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Abstract

Graph neural networks have shown promising results in weather forecasting, which
is critical for human activity such as agriculture planning and extreme weather
preparation. However, most studies focus on finite and local areas for training,
overlooking the influence of broader areas and limiting their ability to generalize ef-
fectively. Thus, in this work, we study global weather forecasting that is irregularly
distributed and dynamically varying in practice, requiring the model to generalize
to unobserved locations. To address such challenges, we propose a general Mesh
Interpolation Graph Network (MIGN) that models the irregular weather station
forecasting, consisting of two key designs: (1) learning spatially irregular data with
regular mesh interpolation network to align the data; (2) leveraging parametric
spherical harmonics location embedding to further enhance spatial generalization
ability. Extensive experiments on an up-to-date observation dataset show that
MIGN significantly outperforms existing data-driven models. Besides, we show
that MIGN has spatial generalization ability, and is capable of generalizing to
previously unseen stations.

1 Introduction
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Figure 1: (A). lllustrations of spatially irregular station distribution. (B). The probability density of
the station in terms of longitude and latitude. (C). The recorded number of stations in the up-to-date
NOAA Global Surface Summary of the Day (GSOD) dataset for each year.

Weather forecasting is critical for human activities and extreme weather warning. For example,
accurate short-term predictions of precipitation and snowfall are valuable for agriculture [37] and
outdoor activities planning, while forecasting extreme weather phenomena, such as heatwaves [[16]]
and typhoons, is vital to mitigating significant damage. Early warnings can play a crucial role in
safeguarding lives and property. To address these problems, multiple date-driven models have been
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proposed for weather forecasting. A series of works [30, 2} |15/ 25] have been developed based on
the gridded Earth Reanalysis 5 (ERAS5) dataset. However, these models are specifically designed
for regular, image-like data structures and cannot be directly applied to weather station data, which
consists of precise, fine-grained meteorological observations collected at irregular spatial locations.
In contrast, graph neural networks [46} 45| 22] 126l 143} [24] 44, |19} [17, 18}, )20L [19] are naturally suited
to model such irregular structures. To capture the spatial dependencies inherent in such irregular
data, multiple studies have achieved promising results in weather forecasting with GNNs. These
approaches typically represent stations as nodes, construct edges among them via radius distance or
nearest neighbors, and perform message passing thereon.

However, most of the work [16} 4] focuses on regional forecasting, typically limited to areas such
as Europe and North America, while overlooking the influence of external regions. This localized
modeling approach overlooks the fact that weather patterns in one region are often influenced by
conditions in distant parts of the world, as the Earth’s weather system is globally connected. As a
result, learning from only regional data often misses broader spatial patterns, leading to suboptimal
forecast performance. Moreover, models overfitted to specific regions tend to lack generalization
capability, making them less practical for deployment in diverse or unseen geographical areas. Thus,
global weather forecasting is crucial and presents the following challenges:

 Spatial irregularity. The distribution of weather stations across the Earth’s surface is uneven. As
illustrated in Figure[T[A), the majority weather stations are concentrated in North America and
Western Europe. The spatial distribution of the stations exhibits significant variations in different
longitudes and latitudes (shown in Figure[T(B)). Existing data-driven models often overlook the
spatial irregularity of station placements, which results in varying scales of information. During
training, models often face challenges in simultaneously learning patterns from regions with high
and low data point densities.

* Dynamic distribution. The number and spatial distribution of stations are changing over time.
Figure C) shows the temporal variations in station data of NOAA GSOD datase{’| This can
be due to the establishment of meteorological stations in remote areas to compensate for limited
observational coverage, as well as the decommissioning or abandonment of certain stations over
time. Current studies [6} |4, [11}, 39] typically use a fixed number of meteorological stations for
predictions. Training models on a limited set of stations often results in overfitting of the dataset.
Such models often struggle to predict features at unseen locations during training, as the lack of
generalization capability limits their performance on previously unobserved points.

To address the above problems, we study a fundamental spatial generalization problem in spherical
Earth surface. That is, the models are required to predict weather variables in areas with sparse
observations or finite historical records. We propose a Mesh Interpolation Graph Network (MIGN)
framework that implements a mesh interpolation strategy and parametric spherical harmonics location
embedding. To alleviate the uneven distribution of the data, MIGN first maps the latent space of the
irregular station to regular mesh by message passing. Such a process could be viewed as interpolation,
where the points on the mesh are uniformly distributed. Message passing on mesh points can be
implemented to ensure that the model does not only learn patterns from high-density data regions.
Secondly, we do not treat the coordinates as position features. Instead, we consider the weather
information of the stations as a function of the coordinates, encoding a learnable weather function
that can be generalized to unseen points. Through extensive experiments on the up-to-date NOAA
GSOD dataset, we find that:

* MIGN outperforms state-of-the-art spatial-temporal models. Ablation studies demonstrate that the
two proposed designs, mesh interpolation and spherical harmonic location embedding, significantly
enhance the performance.

* The generalization study shows that most methods hard to learn global patterns from existing data,
limiting their ability to generalize to unobserved locations. In contrast, MIGN demonstrates strong
generalization to unseen stations, highlighting its adaptability to dynamic scenarios.

* Most methods struggle to perform well in regions with dense and sparse observations. In contrast,
we show that MIGN consistently produces more robust results across different regional patterns at
the same time. The code is available at the link: https://github.com/compasszzn/MIGN

"https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:
C00516
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2 Preliminary and Related Work

Weather Forecasting Traditional weather forecasting depends on Numerical Weather Prediction
(NWP) [1] models, which aim to forecast future weather patterns by simulating the dynamics and
physics of the atmosphere with the equation of thermodynamics, fluid dynamics, etc. However,
NWP requires substantial computing resources and often exhibits deviations [28]]. Thus, various
data-driven models have been proposed to predict the weather. Currently, data-driven models can
be categorized based on the underlying data structure. The first category deals with regular gridded
data, with the ECMWF Reanalysis v5 (ERAS) dataset being a representative example. Based on such
data, several pioneering works—such as FourCastNet [30]], Pangu [2], and GraphCast [15]—have
achieved impressive results. However, these models are not well-suited for a second category of
data: observed irregular station data. To address this, existing methods often employ Graph Neural
Networks (GNNs) to capture spatial dependencies. Nevertheless, these approaches [6} 4} [11} 39]
typically assume a fixed set of observation stations over time, limiting their ability to generalize to
dynamic scenarios. Motivated by this limitation, we consider a more challenging setting in which the
observation stations are irregularly distributed and vary across different samples.

Problem Definition Specifically, we treat each observation station as a node. On day ¢,
the global stations could be represented by a graph Gt = (V¢ L X! (A, @), where V¢ =

v vl ,vfwl} is the set of nodes. £ = {(vf,v%) | vj,v} € V'} is edge sets, which is con-

structed via k-nearest neighbor and the edge attributes (e.g., node distances) are denoted by d;;.
Each station collects a single weather feature, X' = [2, 25, -, 2{),] is a collection of node

feature where 2!, € R,Vov € V', (X!, ¢') denotes global geographic coordinate where longitude

Al € [—m, m] and latitudes ¢! € [—%, %]. Given the initial condition G*, our objective is to learn a

neural network to predict the next day weather feature value, as shown in the following:
Y = fo(V', X1 (N, 9)), M

where O denotes the parameters of the neural network. Y+ denotes the predicted feature while
Y+! denotes the label. Note that the label Y here is different to X**! because the stations in
each step would be different.

Graph Neural Networks Recently, researchers used GNNs to capture spatial patterns of the
regional stations, such as air quality estimation[6} 4, [11]] and heatwave prediction[16]. The above
methods utilize GNNs to capture the spatial correlation and use time series models to model temporal
dependency. GNNs are typically implemented using message passing mechanisms. Given a graph
G=W,EX, (A ¢)), the message from node u to node v at layer [ is given by:

m®. =0 (hi;l, hifl) Vu e N(v), 2)

U—v

where () can be instantiated as a multi-layer perception (MLP). The generated messages from all
neighbors are aggregated at the target node v and the aggregated message mq(,l) is used to update the

state of the node v with function UPDATE' as follows:

m() = AGG®) ({mgjLU TuEN (v)}) . h! = UPDATE' (hﬁ;l, m,f,”) : 3)

where AGG'") can be implemented as functions like sum, mean, max pooling or neural network [10}
381113, 23] and UPDATE is a learnable function, such as MLP or a gated recurrent unit (GRU).

However, the above framework ignores that the number and spatial distribution of stations change
over time. Such a model often fails to predict features in unseen locations.

Mesh Interpolation Mesh interpolation is a common approach in Earth science for using spatially
irregular station observation data to reproduce regular mesh data [[12, [3]]. Traditional interpolation
methods include Inverse Distance Weighting (IDW), Kriging, and 3D-thin plate splines (TPS). Among
them, IDW is widely used in earth science, which assumes that the influence of a given observation
decreases with distance, typically following a power law. Mathematically, the estimated value at an
unmeasured location is computed as a weighted average of nearby observations, where the weights
are inversely proportional to the distance raised to a specified exponent. Meshes are not only used in



traditional numerical methods but have also been widely adopted in data-driven approaches. One of
the most pioneering works in this area is GraphCast [[15]. It maps local regions of the input to the
nodes of the multi-mesh graph structure and performs message passing on mesh as well. However,
it focuses on the regular gridded data and the edges between mesh and nodes are static, while our
mesh interpolation lies in alleviating the spatial irregularity problem in station data by mapping the
information to a regular space. In addition, the complex distribution of the stations motivates us
to enhance the spatial generalization ability of the model. We further propose spherical harmonics
location embedding to handle the dynamic data, while GraphCast is based on static data points, which
means it lacks generalization capability for grid data with varying resolutions.

Spherical Harmonics The aforementioned GNNs do not incorporate the geometric information
of the sphere to improve generalization ability. In contrast, we introduce mesh interpolation to
alleviate the spatial irregular problem and spherical harmonics location embedding to enhance spatial
generalization. Spherical harmonics have been wides used in earth science for magnetic field [36],
weather patterns [40] and gravity field [14]]. To be specific, a function f (), ¢) defined on the sphere
can be represented by a set of orthonormalized spherical harmonics Y, (A, ¢) as follows:

-3 Y wpvro @

n=0m=—n

where n denotes the degree, which controls the spatial scale of variation, with small n capturing
coarse, global patterns and larger n resolving finer structures. m denotes the order with m € [—n, n|
of the basis functions, governing the oscillations in the longitudinal direction. A and ¢ are longitude
and latitude respectively. We consider a maximum degree of N, which results in a total of (N + 1)?
basis functions and learnable weights w,". The spherical harmonics are functions defined on the
sphere as:

Y\, ¢) = \/ T |m|)!P" (cos \)e'™?, (5)

where P are associated Legendre polynomials:

dlm
m — (_1\m |m|/2 6
P () = (=1)" (1 = %) "2 o P (), 6)
which involve derivatives of Legendre Polynomials P, (x) defined by the following recurrence:
Py(z) =1,Pi(z) = z,nP,(x) = (2n — 1)zP,_1(z) — (n — 1) Py_2(x). @)

In practice, we consider the real spherical harmonics given as

. sin(jm|¢) m <0
Y™\, ¢) = Pl (cos \) - { 1 m =0 (8)
cos(mg) m > 0.

where ™! (cos\) = /22t §Z+Z§'P‘m|(cos A), following the work [32], we pre-compute the

spherical harmonics for each node in experiments. A related work is Geographic Location En-
coder [32]. Although Geographic Location Encoder utilizes spherical harmonics, it focuses on
training a neural network based on land-ocean classification tasks for coordinate embedding and
spatial forecasting (i.e., ERAS interpolation) of weather data to learn the coefficients of the spherical
harmonics. However, MIGN aims to spatio-temporal forecast of irregular and dynamic distributed
weather station data, therefore, it employs the spherical harmonic embedding as part of the input.
Besides, considering that the variation patterns of different weather variables differ within the same
region, we would learn a different variable-specific location embedding.

3 Method

Our MIGN architecture is illustrated in Figure 2| following an encoder-processor-decoder framework.
In the following, we elaborate on the MIGN framework including spherical harmonics location
embedding and mesh interpolation.
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Figure 2: Framework of the model. MIGN architecture follows an encoder-processor-decoder
framework.

3.1 Spherical Harmonics Location Embedding

Spherical harmonics are widely used in the analysis of global weather patterns [40]. Since the
Earth can be approximated as a sphere, many meteorological variables can be naturally modeled
as functions defined on the spherical surface. Spherical harmonics provide a convenient basis for
representing such functions, allowing us to capture spatial structures of the station. Besides, the
non-parametric positional embedding provides limited location information, which restricts the
model’s ability to generalize to unseen areas. Inspired by this, we assume that the global location
information could be represented by a function f()\, ¢) defined on the sphere. Instead of learning
this function with a neural network directly, we decomposed this function into spherical harmonics
to learn the spherical harmonics coefficients. The figure for the method is shown in the Appendix
Figure [7] Using real spherical harmonics, the function of the sphere could be represented by
FON @) =300 > wiY,™ (X, ¢), wi refers to spherical harmonics coefficients, which are
learnable weights.

Consider the expressive power of the location embedding. We concatenate the spherical harmonic
basis function as features instead of learning the function f(\, ¢) directly. Specifically, consider the
node with feature x and coordinates A, ¢. The location embedding is denoted as follows:

SH(A,¢):@< D (w:;ZY,T(A,qﬁ))), h = [z; SH(X, ¢)], ©)

n>0 n>m>—n

where €P indicates the concatenation of these basis functions into one large vector and [; ] denotes the
concatenation of the embedding vector. Based on the definition of spherical harmonics, the learnable
w;* coefficient is shared across all nodes.

3.2 MIGN Framework

In this section, we first introduce the HEALPix which is employed to construct mesh. Then we would
elaborate on the mesh interpolation framework with spherical harmonics location embedding.

HEALPix Mesh HEALPix [8] (Hierarchical, Equal Area, and iso-Latitude Pixelisation of the
sphere) is a hierarchical structure for multi-resolution applications, which uniformly divides the
sphere into equal-sized pixels. The data points are located in the center of the pixels and are uniformly
distributed across the sphere. The base resolution consists of 12 quadrilateral pixels on the sphere.
To generate a higher-resolution HEALPix grid, each pixel can be subdivided along the edge twice,
resulting in 4 subgrids that represent the original quadrilateral pixel. We can do this recursively
to get a higher-resolution HEALPix mesh. When the process is conducted & times, which is also
called refinement level k, the original quadrilateral pixel can be divided into (2¥)? pixels, leading to
12 * (2%)2 pixels and mesh nodes in total.

Mesh Interpolate Encoder Irregular station distributions make it hard to represent spatial patterns,
and graph-based neighborhood aggregation becomes difficult due to the lack of consistent locality
and connectivity. Motivated by this, MIGN first conducts a message passing from station nodes
to regular mesh nodes within the encoder. Consider the graph in the encoder at day t G, =
(Ve V1), €l s (X5, X,) 5 (XS, @%)), where label s denotes station nodes while label & denotes the

mesh nodes. The feature of the mesh nodes X}, can be initialized with zero. £, ,) = {(v, v},) |



vt € VI vl € V}} is edge sets. Inspired by mesh interpolation in earth science, we only consider
constructing the edges from station nodes to mesh nodes. Instead of interpolating the value of mesh
nodes with fixed weight like IDW, we utilized message passing neural network to project the value
into latent space. For each mesh node v}, messages are generated by its neighbors station nodes
vt € N(v}). The hidden state of the station nodes and the message are given by:
E

hyy = [2hs SHO, 04 mie?, = o) () Vol € N (o), (10)
Message Passing The messages from the station nodes are aggregated to the target mesh nodes,
and the hidden state of the mesh nodes would update with the message directly:

h{y) = AGG™* ({m 2 ugeN(u;)}), (11)

For the processor part, we consider the mesh nodes graph G4, = (Vi, &L HY | (AL, ¢t)). The feature

£)

of the mesh nodes H, are the message aggregate from station nodes, denoted as hf]t , vl € V} for
h

each mesh node. The hidden state of the Oth layer processor and the message are denoted as

’U*}’U

By = 7 SHO o)), ml L, = o0 (B Rl ) Vel e Noh), (1)
’L)h ’L)h 'Uh Uh ,U;L ’Uh
Messages are exchanged within the mesh nodes and aggregated as follows:

mll) = AGG ((m)_, ot XA, B = UPDATE (W), (13
) h h

—Up

The output hidden state of the processor is denoted as H’;LH, which refers to the latent space of the
mesh in the next time step. On the regular mesh, spatial adjacency is clearly defined, and each node
has a fixed position. This allows for standard modeling tools (e.g., CNNs, GNNs, Transformers) to
be used effectively. Any existing GNN can be implemented in these phases, which makes MIGN
a flexible method. Because the spatial layout of the mesh remains fixed over time, it provides a
consistent data structure across time steps, enabling more stable and coherent temporal modeling.

Station Interpolate Decoder After modeling on the mesh, the results need to be mapped
back to the observation stations to enable comparison with real-world measurements. The de-
coder follows a reverse process of the encoder. Consider the graph in the decoder gt“ =

(Vi vy Eas, (Hffl, Y;“) (AL L)), YT denotes the predicted feature in next step.
The decoder would aggregate the message from the hidden state of a L layer processor directly to
update the Y,!*! as follows:

hv;fl = [ vt >\tt ad)t ] m(tD-%—)l Lttt T ‘P(D) (hv“rl) ,VU}’;-H € N(v§+1)’
: (14)
$,01 = AGGD) ({m D e Uk EN( t“)})

Our framework is readily adaptable to multi-step input and output, as shown in Appendix [A.4]

Training Given the predicted feature f’st“ of the decoder. The model parameters can be optimized
by minimizing the discrepancy between the prediction and ground truth: Lygm = > Y+ —
'Y;t—‘rl | ‘2 .

8€ Dirain |

3.3 Generalization Empirical Verification

To illustrate our motivation, we conduct global generalization experiments. Specifically, we randomly
sample half of the stations from 2017-2023 for training and validation, while reserving the unseen
half from 2024 as the test set. Detailed experimental settings are provided in Section 4.3] The
results for mean sea level pressure (SLP) are visualized in Figure As shown, predictions from
both DyGrAE and STAR exhibit higher MAE values across large regions of Europe and North
America, indicating that these baseline models struggle to generalize to previously unobserved areas.
In contrast, MIGN achieves lower errors in these regions, demonstrating superior generalization
performance. A complete numerical comparison is provided in Table [4]
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Figure 3: The global MAE distribution of SLP in the generalization experiment testing set

4 Experiments

Dataset We evaluate model performance on a up-to-date daily NOAA Global Surface Summary
of the Day (GSOD) dataset. We use 6 commonly daily observed variables, including maximum
temperature (MAX TEMP), minimum temperature (MIN TEMP), mean dew point (DEWP), mean
sea level pressure (SLP), mean wind speed (WDSP) and maximum sustained wind speed (MXSPD).
We use the 2017-2022 data for training, the 2023 data for validation, and the 2024 for testing. The
detailed information of the dataset is shown in the Appendix[A.6

Baselines and metric We compare our MIGN with the following 13 spatial-temporal baselines:
(1) global-based models: STGCN [41], MPNNLSTM [29]], DualCast [34]. (2) global-local based
models: T&S-IMP, T&S-AMP, TTS-IMP, TTS-AMP [5]. (3) dynamic graph models: DyGrAE [35],
ReDyNet [7]. (4) graph pooling based models: HD-TTS [27]. (5) Transformer based models:
STAR [42], GTN [33], GPS [31]. We adopt Mean Squared Error (MSE) and (Mean Absolute Error)
MAE to evaluate the model performance. We run each method five times and report the average
metric of all models.

Implementation We utilize Adam optimizer to train our model and use the following hyperpa-
rameters: Batch size 4, hidden state 64, and learning rate 0.001. The model is set to 2 layers. The
mesh refinement level is set to 3, and we use 10-nearest neighbor to construct the graph, and the
spherical harmonics degree is set to 2. All models are implemented based on Pytorch Lightning,
trained on GeForce RTX3090 GPU. Baseline models are implemented with PyG library, while our
model is realized with the DGL library. For a fair comparison, we tune different hyperparameters
for all baselines, finding the best setting for each. The detailed information can be found in the

Appendix [A.7]and Tabel7}

4.1 Overall Performance

In this section, we evaluate the performance of our proposed model against several baseline methods.
As summarized in Table[T] our approach consistently outperforms all baselines across every variable.
In particular, MIGN achieves relative MSE improvements of 13%, 15%, and 15% on MAX TEMP,
MIN TEMP, and SLP, respectively, compared to the strongest baseline. To further evaluate our
model’s performance across different time horizons, we conduct experiments using a three-day
multistep input and a four-day multistep output training setup. The results, summarized in Table 2}
show that our proposed MIGN consistently outperforms all baselines across both short- and long-term
horizons, highlighting its robustness and effectiveness in the multistep forecasting setting. Besides,
we further conduct a series of studies, including varying input steps, autoregressive inference. The
results are presented in Appendix [A.8.1]

4.2 Ablation Study

To demonstrate the effectiveness of each model design, we compare the default configuration of
MIGN with four variants that differ in their use of spherical harmonics location embedding and mesh
interpolation. As shown in Table[3] we observe that: (1) adopting mesh interpolation consistently
improves performance; for example, DEWP and SLP MSE decrease from 9.00/23.93 to 7.92/20.09.
(2) spherical harmonics embedding further enhances performance when applied to both the encoder
and decoder, as the encoder embedding captures station node locations while the decoder embedding
represents mesh node locations. This validates the effectiveness of spherical harmonics embeddings



Table 1: Bold font indicates the best result, and Underline is the strongest baseline. We report both
the mean and the standard deviation that are computed over 5 runs.

Model MAX TEMP (K) MIN TEMP (K) DEWP (K) SLP (mb) WDSP (kn) MXSPD (kn)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Persistence 9.98 217 9.80 2.09 9.56 2.10 26.62 3.54 10.35 2.15 25.32 348
STGCN (2017] 9.74+0.00 2.2240.00 9.44+0.00 2.11£0.00 9.254+0.00 2.11:£0.00 24.15+0.00 3.42+0.00 8.6040.00 2.01+£0.00 20.63+0.00 3.2740.00
DyGrAE (2019) 10.134+0.33 2.244:0.02 9.49+0.08 2.114£0.02 9.2540.05 2.10£0.01 24.09+0.05 3.4040.00 8.77+0.03 2.04:+0.01 20.78+0.07 3.28+0.01
STAR (2020} 10.18+0.00 2.2640.00 9.65+0.01 2.15+£0.00 9.56+0.01 2.16+0.00 24.14+0.00 3.42+0.00 9.31+0.00 2.1040.00 21.88+0.00 3.36+0.00
GTN (2020) 9.88+£0.00 2.2240.00 9.49+0.00 2.14£0.00 9.514+0.00 2.16£0.00 24.49:+0.00 3.44+0.00 8.8240.00 2.01+£0.00 20.86+0.08 3.30+0.03
MPNNLSTM (2021} 47.34+0.13 4.70£0.06 45.24-+0.01 4.46£0.00 40.94+0.08 4.33+£0.00 38.74+0.03 4.40£0.02 10.48+0.00 2.33+0.00 24.66+0.01 3.69+0.00
GPS (2022) 10.91£0.49 2.4240.08 10.37£0.39 2.2740.05 11.13£0.32 2.50£0.06 25.24+1.14 3.57+£0.16 8.79+0.11 2.04:+0.01 20.89+0.06 3.30+0.01
T&S-IMP (2023) 12.12£0.70 2.51£0.08 10.92+0.58 2.33+0.08 10.80+0.10 2.31+£0.02 24.70+0.21 3.46+0.02 8.8840.06 2.06+0.02 20.93+0.16 3.3040.01
T&S-AMP (2023] 10.1620.10 2.2840.03 12.9042.65 2.59+0.33 9.43+0.10 2.1640.03 24.38+0.16 3.44+0.02 8.88+0.10 2.04£0.02 20.72£0.25 3.28:£0.02
TTS-IMP (2023} 10.40£0.10 2.324£0.03 11.58+0.96 2.44+0.11 13.69+3.66 2.64+0.35 24.76+0.28 3.47+0.03 9.0540.16 2.074+0.02 21.8640.60 3.40+0.05
TTS-AMP (2023} 9.88+£0.22 2.2540.02 9.80+0.06 2.18£0.02 9.914+0.00 2.19£0.00 24.43+0.13 3.45£0.02 8.7440.08 2.05+0.02 20.79+0.35 3.28+0.03
HD-TTS (2024) 10.20£0.01 2.334+0.00 9.65+0.02 2.174£0.01 9.7740.02 2.21£0.01 24.27£0.10 3.4440.02 9.11+0.29 2.11£0.05 20.25+0.21 3.23+0.01
ReDyNet (2025) 10.33+0.05 2.264-0.01 10.85%0.15 2.30+0.04 10.81£0.12 2.32 +:0.04 24.15£0.11 3.40+0.02 8.75+0.05 2.06+0.01 20.95+0.17 3.28+0.04
DualCast (2025} 10.8440.08 2.404:0.02 10.11£0.09 2.2640.03 9.42+0.08 2.1540.02 23.83+0.04 3.3940.00 8.63+0.13 2.03+0.02 20.27+0.15 3.25+0.01
MIGN 8.47+0.05 2.09+£0.01 8.01+£0.04 1.99+0.01 7.92+0.05 1.97+0.01 20.09+0.07 3.12+0.01 8.38+0.01 1.98+0.01 19.73+0.05 3.19+0.01
Improvements 13% 4% 15% 5% 15% 6% 15% 8% 3% 2% 3% 2%

Table 2: Bold font indicates the best result, and Underline is the strongest baseline. We report the
mean MSE that is computed over 5 runs.

Model MAX TEMP(K) MIN TEMP (K) DEWP(K) SLP (mb)

Stepl Step2 Step3 Step4 Total Stepl Step2 Step3 Step4 Total Stepl Step2 Step3 Step4 Total Stepl Step2 Step3 Step4 Total
Persistence 9.98 18.58 23.43 26.36 19.60 9.80 17.94 22.21 24.41 18.63 9.56 19.82 24.87 27.47 20.49 26.62 58.70 74.68 84.31 61.16
STGCN (2017} 11.10 16.87 20.09 22.05 17.53 10.38 15.65 18.36 19.96 16.09 10.42 17.15 20.15 22.23 17.49 22.25 4293 51.08 5522 42.87
DyGrAE (2019} 9.85 16.81 20.40 2249 17.39 927 1529 18.19 19.72 1558 9.01 16.91 20.22 21.87 17.00 23.93 44.18 52.30 56.58 44.25
STAR (2020} 9.92 16.73 20.43 24.45 17.88 9.75 1581 18.46 20.16 16.05 11.06 17.94 21.82 22.96 18.45 22.86 44.85 53.79 58.20 44.93
GTN (2020) 1043 16.94 20.76 22.86 17.75 9.94 1625 22.27 22.65 17.78 9.74 18.01 21.07 23.35 18.04 23.09 47.23 53.78 57.21 4533
MPNNLSTM (2021} 45.49 50.04 52.18 53.20 50.23 4529 47.81 49.10 49.59 47.95 40.55 44.90 46.62 46.86 44.68 37.58 54.59 61.73 65.89 54.95
GPS (2022) 12.29 18.43 21.86 24.03 19.15 10.65 16.37 19.26 20.80 16.77 11.46 18.21 21.66 23.15 18.62 22.45 43.79 51.88 56.05 43.54
T&S-IMP (2023} 12.28 18.17 21.44 23.57 18.86 11.37 16.67 19.39 20.77 17.05 9.97 17.57 20.79 22.39 17.68 23.54 43.83 51.77 56.00 43.78
T&S-AMP (2023) 10.65 16.77 20.17 22.18 17.44 10.28 15.60 1829 19.78 15.99 11.12 18.11 21.70 23.63 18.64 22.62 42.87 51.06 55.49 43.01
TTS-IMP (2023} 11.69 17.72 20.92 22.84 1829 10.51 1579 18.59 20.04 16.23 1222 19.04 22.45 24.15 19.47 24.17 44.52 52.95 56.90 44.64
TTS-AMP (2023) 9.59 16.37 19.70 21.61 16.82 10.82 16.29 19.04 20.62 16.69 10.28 17.13 20.40 22.29 17.53 22.94 43.07 51.44 56.07 43.38
HD-TTS (2024 10.07 16.47 19.78 21.71 17.00 10.65 16.00 18.72 20.17 16.39 10.71 17.89 21.48 23.27 18.34 22.84 44.00 52.09 56.12 43.76
ReDyNet (2025} 17.89 21.72 23.90 25.62 22.28 16.72 20.14 21.63 22.96 20.36 18.71 22.61 24.62 25.54 22.87 47.97 56.31 60.42 63.10 56.95
DualCast (2025} 10.05 16.50 19.87 21.89 17.08 10.24 15.78 18.44 19.78 16.06 10.14 17.57 20.64 22.16 17.63 22.41 43.37 51.21 54.90 42.97
MIGN 8.41 14.62 18.27 20.58 1547 9.20 14.88 17.68 19.50 1533 8.19 15.47 19.02 21.23 15.98 19.29 39.93 48.99 53.37 40.40

in learning geometric geographic information from data. For completeness, we also compare our
SH embedding with the commonly used coordinate-based embedding, with results reported in

Appendix[A8.7]

4.3 Global Generalization Analysis

To evaluate model performance in a global and dynamic setting, we further conduct an experiment
to validate the generalization ability of MIGN. We randomly sample half of the stations from the
year 2017-2022/2023 for training and validation, while using the remaining stations from 2024 as
the test set. Although the global distribution of stations is similar between the training and test sets,
the test stations are entirely unseen during training. As shown in Table ] We can find that MIGN
outperforms all baselines across all variables, achieving the lowest MSE and MAE consistently. For
example, MIGN achieves an MSE of 8.55/8.05 in MAX TEMP and MIN TEMP, outperforming the
closest baseline 9.81/9.52 respectively. These results highlight MIGN’s superior ability to generalize
to unobserved stations in dynamic, real-world scenarios.

4.4 Sparse region analysis

To investigate the model performance in area with sparse weather station coverage, we analyze the
model performance in data-scarce regions, including Africa, Asia, Australia, and South America, as
shown in Figure[d] Across all regions and variables, MIGN consistently achieves the lowest MSE,
highlighting its strong generalization capability in low-resource environments. Notably, in Asia,
MIGN demonstrates significant improvements, reducing the MSE for MAX TEMP and MIN TEMP
to below 8 and 6, respectively—thresholds that other models fail to surpass. These findings suggest
that MIGN effectively captures variable patterns even under sparse observational conditions.

4.5 Mesh Analysis

Refinement level analysis To validate the effect of different refinement level mesh on the MIGN
performance. We compare the metric of 5 different refinement levels (corresponding 48, 192, 768,



Table 3: Ablation studies.

MAX TEMP(K) MIN TEMP (K) DEWP (K) SLP (mb) WDSP (kn) MXSPD (kn)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/o mesh & SH (MPNN) 9.82+0.01 2.23+0.01 9.7840.03 2.164+0.01 9.404+0.053 2.13+0.01 24.27+0.04 3.42+0.02 8.85+0.08 2.04+0.01 21.12+0.01 3.34+0.01
w/o mesh (MPNN+SH) ~ 9.48+0.02 2.19+0.00 9.04+0.02 2.084+0.01 9.00+0.05 2.08+0.01 23.93+0.05 3.39+0.01 8.74+0.01 2.04:+0.01 20.77+0.02 3.26+0.01

Model Variant

w/o SH 9.04+0.08 2.15+0.01 8.7140.05 2.06+0.01 8.714+0.04 2.06+0.01 23.01+0.07 3.33+0.01 8.76+0.02 2.03+0.01 20.634+0.04 3.27+0.01
w/o encoder SH 8.80£0.07 2.12+0.01 8.524+0.06 2.0440.01 8.56+0.07 2.04+0.01 22.57+0.11 3.29+0.01 8.594+0.04 2.014+0.01 20.19£0.03 3.23+0.01
w/o decoder SH 8.60£0.05 2.12+0.01 8.204+0.04 2.014+0.01 7.994+0.03 1.98+0.01 22.07£0.09 3.21+0.01 8.39+0.04 1.9840.01 19.78+0.05 3.22+0.01
Default 8.47+0.05 2.09+0.01 8.01+0.04 1.99+0.01 7.92+0.05 1.97+0.01 20.09+0.07 3.12+0.01 8.38+0.01 1.98+0.01 19.73+0.05 3.19+0.01
Improvements 14% 6% 18% 8% 16% 8% 17% 9% 5% 3% 7% 4%

Table 4: Bold font indicates the best result and Underline is the strongest baseline. We report the
mean results that are computed over 5 runs. Global generalization experiments.

Model MAX TEMP(K) MIN TEMP (K) DEWP (K) SLP (mb) WDSP (kn) MXSPD (kn)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Persistence 9.98 217 9.78 2.09 9.65 211 26.69 3.54 1031 2.15 25.45 3.48
STGCN (2017 9.87+0.00 2.23+0.00 9.5240.00 2.15£0.00 9.45+0.00 2.14+0.00 25.8140.00 3.59+0.00 8.624+0.00 2.02:0.00 20.90+0.00 3.32+0.00
DyGrAE (2019} 10.83+£0.22 2274002 9.55£0.02 2.1240.00 9.53+0.02 2.13+£0.00 24.40+0.46 3.41+£0.03 8.78£0.03 2.03£0.01 21.01+0.01 3.28+0.00
STAR (2020 9.99:£0.00 2.24+0.00 9.55+0.00 2.15+0.00 9.54:0.00 2.14+0.00 24.25+0.00 3.42+£0.00 8.994+0.00 2.06:0.00 21.67+0.00 3.36:0.00
GTN (2020} 9.89-£0.00 2.23+0.00 9.56£0.00 2.15+0.00 9.66:0.00 2.18+0.00 24.55+0.00 3.44-£0.00 8.8440.00 2.00:£0.00 21.01+0.09 3.30+0.03
MPNNLSTM (2021] 51.15+0.25 5.074+0.09 49.09+0.03 4.71+0.01 44.61+0.03 4.65+0.00 41.00+0.01 4.50£0.00 10.6640.00 2.41£0.00 25.15+0.01 3.730.00
GPS (2022) 13.9043.67 2.79+0.45 11.50+1.52 2.45+0.19 10.54+0.61 2.36:+0.15 24.97+1.12 3.52+0.14 8.8240.17 2.06:£0.05 21.0340.12 3.30-£0.04

T&S-IMP (2023] 12.1140.75 2.4640.06 12.114£0.85 2.4540.10 11.45£0.22 2.3440.02 24.9940.34 3.484+0.03 8.93+£0.06 2.08+0.00 21.29+0.07 3.33:£0.00
T&S-AMP (2023] 10.38£0.17 2.30£0.03 10.97+0.30 2.35+£0.03 9.7840.08 2.17+0.02 24.70+0.17 3.47+0.02 8.8540.04 2.05+0.01 20.88+0.04 3.2940.01

TTS-IMP (2023} 10.53%0.23 2.3340.03 10.42£0.61 2.27+£0.09 16.22+3.83 2.38+0.12 24.88+0.38 3.47+£0.03 8.96+0.04 2.07£0.01 21.66+0.68 3.32:£0.02
TTS-AMP (2023} 11.30£1.56 2.43+£0.21 9.8040.05 2.17+0.02 10.15+0.00 2.23+0.00 24.61+0.15 3.45+£0.02 8.8440.12 2.06+0.02 21.3140.22 3.3240.01
HD-TTS (2024} 9.81£0.19 2.2540.04 9.71+0.04 2.18£0.03 9.58+0.07 2.14£0.02 24.39+0.06 3.44+0.01 8.96+0.01 2.09:+0.01 21.55+0.10 3.36+0.01
ReDyNet (2025) 10.41£0.04 2.314+0.01 10.9740.06 2.38+0.02 10.97+0.18 2.51 £0.02 24.3140.15 3.5240.02 8.92+0.04 2.13£0.01 21.09+0.09 3.32+0.04
DualCast (2025} 10.91£0.02 2.4340.02 10.38+0.07 2.33+£0.01 9.49+0.06 2.17 £0.04 23.87+0.02 3.42+0.00 8.68+0.05 2.08:0.01 20.32+0.11 3.29+0.01
MIGN 8.55+£0.10 2.10+0.01 8.05+0.14 2.00£0.02 7.95+0.08 1.99:+0.01 20.90+0.13 3.14:+£0.02 8.34+0.04 1.98+0.01 19.82+0.07 3.20+0.01

Table 5: Spherical Harmonics degree analysis.

MAX TEMP(K) MIN TEMP (K) DEWP (K) SLP (mb) ‘WDSP (kn) MXSPD (kn)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

1 8.994+0.05 2.14+0.01 8.71£0.14 2.06+0.00 8.71+0.02 2.06+0.01 23.01£0.06 3.33+0.01 8.76+0.02 2.03+0.00 20.56+0.04 3.26+0.01
4 8.824+0.04 2.13£0.01 8.44£0.12 2.02+£0.01 8.29+0.04 2.01+0.01 21.75£0.05 3.24+0.01 8.44+0.02 1.99+0.01 19.92+0.03 3.20+0.01
9 8.4740.05 2.09+0.01 8.01+£0.04 1.99+0.01 7.92+0.05 1.97+0.01 20.094+0.07 3.1240.01 8.38+0.01 1.98+0.01 19.73+0.05 3.19+0.01
6 8.38+0.10 2.09+0.01 8.16+0.08 2.01£+0.01 7.76 £0.04 1.95+0.01 20.06 +0.05 3.11+0.02 8.35+0.03 1.99+0.01 19.67+0.05 3.1940.01

Degree Order

0
1
2
3

3072 and 12288 number of nodes) for mesh interpolation. The results are shown in Figure 5(A). As
the refinement level increases from 1 to 3, the MSE loss of the MIGN model exhibits a decline. For
WDSP and MXSPD, the model achieves optimal performance at refinement level 4. In contrast, for
the other four variables, the best performance is observed at refinement levels 3. From an empirical
perspective, the optimal refinement level is typically chosen based on a mesh node count that is on
the same order of magnitude or one order of magnitude lower than the number of station points.

Mesh neighbors analysis Figure [5{B) illustrates the MIGN perfomance across different mesh
neighbor. We observe that using 10 neighbors yields the lowest loss for almost all variables. In con-
trast, performance significantly degrades when using only 2 neighbors due to limited information, and
again when using 40 neighbors, likely due to the inclusion of distant or irrelevant nodes introducing
noise.

4.6 Spherical Harmonics Degree Analysis

To evaluate the effectiveness of spherical harmonics, we conduct experiments with varying degrees
of location embedding. The results are displayed in Table[5S] We discover that, with the degree
of spherical harmonics increasing from O to 2, MIGN achieves relatively better performance. For
example, the MSE of the SLP and MXSPD decreases from 23.01/20.56 to 20.09/19.73. Because the
rise of degree could make embedding approximate the higher-frequency harmonic, indicating a more
precise representation of the location. When the degree increases from 2 to 3, the improvement in
spherical harmonics embedding becomes marginal.

4.7 Empirical analysis

We visualize the global loss of MAX TEMP in Figure[6] The results reveal a significant regional
variation in the difficulty of the prediction. For maximum temperature, inland areas of North America
and northern Asia exhibit higher prediction errors compared to western Europe and Africa. STGCN
and HD-TTS consistently show increased losses in both data-rich regions (e.g., North America) and
data-scarce regions (e.g., northern Asia), indicating their limited ability to capture the underlying



MS| MAX TEMP MSE MIN TEMP MSE

[N
o

E SLP
18
6.5 16
14
9 6.0
8 12
55 10
! 5.0 8
6 6
45
Africa Asia Australia  South Africa Asia Australia  South Africa Asia Australia  South
America America America
D Persistence STGCN [ DyGrAE [ HD-TTS MIGN

Figure 4: Comparison of different models in data-scarce regions.
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Figure 5: Comparison of model performance with different mesh hyperparameter settings
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Figure 6: The global MAE distribution of MAX TEMP in testing set

patterns in these regions. In contrast, our model demonstrates superior performance, which indicates
that the mesh design can capture the pattern of data-dense and data-sparse regions at the same time.

5 Conclusion and Future Works

In this work, we propose a MIGN framework for dynamic and spatially irregular global weather
forecasting. It mitigates the spatially irregular problem by using mesh interpolation. We propose
parametric spherical harmonics location embedding to learn the global weather information. Exten-
sive experiments show that MIGN outperforms existing spatial-temporal models. Ablation studies
demonstrate the effectiveness of the model designs and we further explored the hyperparameters in
the mesh construction and the degree of spherical harmonics. Empirical analysis and generalization
studies further illustrate the superior generalization ability. Due to the sparse distribution of weather
stations over marine areas, our dataset primarily focuses on land-based observations. In future work,
we plan to incorporate marine observation data to further enhance the robustness and generalization
of our model in ocean-related scenarios.

Limitations Due to the sparse distribution of weather stations over marine areas, our dataset
primarily focuses on land-based observations. However, incorporating additional data sources
covering global oceans could further improve the performance of MIGN. Since the Earth operates as
an interconnected system, integrating marine data would provide a more complete representation of
global weather patterns.
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A Appendix

A.1 Broader Impacts

Climate change has enhanced weather variability and extreme event frequency, such as heatwaves,
droughts, and heavy rainfall, resulting in enormous socioeconomic loss. Accurate weather forecasting,
especially in urban areas, is crucial for mitigating their impacts and benefiting various aspects of
human life, including transportation management, agricultural planning, and resource allocation.
Although multiple weather foundation models have been proposed, they focus on coarse-grained
global forecasting of reanalysis data. Accurate predicting weather station observations, which are
closer to urban areas and with fewer biases, are critical to weather forecasting applications.

A.2 Limitations

Direct observation prediction models are inherently limited by the spatial distribution of stations.
Unlike gridded models, which provide uniform coverage across the globe, station-based models can
only make predictions at locations where observation data exists. Consequently, regions with sparse
or no stations—such as remote oceans, deserts, or polar areas—remain unobserved and cannot be
accurately modeled. This limitation restricts the ability of station-based approaches, especially when
applied to areas far from the existing observational network.

A.3 Additional Related Work

GINO [21]] also leverages latent regular grid. However, GINO aims to simulate computational fluid
dynamics. Such different application scopes result in distinctive model designs. GINO utilizes a
regular 3D grid for variable input geometry. In contrast, MIGN employs a HEALPix mesh as the
regular grid, which is aligned with the inherent spherical geometry of Earth. To model the spatially
irregular and dynamic station distribution, we further incorporate a spherical harmonic embedding to
enhance the spatial generalization ability of the model, which is not considered in GINO.

A.4 Temporal Format of MIGN

MIGN can be naturally extended to a multi-step input—output setting. We define the input steps
as a sequence of past observations from ¢ — n to ¢, and the output steps as the sequence of future
predictions from ¢ + 1 to ¢ + m. Formally, the input consists of station nodes V=", ... Vi=1 V!
and their corresponding mesh nodes Vfb_", e, V,fb_l, Vi

For each input step, we independently apply the Mesh Interpolation Encoder and message passing
as defined in Eq. (T0)—(T3), producing hidden states h!,_,,... h!, for mesh nodes and aggregated
3 'n

processor states H’;f”, ... Hi.
We then concatenate the temporal mesh representations [Hf;”; cels H’;;l; H! ] and project them
through a linear layer to obtain the output latent states [HY ;.. .; Hff””] for the mesh. Finally, for

each output step, the Station Interpolation Decoder (Eq. (I4)) maps mesh states back to station
predictions, yielding Y1, Y2 .. Yt

A.5 Spherical Harmonics Location Embedding

The illustration of spherical harmonics location embedding is shown in Figure [/ We regard the
weather information of the station nodes as a learnable spherical harmonics function. The spherical
harmonics can be precomputed according to the coordinates and we learn the weight in the model
directly.

A.6 More Details on Datasets

Data source Global Surface Summary of the Day(https://www.ncei.noaa.gov/metadata/
geoportal/rest/metadata/item/gov.noaa.ncdc:C00516/html) is derived from The Inte-
grated Surface Hourly (ISH) dataset. The latest daily summary data are normally available 1-
2 days after the date-time of the observations used in the daily summaries. The updated fre-
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Figure 7: Spherical harmonics location embedding.

quency and reference time are daily and Greenwich Mean Time. The data can be download in
the link https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/. We
accessed the data on 2025/4/7. We computed both the total count of data points per variable over the
period 2017-2024 in the Table[6]

Dataset Selection Rationale We focus on daily maximum/minimum temperature and maximum
sustained wind speed, which are inherently defined at daily timescales and not well captured by hourly
aggregation. Daily forecasting also better aligns with medium-range horizons, whereas hourly data
primarily serve short-term operations. Spatially, daily observations offer broader coverage, averaging
over 10,000 stations per day compared to about 6,000 per hour (NOAA 2022), which enhances spatial
pattern learning and supports global generalization. This expanded coverage provides a stronger
foundation for capturing diverse geographical features and complex spatial dependencies essential to
our modeling approach.

Table 6: Dataset variable statistic.

VARIABLES MAX TEMP MINTEMP DEWP SLP WDSP MXSPD
TOTAL NODE 13260 13259 12709 9725 13014 12895

Table 7: The optimal training hyperparameter of baseline models for each variable.

| MAX TEMP
Model |STGCN DyGrAE STAR GIN MPNNLSTM GPS T&S-IMP T&S-AMP TTS-IMP TTS-AMP HD-TTS ReDyNet DualCast
Learning rate| 0.0086 0.0084 0.0033 0.0084  0.0040  0.0026  0.0059 0.0093  0.0044 00057 00007 0.0024  0.0035
Batch size 8 16 4 16 2 2 2 8 16 2 1 4 8
Hiddensize | 64 128 64 64 32 64 32 32 64 32 32 64 64
\ MIN TEMP
Model  |STGCN DyGrAE STAR GTN MPNNLSTM GPS T&S-IMP T&S-AMP TTS-IMP TTS-AMP HD-TTS ReDyNet DualCast
Learning rate| 0.0072  0.0053 0.0023 0.0034 00059  0.0076  0.0086 0.0067  0.0096 00087  0.0074 0.0063  0.0047
Batchsize | 16 16 16 4 4 4 2 8 8 1 2 8 8
Hiddensize | 32 128 64 128 32 32 64 64 32 64 64 32 64
| DEWP
Model |STGCN DyGrAE STAR GIN MPNNLSTM GPS T&S-IMP T&S-AMP TTS-IMP TTS-AMP HD-TTS ReDyNet DualCast
Learning rate| 0.0097 0.0032 0.0004 0.0065  0.0042  0.0005  0.0011 0.0071  0.0049 00004 00043 0.0017  0.0045
Batchsize | 16 8 4 8 16 16 2 8 16 2 1 4 4
Hiddensize | 32 128 64 64 64 32 128 128 128 32 128 64 128
| SLP
Model  |STGCN DyGrAE STAR GTN MPNNLSTM GPS T&S-IMP T&S-AMP TTS-IMP TTS-AMP HD-TTS ReDyNet DualCast
Learning rate| 0.0059 0.0073 0.0065 0.0071  0.0038  0.0092  0.0063 00040  0.0059 00060  0.0044 00078  0.0024
Batch size 8 8 16 8 2 8 4 16 16 2 2 4 8
Hiddensize | 64 32 64 64 128 64 128 32 64 32 64 64 64
| WDSP
Model  [STGCN DyGrAE STAR GTN MPNNLSTM GPS T&S-IMP T&S-AMP TTS-IMP TTS-AMP HD-TTS ReDyNet DualCast
Learning rate| 0.0004 0.0098 0.0082 0.0041  0.0027  0.0094  0.0061 0.0081  0.0045 00038 00012 00063  0.0034
Batch size 8 2 4 4 4 16 2 8 4 1 2 16 8
Hiddensize | 32 128 64 64 128 32 64 64 64 32 32 64 32
| MXSPD
Model  |STGCN DyGrAE STAR GTN MPNNLSTM GPS T&S-IMP T&S-AMP TTS-IMP TTS-AMP HD-TTS ReDyNet DualCast
Learning rate| 0.0061  0.0045 0.0090 0.0023  0.0032  0.0018  0.0090 00042 00071 00023 00012 00035  0.0082
Batch size 4 8 4 2 2 2 1 2 16 1 2 4 8
Hiddensize | 32 64 64 64 32 32 64 64 32 64 32 64 64

17


https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/

A.7 Baselines Implementation

* STGCN [41] is implemented base on Pytorch Geometric Temporal library https://github
com/benedekrozemberczki/pytorch_geometric_temporal. The graph convolution kernel
size K is setto 1.

* DyGrAE [9] is implemented base on Pytorch Geometric Temporal library https://github.com/
benedekrozemberczki/pytorch_geometric_temporal. We use mean convolution aggregate
method.

* STAR [42] is implemented base on Pytorch Geometric. The attention head is set to 4.
* GTN [33] is implemented base on Pytorch Geometric. The attention head is set to 4.
* GPS [31] is implemented base on Pytorch Geometric. The attention head is set to 1.

* MPNNLSTM [29] is implemented base on Pytorch Geometric Temporal library https://github
com/benedekrozemberczki/pytorch_geometric_temporal. The dropout rate is set to 0.5
and the Window is set to 1.

* T&S-IMP, T&S-AMP, TTS-IMP, TTS-AMP [5] are implemented base on official code https://
github.com/Graph-Machine-Learning-Group/taming-local-effects-stgnnsl We use
’elu’ activation and mean normalization.

* HD-TTS [27] are implemented base on official code https://github.com/marshka/hdtts.
We use anisoconv message passing method and kmis pooling method, with the dilation and kernel
size are set to 1

* ReDyNet (2025) are implemented base on official code https://github. com/wangzz-yyzz/
ReDyNet.

* DualCast (2025) are implemented base on official code https://github.com/suzy0223/
DualCast.

We use Wandb Sweeps to automate hyperparameter search for each baseline and each varibales,
utilizing the Bayesian sweep method. The hyperparameters are shown in Tabel7}

A.8 Additional Results

A.8.1 Time Horizon Analysis

Input step analysis To evaluate the models’ ability to leverage varying lengths of historical input
for accurate forecasting, we conduct an additional experiment using different input step settings.
The results of MAX TEMP, MIN TEMP and DEWP, presented in Figure @ demonstrate that MIGN
consistently outperforms all other models across all three variables and input steps. While the
baseline models show slight improvements as the number of input steps increases, MIGN achieves
a more significant reduction in loss, particularly on DEWP, where the MSE drops from 8 to 7.
Notably, increasing the input step from 3 to 4 yields only marginal gains for most models, indicating
a diminishing return from longer input histories. The results of SLP, WDSP and MXSPD are
presented in Figure[9] Across all variables, a general trend is observed where increasing the input
step consistently leads to lower MSE loss, indicating that incorporating more historical information
improves prediction accuracy. MIGN demonstrates the best overall performance. Its advantage
becomes especially pronounced as the input step increases, achieving the lowest MSE in all three
variables when the input step reaches 4. In contrast, Persistence, which serves as a naive baseline,
maintains a high and constant error across all settings, emphasizing the benefits of using learning-
based approaches.

Autoregressive inference analysis We evaluate the autoregressive forecasting performance of our
model (MIGN) against a series of competitive baselines. Results are reported in Tables[8]and[9] Across
all variables, MIGN consistently achieves the best performance in terms of both MSE and MAE.
In particular, for MAX TEMP, MIGN reduces the total MAE to 2.72, outperforming the strongest
baseline (STGCN, 2.96). For MIN TEMP, MIGN achieves a total MAE of 2.63, significantly lower
than previous methods. Similar improvements are observed for DEWP, where MIGN yields a total
MAE of 2.76, and for SLP, where MIGN achieves a total MAE of 4.36.

18


https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://github.com/Graph-Machine-Learning-Group/taming-local-effects-stgnns
https://github.com/Graph-Machine-Learning-Group/taming-local-effects-stgnns
https://github.com/marshka/hdtts
https://github.com/wangzz-yyzz/ReDyNet
https://github.com/wangzz-yyzz/ReDyNet
https://github.com/suzy0223/DualCast
https://github.com/suzy0223/DualCast

MAX TEMP MIN TEMP 100 DEWP

11.0
105 95 95
2 100] S ——— 9.0 9.0 '<§‘><
’Nol\
9 95 — 85
4 90 85
s 8.0 + i \
8.0 S . \\\\ 7.5 -
75 1175 e 1 70 —
1 2 3 4 1 2 3 4 1 2 3 4
Input Step Input Step Input Step
Persistence [l STGCN [l DyGrAE TTS-AMP HD-TTS @ MIGN

Figure 8: Comparison of different input steps on three key variables: MAX TEMP, MIN TEMP, and
DEWP. MIGN achieves the best performance.
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Figure 9: Comparison of different input steps on three key variables: SLP, DEWP, and MXSPD.
MIGN achieves the best performance.

Notably, the performance gain becomes more pronounced at longer forecasting horizons (Step 2 and
Step 3), indicating that MIGN is particularly effective at capturing temporal dependencies in extended
autoregressive prediction. These results demonstrate that integrating mesh—station interactions
enables our model to generalize better across different meteorological variables and forecasting
horizons, thereby enhancing both short-term and long-term prediction accuracy.

Table 8: Bold font indicates the best result and Underline is the strongest baseline.

MAX TEMP(K) MIN TEMP (K)
Model Stepl Step2 Step3 Total Stepl Step2 Step3 Total
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

STGCN (2017) 9.74 222 17775 3.11 2255 354 1668 296 944 211 1721 298 21.32 336 16.04 2.83
DyGrAE (2019) 10.31 224 18.68 3.16 2427 3.63 17.56 3.11 949 211 17.81 3.01 2256 341 16.75 2.86
GTN (2020) 9.88 222 1840 3.14 23.72 3.61 1734 299 949 2.14 1743 3.03 2195 345 1637 2.88
T&S-IMP (2023) 12.12 2.51 20.84 3.42 27.47 395 2025 3.31 1092 233 1857 3.15 2386 3.61 1791 3.05
T&S-AMP (2023) 10.16 2.28 18.74 3.18 24.48 3.69 17.76 3.04 1290 259 3131 4.15 4489 496 30.57 3.99
TTS-IMP (2023)  10.40 2.32 19.34 3.27 2522 379 1831 3.12 11.58 2.44 26.69 3.78 38.75 4.61 2591 3.65
TTS-AMP (2023) 9.88 225 19.06 3.23 2496 3.73 18.05 3.07 9.80 2.18 18.02 3.10 23.12 3.58 17.03 2.96
HD-TTS (2024) 1020 2.33 18.64 3.27 24.18 3.78 17.67 3.12 9.65 2.17 17.13 3.02 21.35 3.43 16.07 2.88
MIGN 847 2.09 1508 2.84 19.28 3.24 1433 272 8.01 1.99 14.63 2.75 18.18 3.09 13.83 2.63

A.8.2 Further Ablation study of location encoding

To investigate the impact of different location embedding strategies, we compare our proposed Spher-
ical Harmonics (SH) embedding method with three commonly used coordinate-based approaches:
Direct Coordinate, WRAP, and Cartesian 3D. The formulations of these methods are as follows.
Let longitude A € [—m, 7| and latitude 6 € [—7/2,7/2].

¢ Direct Coordinate:
PE(M ) = (\,0) (15)

* WRAP:
PE()\,0) = [cos A, sin A, cos 6, sin 0] (16)
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Table 9: Bold font indicates the best result and Underline is the strongest baseline.

DEWP(K) SLP (mb)
Model Stepl Step2 Step3 Total Stepl Step2 Step3 Total
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

STGCN (2017) 9.25 2.1 1859 3.07 23.13 349 17.08 290 24.15 342 4624 4.85 5579 538 42.03 4.55
DyGrAE (2019)  9.25 2.10 18.68 3.05 23.18 3.45 17.12 2.88 24.09 3.40 4599 4.81 55.11 530 41.71 451
GTN (2020) 9.51 2.16 19.66 3.19 2525 3.68 1822 3.02 2449 344 4757 493 5731 547 43.11 4.61
T&S-IMP (2023) 10.80 2.31 19.87 3.22 2526 3.69 18.67 3.08 24.70 3.46 46.39 4.88 5575 540 4231 4.59
T&S-AMP (2023) 9.43 2.16 19.25 3.18 2435 3.65 17.80 3.02 2438 3.44 4559 4.82 54.66 531 4147 452
TTS-IMP (2023)  13.69 2.64 26.89 3.79 46.86 4.62 28.57 3.64 2476 3.47 4697 491 57.41 548 43.04 4.62
TTS-AMP (2023) 991 2.19 20.28 3.21 26.09 3.70 18.83 3.04 24.43 345 4643 4.89 5584 540 4222 458
HD-TTS (2024)  9.77 221 19.35 3.20 24.54 3.69 17.93 3.04 2427 3.44 46.68 4.86 56.12 538 4235 4.56
MIGN 792 197 1635 290 2045 3.31 1521 2.76 20.09 3.14 43.29 4.64 55.29 526 39.93 4.36

¢ Cartesian 3D:
PE(A,0) = [cos @ cos A, cos @ sin A, sin 0] (17)

We apply the above three location embeddings as well as our SH embedding method to both
the encoder and decoder of our model. Table [10] reports the mean squared error (MSE) on six
meteorological variables. Our proposed SH embedding consistently outperforms the baseline methods,
highlighting the effectiveness of modeling spherical positional information using harmonics.

Table 10: Comparison of different location embeddings in terms of mean squared error (MSE). Lower
values indicate better performance.

Model Variant MAX TEMP MINTEMP DEWP SLP WDSP MXSPD

W/O 9.04+£0.08 8.71+£0.05  8.71+0.04 23.01+£0.07 8.76+0.02 20.63£0.04
Direct 8.88+0.06 8.57+0.09  8.35+0.06 21.89+0.06 8.64+0.01 19.85+0.04
WRAP 8.70+0.05 8.32+0.08  8.23+0.03 21.14+0.05 8.52+0.03 19.83+0.08
Cartesian 3D 8.67+0.09 8.34+0.05  8.19+0.03 21.21+0.05 8.48+0.03 19.86+0.06

SH Embedding  8.47+0.05 8.01+£0.04  7.92+0.05 20.09+0.07 8.38+0.01 19.73+0.05

A.8.3 Sparse region analysis

To assess the generalization ability of the models in data-scarce regions, we conduct experiments
across Africa, Asia, Australia, and South America, focusing on three key meteorological variables:
DEWP, WDSP, and MXSPD, as shown in Figure Across all variables and regions, MIGN
consistently achieves the lowest MSE, demonstrating robust performance in regions with limited
observational data. Particularly in South America, MIGN significantly outperforms other baselines for
DEWP, achieving an MSE below 3.5, while other models yield considerably higher errors. Similarly,
for WDSP and MXSPD, MIGN maintains stable and low error rates across all continents, showcasing
its ability to generalize well across diverse climatic conditions. These results further confirm MIGN’s
effectiveness in learning reliable patterns even when data availability is limited.

A.8.4 Mesh analysis

The MAE result of refinement level analysis and mesh neighbors analysis is shown in Figure [T2}
In Figure[T2(A), performance improves as the refinement level increases from 1 to 3, reaching the
lowest MAE at level 3. Beyond this point, error increases again, suggesting that too fine a mesh may
introduce noise. In Figure[I2[B), the optimal number of neighbors is around 5-10, where MAE is
minimized. Too few neighbors (e.g., 2) lack spatial context, while too many (e.g., 20 or 40) may
introduce irrelevant information, hurting performance.

A.8.5 Visualization of Spherical Harmonics embedding

Since our spherical harmonics are designed to learn the coefficients w]*, we compute the spherical
function f(\, @) = Zi:o S _ L wiY,™(\, ¢), where w!* are the learned coefficients in the
MAX task with degree 3. As illustrated in the Figure different regions on the globe exhibit
distinct colors: North America appears purple, South Africa black, Europe yellow, and Asia red. This
indicates that the spherical harmonics embedding can capture location-specific information.
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Figure 10: The visualization of learned spherical harmonics embedding.

A.8.6 Comparison with gridded model

Grid-to-Station Evaluation To further examine the necessity of station-based approaches, we
conducted a direct comparison against gridded reanalysis models. Specifically, we evaluated Pangu’s
2022 gridded forecasts from WeatherBench2 by bilinearly interpolating them to station locations,
ensuring a fair comparison with our station-based model (MIGN). MIGN was trained on station
observations from 2017-2020, validated on 2021, and tested on 2022. Results are summarized in
Table

Table 11: Comparison with gridded model

VARIABLES MAX MIN WDSP
PANGU(0.25° RESOLUTION) 10.84 9.95 9.76
MIGN 8.71 9.02 8.60

Despite reanalysis data offering broader spatial coverage and higher temporal frequency, MIGN
consistently outperforms Pangu across all three variables when evaluated at station locations. The
advantages of station-based learning are threefold: (i) it directly leverages ground-truth observations
without inheriting potential biases or smoothing artifacts introduced during reanalysis assimilation,
(ii) it preserves fine-scale spatial variability essential for capturing extremes and urban microclimates,
and (iii) it avoids the computational burden of handling full 4D gridded datasets, enabling efficient
training and deployment even under limited hardware resources.

These strengths make station-based approaches particularly valuable in scenarios where high-quality
observations are available, offering sharper local accuracy and practical efficiency that complement
the broad coverage of reanalysis methods.

Unmonitored-Location Generalization To further investigate the spatial generalization of station-
based methods, we conducted an experiment where 10% of observation sites were withheld as
unmonitored ground truth points. The remaining 90% of stations were used for training our MIGN
model. For a fair comparison, both Pangu and MIGN predictions were bilinearly interpolated to these
unmonitored sites. Results are summarized in Table 12

Table 12: Comparison with gridded model

VARIABLES MAX MIN WDSP
PANGU(0.25° RESOLUTION) 11.45 10.45 9.98

PANGU(1° RESOLUTION) 14.12 13.25 12.87
MIGN 13.84 12.87 13.14

MIGN outperforms Pangu at 1.00° resolution on MAX TEMP and MIN TEMP, and achieves
competitive WDSP accuracy. However, Pangu at 0.25° grid spacing remains superior, which can be
attributed to its massive data and computational advantages. Pangu is trained on over one million
global reanalysis points per snapshot, leveraging rich multi-variable inputs (geopotential height,
temperature, humidity, wind, etc.) across multiple vertical levels, requiring more than 200 TB
of training data. By contrast, MIGN operates with only 10,000 data points per day and a total
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Figure 11: Comparison of different models in data-scarce regions (Africa, Asia, Australia, South
America) on three key variables: DEWP, WDSP, and MXSPD.
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Figure 12: Comparison of model performance with different mesh hyperparameter settings

data volume of roughly 10 GB, highlighting its efficiency and accessibility under data-scarce or
resource-constrained conditions.

A.9 Computational Cost Analysis

Analysis of mesh interpolation Mesh interpolation is achieved by constructing a nearest neighbors
graph between feature nodes and Healpix nodes. Suppose there are M feature nodes and N Heslpix
nodes. Using a brute-force approach, the computational complexity is O(M N). For baselines,
the computational complexity of nearest neighbor connections among the feature nodes is O(M?).
Mesh analysis experiments Figure [I2a] indicate that the optimal number of Healpix nodes N is
smaller than the number of feature nodes M, meaning that N < M, thus O(MN) < O(M?).
Furthermore, by utilizing a KD-Tree algorithm, we can further reduce the complexity from O (M N)
to O(NlogN + MlogN).

Training and inference efficiency To further demonstrate the training and inference efficiency of
our model, we compare the training and inference times per step of several baselines with MIGN
on an NVIDIA RTX 3090 GPU, as shown in the following table. We observe that the training
and inference time of MIGN is comparable to that of STGCN and MPNNLSTM, demonstrating its
efficiency and practical effectiveness.

Analysis of spherical harmonics Spherical harmonic basis functions are precomputed and stored
for efficiency. The Spherical Harmonics (SH) Degree Analysis Experiment [5| demonstrates that a
degree of 2 is sufficient for location embedding. Thus, its computational cost is linear to the node
number, which is not the primary time-consuming component. We measure the processing speed for
MAX TEMP data with a degree-3 SH embedding (13260 nodes) on an AMD EPYC 75F3 32-Core
Processor. The computation completes in just 2s.
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Table 13: Training and inference time per step for different models.

Model STGCN TGCN DyGrAE MPNNLSTM GPS HD-TTS MIGN
Training time per step (s) 0.013 0.014 0.016 0.012 0.048 3.25 0.013
Inference time per step (s)  0.004 0.010 0.012 0.011 0.019 3.03 0.006

A.10 Empirical analysis

To further illustrate our motivation, we visualize the global loss of MAX TEMP, MIN TEMP,
DEWP, SLP in Figure The results reveal that prediction difficulty varies significantly
across regions. For MAX TEMP, MIN TEMP and DEWP, inland areas of North America and
northern Asia exhibit higher prediction errors compared to Western Europe and Africa, highlighting
distinct regional characteristics and suggesting that different regions follow different weather patterns.
Baseline models consistently show higher losses in North America and northern Asia, indicating
their limited ability to capture the underlying patterns in these regions. In contrast, our model
demonstrates superior performance across both the United States and the Asian continent. This
suggests that mesh interpolation and spherical harmonics facilitate the learning of global patterns and
effectively capture regional features. For SLP, model performance tends to degrade in high-latitude
regions, including Western Europe and North America. This pattern suggests increased difficulty in
capturing surface-level pressure dynamics in these areas, possibly due to more complex atmospheric
interactions and variability at higher latitudes. Baseline models exhibit particularly high prediction
errors in these regions, reinforcing their limitations in modeling such complexity. In comparison, our
model maintains relatively stable performance, indicating its enhanced capacity to learn intricate
spatial patterns through mesh interpolation and spherical harmonics.
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Figure 13: The global MAE distribution of MAX TEMP in testing set
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Figure 14: The global MAE distribution of MIN TEMP in testing set
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Figure 15: The global MAE distribution of DEWP in testing set
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Figure 16: The global MAE distribution of SLP in testing set
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