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ABSTRACT

With the advancement of machine learning, various techniques have been devel-
oped to classify patients for disease diagnosis using medical tabular data. Due
to the presence of missing values in the medical tabular data, these techniques
commonly impute the missing values before applying classifiers. However, most
existing techniques classify patients solely based on each patient’s individual fea-
tures despite the advantages of leveraging patients with similar features that can
enhance both imputation and classification. To address this issue, we introduce
graph data imputation for tabular data (GITD), a novel approach that constructs
feature-attentive k-nearest neighbor (kNN) graphs to enable the use of graph data
imputation methods on medical tabular data. The key idea of GITD is constructing
a kNN graph among patients by prioritizing important features for classification.
Our extensive experimental results demonstrate that GITD successfully bridges
graph data imputation methods and medical tabular classification, achieving state-
of-the-art performance across various medical tabular datasets.

1 INTRODUCTION

Recent progress in machine learning technology has led to substantial strides in the medical do-
main (Kononenko, 2001; Giger, 2018; Shehab et al., 2022). Among various types of data in the
medical domain, tabular data is one of the most representative forms, consisting of numerical and
categorical features for each patient. Many researchers have utilized machine learning frameworks
on medical tabular data to classify patients for disease diagnosis (Rahman & Davis, 2013; Liu et al.,
2023). The main challenge in handling medical tabular data is that it often contains missing values
due to various factors, such as private concerns or incomplete data collection. In this paper, we
tackle the classification of patients on medical tabular data with missing values.

To handle medical tabular data containing missing values, imputation techniques that fill in the
missing values must be applied prior to classifiers. This is because most classifiers assume that
the data is fully observed. Traditionally, simple imputation techniques, such as zero and mean
imputation, have been widely used for medical tabular data (Graham et al., 1997; Schafer & Graham,
2002). Recently, deep learning-based imputation techniques (Mattei & Frellsen, 2019; You et al.,
2020; Zhong et al., 2023) have demonstrated powerful performance on tabular data, making them an
effective approach for medical tabular data. After filling in missing values through the imputation
methods, a Multi-Layer Perceptron (MLP) is commonly employed to classify each patient based on
the complete data (Sivasankari et al., 2022; Levin et al., 2022).

Medical tabular data typically contains two types of features (Remeseiro & Bolon-Canedo, 2019):
(1) class-discriminative features that differentiate among classes and (2) non-discriminative features
that have the same distribution regardless of class. For instance, in Alzheimer’s disease data (Pe-
tersen et al., 2010), the score of a logical memory test can be a key discriminative feature for identi-
fying the disease, while many non-discriminative features, such as the years from the first measure-
ment and the site where data was collected, also exist. Specifically, patients with a particular disease
tend to have similar class-discriminative features. Therefore, the classification of a patient can be
aided by considering patients who have class-discriminative features similar to those of the patient
in question.
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Figure 1: Our graph data imputation for tabular data (GITD) enables the use of graph data im-
putation methods by constructing a kNN graph primarily based on class-discriminative features.
This constructed graph is provided to graph data imputation methods, transferring their outstand-
ing performance to the medical domain and resulting in superior performance compared to existing
methods.

Meanwhile, imputation methods developed for graph-structured data (Taguchi et al., 2021; Rossi
et al., 2022; Um et al., 2023) have garnered significant attention due to their remarkable effective-
ness in handling high rates of missing values. In many real-world graph-structured datasets, there
is homophily, which refers to the tendency for nodes to be connected when they belong to the same
class or have similar feature values. Based on homophily (McPherson et al., 2001), graph data impu-
tation methods leverage the valuable information in each node’s neighbors, leading to outstanding
performance in downstream tasks. Although tabular medical data does not have predefined con-
nectivity among patients, connecting patients with similar class-discriminative features can promote
homophily, where connected patients are more likely to belong to the same class.

To this end, we propose a novel scheme called graph data imputation for tabular data (GITD), which
constructs a kNN graph on medical tabular data with a focus on class-discriminative features. GITD
first trains a feature-wise attention network to infer the influence of each feature value on classi-
fication. Using the trained network, GITD calculates each feature’s importance to classification,
considering all patients. GITD then performs kNN graph construction based on the feature impor-
tance. Finally, by introducing the constructed kNN graph to graph data imputation models, we can
train these models for classification tasks on medical tabular data. Despite its simplicity, GITD sig-
nificantly improves the classification performance of graph data imputation methods compared to
existing kNN graph construction algorithms. Extensive experimental results demonstrate the supe-
riority of GITD using graph data imputation methods in disease diagnosis across various real-world
medical tabular datasets, achieving state-of-the-art performance over existing tabular imputation
methods.

The main contributions of our work are summarized as:

• To the best of our knowledge, this work is the first attempt to apply graph data imputation
methods to tabular data.

• We introduce GITD, which bridges graph data imputation methods and medical tabular
data. Based on the nature of medical tabular data, GITD builds a kNN graph that is attentive
to class-discriminative features.

• We demonstrate that graph data imputation methods using feature-attentive kNN graphs
significantly outperform existing state-of-the-art methods in medical classification and
GITD can also provide valuable medical insights.

2 RELATED WORK

2.1 TABULAR DATA IMPUTATION

Since missing data is a pervasive problem across various domains, handling missing data has long
been a prominent area of research in machine learning (Allison, 2009; Lin & Tsai, 2020). For miss-
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ing data imputation on tabular data, simple imputation methods such as zero imputation (Schafer &
Graham, 2002), mean imputation (Graham et al., 1997), and kNN imputation (Troyanskaya et al.,
2001), as well as statistical methods (Van Buuren & Groothuis-Oudshoorn, 2011), have been widely
used. With the advancement of deep learning models, deep learning-based approaches have gained
popularity due to their effectiveness for accurate imputation. GAIN (Yoon et al., 2018) adopts a
Generative Adversarial Nets (GAN) (Goodfellow et al., 2014) framework to generate missing values
in tabular datasets. MIWAE (Mattei & Frellsen, 2019) is a framework that enhances Importance-
Weighted AutoEncoder (IWAE) (Burda et al., 2015) by introducing a lower bound on the likelihood
of observed data to the original objective of IWAE. Recently, graph-based imputation methods, in-
cluding GRAPE (You et al., 2020) and IGRM (Zhong et al., 2023), have been proposed. These
graph-based methods transform a given tabular dataset into a bipartite graph, where nodes consist
of sample nodes and feature nodes. By predicting the edge weight between a sample node and a
feature node on this bipartite graph, the graph-based methods estimate missing values in the tabular
dataset. To perform classification tasks after imputation processes, sample-level classifiers, such as
an MLP classifier, are commonly applied to the data completed by various imputation techniques.
However, sample-level classifiers cannot leverage the relationships among samples, which can play
a crucial role in classification tasks.

2.2 GRAPH DATA IMPUTATION

Several methods tackle the reconstruction of missing values in graph-structured data by minimizing
the reconstruction error between the observed values and their reconstructed values. Since node
classification is a primary task in graph learning, many approaches have been developed to ad-
dress node classification with missing values rather than focusing on the accurate reconstruction of
missing values. These approaches can be categorized into graph neural network (GNN) architecture-
based methods and propagation-based methods. GNN architecture-based methods, including GC-
NMF (Taguchi et al., 2021) and PaGNN (Jiang & Zhang, 2020), propose new GNN architectures
to learn graph-structured data with partially observed feature values. Propagation-based methods,
including FP (Rossi et al., 2022) and PCFI (Um et al., 2023), impute missing values through the
iterative propagation of observed values on a graph. While preserving the observed values, these
methods update missing values by repeatedly aggregating values from neighboring nodes. After
imputation, propagation-based methods, employ GNN to perform node classification tasks. In sum-
mary, graph data imputation methods commonly incorporate GNNs that are trained on the training
samples. While graph data imputation frameworks require pre-defined connectivity among samples,
our GITD makes graph data imputation frameworks to tabular data classification by building a new
graph primarily based on class-discriminative features.

3 PROPOSED METHOD

3.1 PROBLEM SETUP

We consider a medical tabular dataset containing missing feature values. We let Xog ∈ RN×Fog

be the feature matrix of the given medical tabular dataset, where N and Fog denote the number of
samples (patients) and the number of features, respectively. Mog ∈ {0, 1}N×Fog denotes a binary
mask where values of 1 indicate the location of missing values. These features consist of numerical
and categorical features. To employ imputation techniques, we convert each categorical feature
into its dummy variables. This process yields X ∈ RN×F and M ∈ {0, 1}N×F from Xog and
Mog , respectively, where F represents the sum of the number of given numerical features and the
number of dummy variables. Let Y = [y1, . . . , yN ]⊤ be the labels of samples and yi ∈ {1, . . . , C},
where yi denotes the disease-related class label of the i-th sample and C denotes the number of
classes. We assume that labels are given for only a subset of the samples (i.e., the training samples).
The remaining samples, which are not used for training, are unlabeled (i.e., the validation and test
samples). The goal of medical classification is to predict the classes of the test samples based on X,
which contains missing values and the partially available labels for the training samples.
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Figure 2: A brief overview of GITD: In the preliminary training stage, gθ, an MLP classifier with an
attention mechanism, is first trained using supervised learning. In the graph construction stage, we
utilize the trained gθ to compute t, which represents feature-wise importance. Using t, this stage
constructs a kNN graph that focuses on class-discriminative features. Finally, A, the adjacency
matrix of the kNN graph, is provided to the final training stage, enabling graph data imputation
methods to be trained and to perform a classification task.

3.2 OVERVIEW OF GITD

We propose a novel approach called raph data imputation for tabular data (GITD), designed to adapt
graph data imputation techniques for medical tabular data containing missing values. While graph
data imputation methods require predefined connectivity among data points, medical tabular data
typically lacks inherent connectivity. To transfer the powerful performance of graph data imputation
to the medical tabular domain, GITD constructs the connectivity among patients. GITD is designed
to construct this graph structure mainly based on class-discriminative features to assist graph data
imputation methods in performing classification.

Figure 2 provides a brief overview of GITD. The process of GITD consists of three stages: a prelim-
inary training stage, a graph construction stage, and a final training stage. In the preliminary training
stage, gθ, an MLP classifier with an attention mechanism, is trained using supervised learning. After
training, all samples are passed through the trained gθ to obtain the feature-wise attention weights
for each sample. These attention weights are then summed across the samples in a feature-wise
manner, producing feature-wise attention weights. In the graph construction stage, a kNN graph is
built using weighted cosine similarity based on the feature-wise attention weights, making the kNN
graph attentive to class-discriminative features. In the final training stage, using this kNN graph,
graph data imputation models are trained utilizing GNN-based frameworks to classify samples.

3.3 PRELIMINARY TRAINING STAGE

Given X ∈ RN×F , the feature matrix of a medical tabular dataset, we first produce X ∈ RN×F

from X by imputing missing values with zeros. Using X, the preliminary training stage then trains
gθ, an MLP classifier with an attention mechanism. Specifically, we compute attention weights
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T ∈ RN×F as follows:

Ti,j =
exp

(
((Xi,:)Watt)j

)∑F
k=1 exp

(
((Xi,:)Watt)k

) , (1)

where Watt ∈ RF×F is a trainable weight matrix and Xi,: denotes the i-th row of X. Here, Ti,j rep-
resents the attention weight for the j-th feature of the i-th sample, and the softmax function ensures
that the sum of attention weights across all features for each sample equals 1 (i.e.,

∑F
j=1 Ti,j = 1).

We then apply the attention weights T to X as follows:

X
att

= X⊙T, (2)

where ⊙ denotes element-wise multiplication.

gθ, consisting of L layers, then processes the attention-weighted feature matrix X
att

through a series
of fully connected layers in a sample-wise manner, applying linear transformations followed by
non-linear activations such as ReLU. Formally,

H(l) = σ(H(l−1)W(l) + b(l)), l = 1, . . . , L− 1 (3)

where H(l) represents the output of the l-th layer, W(l) ∈ Rdl−1×dl and b(l) ∈ Rdl are the weight
matrix and bias vector of the l-th layer, respectively, and σ(·) denotes the activation function (e.g.,
ReLU). Here, H(0) = X

att
, the input to the first layer, with d0 = F .

This process continues through all the hidden layers until the final layer, where the output logits
Ŷ ∈ RN×C are computed as:

Ŷ = H(L−1)W(L) + b(L), (4)

where W(L) ∈ RdL−1×C and b(L) ∈ RC are the weight matrix and bias vector of the output layer,
respectively. Finally, a softmax function is applied to the logits for each sample to produce the
predicted class probabilities. gθ is trained using cross-entropy loss, computed between the one-hot
encoded labels from the training sample labels Y and the predicted probabilities from Ŷ.

3.4 GRAPH CONSTRUCTION STAGE

After gθ is trained through the training stage, T can provide the importance of each feature for each
sample. Thus, we feed X into the trained gθ and obtain the attention weights T. Since GITD requires
feature-wise importance representing the degree to which each feature contributes to classifying the
classes, we calculate the feature-wise importance t ∈ RF by summing T across the samples as
tj =

∑N
i=1 Ti,j . This feature-wise importance t reflects the degree to which each feature is class-

discriminative.

To construct a kNN graph using t, we first normalize each sample in X and weight the features
according to t as follows:

X̃i,j = (tj)
α · Xi,j

∥Xi,:∥2
, for i = 1, . . . , N, (5)

where X̃ ∈ RN×F , α > 0 is a hyperparameter that controls the influence of feature importance, and
∥Xi,:∥2 is the L2 norm of the i-th row of X.

Given an arbitrary matrix B ∈ Ra×b, we define kNN(·) : Ra×b → {0, 1}a×a as a function that
generates an adjacency matrix of the row-wise kNN graph (i.e., the kNN graph among rows) based
on cosine similarity. We build the kNN graph among samples by

A = kNN(X̃), (6)

where A ∈ {0, 1}N×N denotes the connections among samples, with values of 1 indicating con-
nected samples. Since X̃ is calculated using t, A can be constructed with a primary focus on
class-discriminative features rather than non-discriminative ones.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Classification results measured by Micro-F1 score (%). Standard deviation errors are given.
OOM denotes an out-of-memory error.

Method Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes

Zero 75.33±3.06 74.80±3.91 91.30±0.54 78.22±0.99 77.94±1.24 53.66±0.77

Mean 73.00±4.88 72.76±7.02 68.43±2.13 78.35±1.53 76.89±1.49 53.76±0.33

kNN 77.00±3.71 76.53±0.82 90.45±1.17 80.39±1.30 76.68±1.07 53.92±0.86

GAIN 68.67±4.99 76.31±1.32 89.30±1.81 77.46±1.22 75.46±1.22 53.58±0.59

MIWAE 69.43±6.25 OOM 64.33±0.93 OOM OOM OOM
GRAPE 75.00±0.81 OOM 91.61±0.89 OOM OOM OOM
IGRM 69.33±8.21 OOM 66.38±1.85 OOM OOM OOM

GITD (ours) 89.00±2.71 76.62±0.67 91.69±1.14 83.75±0.99 80.01±1.22 54.65±1.11

3.5 FINAL TRAINING STAGE

Although the given medical dataset does not have any predefined connectivity, GITD can provide A
to graph data imputation methods that require the connectivity among samples as well as a feature
matrix X and a mask M indicating the location of missing values. Thus, A, the output of the graph
construction stage, enables the use of graph data imputation methods on medical tabular data. GNN
models in these methods can then be trained to perform classification on the samples, transferring
their powerful performance from the graph domain to the medical tabular domain.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on six medical tabular datasets, all of which initially contain missing
data, as follows: Echocardiogram (Asuncion et al., 2007), Duke Breast Cancer (Saha et al., 2018),
ABIDE (Di Martino et al., 2014), ADNI QT-PAD (Petersen et al., 2010), ADNI TADPOLE (Pe-
tersen et al., 2010), and Diabetes (Asuncion et al., 2007). The datasets have missing data rates of
2.59%, 11.94%, 52.52%, 22.29%, 27.31%, and 4.03%, respectively. Detailed information on these
datasets is provided in Appendix B.1.

4.2 COMPARED METHODS

We compare GITD with seven tabular data imputation methods on medical tabular datasets. These
methods are categorized into two groups: (1) conventional methods: zero imputation (Schafer
& Graham, 2002), mean imputation (Graham et al., 1997), and kNN imputation (Troyanskaya
et al., 2001); and (2) state-of-the-art deep learning-based methods: GAIN (Yoon et al., 2018), MI-
WAE (Mattei & Frellsen, 2019), GRAPE (You et al., 2020), and IGRM (Zhong et al., 2023). For
graph data imputation methods, we employ GCNMF (Taguchi et al., 2021), PaGNN (Jiang & Zhang,
2020), FP (Rossi et al., 2022), and PCFI (Um et al., 2023). As the default setting for GITD, FP is
utilized as a graph data imputation method. That is, unless otherwise specified, we use FP as the
graph data imputation method for GITD.

4.3 EXPERIMENTAL SETUP

To evaluate the performance of imputation methods in medical classification with missing data, we
compare classification performance on medical tabular data containing missing values. For a fair
comparison, we generate five random splits for training, validation, and test samples with propor-
tions of 0.1, 0.1, and 0.8, respectively. To evaluate classification performance, we measure the
average Micro-F1 score across the five splits. For the six tabular data imputation methods except
for GRAPE, we employ MLP classifiers on the imputed feature matrices to perform classification.
Since GRAPE has an integrated version that includes a classifier, we use that version for classi-
fication. Graph data imputation methods are categorized into two approaches: (1) single-stage,
including GCNMF and PaGNN, and (2) two-stage, including FP and PCFI. While the single-stage
methods perform imputation and classification within a single framework, we utilize GCNs (Kipf &
Welling, 2016) as downstream GNNs for the two-stage methods. For GITD, we employ grid search
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Table 2: Comparison of feature-attentive kNN graph construction and typical graph construction
algorithms in terms of Micro-F1 score for medical classification. FC, SIM FC, kNN, and ATT kNN
represent an unweighted fully connected graph, a fully connected graph with feature similarity
weights, a typical kNN graph, and our feature-attentive kNN graph. GITD models with different
graph construction algorithms are evaluated. Improvement (%) denotes the improvement percent-
age, representing the percentage improvement of ATT kNN over kNN.

Dataset Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes

FC 67.67±1.33 77.08±0.70 49.62±1.80 32.34±0.14 28.96±0.57 OOM
SIM FC 67.67±1.33 77.08±0.70 49.62±1.80 32.34±0.14 28.96±0.57 OOM
kNN 85.67±4.67 75.38±2.82 90.65±1.51 83.31±1.25 78.90±0.94 53.03±0.85

ATT kNN (ours) 89.00±2.71 76.62±0.67 91.69±1.14 83.75±0.99 80.01±1.22 54.65±1.11

Improvement +3.89% +1.64% +0.70% +0.53% +1.41% +3.05%

Table 3: Classification performance for varying label rates, measured by Micro-F1 score (%). OOM
denotes an out-of-memory error.

Dataset Echocardiogram Duke Breast Cancer ABIDE

Label rate 5% 10% 20% 5% 10% 20% 5% 10% 20%

Zero 67.50±10.15 75.33±3.06 78.11±2.82 75.57±1.29 74.80±3.91 77.48±0.80 88.67±0.74 91.30±0.54 91.17±0.75

Mean 65.00±4.90 73.00±4.88 73.21±6.13 75.39±2.38 72.76±7.02 76.82±1.40 62.96±4.02 68.43±2.13 71.63±1.62

kNN 71.56±13.67 77.00±3.71 76.98±8.72 75.54±2.02 76.53±0.82 77.42±0.68 88.25±0.75 90.45±1.17 91.04±0.65

GAIN 66.25±9.09 68.67±4.99 75.85±4.37 75.28±1.44 76.31±1.32 77.48±0.97 86.32±1.28 89.30±1.81 91.50±0.48

MIWAE 65.94±7.68 69.43±6.25 71.70±3.38 OOM OOM OOM 61.14±1.81 64.33±0.93 66.11±0.65

GRAPE 66.88±3.75 75.00±0.81 54.72±15.42 OOM OOM OOM 91.80±0.41 91.61±0.89 84.57±18.75

IGRM 68.13±7.10 69.33±8.21 72.08±3.85 OOM OOM OOM 62.30±4.17 66.38±1.85 72.07±1.83

GITD 81.56±4.57 89.00±2.71 84.91±4.13 76.30±1.00 76.62±0.67 77.70±3.04 89.73±2.32 91.69±1.14 91.78±0.74

Dataset ADNI QT-PAD ADNI TADPOLE Diabetes

Label rate 5% 10% 20% 5% 10% 20% 5% 10% 20%

Zero 78.15±1.27 78.22±0.99 79.74±2.21 72.93±2.28 77.94±1.24 80.42±1.44 50.50±3.32 53.66±0.77 53.77±0.98

Mean 78.53±1.65 78.35±1.53 79.08±2.61 71.94±3.22 76.89±1.49 79.44±2.00 52.37±2.11 53.76±0.33 53.81±0.67

kNN 79.17±1.20 80.39±1.30 80.77±1.53 72.36±1.80 76.68±1.07 79.42±0.97 51.65±2.74 53.92±0.86 54.42±0.28

GAIN 78.76±1.46 77.46±1.22 79.00±1.03 73.07±0.94 75.46±1.22 80.67±1.16 50.60±3.37 53.58±0.59 53.94±0.74

MIWAE OOM OOM OOM OOM OOM OOM OOM OOM OOM
GRAPE OOM OOM OOM OOM OOM OOM OOM OOM OOM
IGRM OOM OOM OOM OOM OOM OOM OOM OOM OOM

GITD 83.87±0.58 83.75±0.99 85.39±0.90 77.75±1.68 80.01±1.22 81.77±0.92 53.85±0.50 54.65±1.11 54.54±1.84

to tune α in Eq. (5) and k in the kNN graph construction in Eq. (6). k and α are searched within
{1, 3, 5, 10} and {0.25, 0.5, 0.75, 1}, respectively, using the validation sets. We provide further de-
tails on experiments in Appendix B.

4.4 COMPARISON WITH STATE-OF-THE-ART METHODS

On medical tabular datasets containing initially missing values, we compare the classification per-
formance of GITD against tabular data imputation methods. Table 1 demonstrates the classification
performance comparison among the methods, measured by Micro-F1 score (%). As shown in the
table, GITD achieves state-of-the-art performance across all datasets. Moreover, the performance
gains of our best method over the previous state-of-the-art methods are significant. For example, on
Echocardiogram, ADNI QT-PAD, and ADNI TADPOLE, the gains are 15.58%, 4.18%, and 2.66%,
respectively. Furthermore, we observe that deep learning-based tabular imputation methods, except
for GAIN, suffer from out-of-memory errors, indicating poor scalability. In contrast, our method
does not suffer from out-of-memory errors, demonstrating the memory efficiency of GITD.

4.5 COMPARISON OF FEATURE-ATTENTIVE KNN GRAPH CONSTRUCTION AND EXISTING
GRAPH CONSTRUCTION ALGORITHMS

To investigate the source of GITD’s outstanding performance, we conduct experiments comparing
GITD with feature-attentive kNN graph construction to GITD with typical graph construction al-
gorithms, including an unweighted fully connected graph (denoted as FC), a fully connected graph

7
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Table 4: Classification performance measured by Micro-F1 score (%). Standard deviation errors are
given. OOM denotes an out-of-memory error.

Method Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes

GTID using GCNMF 88.33±2.11 76.89±0.94 81.08±14.91 83.31±1.35 78.58±0.67 53.40±1.61

GTID using PaGNN 88.33±1.83 77.17±1.69 90.97±2.01 83.85±0.61 80.13±1.18 54.41±1.05

GTID using PCFI 87.00±1.94 76.29±1.13 91.19±1.31 83.52±0.65 80.68±1.48 52.63±0.96

GTID using FP (default) 89.00±2.71 76.62±0.67 91.69±1.14 83.75±0.99 80.01±1.22 54.65±1.11

with feature similarity weights (denoted as SIM FC), and a typical kNN graph. Table 2 presents
the comparison results. As shown in the table, feature-attentive kNN graph construction (denoted as
ATT kNN) significantly improves the performance of GITD compared to its use with typical graph
construction algorithms. Notably, ATT kNN consistently outperforms typical graph construction al-
gorithms across all datasets. This indicates that feature-attentive kNN graph construction has greatly
contributed to adapting graph data imputation methods to medical tabular data, leading to their re-
markable performance. Furthermore, it suggests that the superior performance of these methods
arises not from simply using a kNN graph, but specifically from utilizing our feature-attentive kNN
graph.

4.6 EFFECT OF LABEL RATE ON PERFORMANCE

Since the preliminary training stage, which affects the graph construction stage, utilizes the labels of
training samples, the performance of GITD may be influenced by the proportion of labeled training
samples. Therefore, we compare the average Micro-F1 score of GITD and other methods by varying
the label rates. Table 3 presents the comparison results for varying label rates. As shown in the table,
in all cases except for the ABIDE dataset at a label rate of 5%, GITD consistently achieves state-of-
the-art performance over tabular imputation methods. These results validate the robustness of GITD
against varying label rates.

4.7 GITD USING OTHER GRAPH DATA IMPUTATION METHODS

As mentioned in Sec. 4.2, we utilize FP as the default setting for the graph data imputation method in
GITD. However, other graph data imputation methods, including GCNMF, PaGNN, and PCFI, can
also be employed as the graph data imputation method in GITD. To demonstrate that GITD using
graph data imputation methods other than FP is also effective in medical classification on tabular
datasets, we conduct comparative experiments using GITD with different graph data imputation
methods. Table 4 presents the results of the comparative experiments. As shown in the table, GITD
models with different graph data imputation methods exhibit competitive classification performance
when compared to each other across datasets. The graph data imputation method that achieves the
best performance varies depending on the dataset, with each method performing best on a specific
dataset. This implies that the outstanding performance of GITD does not stem from the use of FP
as a graph data imputation method, and other imputation methods can be used in its place. We
select FP as the default graph data imputation method in GITD because GITD using PCFI shows
good performance across datasets. However, GITD using other graph data imputation methods also
generally achieves state-of-the-art performance when compared to the results of existing tabular
data imputation methods presented in Table 1. Thus, replacing FP with other graph data imputation
methods does not significantly affect the superiority of GITD.

4.8 TIME COMPLEXITY ANALYSIS Table 5: Running times (seconds). ATT kNN de-
notes feature-attentive kNN graph construction.

Dataset Echocardiogram ABIDE

Method ATT kNN Total ATT kNN Total

Zero - 4.2 - 4.6
Mean - 4.3 - 4.8
kNN - 4.2 - 4.6
GAIN - 8.5 - 13.2
MIWAE - 6.4 - 20.4
GRAPE - 200.1 - 721.6
IGRM - 1683.3 - 1718.4

GTID using GCNMF 1.3 7.2 1.4 10.9
GTID using PaGNN 1.3 5.7 1.4 6.9
GTID using PCFI 1.3 11.2 1.4 12.7
GTID using FP (default) 1.3 5.8 1.4 7.5

Here we discuss the time complexity of
GITD. The time complexity of feature-
attentive kNN graph construction consisting
of the two stages, the preliminary train-
ing stage and the graph construction stage,
is O

(
N · (F 2 +

∑L
l=1 dl−1 · dl) +N2 · F

)
.

We then determine the duration of feature-
attentive kNN graph construction by measuring
running times. Table 5 shows a comparison of
the running times among all the methods com-
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Table 6: Memory usage of GITD for different datasets, measured in gigabytes (GB).

Dataset Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes

Graph Construction 0.001 0.506 0.054 0.734 0.628 1.326
Total 1.192 1.338 1.251 1.572 1.495 2.213

Table 7: Performance comparison of GITD with different initialization strategies, measured by
Micro-F1 score (%).

Dataset ABIDE ADNI TADPOLE

Initialization Zero (used) Mean Zero (used) Mean

GITD using GCNMF 81.08±14.91 78.47±14.84 78.58±0.67 71.99±9.05

GITD using PaGNN 90.97±2.01 75.21±10.95 80.13±1.18 80.01±1.50

GITD using PCFI 91.19±1.31 81.96±3.96 80.68±1.48 80.13±1.59

GITD using FP 91.69±1.14 75.80±11.05 80.01±1.22 79.55±1.89

pared in this paper. We select the Echocardiogram and ABIDE datasets since deep learning-based
tabular data imputation methods lead to out-of-memory errors on the other datasets. We observe that
feature-attentive kNN graph construction occupies a relatively small portion of the running times in
GITD. Additionally, we confirm that GITD generally take less time compared to deep learning-
based tabular imputation methods. In summary, feature-attentive kNN graph construction is a fast
algorithm, avoiding any significant time burden on graph data imputation methods. Furthermore, we
confirm that GITD are more efficient on medical tabular data compared to existing state-of-the-art
methods, as shown in Table 1.

4.9 MEMORY COMPLEXITY ANALYSIS

In the process of feature-attentive kNN graph construction, the memory is utilized for training the
model gθ and constructing the kNN graph. To mitigate the heavy memory usage during kNN
graph construction, we leverage a batch-wise kNN graph construction strategy. When constructing
kNN graphs among samples, we divide batches with batchsize B, and calculate k-nearest neigh-
bors for each batch. This strategy reduces the memory requirement because it avoids the need to
store distances between all samples in the entire dataset at once. Specifically, in terms of mem-
ory complexity, batch-wise kNN graph construction changes the typical O(N2 · F ) complexity to
O(B · N · F ). Therefore, the memory complexity of the feature-attentive kNN graph construction
process is O(θ) + O(B · N · F ) + O(N2), where O(N2) is required for A. We further measure
the memory usage in the feature-attentive kNN graph construction process for each dataset. Table 6
shows the results of the measurement. As shown in the table, feature-attentive kNN graph construc-
tion requires only a small amount of memory. Furthermore, we can confirm that the entire process
of GITD, including training GNN models in the final training stage, operates with the reasonable
memory usage.

4.10 WHY IS ZERO INITIALIZATION USED FOR X?

In the graph construction stage of GITD, we use X, obtained from X by imputing missing val-
ues with zeros, i.e., we use zero initialization. To justify this initialization strategy, we conduct
comparative experiments using a different initialization strategy. We select mean imputation as the
comparison strategy, which is a commonly used strategy for initializing missing values. Mean im-
putation fills in missing values with the mean of observed values. Table 7 demonstrates the results
on the ABIDE and ADNI TADPOLE datasets. As shown in the table, GITD using zero initialization
consistently outperforms that using mean initialization across the graph data imputation methods on
both datasets. These performance gains with zero initialization are attributed to the inherent char-
acteristics of medical tabular data, which often contains many zero values. For instance, among the
observed values in the ABIDE and ADNI TADPOLE datasets, 68.10% and 94.78%, respectively,
are zeros. This prevalence of zero values makes zero initialization effective in the graph construction
stage of GITD on medical tabular datasets.
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4.11 DOES FEATURE-WISE IMPORTANCE t REALLY CAPTURE CLASS-DISCRIMINATIVE
FEATURES?

Table 8: Mean and standard Deviation of
the two features with the highest values in
t across different classes. “Std.” denotes
standard deviation.

Feature CDRSB bl LDELTOTAL BL

Class Mean Std. Mean Std.

CN 0.003 0.012 0.578 0.146
SMC 0.005 0.015 0.565 0.145
EMCI 0.127 0.076 0.391 0.081
LMCI 0.164 0.091 0.169 0.115
AD 0.443 0.165 0.060 0.082

To confirm that the feature-wise importance t of GITD
effectively captures class-discriminative features, we
conduct an in-depth analysis of t. We extract the
two features with the highest values in t on the
ADNI TADPOLE dataset. The features identified are
CDRSB bl and LDELTOTAL BL, which represent the
total score of Clinical Dementia Rating (CDR) and the
Logical Memory II Delayed Recall test, respectively,
the latter being part of the Wechsler Memory Scale.
To verify that these features are class-discriminative
features, we calculate the mean and standard devia-
tion of each feature across classes. Each sample in the
ADNI TADPOLE dataset belongs to one of five classes
related to cognitive impairment: Cognitively Normal
(CN), Significant Memory Concern (SMC), Early Mild Cognitive Impairment (EMCI), Late Mild
Cognitive Impairment (LMCI), and Alzheimer’s Disease (AD). These classes are ordered according
to the increasing severity of cognitive impairment, with AD being the most severe.

Table 9: Mean and standard Deviation of
the two features with the lowest values in
t across different classes. “Std.” denotes
standard deviation.

Feature Years bl SITE

Class Mean Std. Mean Std.

CN 0.122 0.215 0.101 0.186
SMC 0.072 0.137 0.067 0.055
EMCI 0.184 0.236 0.079 0.118
LMCI 0.107 0.189 0.117 0.211
AD 0.090 0.141 0.089 0.124

Table 8 shows the distribution of the two features with
the highest values in t. As shown in the table, as the
severity of cognitive impairment increases, CDRSB bl
increases while LDELTOTAL BL decreases. This in-
dicates that the values of CDRSB bl and LDELTO-
TAL BL can significantly aid in distinguishing be-
tween classes. Furthermore, t can provide medical in-
sights into which features are critical for disease di-
agnosis. Conversely, we examine the two features
with the smallest values in t. The features found are
Years bl and SITE, which represent the years from the
first measurement and an indicator that denotes the
specific clinical site where each participant was en-
rolled, respectively. Table 9 shows the distribution of
these two features. We observe that it is difficult to
identify trends related to the severity of cognitive impairment in these two features. In summary, the
feature-attentive kNN graph constructed in GITD effectively captures class-discriminative features
with t and makes the generated kNN graph attentive to class-discriminative features.

Analyses of hyperparameter sensitivity and experimental details are provided in Appendix A and
Appendix B, respectively.

5 CONCLUSION

In this paper, we propose GITD, an innovative approach for medical classification that introduces
graph data imputation to medical tabular data, which often contain missing values. Specifically,
GITD performs the preliminary training process and computes feature-wise importance, making
the kNN graph attentive to class-discriminative features. While graph data imputation methods
have not been considered in the tabular domain due to their need for predefined connectivity, GITD
provides kNN graphs tailored to these imputation methods. By using these feature-attentive kNN
graphs, graph data imputation methods transfer their outstanding performance in the graph domain
to the medical domain, resulting in remarkable performance gains over existing tabular imputation
methods. We further confirm that the feature-attentive kNN graphs can offer important medical
insights. Our work demonstrates the potential for graph data imputation methods to be extended
to non-graph-structured data. Furthermore, we believe that our work will contribute to machine
learning-based disease diagnosis by significantly improving classification performance.
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(a) GCNMF (b) PaGNN

(c) PCFI (d) FP

Figure 3: Classification performance of GITD for different k and α on the ADNI QT-PAD dataset,
measured by Micro-F1 score (%).

Table 10: Dataset Statistics.

Dataset N F Fnum Fcat C rm

Echocardiogram 74 12 3 9 2 2.59%
Duke Breast Cancer 907 93 34 59 2 11.94%
ABIDE 1112 104 85 19 2 52.52%
ADNI QT-PAD 1737 96 76 20 5 22.29%
ADNI TADPOLE 2132 110 89 21 5 27.31%
Diabetes 10177 47 11 36 3 4.03%

A HYPERPARAMETER SENSITIVITY

To investigate the impact of the two hyperparameters of GITD, α and k, we measure the classifica-
tion performance of GITD using graph data imputation methods by varying α and k on the ADNI
QT-PAD dataeset. According to our search ranges for k and α, we vary k and α within {1, 3, 5, 10}
and {0.25, 0.5, 0.75, 1.0}, respectively. Figure 3a, Figure 3b, Figure 3c, and Figure 3d demonstrate
the classification performance of GITD using graph data imputation methods for different k and α,
measured by Micro-F1 score (%). As shown in the figures, the methods generally demonstrate ro-
bustness against variations in k and α. Considering the previous state-of-the-art performance of kNN
is 80.39%, GITD using graph data imputation methods achieve the state-of-the-art performance with
most combinations of (k, α) within the respective search ranges. For example, GITD using PaGNN
consistently outperforms the previous state-of-the-art performance, regardless the values of k and α.
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B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

We conduct experiments on six benchmark datasets, including Echocardiogram, Duke Breast Can-
cer, ABIDE, ADNI QT-PAD and ADNI TADPOLE, and Diabetes. Table 10 presents the statistics
of the datasets used in this paper. N and F denote the number of samples and features, respectively.
Fnum and Fcat represent the number of numerical features and categorical features, respectively.
We transform numerical features by scaling them to a fixed range between 0 and 1. We utilize one-
hot encoding for categorical features. While C represents the number of classes, rm denotes the
missing rate of features in a given dataset.

B.1.1 ECHOCARDIOGRAM

The Echocardiogram dataset is a medical tabular dataset related to heart attacks, which can be down-
loaded from the UCI Machine Learning Repository (Asuncion et al., 2007). The ‘alive-at-1’ feature,
a binary variable, is used as the class label. In this label, 0 indicates that the patient either died within
one year or was followed for less than one year, while 1 indicates that the patient was alive at one
year. The goal of the classification problem using the Echocardiogram dataset is to predict whether
patients will survive for at least one year after a heart attack.

B.1.2 DUKE BREAST CANCER

The Duke Breast dataset is a medical tabular dataset related to breast cancer, available for download
from The Cancer Imaging Archive (TCIA) (Saha et al., 2018). The ‘Tumor Grade’ feature, which
can be one of {1, 2, 3}, is used as the class label.

B.1.3 ABIDE

The Autism Brain Imaging Data Exchange (ABIDE) dataset is a medical tabular dataset related
to autism spectrum disorder, available for download from the ABIDE webpage (Di Martino et al.,
2014). The ‘DX GROUP’ feature, where 1 and 2 represent autism and control, respectively, is used
as the class label.

B.1.4 ADNI QT-PAD AND ADNI TADPOLE

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is a medical tabular dataset used to
study the progression of Alzheimer’s disease (AD), which can be downloaded from the ADNI web-
page (Petersen et al., 2010). We use the ‘DB bl’ feature as the class label, which can be one of five
cognitive impairment levels: Cognitively Normal (CN), Significant Memory Concern (SMC), Early
Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer’s
Disease (AD). These classes are ordered by increasing severity of cognitive impairment, with AD
being the most severe. ‘ADNI QT-PAD’ and ‘ADNI TADPOLE’ are located in the tadpole challenge
folder and ADNI QT-PAD, respectively.

B.1.5 DIABETES

The Diabetes dataset represents the records of hospitalized patients diagnosed with diabetes, which
can be downloaded from the UCI Machine Learning Repository (Asuncion et al., 2007). The read-
mitted feature is the class label, which can be one of the following: 1) ‘<30’: if the patient was
readmitted in less than 30 days; 2) ‘>30’: if the patient was readmitted in more than 30 days; 3)
‘No’: if there was no record of readmission. The goal is to determine whether the patient will be
readmitted within 30 days of discharge.

B.2 IMPLEMENTATION DETAILS

We conduct all experiments on a single NVIDIA GeForce RTX 2080 Ti GPU with 11GB of memory
and an Intel Core i5-10500 CPU at 3.10GHz. Across all baselines, we adhere to the hyperparameter
tuning strategies and settings described in their respective papers. For training graph data imputation
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Table 11: Hyperparameter settings of GITD for each graph data imputation method across different
datasets.

Method Hyperparameter Echocardiogram Duke Breast Cancer ABIDE ADNI QT-PAD ADNI TADPOLE Diabetes

GCNMF k 10 5 10 10 5 5
α 1 0.25 1 0.75 0.5 1

PaGNN k 10 10 1 1 10 1
α 1 1 0.5 0.5 0.25 1

PCFI k 10 10 1 10 10 1
α 1 0.5 0.5 0.75 0.75 1

FP k 10 3 1 1 5 5
α 0.5 0.25 0.5 0.5 0.25 1

methods used in GITD, we follow (Rossi et al., 2022). We utilize the Adam optimizer (Kingma &
Ba, 2014) and set the maximum number of epochs to 10,000. We employ an early stopping strategy
based on validation accuracy, with a patience of 200 epochs. Dropout (Srivastava et al., 2014)
is applied with a drop probability p, where p is searched within 0, 0.5. We consistently set the
number of GNN layers and the hidden dimension of graph data imputation methods to 2 and 64,
respectively. Table 11 shows the hyperparamter settings of GITD for graph data imputation methods
across different datasets.
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