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Abstract

Current fake audio detection algorithms have
achieved promising performances on most
datasets. However, their performance may be
significantly degraded when dealing with audio of
a different dataset. The orthogonal weight modi-
fication to overcome catastrophic forgetting does
not consider the similarity of genuine audio across
different datasets. To overcome this limitation, we
propose a continual learning algorithm for fake
audio detection to overcome catastrophic forget-
ting, called Regularized Adaptive Weight Modi-
fication (RAWM). When fine-tuning a detection
network, our approach adaptively computes the
direction of weight modification according to the
ratio of genuine utterances and fake utterances.
The adaptive modification direction ensures the
network can effectively detect fake audio on the
new dataset while preserving its knowledge of old
model, thus mitigating catastrophic forgetting. In
addition, genuine audio collected from quite dif-
ferent acoustic conditions may skew their feature
distribution, so we introduce a regularization con-
straint to force the network to remember the old
distribution in this regard. Our method can easily
be generalized to related fields, like speech emo-
tion recognition. We also evaluate our approach
across multiple datasets and obtain a significant
performance improvement on cross-dataset exper-
iments.
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1. Introduction
With the development of speech synthesis and voice con-
version technology (Wang et al., 2018; 2021), the models
can generate human-like speech, which makes it difficult
for most people to distinguish the generated audio from the
real one. Although this technology has brought great conve-
nience to human life, it has also brought great safety hazards
to the country and society. Therefore, fake audio detection
has attracted increasing attention in recent years. A series of
challenges have been organized to detect fake audio, such as
the ASVspoof challenge (Wu et al., 2015; Kinnunen et al.,
2017; Todisco et al., 2019; Yamagishi et al., 2021) and the
Audio Deep Synthesis Detection (ADD) challenge (Yi et al.,
2022). In these competitions, deep neural networks have
achieved great success. Currently, large-scale pre-trained
models have gradually been applied to fake audio detection
and achieved state-of-the-art results on several public fake
audio detection datasets (Tak et al., 2022; Martı́n-Doñas &
Álvarez, 2022; Lv et al., 2022; Wang & Yamagishi, 2021).
Although fake audio detection achieves promising perfor-
mance, it may be significantly degraded when dealing with
audio of another dataset. The diversity of audio proposes a
significant challenge to fake audio detection across datasets
(Zhang et al., 2021b;a).

Some approaches have been proposed to improve detec-
tion performance across datasets. An ensemble learning
method is proposed to improve the detection ability of the
model for unseen audio (Monteiro et al., 2020) and a dual-
adversarial domain adaptive network (DDAN) is designed
to learn more generalized features for different datasets
(Wang et al., 2020). Both methods require some audio from
the old dataset, but in some practical situations, it is al-
most impossible to obtain them. For instance, a pre-trained
model proposed by a company has been released to the pub-
lic. It is unfeasible for the public to fine-tune it using the
data belonging to the original company. In addition, a data
augmentation method is proposed to extract more robust
features for detection across datasets (Zhang et al., 2021b),
which is only suitable for the datasets with similar feature
distribution. In continual learning, a method called Detect-
ing Fake Without Forgetting (DFWF) is proposed for fake
audio detection (Ma et al., 2021). Although the above meth-
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Figure 1: Schematic of SGD, OWM, and RAWM. (a), With RAWM, the optimization process searches for configurations
that lead to great performance on both old (blue area) and new (green area) datasets. The center parts of the two areas
represent better recognition performance than the other, and can be regarded as subspaces of the area mentioned by the
OWM. A successful optimized configuration θ̂rawm stops inside the overlapping subspace. However, the configuration θ̂sgd
obtained by SGD is optimized without considering forgetting, and the configuration θ̂owm obtained by orthogonal weight
modification can reach the overlapping area but not the overlapping subspace. (b), the RAWM adaptively modifies weight
direction by introducing a projector that is orthogonal to the projector P proposed by OWM.

ods are effective, they still have some limitations, like the
acquisition of old data in the ensemble learning method and
the DDAN and deteriorating learning performance in the
DFWF. This paper, however, aims to overcome catastrophic
forgetting while exerting a positive influence on acquiring
new knowledge without any previous samples.

Most fake audio detection datasets are under clean condi-
tions, where the genuine audio has a more similar feature
distribution than the fake audio (Ma et al., 2021). A few
datasets, however, are collected under different acoustic
conditions (Müller et al., 2022), which makes a difference
in their feature distributions of genuine audio (Ma et al.,
2022). If we modify the model weights as the orthogonal
weight modification (OWM) method (Zeng et al., 2019)
which introduces a new weight direction orthogonal to all
old data, most genuine audio with similar feature distri-
bution across datasets can not be trained effectively. The
reason is that new genuine audio is supposed by the OWM
to damage learned knowledge, so it modifies new weight
direction orthogonal to the old one regardless the new and
old genuine audio have similar feature distribution and they
can be seen as a whole from the same dataset. Based on
the above inference, it is more effective for genuine audio
on new datasets to be trained with a direction close to the
previous one, rather than orthogonal to it. To address these
issues, we propose a continual learning approach, named
Regularized Adaptive Weight Modification (RAWM). In
our method, if the proportion of fake audio is larger, the
modified direction is closer to the orthogonal projector of
the subspace spanned by all old input; if the proportion of
genuine audio is larger, the modification is closer to the old
input subspace. However, old and new datasets are collected
from different acoustic conditions in some cases, where gen-
uine audio may have quite different feature distributions.
We address this issue by introducing a regularization con-
straint. This constraint forces the model to remember the

old feature distribution. In addition, compared with the
experience-replay-based method, RAWM does not require
old data, which makes it suitable for most situations. The
optimization process of RAWM is compared with that of
the Stochastic Gradient Descent search (SGD) and OWM
in Figure 1a.

Contributions: We propose a regularized adaptive weight
modification algorithm to overcome catastrophic forgetting.
There are two essential steps in our method: adaptive weight
modification (AWM) and regularization. The former AWM
is proposed for continual learning in most situations where
genuine audio has similar feature distribution and the latter
regularization is introduced to ease the problem that gen-
uine audio may have different feature distribution in a few
cases. Although our method is inspired by the feature distri-
bution similarity in fake audio detection, it can also be used
in other related tasks, such as speech emotion recognition.
The experimental results show that our proposed method
outperforms several continual learning methods in acquir-
ing new knowledge and overcoming forgetting, including
Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017), Learning without Forgetting (LwF) (Li & Hoiem,
2017), OWM, and DFWF. The code of our method has been
released in Regularized Adaptive Weight Modification.

2. Related Work
In continual learning, overcoming catastrophic forgetting
methods can be divided into the following categories. The
regularization methods perform a regularization on the ob-
jection function or regulate important weights that are es-
sential for previous tasks (Kinnunen et al., 2017; Zenke
et al., 2017b; Aljundi et al., 2018; 2019; Mallya & Lazeb-
nik, 2018; Serra et al., 2018). The dynamic architecture
methods reserve their previous knowledge by introducing ad-
ditional layers or nodes and grow model architecture (Rusu
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et al., 2016; Schwarz et al., 2018); (Yoon et al., 2017). The
memory-based methods remember their previous data to pre-
vent gradient updates from damage on their learned knowl-
edge. (Lopez-Paz & Ranzato, 2017; Castro et al., 2018; Wu
et al., 2019; Lee et al., 2019). The natural gradient descent
methods approximate the Fisher information matrix in EWC
using the generalized Gauss-Newton method to fast gradient
descent (Tseran et al., 2018; Chen et al., 2019).

Although the mainstream continual learning methods, such
as the EWC, LwF and OWM, have achieved great success in
many fields including image classification (Zeng et al., 2019;
Kirkpatrick et al., 2017), object detection (Perez-Rua et al.,
2020), semantic segmentation (Cermelli et al., 2020), life-
long language learning (de Masson D’Autume et al., 2019)
and sentence representation (Liu et al., 2019). However, the
approximation of regularization methods will produce error
accumulation in continual learning (Zenke et al., 2017a;
Huszár, 2017; Ma et al., 2021). In contrast, our proposed
method only needs the current inputs, which leads to a better
performance than others in error accumulation. Besides, we
relax the regularized constraint in the DFWF and introduce
a direction modification to solve the deteriorating learning
performance problem.

3. Background
3.1. Orthogonal Weight Modification

The OWM algorithm overcomes catastrophic forgetting by
modifying the direction of weights on the new task. The
modified direction P , which is a square matrix, is orthog-
onal to the subspace spanned by all inputs of the previous
task. The orthogonal projector is constructed by an itera-
tive method similar to the Recursive Least Square (RLS)
algorithm (Shah et al., 1992), which hardly requires any
previous samples.

We consider a feed-forward network consisting of L + 1
layers, indexed by l = 0, 1, · · · , L with the same activation
function g(·). The xl(i, j) ∈ Rs represents the output of
the lth layer in response to the mean of the ith batch inputs
on jth dataset, and the xl(i, j)

T is the transpose matrix of
the xl(i, j). The modified direction P can be calculated as:

Pl(i, j) = Pl(i−1, j)− kl(i, j)xl−1(i, j)
TPl(i−1, j)

kl(i, j) =
Pl(i−1, j)xl−1(i, j)

α+ xl−1(i, j)TPl(i−1, j)xl−1(i, j)

(1)

where α is a hyperparameter decaying with the number of
tasks.

3.2. Learning without Forgetting

The LwF algorithm is inspired by the idea of model distil-
lation, where old knowledge is viewed as a penalty term
to regulate the new model representation similar to the old.

The model trained on old datasets is replicated into two mod-
els with the same parameters. The two models are named
teacher and student models in the LwF. In process of train-
ing on new datasets, the parameters of the teacher model are
frozen to produce its features as ”soft labels”. The student
model is trained by the loss function as:

Llwf = λ0Lold(yo, ŷo) +Lnew(yn, ŷn) (2)

where λ0 is a ratio coefficient representing the importance
of learned knowledge; yo is the ”soft label” produced by
the teacher model and yn is the ground truth of new data;
Both ŷo and ŷn are the softmax output of the student model.
Both Lold and Lnew are cross-entropy loss. The former
Lold regulates the output probabilities ŷo to be close to the
recorded output yo from the teacher model and the latter
Lnew encourages predictions ŷn to be consistent with the
ground truth yn.

4. Proposed Method
On most fake audio detection datasets, under the same acous-
tic conditions, feature distributions of genuine audio are
relatively more concentrated than the fake, which means the
feature distribution of genuine audio has a smaller variance
than that of fake audio (Ma et al., 2021; Yan et al., 2022).
Besides, there are also a few datasets whose genuine audio
has quite different feature distributions from others (Ma
et al., 2022; Müller et al., 2022).

Based on the observations, we propose a continual learning
method, named Regularized Adaptive Weight Modification
(RAWM), to overcome catastrophic forgetting. There are
two essential steps in our method: adaptive direction modi-
fication (AWM) and regularization. The AWM is proposed
for most situations where genuine audio has similar feature
distribution. As shown in Figure 1b, by introducing an ex-
tra projector, which is a square matrix orthogonal to the
projector proposed by the OWM, our method could adap-
tively modify weight direction closer to the previous inputs
subspace. As for those genuine audio collected from quite
different acoustic conditions, it is detrimental for learned
knowledge to modify weight according to the rule we men-
tioned above, because their feature distribution is distinct
from others. To address this issue, we introduce a regu-
larization term to force the new distribution of inference
to be similar to the old one. Our method does not require
any replay of previous samples. In addition, our method is
inspired by fake audio detection but it can easily be general-
ized to other related tasks. The reason is that most of them
have one or more classes, like neutral emotion in speech
emotion recognition (SER) (Sharma, 2022), with relatively
similar feature distribution between different datasets. We
also take SER as an example to present how our method
generalizes to other fields in Sec. 4.3 and show the process
of our algorithm in Algorithm 1.
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4.1. Adaptive Weight Modification

We start by introducing an adaptive modification of weight
direction according to the ratio β of classes with similar
feature distribution between different datasets and others
in batch data, which is essential for sequence training on
multi-datasets. We first consider a feed-forward network
like that described in Sec. 3.1. Then, we introduce a square
matrix Q as a projector that is orthogonal to the P proposed
by the OWM algorithm. This orthogonal projector can be
written as Eq 3:

Q = β[I−P (P TP )−1P ] (3)

where the projector P , which is orthogonal to the subspace
spanned by all previous inputs, can be calculated as Eq 1 and
I is an identity matrix. The construction of the orthogonal
projector Q is mathematically sound (Haykin, 2002; Ben-
Israel & Greville, 2003; Bengio & LeCun, 2007). To verify
the modification direction according to the essential ratio β,
we introduce the β defined as:

β =

b∑
t=1

Nt + 1

b+c∑
t=b+1

Nt + 1

(4)

in which the Nt, t ∈ [1, b] represents the number of batch
samples of b classes with relatively similar feature distri-
butions on old and new datasets, respectively; the Nt, t ∈
[b+ 1, c] represents the number of batch samples of other c
classes. By adding one to both the numerator and denom-
inator, β can be calculated when all the batch data belong
to classes in the numerator. As illustrated in Eq 3, the norm
of projector Q is proportional to the ratio β. Our approach
defines the modified direction R of weights as:

R=Pnorm+mQnorm (5)

Pnorm=
P

||P || , Qnorm=
Q

||I−P (P TP )−1P || (6)

where m is a constant to constrain the norm of projector Q
to prevent gradient explosion or gradient vanishing in the
backward process; Pnorm and Qnorm are identity matrices
normalized by P and Q, respectively. Normalization is to
prevent the case that the change of β has little effect on the
modified direction because of the large norm gap between
P and Q. In the back-propagate (BP) process, the direction
of network weights is modified as:

Wl(i, j)=Wl(i−1, j)+G j = 1

Wl(i, j)=Wl(i−1, j)+Rl(j−1)G j > 1

G = γ(i, j)∆WBP
l (i, j)

(7)

where Wl(i, j) ∈ Rs×v represents the connection weights
between the lth layer and the (l+1)th layer; γ represents
the learning rate of this network; ∆WBP

l (i, j) represents
the standard BP gradient; R represents the modification
projector in our method. In Eq 7, we can easily observe

Algorithm 1 Regularized Adaptive Weight Modification

1: Require: Training data from different datasets, γ (learn-
ing rate), m (constant hyperparameter), Treg (constant
hyperparameter).

2: for every dataset j do
3: for every batch i do
4: if j = 1 then
5: Wl(i, j) = Wl(i−1, j) + γ(i, j)∆WBP

l (i, j)

6: else
7: k(i, j) =

Pl(i−1)xl−1(i, j)

α+ xl−1(i, j)TPl(i−1, j)xl−1(i, j)
8: Pl(i, j) = Pl(i−1, j) −

k(i, j)xl−1(i, j)
TPl(i−1, j)

9: β =

b∑
t=1

Nt + 1

b+c∑
t=b+1

Nt + 1

10: Q = β[I − P (P TP )−1P ]

11: PN =
P

||P ||

12: QN =
Q

||I−P (P TP )−1P ||
13: R = PN +mQN

14: ŷo(i) =
yo(i)

1/Treg∑
yo(i)

1/Treg

15: ŷn(i) =
yn(i)

1/Treg∑
yn(i)

1/Treg

16: ∆WBP
lreg

= −∇(ŷo(i) · log ŷn(i))

17: G = γ(i, j)∆WBP
l (i, j)

18: H = (1−η)Rl(j−1)G+η∆WBP
lreg

(i, j)

19: Wl(i, j)=Wl(i−1, j)+H

20: end if
21: end for
22: end for

that we modify weight direction adaptively by multiplying
the BP gradient ∆WBP

l (i, j) with our projector R whose
direction is varied according to the ratio β of classes with
similar feature distribution between different datasets and
others.

4.2. Regularization

There are also a few datasets where genuine audio is col-
lected from quite different acoustic conditions compared
with others. In this case, it is unreasonable to use the above
method directly. As for these utterances, we introduce an
extra regularization forcing the model to remember the pre-
vious inference distribution.

We first replicate the pre-trained model into two models
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with the same parameters, one is the teacher model and the
other one is the student model. The parameter of the teacher
model is frozen in the process of training on the new dataset
and the parameter of the student model is fine-tuned. Like
the operation in the LwF, we view the softmax output yo

from the teacher model as ”soft labels” and use the loss
function to slash the distinction between the ”soft labels” yo

and the softmax output yn of the student model, thus forcing
the student model to remember the learned knowledge. The
loss function, which is a modified cross-entropy loss, can
be written as:

Lreg(ŷo, ŷn)=−ŷo · log ŷn (8)

ŷo=
y
1/Treg
o∑
y
1/Treg
o

, ŷn=
y
1/Treg
n∑
y
1/Treg
n

(9)

where Treg is a constant hyperparameter. The yo, yn are
softmax outputs of teacher and student models, respectively;
The ŷ is a normalized form of the y; The ŷ and y are one
item of ŷ and y, respectively. The weight modification of
this regularization ∆WBP

lreg
can be written as Eq 10.

∆WBP
lreg = ∇Lreg (10)

4.3. Regularized Adaptive Weight Modification

In brief, our method RAWM is proposed for general con-
tinual learning conditions by modifying weight direction
according to the ratio β of classes with similar feature dis-
tribution between different datasets and others in batch data.
By introducing a regularized restriction, our method eases
the problem that a few data belonging to classes in the nu-
merator of the Eq 4 may have distinct feature distributions
because they are collected from quite different conditions.
Our method is inspired by fake audio detection where the
ratio β in the Eq 4 can be written as:

β =
Ng + 1

Nf + 1
(11)

in which Ng and Nf represent the number of genuine and
fake audios in a batch, respectively. As for another research
area, for example, speech emotion recognition including
happy, sad, angry, and neutral, the essential ratio can be
written as:

β =
Nneu + 1

Nang +Nhap +Nsad + 1
(12)

because the neutral emotion has a relatively more similar
feature distribution than others between different datasets.
The Nneu, Nang, Nsad, and Nhap represent the number of
neutral, angry, sad, and happy data in a batch, respectively.

Considering a continual learning situation, the BP process
of regularized adaptive weight modification can be written
as Eq 13.

Wl(i, j)=Wl(i−1, j)+G j = 1

Wl(i, j)=Wl(i−1, j)+H j > 1

G = γ(i, j)∆WBP
l (i, j)

H = (1−η)Rl(j−1)G+η∆WBP
lreg (i, j)

(13)

Compared with the Eq 7, our method introduces a regular-
ization constraint to the adaptive weight modification. The
importance of the regularization depends on the hyperpa-
rameter η which is a coefficient measuring the attention
degree of the knowledge acquired from old datasets.

5. Experiments
5.1. Datasets

We conduct our experiments on four fake audio datasets,
including the ASVspoof2019LA (S), ASVspoof2015 (T1),
VCC2020 (T2), and In-the-Wild (T3). The models are
firstly trained using the training set of the S and are fine-
tuned on the training sets of the other three datasets. All of
the experiments are evaluated using two or four evaluation
sets in these datasets. The final model in the study refers to
the model that was trained after the entire training process
and then evaluated on each dataset.

ASVspoof 2019 LA Dataset (Todisco et al., 2019) is the
sub-challenge dataset (30 males and 37 females) containing
three subsets: training, development, and evaluation. The
training set and development share the same attack including
four TTS and two VC algorithms. The bonafide audio is
collected from the VCTK corpus (Veaux et al., 2017). The
evaluation set contains totally different attacks.

ASVspoof2015 dataset (Wu et al., 2015) is an open-
source standard dataset of genuine and synthetic speech
in the ASVspoof2015 challenge. The genuine speech was
recorded from 106 speakers (45 males and 61 females) with
no significant channel or background noise effects. The
spoofing speech is generated using a variety of speech syn-
thesis and voice conversion algorithms.

VCC2020 dataset (Zhao et al., 2020) is collected from
Voice Conversion Challenge 2020. This dataset contains
two subsets: a set of genuine audio provided by organizers
and a set of fake audio provided by participating teams.
Different from the previous three datasets, VCC2020 is a
multilingual fake audio dataset, including English, Finnish,
German and Mandarin.

In-the-Wild dataset (Müller et al., 2022) contains a set
of deep fake audio (and corresponding real audio) of 58
politicians and other public figures collected from publicly
available sources, such as social networks and video stream-
ing platforms. In total, 20.8 hours of genuine audio and
17.2 hours of fake audio were collected. On average, each
speaker had 23 minutes of genuine audio and 18 minutes of
fake audio.

We divide the genuine and fake audios of the VCC2020
dataset into four subsets. A quarter is used to build the
evaluation set, a quarter to build the development set, and the
rest to be used as the training set. The In-the-Wild dataset
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Table 1: (a) is the statistics of experimental datasets and (b) is the EER(%) of our baseline on multiple evaluation sets.

(a)

Dataset
ASVSpoof2019LA (S) ASVSpoof2015 (T1) VCC2020 (T2) In-the-Wild (T3)

#Real #Fake #Real #Fake #Real #Fake #Real #Fake

Train 2,580 22,800 3,750 12,625 1,330 3,060 9,431 5,908
Dev 2,548 22,296 3,497 49,875 665 1,530 4,715 2,954
Eval 7,355 63,882 9,404 184,000 665 1,530 4,717 2,954

(b)

Model S T1 T2 T3

Baseline 0.258 24.532 46.503 91.473

Table 2: The EER(%) on evaluation sets of our method with different η. (a), (b) and (c) are trained using the training set
in order to S → Tk and are evaluated using the evaluation set on S and Tk; (d) is trained using training set in order to
S → T1 → T2 → T3 and is evaluated using evaluation sets.

(a)

η S T1

Baseline 0.258 24.532

0.00 1.643 0.256
0.20 1.424 0.431
0.25 1.175 0.311
0.50 0.878 0.257
0.75 0.666 0.247
1.00 3.123 0.343

(b)

η S T2

Baseline 0.258 46.503

0.00 1.413 3.845
0.20 1.334 4.288
0.25 1.275 3.994
0.50 1.237 3.721
0.75 1.262 4.571
1.00 4.234 4.566

(c)

η S T3

Baseline 0.258 91.473

0.00 6.126 3.457
0.20 5.490 3.848
0.25 4.975 3.593
0.50 4.942 3.249
0.75 4.482 4.271
1.00 4.453 4.598

(d)

η S T1 T2 T3

Baseline 0.258 24.532 46.503 91.473

0.00 1.845 1.127 3.916 3.410
0.20 1.724 1.003 4.120 3.367
0.25 1.699 0.945 4.017 3.529
0.50 1.508 0.641 3.850 3.163
0.75 1.636 0.873 3.975 4.454
1.00 2.714 1.621 3.875 4.325

is divided in the same way as the VCC2020. The detailed
statistics of the datasets are presented in Table 1a. The
Equal Error Rate (EER), which is widely used for fake audio
detection and speaker verification, is applied to evaluate the
experimental performance.

5.2. Experimental Setup

Fake Audio Detection Model: We use the pre-trained
model Wav2vec 2.0 (Baevski et al., 2020) as the feature
extractor and the self-attention convolutional neural network
(S-CNN) as the classifier. The parameters of Wav2vec 2.0 is
loaded from the pre-train model XLSR-53 (Conneau et al.,
2020). The classifier S-CNN contains three 1D-Convolution
layers, one self-attention layer, and two full connection lay-
ers, according to the forward process. The input dimension
of the first convolution layer is 256 and the hidden dimen-
sion of all convolution layers is 80. The kernel size and
stride are set to 5 and 1, respectively. The hidden dimension
of all full connection layers is 80 and the output dimension
is 2.

Training Details: We fine-tune the model weights including
the pre-trained model XLSR-53 and the classifier S-CNN.
All of the parameters are trained by the Adam optimizer
with a batch size of 2 and a learning rate γ of 0.0001. The
constant m and Treg in RAWM are set to 0.1 and 2, re-
spectively. The α is initialized to 0.00001 for convolution
layers, 0.0001 for the self-attention layer, and 0.1 for full
connection layers. The norm in normalization of projector
P and Q is the L2 norm. In addition, we present the results

of training all datasets (Tain-on-All) that is considered to
be the lower bound to all continual learning methods we
mentioned (Parisi et al., 2019). All results are (re)produced
by us and averaged over 7 runs with standard deviations.

5.3. Baseline

We first train our model on the training set of the S dataset.
Table 1b shows the detection performance of our baseline
on multiple evaluation sets which is very close to the state-
of-the-art result (Nautsch et al., 2021) in the same dataset.
Although the model achieves promising performance on
S, its detection accuracy degrades significantly on other
datasets. In addition, our baseline achieves the lowest cross-
datasets EER on T1 dataset among three unseen datasets,
which verifies that the detection model will have better per-
formance when facing genuine audio with more similar
feature distribution. Apart from that, the results with differ-
ent training steps are presented in Table 8 in the appendix.

5.4. Effects of the η for our method

Sequence training between two datasets: We start by
performing some experiments to evaluate the effectiveness
of η in RAWM, which represents the attention degree to
learned knowledge. In Table 2, we can easily observe that
the RAWM achieves great performance on both old and new
datasets, especially in the experiment on S → T1. By com-
paring the results of three cross-datasets, we observe that
when the new and old datasets have similar feature distribu-
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Table 3: The EER(%) on evaluation sets of the ablation studies. (a), (b) and (c) are trained using the training set in order to
S → Tk and are evaluated using the evaluation set on S and Tk; (d) is trained in order to S → T1 → T2 → T3 and are
evaluated using evaluation sets.

(a)

Method S T1

RAWM 0.666 0.247
–REG 1.643 0.256
–AWM 2.448 0.500

(b)

Method S T2

RAWM 1.237 3.721
–REG 1.413 3.845
–AWM 3.086 5.432

(c)

Method S T3

RAWM 4.942 3.249
–REG 7.126 3.357
–AWM 8.130 5.065

(d)

Method S T1 T2 T3

RAWM 1.508 0.641 3.850 3.163
–REG 1.845 1.127 3.916 3.410
–AWM 4.083 2.167 6.480 5.472

Table 4: The EER(%) of our method compared with various methods. (a), (b) and (c) are trained using the training set
in order to S → Tk and are evaluated using the evaluation set on S and Tk; (d) is trained using training set in order to
S → T1 → T2 → T3 and is evaluated using evaluation sets.

(a)

Method S T1

Baseline 0.258 24.532
Train-on-All 0.406 0.201

Fine-tune 7.324 0.510
EWC 2.832 0.570
OWM 2.448 0.540
LwF 3.123 0.343

DFWF 1.849 0.689
RAWM(Ours) 0.666 0.247

(b)

Method S T2

Baseline 0.258 46.503
Train-on-All 0.965 2.498

Fine-tune 8.755 5.647
EWC 3.494 6.289
OWM 3.086 6.432
LwF 4.234 4.566

DFWF 1.874 7.355
RAWM(Ours) 1.237 3.721

(c)

Method S T3

Baseline 0.258 91.473
Train-on-All 2.740 2.160

Fine-tune 20.976 4.978
EWC 8.039 5.615
OWM 8.130 5.065
LwF 6.453 4.998

DFWF 4.324 6.275
RAWM(Ours) 4.942 3.249

(d)

Method S T1 T2 T3

Baseline 0.258 24.532 46.503 91.473
Train-on-All 1.324 0.561 3.579 2.008

Fine-tune 7.068 2.841 5.674 4.543
EWC 5.569 2.444 6.510 5.129
OWM 4.083 2.167 6.480 5.472
LwF 2.714 1.621 4.875 4.325

DFWF 3.476 3.735 7.345 6.114
RAWM(Ours) 1.508 0.641 3.850 3.163

tion (Table 2a), there is an improvement in the performance
of both acquiring new knowledge and overcoming forget-
ting with the increasing of η (η < 1); When the feature
distribution of the new and old datasets is different (Table
2b, Table 2c), it is the model when η = 0.50 that achieves
the best result, which shows that the regularization we in-
troduced is also of benefit to performance on both learning
and overcoming forgetting.

Sequence training on four datasets: We also present the
results on multiple evaluation sets about different η in Table
2d. It can be observed that our method slashes performance
degradation when training across datasets. The RAWM
achieves the lowest EER among the results when η = 0.50,
which demonstrates that the same attention degree to both
old and new datasets is the best choice for learning and
overcoming forgetting. In addition, the results of S, T1 and
T2 show that the model with larger η is more effective in
overcoming forgetting.

5.5. Ablation studies for our method

Sequence training between two datasets: In this section,
we compare our proposed method with adaptive weight
modification without regularization (–REG) and orthogo-
nal weight modification without regularization (–AWM).
Table 3 presents their EER on three evaluation sets. We
observe that RAWM achieves similar EER to –REG on
the new dataset, both of them are superior significantly to
–AWM, which shows that the adaptive weight modification

has a significant positive impact on acquiring knowledge,
while regularization impacts little. As for overcoming for-
getting, when the feature distribution of the new and old
datasets is similar (Table 3a), the EER of the –REG on
the old datasets is much lower than that of the –AWM and
higher than that of the RAWM, which shows that the adap-
tive weight modification and regularization can significantly
reduce the forgetting in this case. When the languages of
the new and old datasets are different (Table 3b), the EER of
RAWM in the old datasets is similar to that of the –REG and
much lower than that of the –AWM, which also proves that
the adaptive weight modification has a significant positive
impact on overcoming forgetting. When the feature distri-
bution of the new and old datasets is quite different (Table
3c), the EER of the –REG is similar to that of the –AWM
and much higher than that of the RAWM, which shows that
in this case, regularization is of great benefit to overcoming
forgetting, while the effect of adaptive weight modification
is not obvious.

Sequence training on four datasets: In this section, we
present the results of the ablation study on four evaluation
sets in Table 3d. We observe that the EER of –REG to
–AWM degrades more obviously than that of RAWM to –
REG on all evaluation sets, which indicates that adaptive
weight modification has a more obvious benefit in learning
and overcoming forgetting than regularization for sequence
training on multiple datasets.
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Table 5: The EER(%) of few samples experiments. All
experiments are first trained using the training set of S and
then trained on 100 samples of the training set of T1. All
experiments are evaluated using the evaluation set on S and
T1.

Method S T1

Baseline 0.258 24.532
Train-on-All 0.279 0.291

Fine-tune 7.951 0.617
EWC 2.972 0.619
OWM 2.683 0.617
LwF 3.198 0.542

DFWF 1.975 0.733
RAWM(Ours) 0.923 0.312

5.6. Comparison of our method with other methods

Sequence training between two datasets: We compare our
method with several methods in Table 4. The EWC, LwF,
and OWM as three mainstream continual learning methods
achieve great success in many fields. The DFWF is the first
continual learning method to overcome forgetting for fake
audio detection. The results demonstrate that fine-tuning
without modification (Fine-tune) forgets previous knowl-
edge obviously. The forgetting of RAWM is one-tenth that
of Fine-tune on Table 4a and the EER on the new dataset
of RAWM is also half that of Fine-tune. We also observe
that the Fine-tune, EWC and OWM achieve similar perfor-
mance in three experiments and the performance of LwF
outperforms theirs on the new dataset. The DFWF is more
effective in overcoming forgetting than the above methods,
but its performance on the new dataset is inferior to others.
Compared with others, our method achieves lower EER on
both old and new datasets of all experiments, which demon-
strates that both overcoming forgetting and learning could
definitely benefit from our method when training across
datasets, regardless of whether the datasets have similar fea-
ture distributions (Table 4a, Table 4b) or same languages
(Table 4c).

Sequence training on four datasets: In addition, We com-
pare our method with several methods for sequence training
on four datasets in Table 4d. The results show that most
methods achieve lower EERs than fine-tuning, and the best
result for overcoming forgetting and learning is our pro-
posed method, which indicates that the RAWM is superior
to others for sequence training on both two and multiple
datasets.

5.7. The performance of the RAWM with a few samples

We also present some results of the model when training on
a few samples of new datasets. In our experiments, only 100
samples randomly selected from new datasets T1 were used
for fine-tuning or continual learning. All models are first

Table 6: The Acc(%) of various continual learning meth-
ods for 4-classes speech emotion recognition. All experi-
ments are trained using the training set in order to MSP-
Podcast→IEMOCAP and are evaluated using the eval-
uation set on MSP-Podcast and IEMOCAP

Method MSP-Podcast IEMOCAP

Baseline 54.446 30.043
Train-on-All 54.396 57.262

Fine-tune 24.094 50.379
EWC 35.819 48.698
OWM 32.267 48.162
LwF 38.800 44.034

RAWM(Ours) 41.995 54.229

trained on the S datasets and then fine-tuned or continually
learned on the T1 dataset. All models are trained on the
new dataset within five steps. From the results, we can
observe that our method RAWM also achieves the best
performance on both old and new datasets and the learning
performance is very close to the result of Train-on-All which
is the the lower bound to all continual learning methods. By
comparing the results in Table 4a and Table 5, we can easily
find that reducing the number of samples has only a little
damage to our method.

5.8. The RAWM for speech emotion recognition

Our method is inspired by fake audio detection and it can be
easily used in other related tasks. We take speech emotion
recognition as an example to evaluate the performance of
the RAWM in other fields. In this regard, the previous result
shows that neutral emotion achieved the highest recognition
accuracy across thirteen emotion datasets (Sharma, 2022).
So we infer that neutral speech has a more similar feature
distribution than that of happy, sad, and angry, thus the ratio
β of our method can be written as Eq 12. Based on this ob-
servation, we conduct some experiments for speech emotion
recognition. We choose four emotional classes, including
neutral, happy, angry, and sad. The feature extractor and
classifier are as same as that in fake audio detection. The
results have been shown in Table 6. It could be easily ob-
served that our method still achieves the highest accuracy
on both datasets. The effect of our method in overcoming
forgetting is most obvious and its learning performance is
very close to the result of Train-on-All.

5.9. The RAWM for image recognition

We also have performed evaluation experiments on the im-
age recognition domain in the CLEAR benchmark (Lin et al.,
2021) to explore the broader applicability of our method.
The CLEAR-10 benchmark for continual learning consists
of 10 image recognition experiences, each comprising 11

8
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Table 7: The Accuracy(%) on the CLEAR experiences.

Continual Learning Methods
Acc on the evaluation set of each experience

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10

Replay 94.34 93.64 94.34 95.15 94.75 94.55 94.34 94.34 95.35 96.06

Fine-tune 87.68 90.00 91.11 91.82 90.40 89.90 90.30 90.61 90.61 93.33
EWC 84.04 84.95 85.86 87.07 85.66 85.56 86.97 86.16 85.76 87.78
LwF 88.59 88.89 87.27 90.51 87.68 87.78 87.47 87.47 88.79 88.48
GDF 91.11 91.62 88.38 91.01 88.79 89.19 90.20 87.68 90.10 90.30
CWR 90.71 91.72 90.71 91.52 89.49 90.91 91.62 90.71 91.82 93.74
OWM 91.62 92.12 91.82 93.64 91.72 92.42 92.22 92.32 92.42 95.05

RAWM (Ours) 92.12 92.53 91.41 93.74 91.82 92.42 92.53 92.22 92.53 95.25

classes such as camera, baseball, laptop, etc. To evaluate
the effectiveness of our method, we selected several widely
used continual learning algorithms, including the Replay,
EWC, LwF, GDumbFinetune (GDF) (Prabhu et al., 2020),
CopyWeights with Re-init (CWR) (Lomonaco & Maltoni,
2017), and OWM methods. Table 7 presents the results of
the comparative analysis. We treated the Replay method,
which corresponds to the ”Train-on-all” approach in our
paper, as the upper bound of accuracy for all continual
learning methods. The EWC and LwF methods have been
introduced in our paper. In the GDF algorithm, we set the
memory size to be the same as the number of training data
in one bucket, and for CWR, the cwr layer was positioned
as the final layer of the model. To extract features, we em-
ployed a pre-trained ResNet-50 (He et al., 2016) as a feature
extractor, producing 2048-dimensional feature vectors. A
linear layer with input and output dimensions of 2048 and
11, respectively, was used as the downstream classifier. Our
experiments were conducted with a batch size of 512, an
initial learning rate of 1 (decayed by a factor of 0.1 after
60 epochs), and the SGD optimizer with a momentum of
0.9. The experimental results in Table 7 demonstrate that
our proposed method, referred to as RAWM, consistently
achieved the best performance across most tasks. In partic-
ular, in Exp3 and Exp8, the performance of our method
closely approached the highest accuracy achieved among
all the evaluated methods.

6. Conclusion
In this work, we propose a continual learning algorithm to
overcome catastrophic forgetting, called RAWM, that could
adaptively modify the weight direction in process of training
on new datasets. We also introduce a regularization to deal
with the situation when old and new datasets are collected
from quite different conditions. The experimental results
demonstrate that our method outperforms four continual
learning methods in learning and overcoming forgetting in

scenarios of sequence training on both two and multiple
datasets. The result shows that our method still achieves the
best performance among the above methods when training
on a few samples. Besides, our method is inspired by fake
audio detection and the results show that it can be easily gen-
eralized to other fields, like speech emotion recognition. In
addition, our method does not require previous data; thus it
can be applied to most classification networks. We have yet
to study how to make the model learn the weight direction
gradually in the process of training on new datasets without
any constraint, and exploring generalization to related tasks
will form the focus of our future studies.
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A. Appendix

Table 8: The EER(%) on multiple evaluation sets. Model-1 to Model-6 are the models trained using the ASVspoof2019LA
training set with increasing training steps.

Model
Evaluation Sets

S T1 T2 T3

Model-1 3.751 6.316 7.670 75.198
Model-2 2.975 8.517 10.000 78.477
Model-3 1.794 9.988 26.165 85.436

Model-4 0.258 24.532 46.503 91.473
Model-5 0.259 25.698 44.741 91.824
Model-6 0.262 27.872 49.726 92.113
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