay features as target domain.

We first simulate unsupervised domain adaptation in which we perform cell type classification with TabPFN
(Hollmann et al., 2022). In each simulation, we have a large source domain training set of 500 source cells.
We also simulate having a small set of C cells for which we have both source and target domain data available
to use for adaptation; we simulate C œ {5, 10, 20, 50, 100}. We then evaluate the classifier on the remaining
unseen cells using target domain data (ATAC-seq features). Because the feature dimensionality di�ers for the
two assays, we only perform MMD and ConDo MMD adaptation with a�ne transforms. For ConDo MMD,
we perform adaptation controlling for cell type. Results for 10 independent random simulations, depicted in
Figure 9, show that ConDo MMD outperforms MMD. Similar advantage for ConDo is shown when classifiers
were instead trained on adapted source-to-target features in Figure S11 in the Appendix.

Figure 9: SNAREseq cell type classifier performance on test set. Classifier performance (accuracy and
F1-score) is shown as a function of the number of paired samples available to the domain adaptation methods.
The error bars depict the standard error computed over 10 random simulations.

Next, we evaluate whether domain adaptation methods produce data showing desirable clustering patterns.
We concatenate the adapted-source and target datasets, and compute the silhouette score (the mean of the
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silhouette coe�cients over all samples). This silhouette score calculation requires both features and a label
for each sample; we compute silhouette score separately for labels defined as the assay, the cell type, and the
cell identity. A silhouette score approaching +1 indicates that samples have small distance to other points
in the same group (i.e. with the same label), compared to points in the next nearest group (i.e. with the
smallest average distance). A score of 0 indicates overlapping groups, while a score of -1 indicates discordance
between the features and labeling. We desire large scores for cell identity labels and cell type labels, and a
score close to 0 for assay labels. ConDo improves upon the baseline for all three settings, as shown in Table 2.

Table 2: Silhouette scores after combining the adapted ATAC-seq and the RNA-seq data into a single dataset
with 2 ú 1047 samples. Silhouette scores are computed for di�erent labelings, given in the column headings.
“Cell identity” denotes the pairs of samples from the same cell for two assays; “cell type” denotes samples
grouped by cell type; “assay” denotes samples being labeled as either ATAC-seq or RNA-seq.

Method Cell identity (ø) Cell type (ø) Assay (æ0Ω)

MMD -0.4556 0.4574 0.0379
ConDo MMD -0.4425 0.4940 0.0218

4.8 Gene expression microarray batch e�ect correction

We analyze performance on the bladderbatch gene expression dataset commonly used to benchmark batch
correction methods (Dyrskjøt et al., 2004; Leek, 2016). We use all 22,283 gene expressions (i.e. features)
from this bladder tissue A�ymetrix microarray dataset; bladderbatch was preprocessed so that each feature is
approximately Gaussian. We attempt a location-scale transform, as is typical with gene expression batch
e�ect correction. We choose the second largest batch (batch 2, with 4 cancer samples out of 18 total) as the
source domain, and the largest batch (batch 5, with 5 cancer samples out of 19 total) as the target domain.
The confounder is 1d categorical (cancer or non-cancer).

For each method, we compute the silhouette scores of the adapted datasets, with respect to the batch variable
(and, in parentheses, the test result variable). We desire the silhouette score to be large for the cancer status,
and to be close to 0 for the batch label. Because the cancer fractions are roughly the same (4/18 vs 5/19) for
batches 2 and 5, we do not expect to need to account for confounding. Results are shown in Table 3. We see
that all domain adaptation methods improve upon no adaptation. For cancer status, MMD has the largest
silhouette score as desired. For the batch variable, all adaptations produced slightly negative scores. While
this is less concerning than the larger magnitude positive value (0.0884) for no adaptation, it may suggest
overfitting; the silhouette score is closest to zero for ConDo MMD.

We repeat the experiment after inducing confounding by removing samples. For 10 random simulations, we
remove half (7) of the non-cancer samples in batch 2, so that batch 2 is 4/11 non-cancerous, while batch 5
remains 5/19 non-cancerous. Results are shown in Table 4. We see that ConDo methods outperform their
baseline counterparts, and that ConDo Gaussian KLD in particular produces gene expression data in which
variation concords with cancer status rather than batch.

Table 3: Silhouette scores on bladderbatch dataset, on entire dataset without induced confounding. Silhouette
scores are computed for di�erent labelings, given in the column headings.

Method Cancer Status (ø) Batch (æ0Ω)

No Adaptation 0.2798 0.0884
Gaussian OT 0.3008 -0.0279
MMD 0.3123 -0.0214
ConDo Gaussian KLD 0.3121 -0.0195
ConDo MMD 0.3107 -0.0176
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Table 4: Silhouette scores on bladderbatch dataset, after inducing confounding in the data. Silhouette scores
are computed for di�erent labelings, given in the column headings. We also include the standard errors
computed over 10 random simulations.

Method Cancer Status (ø) Batch (æ0Ω)

No Adaptation 0.2984 ± 0.0009 0.0982 ± 0.0010
Gaussian OT 0.2934 ± 0.0006 ≠0.0329 ± 0.0001
MMD 0.2966 ± 0.0010 ≠0.0372 ± 0.0001
ConDo Gaussian KLD 0.3212 ± 0.0007 ≠0.0276 ± 0.0002
ConDo MMD 0.3196 ± 0.0008 ≠0.0284 ± 0.0002

5 Related Work

As far as we are aware, previous work on domain adaptation does not describe or address our exact problem.
There is a large body of research in domain adaptation which maps both source and target distributions to a
new latent representation where they match (Baktashmotlagh et al., 2013; Yan et al., 2017; Ganin et al.,
2016; Gong et al., 2016). These however cannot achieve data backwards-compatibility, because they create a
new latent domain. Other domain adaptation methods are also inapplicable to our setting since they match
distributions via reweighting samples (Cortes & Mohri, 2011; Tachet des Combes et al., 2020) or dropping
features (Kouw et al., 2016).

Prior research exists for performing domain adaptation when both features and label are shifted, including
the generalized label shift (GLS) / generalized target shift (GeTarS) (Zhang et al., 2013; Rakotomamonjy
et al., 2020; Tachet des Combes et al., 2020). However, these methods assume the specific prediction setting
where the label is the confounder, and optimize composite objectives that combine distribution matching and
prediction accuracy. In our case, the confounder may not be the label of our prediction model of interest,
and indeed we may not even be mapping covariates for the purpose of any downstream prediction task.
Furthermore, by conditioning on confounders, our framework can handle multivariate confounders or even
complex objects which are accessed only via kernels. Landeiro et al. introduced the term confounding
shift to describe a form of GLS/GeTarS, but it does not match our confounded shift assumption, since the
confounding variables are unobserved. Their method, which comprises confounder detection and adversarial
confounder-robust classification, is substantially di�erent from our approach.

The most relevant domain adaptation methods for our context perform asymmetric feature transformation,
in which source features are adapted to target features, and are thus compatible with general-purpose
backwards compatibility. EasyAdapt (Daumé III, 2007) and EasyAdapt++ (Daumé III et al., 2010) are
notably successful approaches performing supervised learning with data from multiple domains, but they do
not provide transformed features for data analysis. Furthermore, EasyAdapt relies on feature concatenation;
we expect to not have confounders available at inference time, which means that we cannot utilize them in
the concatenated features at training time either.

Previous work which explicitly matches conditional distributions (Long et al., 2013) instead uses the conditional
distribution of the label given the features, rather than our approach of matching the features conditioned on
the labels. It also constructs a new latent space, rather than mapping from source to target for backwards
compatibility.

Optimal transport has also been proposed as a framework for domain adaptation (Courty et al., 2014), and
within this framework, unbalanced optimal transport has been proposed to address distribution shift (Chizat
et al., 2015). This relaxes the OT constraint for conservation of mass to a penalty on deviations from mass
conservation, yielding improvements in label shift scenarios (Yang & Uhler, 2018). However, this approach
requires challenging adversarial training (Yang & Uhler, 2018), and fails to utilize potentially available side
information from confounding variables. Our work is more similar in spirit with optimal transport with
subset correspondence (OT-SI) (Liu et al., 2019b), which implicitly conditions on a categorical confounder
(the sample’s subset) to learn an optimal transport map. Our framework explicitly conditions on confounders

18



Under review as submission to TMLR

and is thus more general, allowing continuous, multivariate, and (using kernels) even general objects as
confounding variables.

6 Discussion

6.1 Limitations

The first main limitation of our framework is that we assume access to all confounders at training time. While
our experiments suggest that our approach works well given a superset of the true confounding variables, we
do not expect it to perform well with only a subset of the true confounders. A second limitation is that we
assume a deterministic mapping (and in our concrete implementations, a linear mapping) between feature
spaces. It would be nontrivial to extend our approach to non-deterministic mappings with distributional
regression or conditional generative modeling.

Furthermore, despite our limiting assumptions, both our proposed divergences, the reverse KLD and the
MMD, su�er from non-identifiability. Multiple transformations may match the source distribution to the
target distribution, and both our objective functions are indi�erent among such transforms. We currently
rely on gradient flow from the initial parameters to make a sensible choice, but this o�ers no guarantees.

6.2 Future work

Optimal transport (OT) o�ers a principled criteria, minimal transport cost, to choose among transformations
which provide equal fit to the data. This suggests replacing the reverse KLD and MMD with an OT-based
alternative, such as the Wasserstein distance. Yet, while minimal transport cost is an excellent “prior”, it
is not the only defensible choice. For example, Lp regularization, empirical Bayes weight sharing such as
used by ComBat (Johnson et al., 2007), and constraints (e.g. non-negativity or zero-o�-diagonal for linear
mappings) may instead be preferred, and may be fruitfully combined with KLD and/or MMD.

Due to the a�ne restriction on the transformation, our proposed approach is more appropriate for adaptation
settings where source and target correspond to di�erent versions of experimental assays and similar settings
where the required adaptation is a�ne (or even location-scale). It would be useful to examine whether our
framework extends gracefully to nonlinear adaptations parameterized by neural networks.

Finally, thus far our analysis of ConDo has been purely empirical. Theoretical analysis would surely be
appropriate, particularly before relying on ConDo for statistical inference tasks.

Along with our provided software, we have included code for all our experiments, in the hope that these may
form a benchmark that accelerates future progress.

7 Conclusion

We have shown that minimizing expected divergences / distances after conditioning on confounders is a
promising avenue for domain adaptation in the presence of confounded shift. Our proposed use of the reverse
KLD are (to our knowledge) new in the field of domain adaptation, and may be more broadly useful. Focusing
on settings where the e�ect of the confounder is possibly complex, yet where the source-target domains can be
linearly adapted, we demonstrated the usefulness of algorithms based on our framework. These experiments
show that conditioning on confounders via our ConDo framework improves the quality of learned adaptations
for a variety of domains and tasks.
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