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Abstract

Building neural reward models from human pref-
erences is a pivotal component in reinforcement
learning from human feedback (RLHF) and large
language model alignment research. Given the
scarcity and high cost of human annotation, how
to select the most informative pairs to annotate
is an essential yet challenging open problem. In
this work, we highlight the insight that an ideal
comparison dataset for reward modeling should
balance exploration of the representation space
and make informative comparisons between pairs
with moderate reward differences. Technically,
challenges arise in quantifying the two objec-
tives and efficiently prioritizing the comparisons
to be annotated. To address this, we propose
the Fisher information-based selection strategies,
adapt theories from the classical experimental
design literature, and apply them to the final lin-
ear layer of the deep neural network-based re-
ward modeling tasks. Empirically, our method
demonstrates remarkable performance, high com-
putational efficiency, and stability compared to
other selection methods from deep learning and
classical statistical literature across multiple open-
source LLMs and datasets. Further ablation stud-
ies reveal that incorporating cross-prompt com-
parisons in active reward modeling significantly
enhances labeling efficiency, shedding light on
the potential for improved annotation strategies
in RLHF. Code and embeddings to reproduce
all results of this paper are available at https:
//github.com/YunyiShen/ARM-FI/.
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1. Introduction
The safe and successful deployment of Large Language
Models (LLMs) across various application domains requires
alignment with human values. Current research working on
LLM alignment mainly focuses on reinforcement learning
from human feedback (RLHF) (Christiano et al., 2017; Sti-
ennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022a),
which rely on preference-based annotations provided by
human annotators (Bai et al., 2022b). However, obtaining
human feedback can be expensive, and the noisy and binary
nature of such data often limits its information density, pos-
ing a challenge for effective reward modeling (Wang et al.,
2024a; Liu et al., 2024).

Active learning, where the model queries most informative
labels based on its current state, offers a potential solution. It
typically involves three key components: an initial model, a
query strategy — often in the form of maximizing a scoring
function over unlabeled data, and a pool of unlabeled data.
The model selects a subset of data for labeling and retrains
iteratively until a stopping criterion is met.

In this work, we study the problem of active data acquisi-
tion in reward modeling. Technically, we introduce various
scoring rules inspired by both classical experimental de-
sign (Chaloner & Verdinelli, 1995) and recent deep learning-
based advancements (Sener & Savarese, 2017; Houlsby
et al., 2011; Kirsch et al., 2019). We adapt those methods to
the learning of Bradley-Terry (BT) reward models (Bradley
& Terry, 1952), which have been successfully applied in
large-scale alignment practices (Ouyang et al., 2022; Tou-
vron et al., 2023) and proven to be theoretically sound (Sun
et al., 2025a).

We benchmark 8 scoring algorithms using 2 datasets and 3
LLMs, ranging in size from 2B to 8B, and evaluate a wide
range of active learning setups. Our results show that two
classical experimental design methods — applied to the
final linear feature layer of deep models — achieve state-
of-the-art performance and strong stability across different
setups, model architectures, and datasets.

Our main contributions can be summarized as follows:

• Formally, we characterize the problem of optimal prefer-
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ence label annotation using embedding space BT regres-
sion framework and establish connections between active
learning and classical experimental design literature under
the BT context.

• Methodologically, we introduce a set of algorithms in-
spired by classical experimental design literature, adapt
them for deep BT regression models, and develop an
efficient gradient approximation for the associated combi-
natorial optimization challenge in large-scale alignment
problems.

• Empirically, we evaluate different methods for preference
label annotation across diverse setups, datasets, and base
models. Our results suggest that applying classical ex-
perimental design techniques to the final layer of a deep
neural network yields strong performance and stability.

2. Background and Setup
Reward modeling in alignment. Reinforcement learning
is a key technique for aligning LLMs to ensure their safe
and effective deployment (Christiano et al., 2017; Ouyang
et al., 2022; Stiennon et al., 2020). The most prevailing
approach, RLHF, relies on reward models as a fundamental
mechanism for quantifying content quality and scaling the
reinforcement learning (Lambert et al., 2024; Wang et al.,
2024a). During fine-tuning and deployment, reward models
serve as proxies for human evaluators (Dubey et al., 2024;
Dong et al., 2024; Wang et al., 2024b), assessing how well
LLM outputs align with human intent. Despite significant
progress, reward modeling remains challenging due to the
scarcity and inaccuracy of annotations (Lambert et al., 2024;
Wang et al., 2024a; Gao et al., 2023). Prior research has
attempted to mitigate these challenges through different
aspects when learning from a fixed set of annotations (Wang
et al., 2024b; Winata et al., 2024; Liu et al., 2024; Lou
et al., 2024; Coste et al., 2023; Zhang et al., 2024). While
Xiong et al. (2023); Dong et al. (2024) demonstrate that
online annotations are more efficient in RLHF, the topic
of online annotation prioritization strategy remain under-
explored except for heuristic designs (Muldrew et al., 2024).

Bradley-Terry model for reward modeling. A canon-
ical model used for reward modeling from binary pref-
erence data is the Bradley-Terry (BT) model (Bradley &
Terry, 1952), or more precisely, its regression variant (Sun
et al., 2025a). In the most general setting, which allows
for cross-prompt comparisons, a human annotator is pre-
sented with two pairs of prompts and responses, (xi,1, yi,1)
and (xi,2, yi,2). The annotator then provides a preference,
hi = 1{(xi,1,yi,1)≻(xi,2,yi,2)} indicating whether the first
pair is preferred over the second.

Often, both responses correspond to the same prompt, i.e.,
xi,1 = xi,2 however, Bradley-Terry regression can operate
without this assumption. The model regresses these anno-

tations onto an embedding Ψ(xi,1, yi,1). This is a mild
assumption since these embeddings can be, for example, a
concatenation of word embeddings, the output of tokenizers,
or the output embedding of an LLM.

When there is no risk of confusion, we denote the embed-
dings of pair i as Ψi,1 ∈ RD and Ψi,2 ∈ RD, with a reward
function r : RD → R. The goal is to learn this function
from annotations. In the BT model, we assume that

hi ∼ Bernoulli (σ[r(Ψi,1)− r(Ψi,2)]) (1)

with σ being the sigmoid function.

Active learning. In a typical active learning setting, we have
a labeled dataset of size, Ds = (xi,1, yi,1, xi,2, yi,2, hi)

Is
i=1

with sample size Is at step s, and a typically large pool of
unlabeled data, Ps = (xj,1, yj,1, xj,2, yj,2)

Js

j with sample
size Js at step s. The goal is to select a small subset Cs ⊂ Ps,
subject to certain constraints, for labeling. Once labeled
(denoted as C̃s), this subset is added to the labeled dataset
to train the next iteration of the model.

We also consider this process in the embedding space,
where the labeled and unlabeled sets are given by Ds =
{(Ψi,1,Ψi,2, hi)}Isi=1 and Ps = {(Ψj,1,Ψj,2)}Js

j=1. A typ-
ical model-based active learning procedure is outlined in
Algorithm 1. In this work, we focus on identifying the
best-performing scoring rules.

Algorithm 1 Model-based active learning

Require: initial labeled dataset D0, pool set P0, model
M0, a scoring rule S, budget constrain c, and number
of rounds n

1: RETURN Last trained modelMn

2: for s← 1 to n do
3: generate pool Ps

4: Cs ← argmaxC⊂Ps,|C|≤c S(Ms−1, C,Ds−1)

5: get labeled dataset C̃s
6: Ds ← C̃s ∪ Ds−1

7: train modelMs using Ds

8: end for
9: returnMn

In literature, Muldrew et al. (2024) considered active learn-
ing and proposed a strategy that combines entropy with
model certainty (which is equivalent to the maxdiff strat-
egy in our notation). For non-binary data, Mukherjee et al.
(2024) suggested maximizing the determinant of the fea-
ture matrix. BatchBALD (Kirsch et al., 2019) is a general-
purpose active learning algorithm that requires a Bayesian
model. The scoring in this method aims to maximize the
expected entropy reduction by selecting the most informa-
tive data points. Experimental design for generalized linear
models has been extensively studied in the classical sta-
tistical literature, with logistic regression serving as a key
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example (see e.g., Chaloner & Verdinelli, 1995; Sener &
Savarese, 2017). Under the assumption of a linear reward
function, the Bradley-Terry (BT) model simplifies to logistic
regression. We acknowledge a concurrent work Feng et al.
(2025) also used Fisher information (FI) as one of their tools
in sample selection for DPO. Feng et al. (2025) used FI of
all parameters in their neural net to establish theory on their
sampling based algorithm but did not directly as optimiza-
tion target in sample selection. While this paper compared
many different strategies empirically and suggests determi-
nant of FI of last layer in BT as the optimization target — we
believe this last layer choice acts as a regularization to avoid
over optimization. We focused on reward modeling instead
of an entire DPO workflow to better separate source of gain
and for flexibility of downstream RL workflow. Importantly
Feng et al. (2025) only choose response conditioning on
prompts while we also target on choosing best prompts via
joint prompt-response selection.

3. Designing of Comparisons
3.1. Linear BT Regression.

Consider a simplified case where the true reward func-
tion is linear with respect to some intermediate embedding,
r(Φi,1) = Φ⊤

i,1β-1, for weight vector β-1. We use Φ instead
of Ψ because the reward may not be linear with respect to
the original embedding Ψ used in reward modeling, and we
wish to avoid confusion. The subscript −1 in β-1 reflects
how we will apply these results in practice: Φ represents
the output before the final linear layer, and β-1 corresponds
to the weight of this last layer. For now, we assume that this
linear feature Φ is known to us. Note that there is no bias
term because linear BT is identified only up to translation.

Under this simplified setting the preference generating pro-
cess of ith pair hi can be simplified to

hi ∼ Bernoulli[σ[(Φi,1 −Φi,2)
⊤β-1]] (2)

It can be observed that this corresponds to a logistic regres-
sion, where the covariates are the difference Φi,1 −Φi,2.

By applying the theory from generalized linear models, we
know that the maximum likelihood estimate β̂-1 is asymptot-
ically Gaussian distributed, with mean β-1 and covariance
matrix I−1, where I denotes the Fisher information (FI)
matrix (see e.g., Shao, 2008, Ch. 4.5.2). For the linear
Bradley-Terry model, the FI is

I =

I∑
i=1

(Φi,1 −Φi,2)(Φi,1 −Φi,2)
⊤pi(1− pi) (3)

Where pi = σ[(Φi,1 −Φi,2)
⊤β-1], it can be observed that

pi(1 − pi) represents the variance of a Bernoulli random
variable.

The Fisher information matrix can be interpreted as the met-
ric tensor in a Riemannian manifold of distributions, where
the distance between them is given by the symmetrized KL
divergence (Costa et al., 2015). FI quantifies the amount of
information in the dataset for estimating the parameters β-1.
From a Bayesian perspective, the Bernstein-von Mises theo-
rem (Van der Vaart, 2000, Ch. 10.2, Thm 10.1) states that
I−1 is also the asymptotic covariance matrix of the poste-
rior distribution of β-1, assuming mild regularity conditions
on the prior.

The FI can be viewed as a sum over all independent data
points’ contribution. For each data point, there are two terms
multiplied together: the empirical covariance of embedding
differences (Φi,1 − Φi,2)(Φi,1 − Φi,2)

⊤, and pi(1 − pi),
the variance of the comparison results. Sun et al. (2025a)
suggested that improving the variance of comparisons can
be interpreted as improving annotation quality which can
also be seen from FI.

To make the FI large Equation (3) an ideal comparison
should exhibit both a large variance in the embedding differ-
ence (thus (Φi,1−Φi,2)(Φi,1−Φi,2)

⊤ having large eigen-
values) and a high variance in the comparison outcomes
(thus pi(1 − pi) large). This implies that the embedding
space should be diverse, such that Φi,1 −Φi,2 captures a
wide range of differences, and each comparison should be
informative—not too close to 0 or 1. The former encourages
exploration within the embedding space, leading to a better
regression model, while the latter ensures that comparisons
are not trivial, improving sample efficiency. An everyday
analogy for comparing non-obvious pairs would be that
comparing a world champion to a newbie in chess offers
little insight into the abilities of either player.

The FI plays a crucial role in the classical theory of experi-
mental design, both in frequentist and Bayesian frameworks,
as highlighted by the Bernstein-von Mises theorem. This
leads to a family of design strategies known as alphabetical
designs (Chaloner & Verdinelli, 1995; Pukelsheim, 2006).

(Bayesian) D-optimality (Chaloner & Verdinelli, 1995).
The alphabetical designs focus on the (co)variance of either
estimating weights β-1 or making predictions under new
embeddings, typically summarized through the covariance
matrix. For example, the D-optimal design minimizes the
determinant of the (asymptotic) covariance matrix of the last
layer weights, β-1. Since |I−1| = 1/|I|, this is equivalent
to maximizing the determinant of the FI.

The Bayesian variant of D-optimal involves having prior
contribution, such as maximizing |I + I/σ2|, where I is
the identity matrix, to avoid a determinant of zero. This
corresponds to the inverse covariance matrix of the Laplace
approximation of the posterior of β-1, assuming a normal
prior with variance σ2.
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A plug-in estimator of pi, p̂i, using the current best model,
can be used to estimate the FI (Chaloner & Verdinelli, 1995;
Pukelsheim, 2006). In this approach, the scoring rule is the
determinant of the Fisher Information matrix.

Sdopt(C) = |
∑
i∈C

(Φi,1−Φi,2)(Φi,1−Φi,2)
⊤p̂i(1−p̂i)| (4)

In experiments, we refer to this strategy as D-opt. Other
forms of optimality also exist, each targeting different sum-
maries of the Fisher Information (FI), such as A-optimality,
which focuses on minimizing the trace of I−1. When the
prediction of a new, known embedding is the primary con-
cern, G-optimality aims to minimize the variance of predic-
tions on new embeddings.

In this work, we suggest using D-optimality because it
avoids the need to invert the FI, as required in A-optimality,
and doesn’t require specifying which samples to predict, as
in G-optimality. For readers interested in further details, we
refer to Pukelsheim (2006) (Ch. 9).

The D-optimality strategy can be made a past-aware version
by incorporating previously collected data. The asymp-
totic covariance of the full data-conditioned posterior is
then (Ipast + I)−1, where Ipast is computed using prior
data and Equation (3). This approach relates to Bayesian
methods like Bayesian active learning by disagreement
(BALD) (Houlsby et al., 2011), which minimizes poste-
rior entropy. Since Gaussian entropy is proportional to the
log-determinant of its covariance. In our experiments, we
refer to this variant as PA D-opt.

Next, we review some other strategies that can be applied to
BT models.

Entropy Sampling (Settles, 2009; Muldrew et al., 2024).
This strategy aims to select samples about which the current
model is most uncertain (Settles, 2009). In the context of
binary preference modeling, this corresponds to choosing
data whose predictions p̂i are closest to 0.5, effectively
exploring the level set of the reward. This is similar to a
binary classification problem where the goal is to explore
the decision boundary. This approach was also proposed
by Muldrew et al. (2024) as maximizing predictive entropy.
The scoring rule is then,

Sentropy(C) =
∑
i∈C

[−p̂i log p̂i − (1− p̂i) log(1− p̂i)] (5)

Since the entropy of a Bernoulli distribution reaches its
maximum when p = 0.5, this approach is equivalent to
selecting the top c pairs where the predicted probability is
closest to 0.5. In our experiments, we refer to this method
as Entropy.

Maximum Difference (Muldrew et al., 2024). Contrasting
with entropy sampling, this strategy focuses on comparing

samples that the current reward model predicts to be the best
and the worst, corresponding to probabilities close to 0 or 1.
This approach was used by Muldrew et al. (2024) to measure
model certainties. The scoring rule to be maximized can
thus be interpreted as difference in estimated reward |r̂i,1 −
r̂i,2|.

Smaxdiff(C) =
∑
i∈C
|r̂i,1 − r̂i,2| (6)

This strategy encourages exploration in the reward space
rather than the embedding space. It is sometimes used in ac-
tive learning when the goal is to identify positive examples
rather than the best classification (Settles, 2009). This justi-
fies its use in reward modeling, where the goal is to obtain
responses that yield better rewards in downstream tasks. In
our experiments, we refer to this method as Maxdiff.

Optimizing Design Matrix (Mukherjee et al., 2024). This
strategy focuses on finding the best collection of embed-
dings, or the design matrix in statistics terms Φi,1 −Φi,2,
without looking at model predictions. A common objec-
tive is to optimize the covariance matrix of the designs,
Σ =

∑I
i=1(Φi,1 −Φi,2)(Φi,1 −Φi,2)

⊤. One approach is
to maximize the determinant of Σ, |Σ|, which encourages
exploration over a large space of embedding differences. In
fact, if we assume a linear regression model with additive
Gaussian noise instead of logistic regression, this covari-
ance matrix corresponds to the Fisher Information matrix of
the regression coefficients, and this strategy aligns with the
D-optimal design. The scoring rule is

SXtX(C) = |
∑
i∈C

(Φi,1 −Φi,2)(Φi,1 −Φi,2)
⊤| (7)

Mukherjee et al. (2024) used a similar strategy for a different
type of preference data that is not purely binary. In our
experiments, we refer to this method as det(XtX), for the
determinant of X⊤X .

Coreset (Huggins et al., 2016; Munteanu et al., 2018).
Instead of minimizing uncertainty in parameter estimations,
the Coreset strategy aims to find a small subset of samples
such that the trained model closely approximates the one
trained on the full dataset, effectively transforming the prob-
lem into a sparse approximation task on weighting data
points. The Coreset method for logistic regression has been
studied recently by Munteanu et al. (2018) and Huggins
et al. (2016) in both frequentist and Bayesian settings. In
our experiment, we adopted the method of Huggins et al.
(2016). The scoring rule does not have a simple closed-form
solution, so we refer interested readers to Huggins et al.
(2016) and denote it as Scoreset. In our experiments, we refer
to this method as Coreset.

BALD and batchBALD (Houlsby et al., 2011; Kirsch
et al., 2019). When transitioning from frequentist to
Bayesian framework, BALD (Houlsby et al., 2011) and
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BatchBALD (Kirsch et al., 2019) select data with high
mutual information between the candidate batch’s predic-
tion and model parameters, making the data more infor-
mative. Houlsby et al. (2011) showed that this approach
maximizes expected posterior entropy reduction. This strat-
egy applies to preference learning (Houlsby et al., 2011) but
requires a Bayesian model. We denote the corresponding
scoring rule as SbBALD. In our experiments, we refer to
this method as BatchBald. We used implementation in
batchbald redux (Kirsch et al., 2019).

This strategy relates to Bayesian D-optimality; when poste-
rior entropy is tractable, it can be minimized directly instead
of relying on approximations from Houlsby et al. (2011).
If the posterior is Gaussian, entropy is proportional to the
log-determinant of its covariance, leading to D-optimality.

3.2. Gradient Approximation for Combinatorial
Optimization.

In some strategies, we select a data subset to maximize
information criteria like the determinant of FI or the de-
sign matrix. These often lead to intractable combinato-
rial optimization problems. To address this, we use the
sensitivity approach from the coreset and robustness liter-
ature (Huggins et al., 2016; Campbell & Broderick, 2018;
2019). When the information criteria are expressed as a
nonlinear function over sum of data point contributions, i.e.,
S = f(

∑
i ci), where each data point contributes ci, we

introduce weights wi, allowing the score to be rewritten as
S(w) = f(

∑
i wici). For instance, the D-optimal score

expresses the determinant of FI of a subset C as a weighted
sum.

Sdopt(w) = |
∑
i

wi(Φi,1−Φi,2)(Φi,1−Φi,2)
⊤p̂i(1−p̂i)| (8)

Each candidate pair is assigned a weight wi = 1i∈C . Select-
ing a subset C to maximize Sdopt is equivalent to finding a
sparse 0-1 weight vector w that maximizes Sdopt(w).

To approximate the optimization, we treat w as continuous
and perform a Taylor expansion around w = 1, the all 1
vector, i.e., all data points are included.

S(w) ≈ S(1)− (1−w)⊤∇wS(w)|w=1 (9)

The approximated optimization problem becomes

argmaxw S(w) ≈ argmaxw w⊤∇wS(w)|w=1 (10)

A sparse 0-1 valued vector w that optimizes the right-hand
side of Equation (9) can be obtained by selecting the data
points with the largest gradient, ∇wS(w)

∣∣
w=1

. A proba-
bilistic approach, when all gradients are positive, involves
sampling according to the weights given by∇wS(w)

∣∣
w=1

.

3.3. Handling nonlinear model using last layer features.

For nonlinear reward models in Equation (2), the dependen-
cies on embeddings become more complex. Strategies like
maximum difference and entropy sampling, which depend
only on model predictions, remain unaffected by the archi-
tecture, while batchBALD is designed for (Bayesian) deep
models. Feature-based methods like coreset or D-optimal
need adaptation. A heuristic from the Bayesian last layer
(Tran et al., 2019) and computer vision literature Sener &
Savarese (2017) suggests using the last layer before the
linear output as a feature, applying linear strategies to it.

r(Ψ) = Fθ(Ψ)⊤β-1 (11)

For some nonlinear function Fθ parameterized by θ, e.g., an
MLP and Φ := Fθ(Ψ). We apply methods in linear settings
with features Fθ(Ψ). We then train θ and β-1 together once
data are labeled. In particular, in Sener & Savarese (2017)
the nonlinear function Fθ is a CNN and they took a coreset
approach. Here we apply this strategy to the coreset, optimal
design matrix and D-optimal setting.

4. Illustrative Examples in Dimension Two
Experiment Setups In this experiment, we provide a two-
dimensional example of the comparisons made by each
strategy. The ground truth reward was defined as the log
probability of a mixture of two Gaussians, centered at
(−2.5,−2.5) and (2.5, 2.5) with a variance of 0.25. Pref-
erence data was simulated using the BT model, and we
attempted to learn the reward function with a 3-layer MLP
with 16 hidden units. For each round, 1000 points were
sampled from a standard normal distribution, and 200 com-
parisons were selected using different strategies. 4 rounds
are shown in Figure 1, with a zoomed-in version in Figure 6
and performance measured by 1-Spearman correlation in
Figure 7. D-optimal method outperform alternatives includ-
ing full Bayesian method like BatchBALD.

Ro
un

d 
0

Ground Truth D-opt Random Entropy Coreset det(XtX) Maxdiff BatchBALD

Ro
un

d 
5

Ro
un

d 
10

Ro
un

d 
15

Figure 1: Comparisons drawn by different strategies to learn a
2D bimodal reward function. The heat map showed the estimated
functions. Red dots connected by lines are selected pairs and gray
dots on the first column are candidate points to choose from.

What were compared in dimension two? We observed
that D-optimal selects diverse samples with many anchor-
ing points, often comparing multiple points to a single one,
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Figure 2: Workflow of active reward modeling and experimental setups. At each round, we start with randomly sampling prompts,
generating responses and candidate comparisons, active labeling, and model retraining.

spreading out the level set in the original space. Entropy
sampling, similar to random sampling, focuses on points
near reward values, effectively traversing the reward func-
tion’s level set. Coreset also selects diverse comparisons,
though not always among points with similar reward val-
ues. The best design matrix method behaves similarly to
coreset, emphasizing diversity in comparisons. In contrast,
the max difference method tends to compare extreme val-
ues with many others, promoting exploration but potentially
yielding less informative comparisons. BatchBALD also
selects diverse comparisons, though without a clear pattern.
These observations suggest that most methods encourage
exploration, entropy sampling prioritizes informative com-
parisons, and D-optimal seeks a balance between the two.

5. Experiments with LLMs
5.1. Overall Setup

In this section, we test different design strategies in LLM ap-
plications. We start with discussions of general experiment
setups and the evaluation metrics we used in experiments.

Objective and Evaluation Metrics. We assess the data
efficiency of various comparison selection methods. The
main metrics are 1− Spearman’s rank correlation and best-
of-N test-time reward, as reward modeling aims to order
responses correctly and select the best one during test time.
The golden reward models from Dong et al. (2024) serve as
the surrogate for ground truth. Specifically, we consider

• Batched Spearman’s Correlations: we measure the
ranking correlation within each test prompt across 500
generations (Sun et al., 2025a). We took 1− Spearman’s

correlations as a test set metric.
• Best-of-N Reward: we evaluate the best-of-N (N=500)

reward on test prompts (Gao et al., 2023; Gui et al., 2024).

A method is considered superior if it achieves a smaller 1−
Spearman’s correlation, a larger Best-of-N reward, or the
same performance with fewer annotations.

Base Models, Annotations, and Golden Reward Models.
We conducted experiments using three open-source LLMs:
Gemma2b, Gemma7b, and LLaMA3-8b (Team et al., 2024;
Meta, 2024). To ensure affordability, we followed methods
from Gao et al. (2023); Liu et al. (2023); Tran & Chris Glaze
(2024); Dong et al. (2024); Sun et al. (2025a) to use open-
source golden reward models as annotators. We used the
Anthropic Harmless and Helpful datasets (Bai et al.,
2022a) that has been widely studied in reward modeling,
and golden reward models are available (Yang et al., 2024;
Dong et al., 2023; 2024). The dataset includes 40k prompts
with 10 responses each for training, and 2k prompts with
500 generations each for testing.

Reward Modeling. To separate representation learning
from reward modeling, we train our reward model using
joint embeddings of prompts and responses. An MLP with
three hidden layers and BT loss was used. Since the BT
model is not identified up to a translation, we exclude bias
in the final linear layer. Our ablation studies show that the
size of hidden units does not significantly affect the results.
For more details, see Appendix A.5.

Online Annotation Pipeline. We train our model sequen-
tially, increasing the sample size at each step. At the be-
ginning of each step, we randomly draw 500 prompts. For
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Figure 3: Comparing annotation efficiency of different methods. (Harmless Dataset, 3 Models, 8 Methods). First row: 1− Spearman’s
Correlation (lower is better); second row: Best-of-N reward (higher is better). Experiments are repeated with 5 seeds.
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Figure 4: Investigating how annotation batch size choices affect learning performance of our methods. Model: Gemma 2B. The first two
columns present results on the Harmless dataset, and the second two columns present results on the Helpful dataset. First row: 1−
Spearman’s Correlation (lower is better); second row: Best-of-N reward (higher is better). The results presented are from 5 runs with
different seeds.

each of the 500 prompts, we randomly select 2 out of 10
responses for in-prompt comparisons, yielding 500×

(
10
2

)
=

22, 500 potential comparisons. Note that since these 22, 500
contains repeated use of prompt-response pairs, therefore
needs only 500 × 10 = 5, 000 generations rather than
22, 500 generations. For cross-prompt annotations, there
are approximately 25 million potential comparisons. We
randomly sample a fix-sized subset 20000 out of those po-
tential comparisons for different algorithms to choose from,
see Figure 2.

At each online iteration, strategies that require model pre-

dictions use the reward model from the previous itera-
tion. We test different annotation batch sizes,
an important hyperparameter to tune, ranging from
125, 250, 500, 1000 to understand performance across vari-
ous settings. After annotation, we retrain the entire model
and evaluate it after each re-training.

5.2. Comparing Annotation Efficiency

Figure 3 presents results on the Harmless dataset (see
Appendix A.2, Figure 8 for Helpful results). D-opt and
Past-Aware D-opt outperform other methods, demonstrat-
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Figure 5: Comparing annotation efficiency of different methods under the Cross-Prompt annotation setups. (Harmless Dataset,
3 Models, 8 Methods). First row: 1− Spearman’s Correlation (lower is better); second row: Best-of-N reward (higher is better).
Experiments are repeated with 5 seeds.

ing both superior performance and greater stability. In con-
trast, alternative approaches exhibit training instability and
significantly higher variance during online learning.

5.3. Comparing Annotation Batch Sizes

In this section, we evaluate different methods under varying
annotation batch size setups, ranging from 125 to
1000. Notably, our proposed methods are computationally
efficient: since the reward model operates on embeddings,
re-training a 3-layer MLP with 10k annotations takes only a
few minutes on a GPU server—while human annotation is
significantly more time-consuming.

Figure 4 presents results for the Gemma2B model (results
for the other two base models are in Appendix A.3 due to
space constraints). Overall, D-opt and Past-Aware D-opt
consistently outperform other methods across different an-
notation batch sizes. Additionally, we observe performance
improvements when using smaller batch sizes, correspond-
ing to a more online setup. Given the low computational
cost, this suggests a practical strategy: using small anno-
tation batches with frequent model retraining to enhance
annotation efficiency in reward model development.

5.4. Results with Cross-Prompt Annotations

Cross-prompt annotation has been proposed as an alterna-
tive to in-prompt comparison, demonstrating superior per-
formance in LLM alignment tasks (Yin et al., 2024; Sun
et al., 2025a, see also Appendix B). To assess the generality
of our methods, we extend our experiments to cross-prompt

setups and compare different approaches.

Figure 5 shows the results under cross-prompt annotation.
D-opt and Past-Aware D-opt achieve significantly better
performance in both annotation efficiency and alignment
across tasks and base models.

Comparing Figure 5 with Figure 3, we observe efficiency
gains across all methods, with the entropy-based approach
exhibiting the most substantial improvement. Appendix A.4
provides a direct comparison between in-prompt and cross-
prompt annotations for interested readers.

5.5. Hyper-Parameter Sensitivity Analysis

To examine the sensitivity of different methods to hyper-
parameter choices and provide insights for real-world ap-
plications, we varied two key factors: Candidate Number
and Hidden Dimension of Reward Model MLPs across
different active reward modeling designs.

Our sensitivity analysis reveals that all algorithms remain
robust and are largely insensitive to specific hyper-parameter
choices in our embeddings-as-inputs setup. Detailed results
are provided in Appendix A.5.

6. Discussion
Designing Comparisons. Our experiments show that ap-
plying the classic method to the last-layer features yields
strong performance and stability. The D-opt method is also
highly efficient, as its information criteria and optimization
procedure are largely analytical, enabling real-time pair se-
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lection. This is valuable when collecting user preferences
in a user interface without introducing significant latency.
Additionally, this approach might be adapted to other model
architectures, including e.g., vision-language models.

An Empirical Bayes View and Stability of Last-Layer
Design. The connection between the last-layer D-optimal
method and BALD can be seen by considering previous
layers as a transformation of the Gaussian prior for the last
layer’s weights. These previous layer weights act as hyper-
parameters of the prior, which are fitted using maximum
likelihood, akin to an empirical Bayes procedure (Deely
& Lindley, 1981). By minimizing posterior entropy, we
perform D-optimal design followed by Gaussian approxima-
tion after the transformation. Empirical Bayes helps reduce
the subjectivity and uncertainty in selecting priors, poten-
tially explaining the robustness of our method compared to
full Bayesian approaches like batchBALD, which involve
hyper-priors on these hyperparameters.

Classic Experimental Design Methods in the Founda-
tion Model Era. We conjecture that the success of using
the last layer in classical experimental design stems from
the fact that the embeddings are already close to linear fea-
tures. Given the extensive study of experimental design in
generalized linear models (see e.g., Atkinson et al., 2007;
Pukelsheim, 2006), we believe it is a general strategy to ap-
ply these methods to the last layer of deep learning models,
particularly when leveraging learned representations from
foundation models.

Comparison of Reward Model Training Cost, Annota-
tion Cost, and Response Generation Cost In this section,
we highlight the relationship among the cost of the reward
model training, annotation, and LLM (multiple) response
generation. In most cases

costannotation ≫ costgeneration

Specifically, while our method requires generating more
responses per prompt, the cost is modest. For 500 prompts,
generating 10 responses per prompt instead of 2 increases
the generation cost by approximately $2.5 (from $0.7 to
$3.2 in total, using DeepSeek API at off-peak rates). How-
ever, the number of possible pairwise comparisons grows
quadratically with the number of responses — for example,
from 1 to

(
10
2

)
= 45 comparisons per prompt — leading to

up to 45× more training signal per prompt.

This enables more efficient use of the annotation budget.
Assuming a fast annotation speed of 125 comparisons per
hour, annotating 20,000 randomly selected comparisons
would take 160 hours, costing over $1,000 at the U.S. federal
minimum wage ($7.25/hour). Our method achieves similar
reward model performance using only approximately 1,000
informative comparisons (see Fig. 3), costing less than $50
— a 20× reduction in annotation cost.

In addition, if we train embedding based reward models
(e.g., BT with pretrained embeddings Sun et al., 2025a;b),
it is computationally light. For a reward model with d-
dimensional input, n comparisons, and E training epochs,
total computational cost is O(nEd) FLOPs. This is negligi-
ble compared to LLM response generation — e.g., generat-
ing two 1000-token responses per prompt using a 7B LLM
may require ∼ 1014 FLOPs — and drastically cheaper than
human labeling.

Limitations and Future Directions. Our proposed active
learning scheme relies on a well-trained embedding model.
The effectiveness of selecting comparisons based on last-
layer features depends on these features being informative,
which might in turn requires signal-rich embeddings with
low noise as input of the reward model (which is MLP in our
experiment). An interesting question is whether embeddings
that better capture human values (and thus improve reward
modeling) differ fundamentally from those optimized for
generation. A related consideration is whether reward mod-
eling in LLMs should start from embedding or earlier. Our
method relies on BT model as the main statistical model
to learn human preference. This is not necessarily, e.g.,
one can consider quantile regression (Dorka, 2024) and
other type of models beyond binary preference data. The
main idea of using last layer feature, treating the statisti-
cal model as a (generalized) linear model and apply classic
theory on experimental design literature can be used as a
general recipe for active reward modeling.E.g., for quantile
regression, one can use influence function to calculate the
asymptotic variance (Koenker, 2005) as the metric of infor-
mativeness of a pair of comparison. This calculation leads
to a method similar to optimizing design matrix (Mukherjee
et al., 2024).

Impact Statement
Our work advances the efficiency of aligning LLMs with hu-
man values by optimizing preference annotation strategies.
Since human feedback is costly and time-consuming, our
approach can potentially reduce wasted effort on uninforma-
tive comparisons, maximizing the value of each annotation.
By improving the efficiency of learning from human pref-
erences, this research has the potential to accelerate the
development of safer and more helpful AI systems.

Software and Data
Code and embeddings to (efficiently) reproduce all re-
sults, including all baselines, can be found through https:
//github.com/YunyiShen/ARM-FI. Embeddings
for reward modeling and efficient Best-of-N testing are
available at https://github.com/holarissun/
embedding-based-llm-alignment.
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A. Additional Experiment Results
A.1. Two dimensional example

In this section we provide an enlarged version of figure Figure 1 and the performance measured by Spearman’s rank
correlation on an 2D grid.
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Figure 6: Comparisons drawn by different strategies to better learn a 2D bimodal reward function. The heat map showed the current
estimated function. Red crosses connected by black lines are compared pairs and gray dots on the left-most penal are candidate points to
be compared.

In Figure 7 we showed the performance measured by 1-Spearman correlation on the entire grid. Last layer D-optimal
method outperform other baselines including full Bayesian approach like BatchBALD.
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Figure 7: Performance measured by 1-Spearman correlation (smaller the better) in the 2D illustrative example.
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A.2. Comparing Annotation Efficiency on the Helpful Dataset

In-Prompt Annotation efficiency is provided in Figure 8 (as supplementary of Figure 3 in the main text).
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Figure 8: Comparing annotation efficiency of different methods. (Helpful Dataset, 3 Models, 8 Methods). First row: 1 -
Spearman’s Correlation (lower is better); second row: Best-of-N reward. Experiments are repeated with 5 seeds.

Cross-Prompt Annotation efficiency is provided in Figure 9 (as supplementary of Figure 5 in the main text).
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Figure 9: Comparing annotation efficiency of different methods under the Cross-Prompt annotation setups. (Helpful Dataset, 3
Models, 8 Methods). First row: 1 - Spearman’s Correlation (lower is better); second row: Best-of-N reward. Experiments are repeated
with 5 seeds.
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A.3. Annotation Batch Size

Results on All Models Due to the space limit of the main text, we deferred the experiment results with Gemma7B and
the LLaMA3-8B model when studying the effect of different annotation batch sizes in the following Figures (Figure 10,
Figure 11, Figure 12). To summarize the main takeaways — we observe the same trend as we have observed with the
Gemma2B model, the proposed methods achieve better performances in the small batch size setups (more online setups).
The stability of small batch setups is in general higher than the large batch setups.
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Figure 10: Investigating how annotation batch size choices affect learning performance of different methods. Model: Gemma 2B.
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Figure 11: Investigating how annotation batch size choices affect learning performance of different methods. Model: Gemma 7B.
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Figure 12: Investigating how annotation batch size choices affect learning performance of different methods. Model: LLaMA3-8B.
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Results with All Methods. In addition, we use the figures below (Figure 13, Figure 14, Figure 15) for a full analysis
on the annotation batch size choices for all methods. For other methods, we do not observe a clear trend on the effect of
increasing or decreasing annotation batch sizes.
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Figure 13: Investigating how annotation batch size choices affect learning performance of different methods. Model: Gemma 2B.
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Figure 14: Investigating how annotation batch size choices affect learning performance of different methods. Model: Gemma 7B.
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Figure 15: Investigating how annotation batch size choices affect learning performance of different methods. Model: LLaMA3 8B.

A.4. Compare Cross-Prompt Comparisons and In-Prompt Comparisons

In this section, we provide direct comparisons of learning efficiency when using cross-prompt annotations and in-prompt
annotations. In most cases, annotating comparisons using cross-prompt comparison improves learning efficiency, and
this can be observed across all methods. Specifically, with the entropy-based method, cross-prompt annotations bring a
noticeable boost to learning efficiency and reward model performance.
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Figure 16: Cross-Prompt preference annotation improves overall annotation efficiency. Annotation batch size 500. Model: Gemma2B.
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Figure 17: Cross-Prompt preference annotation improves overall annotation efficiency. Annotation batch size 500. Model: Gemma7B.
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Figure 18: Cross-Prompt preference annotation improves overall annotation efficiency. Annotation batch size 500. Model: LLaMA3-8B.
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A.5. Hyper-Parameter Sensitivity Analysis

Number of Candidate Numbers In the main text, our empirical pipeline starts by sampling 500 candidates (candidate
number) from the training prompts, and then randomly generates 20000 pairs of comparisons using either in-prompt
comparison or cross-prompt comparison. Then, we select annotation batch size number of comparisons to
annotate. In this section, we evaluate the performance difference by using a larger candidate number 1000.

In experiments, we find those setups do not significantly change the performance of different methods. The performance of
D-opt and Past-Aware D-opt are especially robust to those hyper-parameter choices.
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Figure 19: Preference annotation with different candidate number choices. Annotation batch size 500. Model: Gemma2B.
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Figure 20: Preference annotation with different candidate number choices. Annotation batch size 500. Model: Gemma7B.
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Figure 21: Preference annotation with different candidate number choices. Annotation batch size 500. Model: LLaMA3-8B.

Number of Hidden Units in 3-Layer MLPs In all main text experiments, we use 3-layer MLPs with 64 hidden units. In
this section, we evaluate the performance difference by using a larger hidden unit 128.
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Figure 22: Experiments with different hidden unit choices. Annotation batch size 500. Model: Gemma 2B.
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Figure 23: Experiments with different hidden unit choices. Annotation batch size 500. Model: Gemma 7B.
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Figure 24: Experiments with different hidden unit choices. Annotation batch size 500. Model: LLaMA3-8B.
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B. Further Notes on Cross-Prompt Annotations.
Cross-Prompt annotations were explored as a way to increase annotation quality by Sun et al. (2025a) and empirically
studied in Yin et al. (2024). A natural question is whether this is possible in practice. If one is willing to assume there exists
a scalar value reward function, and human comparisons are based on that function, then cross-prompt is possible because
each prompt-response pairs are assigned a real value that are comparable to each other. A single-word change in the prompt
without changing its meaning likely will not change what responses are helpful or harmful and make these pairs, even if
cross-prompt, comparable. It is possible, however, that the reward function is very rough in changing prompts, making
the reward function for one prompt not transferable to the other and making it hard to get a better response for one prompt
using a reward function learned from other prompts. Even though, if one is willing to believe that prompts live in some
lower-dimensional manifold and the reward function acquires some regularity in that space, Cross-Prompt annotations might
help better learn these dependencies.
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