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Abstract

This paper presents GeNI-ADMM, a framework for large-scale composite convex optimiza-
tion that facilitates theoretical analysis of both existing and new approximate ADMM
schemes. GeNI-ADMM encompasses any ADMM algorithm that solves a first- or second-
order approximation to the ADMM subproblem inexactly. GeNI-ADMM exhibits the usual
O(1/t)-convergence rate under standard hypotheses and converges linearly under additional
hypotheses such as strong convexity. Further, the GeNI-ADMM framework provides explicit
convergence rates for ADMM variants accelerated with randomized linear algebra, such as
NysADMM and sketch-and-solve ADMM, resolving an important open question on the con-
vergence of these methods. This analysis quantifies the benefit of improved approximations
and can aid in the design of new ADMM variants with faster convergence.

1 Introduction

The Alternating Direction Method of Multipliers (ADMM) is one of the most popular methods for solving
composite optimization problems, as it provides a general template for a wide swath of problems and con-
verges to an acceptable solution within a moderate number of iterations (Boyd et al., 2011). Indeed, Boyd
et al. (2011) implicitly promulgates the vision that ADMM provides a unified solver for various convex ma-
chine learning problems. Unfortunately, for the large-scale problem instances routinely encountered in the
era of Big Data, ADMM scales poorly and cannot provide a unified machine learning solver for problems of
all scales. The scaling issue arises as ADMM requires solving two subproblems at each iteration, whose cost
can increase superlinearly with the problem size. As a concrete example, in the case of ℓ1-logistic regression
with an n × d data matrix, ADMM requires solving an ℓ2-regularized logistic regression problem at each
iteration (Boyd et al., 2011). With a fast-gradient method, the total complexity of solving the subproblem
is Õ(nd

√
κ) (Bubeck, 2015), where κ is the condition number of the problem. When n and d are in the tens

of thousands or larger—a moderate problem size by contemporary machine learning standards—and κ is
large, such a high per-iteration cost becomes unacceptable. Worse, ill-conditioning is ubiquitous in machine
learning problems; often κ = Ω(n), in which case the cost of the subproblem solve becomes superlinear in
the problem size.

Randomized numerical linear algebra (RandNLA) offers promising tools to scale ADMM to larger problem
sizes. Recently Zhao et al. (2022) proposed the algorithm NysADMM, which uses a randomized fast linear
system solver to scale ADMM up to problems with tens of thousands of samples and hundreds of thousands
of features. The results in Zhao et al. (2022) show that ADMM combined with the RandNLA primitive
runs 3 to 15× faster than state-of-the-art solvers on machine learning problems from LASSO to SVM
to logistic regression. Unfortunately, the convergence of randomized or approximate ADMM solvers like
NysADMM is not well understood. NysADMM approximates the x-subproblem using a linearization based
on a second-order Taylor expansion, which transforms the x-subproblem into a Newton-step, i.e., a linear
system solve. It then solves this system approximately (and quickly) using a randomized linear system
solver. The convergence of this scheme, which combines linearization and inexactness, is not covered by
prior theory for approximate ADMM; prior theory covers either linearization (Ouyang et al., 2015) or inexact
solves (Eckstein & Bertsekas, 1992) but not both.
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In this work, we bridge the gap between theory and practice to explain the excellent performance of a
large class of approximate linearized ADMM schemes, including NysADMM (Zhao et al., 2022) and many
methods not previously proposed. We introduce a framework called Generalized Newton Inexact ADMM,
which we refer to as GeNI-ADMM (pronounced genie-ADMM ). GeNI-ADMM includes NysADMM and
many other approximate ADMM schemes as special cases. The name is inspired by viewing the linearized
x-subproblem in GeNI-ADMM as a generalized Newton-step. GeNI-ADMM allows for inexactness in both
the x-subproblem and the z-subproblem. We show GeNI-ADMM exhibits the usual O(1/t)-convergence
rate under standard assumptions, with linear convergence under additional assumptions. Our analysis also
clarifies the value of using curvature in the generalized Newton step: approximate ADMM schemes that take
advantage of curvature converge faster than those that do not at a rate that depends on the conditioning
of the subproblems. As the GeNI-ADMM framework covers any approximate ADMM scheme that replaces
the x-subproblem by a linear system solve, our convergence theory covers any ADMM scheme that uses fast
linear system solvers. Given the recent flurry of activity on fast linear system solvers within the (randomized)
numerical linear algebra community (Lacotte & Pilanci, 2020; Meier & Nakatsukasa, 2022; Frangella et al.,
2023), our results will help realize these benefits for optimization problems as well. To demonstrate the
power of the GeNI-ADMM framework, we establish convergence of NysADMM and another RandNLA-
inspired scheme, sketch-and-solve ADMM, whose convergence was left as an open problem in Buluc et al.
(2021).

1.1 Contributions

Our contributions may be summarized concisely as follows:

1. We provide a general ADMM framework GeNI-ADMM, that encompasses prior approximate ADMM
schemes as well as new ones. It can take advantage of second-order information and allows for inexact
subproblem solves.

2. Our analysis shows the benefits of schemes that employ preconditioning and variable metrics over
methods that do not.

3. We show that despite all the approximations it makes, GeNI-ADMM converges ergodically at the
usual ergodic O(1/t) rate.

4. We apply our framework to show some RandNLA-based approximate ADMM schemes converge at
the same rate as vanilla ADMM, answering some open questions regarding their convergence (Buluc
et al., 2021; Zhao et al., 2022). In the case of sketch-and-solve ADMM, we show modifications to
the naive scheme are required to ensure convergence.

1.2 Roadmap

In Section 2, we formally state the optimization problem that we focus on in this paper and briefly introduce
ADMM. In Section 3 we introduce the Generalized Newton Inexact ADMM framework and review ADMM
and its variants. Section 4 gives various technical backgrounds and assumptions needed for our analysis.
Section 5 establishes that GeNI-ADMM converges at an O(1/t) rate in the convex setting. In Section 7, we
apply our theory to establish convergence rates for two methods that naturally fit into our framework, and
we illustrate these results numerically in Section 8.

1.3 Notation and preliminaries

We call a matrix psd if it is positive semidefinite. We denote the convex cone of n × n real symmetric psd
matrices by S+

n . We denote the Loewner ordering on S+
n by ⪯, that is A ⪯ B if and only if B − A is psd.

Given a matrix H, we denote its spectral norm by ∥H∥. If f is a smooth function we denote its smoothness
constant by Lf . We say a positive sequence {εk}k≥1 is summable if

∑∞
k=1 ε

k < ∞.
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2 Problem statement and ADMM

Let X ,Z,H be finite-dimensional inner-product spaces with inner-product ⟨·, ·⟩ and norm ∥ · ∥. We wish to
solve the convex constrained optimization problem

minimize f(x) + g(z)
subject to Mx+Nz = 0

x ∈ X, z ∈ Z,

(1)

with variables x and z, where X ⊂ X and Z ⊂ Z are closed convex sets, f is a smooth convex function, g
is a convex proper lower-semicontinuous (lsc) function, and M : X 7→ H and N : Z 7→ H are bounded linear
operators.
Remark 1. Often, the constraint is presented as Mx + Nz = c for some non-zero vector c however, by
increasing the dimension of Z by 1 and replacing N by [N c], we can make c = 0. Thus, our setting of c = 0
is without loss of generality.

We can write problem (1) as the saddle point problem

minimize
x∈X,z∈Z

maximize
y∈Y

f(x) + g(z) + ⟨y,Mx+Nz⟩, (2)

where Y ⊂ Z is a closed convex set. The saddle-point formulation will play an important role in our analysis.
Perform the change of variables u = y/ρ and define the Lagrangian

Lρ(x, z, u) := f(x) + g(z) + ⟨ρu,Mx+Nz⟩.

Then (2) may be written concisely as

minimize
x∈X,z∈Z

maximize
u∈U

Lρ(x, z, u). (3)

The ADMM algorithm (Algorithm 1) is a popular method for solving (1). Our presentation uses the scaled
form of ADMM (Boyd et al., 2011; Ryu & Yin, 2022), which uses the change of variables u = y/ρ, this
simplifies the algorithms and analysis, so we maintain this convention throughout the paper.

Algorithm 1 ADMM
input: convex proper lsc functions f and g, constraint matrix M , stepsize ρ

repeat
xk+1 = argmin

x∈X
{f(x) + ρ

2 ∥Mx+Nzk + uk∥2}

zk+1 = argmin
z∈Z

{g(z) + ρ
2 ∥Mxk+1 +Nz + uk∥2}

uk+1 = uk +Mxk+1 +Nzk+1

until convergence
output: solution (x⋆, z⋆) of problem (1)

3 Generalized Newton Inexact ADMM

As shown in Algorithm 1, at each iteration of ADMM, two subproblems are solved sequentially to update
variables x and z. ADMM is often the method of choice when the z-subproblem has a closed-form solution.
For example, if g(x) = ∥x∥1, the z-subproblem is soft thresholding, and if g(x) = 1S(x) is the indicator
function of a convex set S, the z-subproblem is projection onto S (Parikh & Boyd, 2014, §6). However,
it may be expensive to compute even with a closed-form solution. For example, when g(x) = 1S(x) and
S is the psd cone, the z-subproblem requires an eigendecomposition to compute the projection, which is
prohibitively expensive for large problems (Rontsis et al., 2022).
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Let us consider the x-subproblem

xk+1 = argmin
x∈X

{
f(x) + ρ

2∥Mx+Nzk + uk∥2
}
. (4)

In contrast to the z-subproblem, there is usually no closed-form solution for the x-subproblem. Instead, an
iterative scheme is often used to solve it inaccurately, especially for large-scale applications. This solve can
be very expensive when the problem is large. To reduce computational effort, many authors have suggested
replacing this problem with a simplified subproblem that is easier to solve. We highlight several strategies
to do so below.

Augmented Lagrangian linearization. One strategy is to linearize the augmented Lagrangian term
ρ
2 ∥Mx+Nzk+uk∥2 in the ADMM subproblem and replace it by the quadratic penalty 1

2 ∥x−xk∥2
P for some

(carefully chosen) positive definite matrix P . More formally, the strategy adds a quadratic term to form a
new subproblem

xk+1 = argmin
x∈X

{
f(x) + ρ

2∥Mx+Nzk + uk∥2 + 1
2∥x− xk∥2

P

}
,

which is substantially easier to solve for an appropriate choice of P . One canonical choice is P = ηI−ρMTM ,
where η > 0 is a constant. For this choice, the quadratic terms involvingM cancel, and we may omit constants
with respect to x, resulting in the subproblem

xk+1 = argmin
x∈X

{
f(x) + ρ⟨Mx,Mxk − zk + uk⟩ + η

2∥x− xk∥2
}
.

Here, an isotropic quadratic penalty replaces the augmented Lagrangian term in (4). This strategy allows
the subproblem solve to be replaced by a proximal operator with a (possibly) closed-form solution. This
strategy has been variously called preconditioned ADMM, proximal ADMM, and (confusingly) linearized
ADMM (Deng & Yin, 2016; He & Yuan, 2012; Ouyang et al., 2015).

Function approximation. The second strategy to simplify the x-subproblem, is to approximate the
function f by a first- or second-order approximation (Ouyang et al., 2015; Ryu & Yin, 2022; Zhao et al.,
2022), forming the new subproblem

xk+1 = argmin
x∈X

{
f(xk) + ⟨∇f(xk), x− xk⟩ + 1

2∥x− xk∥2
H + ρ

2∥Mx+Nzk + uk∥2
}

(5)

where H is the Hessian of f at xk. The resulting subproblem is quadratic and may be solved by solving a
linear system or (for M = I) performing a linear update, as detailed below in Section 3.1.1.

Inexact subproblem solve. The third strategy is to solve the ADMM subproblems inexactly to achieve
some target accuracy, either in absolute error or relative error. An absolute-error criterion chooses the sub-
problem error a priori (Eckstein & Bertsekas, 1992), while a relative error criterion requires the subproblem
error to decrease as the algorithm nears convergence, for example, by setting the error target at each iteration
proportional to ∥uk+1 − uk − ρ(zk+1 − zk)∥ (Eckstein & Yao, 2018).

Approximations used by GeNI-ADMM. The GeNI-ADMM framework allows for any combination of
the three strategies: augmented Lagrangian linearization, function approximation, and inexact subproblem
solve. Consider the generalized second-order approximation to f

f(x) ≈ f1(x) + f2(x̃k) + ⟨∇f2(x̃k), x− x̃k⟩ + 1
2∥x− x̃k∥2

Θk , (6)

where f1 + f2 = f and {Θk}k≥1 is a sequence of psd matrices that approximate the Hessian of f . GeNI-
ADMM uses this approximation in the x-subproblem, resulting in the new subproblem

x̃k+1 = argmin
x∈X

{f1(x) + ⟨∇f2(x̃k), x− x̃k⟩ + 1
2∥x− x̃k∥2

Θk

+ ρ

2∥Mx+Nz̃k + ũk∥2}.
(7)
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We refer to (7) as a generalized Newton step. The intuition for the name is made plain when X = Rd,
f1 = 0, f2 = f in which case the update becomes(

Θk + ρMTM
)
x̃k+1 = Θkx̃k − ∇f(x̃k) − ρMT (ũk − z̃k). (8)

Equation (8) shows that the x-subproblem reduces to a linear system solve, just like the Newton update. We
can also interpret GeNI-ADMM as a linearized proximal augmented Lagrangian (P-ALM) method (Hermans
et al., 2019; 2022). From this point of view, GeNI-ADMM replaces f in the P-ALM step by its linearization
and adds a specialized penalty defined by the Θk-norm.

GeNI-ADMM also replaces the z-subproblem of ADMM with the following problem

z̃k+1 = argmin
z∈Z

{g(z) + ρ

2∥Mx̃k+1 +Nz + ũk∥2 + 1
2∥z − z̃k∥2

Ψk }. (9)

Incorporating the quadratic Ψk term allows us to linearize the augmented Lagrangian term, which is useful
when N is very complicated.

However, even with the allowed approximations, it is unreasonable to assume that (7), (9) are solved exactly
at each iteration. Indeed, the hallmark of the NysADMM scheme from Zhao et al. (2022) is that it solves
(7) inexactly (but efficiently) using a randomized linear system solver. Thus, the GeNI-ADMM framework
allows for inexactness in the x and z-subproblems, as seen in Algorithm 2.

Algorithm 2 Generalized Newton Inexact ADMM (GeNI-ADMM)
input: penalty parameter ρ, sequence of psd matrices {Θk}k≥1, {Ψk}k≥1, forcing sequences

{εkx}k≥1, {εkz}k≥1,
repeat

x̃k+1 εk
x≈ argmin

x∈X
{f1(x) + ⟨∇f2(x̃k), x− x̃k⟩ + 1

2 ∥x− x̃k∥2
Θk + ρ

2 ∥Mx+Nz̃k + ũk∥2}

z̃k+1
εk

z

≊ argmin
z∈Z

{g(z) + ρ
2 ∥Mx̃k+1 +Nz + ũk∥2 + 1

2 ∥z − z̃k∥2
Ψk }

ũk+1 = ũk +Mx̃k+1 +Nz̃k+1

until convergence
output: solution (x⋆, z⋆) of problem (1)

Algorithm 2 differs from ADMM (Algorithm 1) in that a) the x and z-subproblems are now given by (7) and
(9) and b) both subproblems may be solved inexactly. Given the inexactness and the use of the generalized
Newton step in place of the original x-subproblem, we refer to Algorithm 2 as Generalized Newton Inexact
ADMM (GeNI-ADMM). The inexactness schedule is controlled by the forcing sequences {εkx}k≥1, {εkz}k≥1
that specify how accurately the x and z-subproblems are solved at each iteration. These subproblems have
different structures that require different notions of accuracy. To distinguish between them, we make the
following definition.
Definition 1 (ε-minimizer and ε-minimum). Let h : T 7→ R be strongly-convex and let t⋆ = argmint′∈T h(t′).

• (ε-minimizer) Given t ∈ T , we say t is an ε-minimizer of minimizet∈T h(t) and write

t
ε
≈ argmin

t′∈T
h(t′) if and only if ∥t− t⋆∥ ≤ ε.

In words, t is nearly equal to the argmin of h(t) in set T .

• (ε-minimum) Given t ∈ T , we say t gives an ε-minimum of minimizet∈T h(t) and write

t
ε
≊ argmin

t′∈T
h(t′) if and only if h(t) − h(t⋆) ≤ ε.

In words, t produces nearly the same objective value as the argmin of h(t) in set T .
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Thus, from Definition 1 and Algorithm 2, we see for each iteration k that x̃k+1 is an εkx-minimizer of the
x-subproblem, while z̃k+1 gives an εkz -minimum of the z-subproblem.

3.1 Related work

The literature on the convergence of ADMM and its variants is vast, so we focus on prior work most
relevant to our setting. Table 1 lists some of the prior work that developed and analyzed the approximation
strategies described in Section 3. GeNI-ADMM differs from all prior work in Table 1 by allowing (almost)
all these approximations and more. It also provides explicit rates of convergence to support choices between
algorithms. Moreover, many of these algorithms can be recovered from GeNI-ADMM.

Reference Convergence
rate

Problem
class

Augmented
Lagrangian

Linearization

Function
approximation

Subproblem
inexactness

Eckstein &
Bertsekas

(1992)
✗ Convex ✗ ✗

x, z
absolute error

He & Yuan
(2012) Ergodic O(1/t) Convex x ✗ ✗

Monteiro &
Svaiter (2013) Ergodic O(1/t) Convex ✗ ✗ ✗

Ouyang et al.
(2013) O(1/

√
t) Stochastic

convex ✗
f

stochastic
first-order

✗

Ouyang et al.
(2015) Ergodic O(1/t) Convex x

f
first-order ✗

Deng & Yin
(2016) Linear Strongly convex x, z ✗ ✗

Eckstein & Yao
(2018) ✗ Convex ✗ ✗

x
relative error

Hager & Zhang
(2020)

Ergodic O(1/t),
O(1/t2)

Convex,
Strongly convex x ✗

x
relative error

Yuan et al.
(2020)

Locally
linear Convex x, z ✗ ✗

Zhao et al.
(2022)

✗
Convergence

for quadratic f
only

Convex ✗ x
x absolute error

Ryu & Yin
(2022) ✗ Convex x, z

f, g
partial

first-order
✗

This work Ergodic O(1/t),
Linear

Convex,
Strongly convex x, z

f
partial

generalized
second-order

x, z
absolute error

Table 1: A structured comparison of related work on the convergence of ADMM and its variants. The
“x” (“z”) in the table denotes that a paper uses the corresponding strategy of the column to simplify the
x-subproblem (z-subproblem). In the “Function approximation” column, the “f” (“g”) indicates that a
paper approximates function “f” (“g”) in the x-subproblem (z-subproblem). “stochastic first-order” means
a paper uses first-order function approximation but replace the gradient term with a stochastic gradient.
“partial generalized second-order” means a paper uses second-order function approximation as (7), but H is
not necessarily the Hessian.

3.1.1 Algorithms recovered from GeNI-ADMM

Various ADMM schemes in the literature can be recovered by appropriately selecting the parameters in
Algorithm 2. Let us consider a few special cases to highlight important prior work on approximate ADMM,
and provide concrete intuition for the general framework provided by Algorithm 2.

NysADMM The NysADMM scheme (Zhao et al., 2022) assumes the problem is unconstrained M =
I,N = −I. Diamandis et al. (2023) have extended NysADMM to the constrained setting with the GeNIOS
solver, which we will discuss more in Section 7.1. For simplicity of exposition, we focus on the original
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NysADMM for unconstrained problems. GeNI-ADMM specializes to NysADMM taking Θk = η(Hk
f + σI),

and Ψk = 0, where Hk
f denotes the Hessian of f at the kth iteration. Unlike the original NysADMM scheme

of Zhao et al. (2022), we include the regularization term σI, where σ > 0. This inclusion is required for
theoretical analysis but seems unnecessary in practice (see Section 7.1 for a detailed discussion). Substituting
this information into (8) leads to the following update for the x-subproblem.

x̃k+1 = x̃k −
(
ηHk

f + (ρ+ ησ)I
)−1 (∇f(x̃k) + ρ(x̃k − z̃k + ũk)

)
. (10)

Sketch-and-solve ADMM If M = I,N = −I, Ψk = 0, and Θk is chosen to be a matrix such that
Θk + ρI is easy to factor, we call the resulting scheme sketch-and-solve ADMM. The name sketch-and-solve
ADMM is motivated by the fact that such a Θk can often be obtained via sketching techniques. However,
the method works for any Θk, not only ones constructed by sketching methods. The update is given by

x̃k+1 = x̃k −
(
Θk + ρI

)−1 (∇f(x̃k) + ρ(x̃k − z̃k + ũk)
)
.

We provide the full details of sketch-and-solve ADMM in Section 7.2. To our knowledge, sketch-and-solve
ADMM has not been previously proposed or analyzed.

Proximal/Generalized ADMM Set f1 = f, f2 = 0, and fix Θk = Θ and Ψk = Ψ, where Θ and Ψ are
symmetric positive definite matrices. Then GeNI-ADMM simplifies to

x̃k+1 = argmin
x∈X

{
f(x) + ρ

2∥Mx+Nz̃k + ũk∥2 + 1
2∥x− x̃k∥2

Θ

}
,

z̃k+1 = argmin
z∈Z

{
g(z) + ρ

2∥Mx̃k+1 +Nz + ũk∥2 + 1
2∥z − z̃k∥2

Ψ

}
,

which is the Proximal/Generalized ADMM of Deng & Yin (2016).

Linearized ADMM Set Θk = α−1I−ρMTM and Ψ = β−1I−ρNTN , for all k ≥ 1. Then GeNI-ADMM
simplifies to

x̃k+1 = proxαf
(
x̃k − αρMT (Mx̃k +Nz̃k + ũk)

)
,

z̃k+1 = proxβg
(
z̃k − βρNT (Mx̃k+1 +Nz̃k + ũk)

)
,

which is exactly Linearized ADMM (Parikh & Boyd, 2014, §4.4.2).

Primal Dual Hybrid Gradient The Primal Dual Hybrid Gradient (PDHG) or Chambolle-Pock al-
gorithm of Chambolle & Pock (2011) is a special case of GeNI-ADMM since PDHG is a special case of
Linearized ADMM (see section 3.5 of Ryu & Yin (2022)).

Gradient descent ADMM Consider two linearization schemes from Ouyang et al. (2015). The first
scheme we call gradient descent ADMM (GD-ADMM) is useful when it is cheap to solve a least-squares
problem with M . GD-ADMM is obtained from GeNI-ADMM by setting f1 = 0, f2 = f , and Θk = ηI for all
k. The x̃k+1 update (8) for GD-ADMM simplifies to

x̃k+1 = x̃k − (ρMTM + ηI)−1 (∇f(x̃k) + ρMT (Mx̃k +Nz̃k + ũk)
)
. (11)

The second scheme, linearized-gradient descent ADMM (LGD-ADMM), is useful when M is not simple,
so that the update (11) is no longer cheap. To make the x-subproblem update cheaper, it linearizes the
augmented Lagrangian term by setting Θk = α−1I − ρMTM for all k in addition to linearizing f . In this
case, (8) yields the x̃k+1 update

x̃k+1 = x̃k − α
(
∇f(x̃k) + ρMT (Mx̃k +Nz̃k + ũk)

)
. (12)

Observe in the unconstrained case, when M = I, the updates (11) and (12) are equivalent and generate
the same iterate sequences when initialized at the same point (Zhao et al., 2021). Indeed, they are both
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generated by performing a gradient step on the augmented Lagrangian (7), for suitable choices of the param-
eters. Notably, this terminology differs from Ouyang et al. (2015), who refer to (11) as “linearized ADMM”
(L-ADMM) and (12) as “linearized preconditioned ADMM” (LP-ADMM). We choose our terminology to
emphasize that GD-ADMM accesses f via its gradient, as in the literature the term “linearized ADMM” is
usually reserved for methods that access f through its prox operator (He & Yuan, 2012; Parikh & Boyd,
2014; Deng & Yin, 2016).

In the remainder of this paper, we will prove convergence of Algorithm 2 under appropriate hypotheses on
the sequences {Θk}k≥1, {Ψk}k≥1, {εkx}k≥1, and {εkz}k≥1.

4 Technical preliminaries and assumptions

We introduce some important concepts that will be central to our analysis. The first is Θ-relative smoothness,
which is crucial to establish that GeNI-ADMM benefits from curvature information provided by the Hessian.
Definition 2 (Θ-relative smoothness). We say f : D → R is Θ-relatively smooth with respect to the bounded
function Θ : D → Sn+ if there exists L̂Θ > 0 such that for all x, y ∈ D

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩ + L̂Θ

2 ∥x− y∥2
Θ(y). (13)

That is, the function f is smooth with respect to the Θ-norm. Definition 2 generalizes relative smoothness,
introduced in Gower et al. (2019) to analyze Newton’s method. The definition in Gower et al. (2019) takes
Θ to be the Hessian of f , Hf . When f belongs to the popular family of generalized linear models, then (13)
holds with a value of L̂Hf

that is independent of the conditioning of the problem (Gower et al., 2019). For
instance, if f is quadratic and Θ(y) = Hf , then (13) holds with equality for L̂Hf

= 1. Conversely, if we
take Θ = I, which corresponds to GD-ADMM, then L̂Θ = Lf , the smoothness constant of f . Our theory
uses the fact that L̂Θ is much smaller than the smoothness constant Lf for methods that take advantage of
curvature, and relies on L̂Θ to characterize the faster convergence speed of these methods.

The other important idea we need is the notion of an ε-subgradient (Bertsekas et al., 2003; Hiriart-Urruty
& Lemaréchal, 1993).
Definition 3 (ε-subgradient). Let r : D → R be a convex function and ε > 0. We say that s ∈ D∗ is an
ε-subgradient for r at z ∈ D if, for every z′ ∈ D, we have

r(z′) − r(z) ≥ ⟨s, z′ − z⟩ − ε.

We denote the set of ε-subgradients for r at z by ∂εr(z).

Clearly, any subgradient is an ε-subgradient, so Definition 3 provides a natural weakening of a subgradient.
The ε-subgradient is critical for analyzing z-subproblem inexactness, and our usage in this context is inspired
by the convergence analysis of inexact proximal gradient methods (Schmidt et al., 2011). We shall need the
following proposition whose proof may be found in (Bertsekas et al., 2003, Proposition 4.3.1).
Proposition 1. Let r, r1, and r2 be convex functions. Then for any z, the following holds:

1. 0 ∈ ∂εr(z) if and only if r(z)
ε
≊ argminz′ r(z′), that is z gives an ε-minimum of minimizez′r(z′).

2. ∂ε(r1 + r2)(z) ⊂ ∂εr1(z) + ∂εr2(z).

With Proposition 1 recorded, we prove the following lemma in Appendix B.1, which will play a critical role
in establishing the convergence of GeNI-ADMM.
Lemma 1. Let z̃k+1 give an εkz -minimum of the z-subproblem. Then there exists an s̃ with ∥s̃∥ ≤ C

√
εkz

such that
−ρNT ũk+1 + Ψk(z̃k − z̃k+1) + s̃ ∈ ∂εk

z
g(z̃k+1).

8
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4.1 Assumptions

In this section, we present the main assumptions required by our analysis.
Assumption 1 (Existence of saddle point). There exists an optimal primal solution (x⋆, z⋆) ∈ X × Z for
(1) and an optimal dual solution u⋆ ∈ U such that (x⋆, z⋆, u⋆) is a saddle point of (2). Here, U ⊂ Z is a
closed convex set and ρU = Y . We denote the optimal objective value of (1) as p⋆.

Assumption 1 is standard and merely assumes that (1) has a solution.
Assumption 2 (Regularity of f and g). The function f is twice-continuously differentiable and is 1-relatively
smooth with respect to Θ. The function g is finite-valued, convex, and lower semi-continuous.

Assumption 2 is also standard. It ensures that it makes sense to talk about the Hessian of f and that f is
relatively smooth. Note assuming L̂Θ = 1 is without loss of generality, for we can always redefine Θ′ = L̂ΘΘ,
and f will be 1-relatively smooth with respect to Θ′.
Assumption 3 (Forcing sequence summability and approximate subproblem oracles). Let {εkx}k≥1 and
{εkz}k≥1 be given forcing sequences, we assume they satisfy

Ex =
∞∑
k=1

εkx < ∞, Ez =
∞∑
k=1

√
εkz < ∞.

Further we define the constants Kεx
:= supk≥1 ε

k
x, Kεz

:= supk≥1
√
εkz . Observe Kεx

and Kεz
are finite

owing to the summability hypotheses. Moreover, we assume Algorithm 2 is equipped with oracles for solving
the x and z-subproblems, which at each iteration produce approximate solutions x̃k+1, z̃k+1 satisfying:

x̃k+1 εk
x≈ argmin

x∈X
{f1(x) + ⟨∇f2(x̃k), x− x̃k⟩ + 1

2∥x− x̃k∥2
Θk + ρ

2∥Mx+Nz̃k + ũk∥2},

z̃k+1 εk
z

≊ argmin
z∈Z

{g(z) + ρ

2∥Mx̃k+1 +Nz + ũk∥2 + 1
2∥z − z̃k∥2

Ψk }.

The conditions on the x and z subproblem oracles are consistent with those of Eckstein & Bertsekas (1992),
which requires the sum of the errors in the subproblems to be summable. The approximate solution criteria
of Assumption 3 are also easily met in practical applications, as the subproblems are either simple enough
to solve exactly, or can be efficiently solved approximately via iterative algorithms. For instance, with
LGD-ADMM the x-subproblem is simple to solve enough exactly, while for NysADMM the x-subproblem is
efficiently solved via conjugate gradient with a randomized preconditioner.
Assumption 4 (Regularity of {Θk}k≥1 and {Ψk}k≥1). We assume there exists constants θmax, θmin, ψmax,
and ν > 0, such that

θmaxI ⪰ Θk ⪰ θminI, ψmaxI ⪰ Ψk, Ψk + ρNTN ⪰ νI, for all k ≥ 1. (14)

Moreover, we also assume that The sequences {Θk}k≥1, {Ψk}k≥1 satisfy

∥x̃k − x⋆∥2
Θk ≤ (1 + ζk−1)∥x̃k − x⋆∥2

Θk−1 , (15)
∥z̃k − z⋆∥2

Ψk ≤ (1 + ζk−1)∥z̃k − z⋆∥2
Ψk−1 ,

where {ζk}k≥1 is a non-negative summable sequence, that is,
∑∞
k=1 ζ

k < ∞.

The first half of Assumption 4 is standard, and essentially requires that Θk and Ψk + νNTN define norms.
For most common choices of Θk and Ψk these assumptions are satisfied, they are also readily enforced by
adding on a small multiple of the identity. The addition of a small regularization term is common practice
in popular ADMM solvers, such as OSQP (Stellato et al., 2020), as it avoids issues with degeneracy and
increases numerical stability.

The second part of the assumption requires that Θk (Ψk) and Θk−1 (Ψk−1) eventually not differ much on the
distance of x̃k (z̃k) to x⋆ (z⋆). Assumptions of this form are common in analyses of optimization algorithms

9
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that use variable metrics. For instance, He et al. (2002) which develops an alternating directions method for
monotone variational inequalities, assumes their equivalents of the sequences {Θk} and {Ψk} satisfy

(1 − ζk−1)Θk−1 ⪯ Θk ⪯ (1 + ζk−1)Θk−1, (1 − ζk−1)Ψk−1 ⪯ Ψk ⪯ (1 + ζk−1)Ψk−1. (16)

More recently, Rockafellar (2023) analyzed the proximal point method with variable metrics, under the
assumption the variable metrics satisfy (16). Thus, Assumption 4 is consistent with the literature and is, in
fact, weaker than prior work, as (16) implies (15). Assumption 4 may always be enforced by changing the
Θk’s and Ψk’s only finitely many times.

We also define the following constants which shall be useful in our analysis,

τζ :=
∏
k≥2

(1 + ζk), Eζ = τζ

( ∞∑
k=1

ζk

)
< ∞.

Note Assumption 4 implies τζ < ∞. Moreover, for any k ≥ 1 it holds that

∥x̃k − x⋆∥2
Θk ≤ τζ∥x̃k − x⋆∥2

Θ1 , ∥z̃k − z⋆∥2
Ψk ≤ τζ∥z̃k − z⋆∥2

Ψ1 .

5 Sublinear convergence of GeNI-ADMM

This section establishes our main theorem, Theorem 1, which shows that Algorithm 2 enjoys the same
O(1/t)-convergence rate as standard ADMM.
Theorem 1 (Ergodic convergence). Define constants dx⋆,Θ1 = ∥x̃1 − x⋆∥Θ1 , du⋆ = ∥ũ1 − u⋆∥, dz⋆,Ψ1

ρ,N
=

∥z̃1 −z⋆∥Ψ1+ρNTN . Let p⋆ denote the optimum of (1). For each t ≥ 1, denote x̄t+1 = 1
t

∑t+1
k=2 x̃

k, and z̄t+1 =
1
t

∑t+1
k=2 z̃

k, where {x̃k}k≥1 and {z̃k}k≥1 are the iterates produced by Algorithm 2 with forcing sequences
{εkx}k≥1 and {εkz}k≥1 with ũ1 = 0 and Mx̃1 = −Nz̃1. Instate Assumptions 1-4. Then, the suboptimality gap
satisfies

f(x̄t+1) + g(z̄t+1) − p⋆ ≤ 1
t

(1
2d2

x⋆,Θ1 + 1
2d2

z⋆,Ψ1
ρ,N

+ CxEx + CzEz + CζEζ

)
=: 1

t
Γ,

Furthermore, the feasibility gap satisfies

∥Mx̄t+1 + Nz̄t+1∥ ≤ 2
t

√
Γ
ρ

+ d2
u⋆ ,

Consequently, after O(1/ϵ) iterations,

f(x̄t+1) + g(z̄t+1) − p⋆ ≤ ϵ, and ∥Mx̄t+1 + Nz̄t+1∥ ≤ ϵ.

Theorem 1 shows that, with a constant value of η and appropriate forcing sequences, the suboptimality gap
and the feasibility residuals both go to zero at a rate of O(1/t). Hence, the overall convergence rate of
ADMM is preserved despite all the approximations involved in GeNI-ADMM.

5.1 The benefits of using a better approximation

To see this difference, consider the case when f is a convex quadratic function and M = I. Let Hf be the
Hessian of f . Consider (a) NysADMM Θk = Hf (10) and (b) GD-ADMM Θk = I (11). Further, suppose
that NysADMM and GD-ADMM are initialized at 0. The rates of convergence guaranteed by Theorem 1
for Algorithm 2 for both methods are outlined in Table 2. In the first case, the relative smoothness constant
satisfies L̂Θ = 1, while in the second, L̂Θ = λ1 (Hf ), which is the largest eigenvalue of Hf . Comparing the
rates in Table 2, we see NysADMM improves over GD-ADMM whenever

λ1 (Hf ) ∥x⋆∥2 ≥ ∥x⋆∥2
Hf
.

Hence NysADMM improves significantly over GD-ADMM when Hf exhibits a decaying spectrum, provided
x⋆ is not concentrated on the top eigenvector of Hf . We formalize the latter property in the following
definition.

10
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Table 2: Convergence rate comparison of NysADMM and GD-ADMM when initialized at 0 for quadratic f .

Method NysADMM
(
Θk = Hf

)
GD-ADMM

(
Θk = I

)
Feasibility gap O

(
1
t

(√
2
ρ
∥x⋆∥2

Hf

))
O
(

1
t

(√
2
ρ
λ1 (Hf ) ∥x⋆∥2

))
Suboptimality gap O

(
1
2t

∥x⋆∥2
Hf

)
O
(

1
2t

λ1 (Hf ) ∥x⋆∥2)
Definition 4 (µV-incoherence). Let V be the eigenbasis of Hf . We say x⋆ is µV-incoherent if there exists
1 ≤ µV < d such that:

sup
1≤i≤d

|⟨vi, x⋆⟩|2 ≤ µV
∥x⋆∥2

d
. (17)

Definition 4 is a weak form of the incoherence condition from compressed sensing and matrix completion,
which plays a key role in signal and low-rank matrix recovery (Candes & Romberg, 2007; Candes & Recht,
2012). In words, x⋆ is µv-incoherent if its energy is not solely concentrated on the top eigenvector of Hf and
can be expected to hold generically. The parameter µv controls the allowable concentration. When µv = 0,
x⋆ is orthogonal to v, so its energy is distributed amongst the other eigenvectors. Conversely, the closer µv
is to 1, the more x⋆ is allowed to concentrate on v.

Using µv-incoherence, we can say more about how NysADMM improves on GD-ADMM.
Proposition 2. Suppose x⋆ is µv-incoherent and σ = τλ1(Hf ) where τ ∈ (0, 1). Then, the following bound
holds

λ1(Hf )∥x⋆∥2

∥x⋆∥2
Hf

≥ d

µVintdim(Hf )
Hence if µv + λ2(Hf )/λ1(Hf ) ≤ (1 − τ)α−1, where α ≥ 1, then

λ1(Hf )∥x⋆∥2

∥x⋆∥2
Hf

≥ α.

The proof of Proposition 2 is given in Appendix B.2. Proposition 2 shows when x⋆ is µv-incoherent and
Hf has a decaying spectrum, NysADMM yields a significant improvement over GD-ADMM. As a concrete
example, consider when α = 2, then Proposition 2 implies the ergodic convergence of NysADMM is twice as
fast as GD-ADMM. We observe this performance improvement in practice; see Section 8 for corroborating
numerical evidence. Just as Newton’s method improves on gradient descent for ill-conditioned problems,
NysADMM is less sensitive to ill-conditioning than GD-ADMM.

5.2 Our approach

To prove Theorem 1, we take the approach in Ouyang et al. (2015), and analyze GeNI-ADMM by viewing
Eq. (1) through its formulation as saddle point problem Eq. (2). Let W = X × Z × U , ŵ = (x̂, ẑ, û), and
w = (x, z, u), where w, ŵ ∈ W . Define the gap function

Q(ŵ, w) := [f(x) + g(z) + ⟨ρû,Mx+Nz⟩] − [f(x̂) + g(ẑ) + ⟨ρu,Mx̂+Nẑ⟩]. (18)
The gap function naturally arises from the saddle-point formulation Eq. (2). By construction, it is concave
in its first argument and convex in the second, and satisfies the important inequality

Q(w⋆, w) = Lρ(x, z, u⋆) − Lρ(x⋆, z⋆, u) ≥ 0,
which follows by definition of (x⋆, z⋆, u⋆) being a saddle-point. Hence the gap function may be viewed as
measuring the distance to the saddle w⋆.

Further, given a closed set U ⊂ Z and v ∈ Z we define
ℓU (v, w) := sup

û∈U
{Q(ŵ, w) + ⟨v, ρû⟩ | ŵ = (x̂, ẑ, û), x̂ = x⋆, ẑ = z⋆} (19)

= f(x) + g(z) − p⋆ + sup
û∈U

⟨ρû, v − (Mx+Nz)⟩.

11
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The following lemma of Ouyang et al. (2015) relates Q(ŵ, w) to the suboptimality and feasibility gaps.
Lemma 2. For any U ⊆ Z, suppose ℓU (Mx+Nz,w) ≤ ϵ < ∞ and ∥Mx+Nz∥ ≤ δ, where w = (x, z, u) ∈ W .
Then

f(x) + g(z) − p⋆ ≤ ϵ. (20)

In other words, (x, z) is an approximate solution of (1) with suboptimality gap ϵ and feasibility gap δ. Further,
if U = Z, for any v such that ℓU (v, w) ≤ ϵ < ∞ and ∥v∥ ≤ δ, we have v = Mx− z.

Lemma 2 shows that if we can find w such that ℓU (Mx+Nz,w) ≤ ϵ and ∥Mx+Nz∥ ≤ δ, then we have an
approximate optimal solution to (1) with gaps ϵ and δ, that is, ℓU (Mx+Nz,w) controls the suboptimality
and feasibility gaps.

5.3 Controlling the gap function

Lemma 2 shows the key to establishing convergence of GeNI-ADMM is to achieve appropriate control over the
gap function. To accomplish this, we use the optimality conditions of the x and z subproblems. However, as
the subproblems are only solved approximately, the inexact solutions satisfy perturbed optimality conditions.
To be able to reason about the optimality conditions under inexact solutions, the iterates must remain
bounded. Indeed, if the iterates are unbounded, they can fail to satisfy the subproblem optimality conditions
arbitrarily badly. Fortunately, the following proposition shows the iterates remain bounded.
Proposition 3 (GeNI-ADMM iterates remain bound). Let {εkx}k≥1, {εkz}k≥1, {Θk}k≥1, {Ψk}k≥1, and ρ > 0
be given. Instate Assumptions 1-4. Run Algorithm 2, then the output sequences {x̃k}k≥1, {z̃k}k≥1, {ũk}k≥1
are bounded. That is, there exists R > 0, such that

{x̃k}k≥1 ⊂ B(x⋆, R), {z̃k}k≥1 ⊂ B(z⋆, R), {ũk}k≥1 ⊂ B(u⋆, R).

The proof of Proposition 3 is provided in Appendix B.2.

As the iterates remain bounded, we can show that the optimality conditions are approximately satisfied
at each iteration. The precise form of these perturbed optimality conditions is given in Lemmas 3 and 4.
Detailed proofs establishing these lemmas are given in Appendix B.2.
Lemma 3 (Inexact x-optimality condition). Instate Assumptions 1-4. Suppose x̃k+1 is an εkx-minimizer of
the x-subproblem under Assumption 3. Then for some absolute constant Cx > 0 we have

⟨∇f1(x̃k+1) + ∇f2(x̃k), x̃k+1 − x⋆⟩ ≤ ⟨Θk(x̃k+1 − x̃k), x⋆ − x̃k+1⟩
+ ρ⟨Mx̃k+1 +Nz̃k + ũk,M(x⋆ − x̃k+1)⟩ + Cxε

k
x.

(21)

Lemma 4 (Inexact z-optimality condition). Instate Assumptions 1-4. Suppose z̃k+1 is an εkz -minimum of
the z-subproblem under Definition 1. Then for some absolute constant Cz > 0 we have

g(z⋆) − g(z̃k+1) ≥ ⟨−ρNT ũk+1 + Ψk(z̃k − z̃k+1), z⋆ − z̃k+1⟩ − Cz

√
εkz . (22)

When εkx = εkz = 0 the approximate optimality conditions of Lemmas 3 and 4 collapse to the exact optimality
conditions. We also note while Lemma 3 (Lemma 4) necessarily holds when x̃k+1 (z̃k+1) is an εkx-approximate
minimizer (εkz -minimum), the converse does not hold. With Lemmas 3 and 4 in hand, we can establish control
of the gap function for one iteration.
Lemma 5. Instate Assumptions 1-4.. Let w̃k+1 = (x̃k+1, z̃k+1, ũk+1) denote the iterates generated by Algo-
rithm 2 at iteration k. Set w = (x⋆, z⋆, u), then the gap function Q satisfies

Q(w, w̃k+1) ≤ 1
2
(
∥x̃k − x⋆∥2

Θk − ∥x̃k+1 − x⋆∥2
Θk

)
+ 1

2

(
∥z̃k − z⋆∥2

Ψk+ρNTN − ∥z̃k+1 − z⋆∥2
Ψk+ρNTN

)
+ ρ

2
(
∥ũk − u∥2 − ∥ũk+1 − u∥2)+ Cxε

k
x + Cz

√
εkz .

12
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Proof. From the definition of Q,

Q(w, w̃k+1) = f(x̃k+1) − f(x⋆) + g(z̃k+1) − g(z⋆) + ⟨ρu,Mx̃k+1 +Nz̃k+1⟩ − ⟨ρũk+1,Mx⋆ +Nz⋆⟩.

Our goal is to upper bound Q(w, w̃k+1). We start by bounding f(x̃k+1) − f(x⋆) as follows:

f(x̃k+1) − f(x⋆) =
(
f1(x̃k+1) − f1(x⋆)

)
+
(
f2(x̃k+1) − f2(x̃k)

)
+
(
f2(x̃k) − f2(x⋆)

)
(1)
≤ ⟨∇f1(x̃k+1), x̃k+1 − x̃⋆⟩ + ⟨∇f1(x̃k), x̃k+1 − x̃k⟩ + 1

2∥x̃k+1 − x̃k∥2
Θk

+ f2(x̃k) − f2(x⋆)
(2)
≤ ⟨∇f1(x̃k+1), x̃k+1 − x̃⋆⟩ + ⟨∇f2(x̃k), x̃k+1 − x̃k⟩ + 1

2∥x̃k+1 − x̃k∥2
Θk

+ ⟨∇f2(x̃k), x̃k − x⋆⟩

= ⟨∇f1(x̃k+1) + ∇f2(x̃k), x̃k+1 − x⋆⟩ + 1
2∥x̃k+1 − x̃k∥2

Θk ,

where (1) uses convexity of f1 and 1-relative smoothness of f2, and (2) uses convexity of f2. Inserting the
upper bound on f(x̃k+1) − f(x) into the expression for Q(w, w̃k+1), we find

Q(w, w̃k+1) ≤⟨∇f1(x̃k+1) + ∇f2(x̃k), x̃k+1 − x⋆⟩ + 1
2∥x̃k+1 − x̃k∥2

Θk + g(z̃k+1) − g(z⋆)

+ ⟨ρu,Mx̃k+1 −Nz̃k+1⟩ − ⟨ρũk+1,Mx⋆ −Nz⋆⟩.
(23)

Now, using the inexact optimality condition for the x-subproblem (Lemma 3), the above display becomes

Q(w, w̃k+1) ≤ ⟨Θk(x̃k+1 − x̃k), x⋆ − x̃k+1⟩ + ρ⟨Mx̃k+1 +Nz̃k + ũk,M(x⋆ − x̃k+1)⟩ + Cxε
k
x (24)

+ 1
2∥x̃k+1 − x̃k∥2

Θk + g(z̃k+1) − g(z⋆) + ⟨ρu,Mx̃k+1 +Nz̃k+1⟩ − ⟨ρũk+1,Mx⋆ +Nz⋆⟩. (25)

Similarly, applying the inexact optimality for the z-subproblem (Lemma 4), we further obtain

Q(w, w̃k+1) ≤ ⟨Θk(x̃k+1 − x̃k), x⋆ − x̃k+1⟩ + ρ⟨Mx̃k+1 +Nz̃k + ũk,M(x⋆ − x̃k+1)⟩ + Cxε
k
x

+ 1
2∥x̃k+1 − x̃k∥2

Θk − ρ⟨NT ũk+1, z̃k+1 − z⋆⟩ + ⟨Ψk(z̃k+1 − z̃k), z⋆ − z̃k+1⟩ + Cz

√
εkz (26)

+ ⟨ρu,Mx̃k+1 +Nz̃k+1⟩ − ⟨ρũk+1,Mx⋆ +Nz⋆⟩.

We now simplify (26) by combining terms. Some basic manipulations show the terms on line 2 of (26) may
be rewritten as

− ρ⟨NT ũk+1, z̃k+1 − z⋆⟩ + ρ⟨u,Mx̃k+1 +Nz̃k+1⟩ − ρ⟨ũk+1,Mx⋆ +Nz⋆⟩
= ρ⟨u− ũk+1, M̃ x̃k+1 +Nz̃k+1⟩ − ρ⟨ũk+1,M(x⋆ − x̃k+1)⟩.

We can combine the preceding display with the second term of line 1 in (26) to reach

ρ⟨Mx̃k+1 +Nz̃k + ũk,M(x⋆ − x̃k+1)⟩ − ρ⟨ũk+1,M(x⋆ − x̃k+1)⟩ + ρ⟨u− ũk+1,Mx̃k+1 +Nz̃k+1⟩
= ρ⟨ũk+1 +N(z̃k − z̃k+1),M(x⋆ − x̃k+1)⟩ − ρ⟨ũk+1,M(x⋆ − x̃k+1)⟩ + ρ⟨u− ũk+1,Mx̃k+1 +Nz̃k+1⟩
= ρ⟨N(z̃k − z̃k+1),M(x⋆ − x̃k+1) + ρ⟨u− ũk+1,Mx̃k+1 +Nz̃k+1⟩
= ρ⟨N−(z̃k+1 − z̃k),M(x⋆ − x̃k+1)⟩ + ρ⟨ũk+1 − u, ũk − ũk+1⟩,

where N− = −N. Inserting the preceding simplification into (26), we reach

Q(w, w̃k+1) ≤ ⟨Θk(x̃k+1 − x̃k), x⋆ − x̃k+1⟩ + ρ⟨ũk+1 − u, ũk − ũk+1⟩
+ ⟨Ψk(z̃k+1 − z̃k), z⋆ − z̃k+1⟩ + ρ⟨N−(z̃k+1 − z̃k),M(x⋆ − x̃k+1)⟩

+ 1
2∥x̃k+1 − x̃k∥2

Θk + Cxε
k
x + Cz

√
εkz .

(27)
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Now, we bound the first two leading terms in line 1 of (27) by invoking the identity ⟨a − b,Υ(c − d)⟩ =
1/2

(
∥a− d∥2

Υ − ∥a− c∥2
Υ
)

+ 1/2
(
∥c− b∥2

Υ − ∥d− b∥2
Υ
)

to obtain

⟨Θk(x̃k+1 − x̃k), x⋆ − x̃k+1⟩ + ρ⟨ũk+1 − u, ũk − ũk+1⟩ =
1
2
(
∥x⋆ − x̃k∥2

Θk − ∥x⋆ − x̃k+1∥2
Θk

)
− 1

2∥x̃k+1 − x̃k∥2
Θk + ρ

2
(
∥ũk − u∥2 − ∥ũk+1 − u∥2 − ∥ũk − ũk+1∥2) .

Similarly, to bound the third and fourth terms in (27), we again invoke (a − b)TΥ(c − d) =
1/2

(
∥a− d∥2

Υ − ∥a− c∥2
Υ
)

+ 1/2
(
∥c− b∥2

Υ − ∥d− b∥2
Υ
)

which yields

⟨Ψk(z̃k+1 − z̃k), z⋆ − z̃k+1⟩ = 1
2
(
∥z̃k − z⋆∥2

Ψk − ∥z̃k+1 − z⋆∥2
Ψk

)
− 1

2∥z̃k+1 − z̃k∥2
Ψk ,

ρ⟨N−(z̃k − z̃k+1),M(x̃k+1 − x⋆)⟩

= ρ

2
(
∥N−z̃k −Mx⋆∥2 − ∥z̃k+1 −Mx⋆∥2 + ∥N−z̃k+1 −Mx̃k+1∥2 − ∥N−z̃k −Mx̃k+1∥2)

= ρ

2
(
∥Nz̃k −Nz⋆∥2 − ∥Nz̃k+1 −Nz⋆∥2 − ∥Mx̃k+1 +Nz̃k∥2)+ ρ

2∥ũk − ũk+1∥2.

Putting everything together, we conclude

Q(w, w̃k+1) ≤ 1
2
(
∥x̃k − x⋆∥2

Θk − ∥x̃k+1 − x⋆∥2
Θk

)
+ 1

2

(
∥z̃k − z⋆∥2

Ψk+ρNTN − ∥z̃k+1 − z⋆∥2
Ψk+ρNTN

)
+ ρ

2
(
∥ũk − u∥2 − ∥ũk+1 − u∥2)+ Cxε

k
x + Cz

√
εkz .

as desired.

5.4 Proof of Theorem 1

With Lemma 5 in hand, we are ready to prove Theorem 1.

Proof. From Lemma 5, we have for each k that

Q(w, w̃k+1) ≤ 1
2
(
∥x̃k − x⋆∥2

Θk − ∥x̃k+1 − x⋆∥2
Θk

)
+ 1

2

(
∥z̃k − z⋆∥2

Ψk+ρNTN − ∥z̃k+1 − z⋆∥2
Ψk+ρNTN

)
+ ρ

2
(
∥ũk − u∥2 − ∥ũk+1 − u∥2)+ Cxε

k
x + Cz

√
εkz .

Now, summing up the preceding display from k = 1 to t and using w = (x⋆, z⋆, u), we obtain

t+1∑
k=2

Q(x⋆, z⋆, u; w̃k) ≤ 1
2

t∑
k=1

(
∥x̃k − x⋆∥2

Θk − ∥x̃k+1 − x⋆∥2
Θk

)
︸ ︷︷ ︸

T1

+ ρ

2

t∑
k=1

(
∥z̃k − z⋆∥2

Ψk+ρNTN − ∥z̃k+1 − z⋆∥2
Ψk+ρNTN

)
︸ ︷︷ ︸

T2

+ ρ

2

t∑
k=1

(
∥ũk − u∥2 − ∥ũk+1 − u∥2)

︸ ︷︷ ︸
T3

+CxEx + CzEz.

14
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We now turn to bounding T1. Using the definition of T1, we find

T1 = 1
2

t∑
k=1

(
∥x̃k − x⋆∥2

Θk − ∥x̃k+1 − x⋆∥2
Θk

)
= 1

2
(
∥x̃1 − x⋆∥2

Θ1 − ∥x̃t+1 − x⋆∥2
Θt

)
+ 1

2

t∑
k=2

(
∥x̃k − x⋆∥2

Θk − ∥x̃k − x⋆∥2
Θk−1

)
.

Now using our hypotheses on the sequence {Θk}k in (15), we obtain

∥x̃k − x⋆∥2
Θk − ∥x̃k − x⋆∥2

Θk−1 = (x̃k − x⋆)T (Θk − Θk−1)(x̃k − x⋆) ≤ ζk−1∥x̃k − x⋆∥2
Θk−1

≤ τζζ
k−1∥x̃k − x⋆∥2

Θ1 .

Inserting the previous bound into T1, we reach

T1 ≤ 1
2∥x̃1 − x⋆∥2

Θ1 + 1
2τζ

t∑
k=1

ζk−1∥x̃k − x⋆∥2
Θ1 − 1

2∥x̃t+1 − x⋆∥2
Θt

≤ 1
2
(
∥x̃1 − x⋆∥2

Θ1 + CζEζ
)

− 1
2∥x̃t+1 − x⋆∥2

Θt

≤ 1
2
(
d2
x⋆,Θ1 + CζEζ

)
.

Next, we bound T2.

T2 = 1
2

t∑
k=1

(
∥z̃k − z⋆∥2 − ∥z̃k+1 − z⋆∥2)+ 1

2

t∑
k=1

(
∥z̃k − z⋆∥2

Ψk+ρNTN − ∥z̃k+1 − z⋆∥2
Ψk+ρNTN

)
≤ ρ

2

t∑
i=1

(
∥z̃k − z⋆∥2 − ∥z̃k+1 − z⋆∥2)+ 1

2
(
∥z̃1 − z⋆∥2

Ψ1 + CζEζ
)

= 1
2∥z̃1 − z⋆∥2

Ψ1+ρI = 1
2d

2
z⋆,Ψ1

ρ,N
+ Cζ

2 Eζ .

Last, T3 is a telescoping sum, hence

T2 = ρ

2

t∑
k=1

(
∥ũk − u∥2 − ∥ũk+1 − u∥2) = ρ

2
(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2) .

Using our bounds on T1 through T3, we find
t+1∑
k=2

Q(x⋆, z⋆, u; w̃k) ≤ 1
2
(
d2
x⋆,Θ1 + CζEζ

)
+ 1

2d
2
z⋆,Ψ1

ρ,N
+ 1

2CζEζ + CxEx + CzEz

+ ρ

2
(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2)

= 1
2d

2
x⋆,Θ1 + 1

2d
2
z⋆,Ψ1

ρ,N
+ CxEx + CzEz + CζEζ + ρ

2
(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2) ,

Now, as w̄t+1 = 1
t

∑t+1
k=2 w̃

k, the convexity of Q in its second argument yields

Q(x⋆, z⋆, u; w̄t+1) ≤ 1
t

t+1∑
k=2

Q(x⋆, z⋆, u; w̃k)

≤ 1
t

(
1
2d

2
x⋆,Θ1 + ρ

2d
2
z⋆,Ψ1

ρ,N
+ CxEx + CzEz + CζEζ + ρ

2
(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2)) .

(28)

15
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Define Γ := 1
2d

2
x⋆,Θ1 + 1

2d
2
z⋆,Ψ1

ρ,N
+ CxEx + CzEz + CζEζ . Since Q(w⋆, w̄t+1) ≥ 0, by (28) we reach

∥ũt+1 − u⋆∥2 ≤ 2
ρ

Γ + d2
u⋆ .

Let ṽt+1 = 1
t

(
ũ1 − ũt+1). Then we can bound ∥ṽt+1∥2 as

∥ṽt+1∥2 ≤ 2
t2
(
∥ũ1 − u⋆∥2 + ∥ũt+1 − u⋆∥2) ≤ 4

t2

(
Γ
ρ

+ d2
u⋆

)
.

By (28), given the fact ũ1 = 0, we also have

Q(x⋆, z⋆, u; w̄t+1) ≤ Γ − ρ⟨ũ1 − ũt+1, u⟩
t

= Γ
t

− ρ⟨ṽt+1, u⟩,

where the equality follows from the definition of ṽt+1. Hence for any u

Q(x⋆, z⋆, u; w̄t+1) + ⟨ṽt+1, ρu⟩ ≤ Γ
t
,

and therefore
ℓU (ṽt+1, w̄t+1) ≤ 1

t

(
1
2d

2
x⋆,Θ1 + 1

2d
2
z⋆,Ψ1

ρ,N
+ CxEx + CzEz + CζEζ

)
.

We finish the proof by invoking Lemma 2. □

6 Linear convergence of GeNI-ADMM

In this section, we seek to establish linear convergence results for Algorithm 2. In general, the linear
convergence of ADMM relies on strong convexity of the objective function (Boyd et al., 2011; Nishihara
et al., 2015; Parikh & Boyd, 2014). Consistently, the linear convergence of GeNI-ADMM also requires strong
convexity. Many applications of GeNI-ADMM fit into this setting, such as elastic net (Friedman et al.,
2010). However, linear convergence is not restricted to strongly convex problems. It has been shown that
local linear convergence of ADMM can be guaranteed even without strong convexity (Yuan et al., 2020).
Experiments in Section 8 show the same phenomenon for GeNI-ADMM: it converges linearly after a couple
of iterations when the iterates reach some manifold containing the solution. The linear convergence theory
of GeNI-ADMM provides a way to understand this phenomenon. We first list the additional assumptions
required for linear convergence:

Assumption 5 (Optimization is over the whole space). The sets X and Z in (1) satisfy

X = X , and Z = Z.

Assumption 5 states that the optimization problem in (1) is over the entire spaces X and Z, not closed subsets.
This assumption is met in many practical optimization problems of interest, where X = Z = H = Rd.
Moreover, it is consistent with prior analyses such as Deng & Yin (2016), who specialize their analysis to
the setting of the last sentence.

Assumption 6 (Regularity of f). The function f is finite valued, strongly convex with parameter σf , and
smooth with parameter Lf .

Assumption 6 imposes standard regularity conditions on f , in addition to the conditions of Assumption 2.

Assumption 7 (Non-degeneracy of constraint operators). The linear operators MMT and NTN are in-
vertible.

Assumption 7 is consistent with prior analyses of ADMM-type schemes under strong convexity, such as Deng
& Yin (2016), who make this assumption in their analysis of Generalized ADMM. Moreover, the assumption
holds in many important application problems, especially those that arise from machine learning where,
typically, M = I and N = −I.
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Assumption 8 (Geometric decay of the forcing sequences). There exists a constant q > 0 such that the
forcing sequences {εkx}k≥1, {εkz}k≥1 satisfy

εk+1
x ≤ εkx/(1 + q), and εk+1

z ≤ εkz/(1 + q)2. (29)

Moreover, we assume Algorithm 2 is equipped with oracles for solving the x and z-subproblems, which at each
iteration produce approximate solutions x̃k+1, z̃k+1 satisfying:

x̃k+1 εk
x≈ argmin

x∈X
{f1(x) + ⟨∇f2(x̃k), x− x̃k⟩ + 1

2∥x− x̃k∥2
Θk + ρ

2∥Mx+Nz̃k + ũk∥2},

z̃k+1 εk
z

≊ argmin
z∈Z

{g(z) + ρ

2∥Mx̃k+1 +Nz + ũk∥2 + 1
2∥z − z̃k∥2

Ψk }.

Assumption 8 replaces Assumption 3 and requires the inexactness sequences to decay geometrically. Com-
pared with the sublinear convergence result, linear convergence requires more accurate solutions to the sub-
problems. Again, since the z-subproblem inexactness is weaker than the x-subproblem inexactness, {εkz}k≥1
should have a faster decay rate (1 + q)2 than the decay rate (1 + q) of {εkx}k≥1.

The requirement that the forcing sequences decay geometrically is somewhat burdensome, as it leads to
the subproblems needing to be solved to higher accuracy sooner than if the forcing sequences were only
summable. Fortunately, this condition seems to be an artifact of the analysis; our numerical experiments
with strongly convex f (Section 8.2) only use summable forcing sequences but show linear convergence of
GeNI-ADMM.

6.1 Our approach

Inspired by Deng & Yin (2016), we take a Lyapunov function approach to proving linear convergence. Let
w̃ = (x̃, z̃, ũ), and w⋆ = (x⋆, z⋆, u⋆). We define the Lyapunov function:

Φk = 1
ρ

∥x̃k − x⋆∥2
Θk + 1

ρ
∥z̃k − z̃⋆∥2

Ψk+ρNTN + ∥ũk − u⋆∥2 = ∥w̃k − w⋆∥2
Gk ,

where

Gk :=


1
ρΘk 0 0

0 1
ρΨk +NTN 0

0 0 I

 .

Our main result in this section is the following theorem, which shows the Lyapunov function converges
linearly to 0.

Theorem 2. Instate Assumptions 1-2, and Assumptions 4-8. Moreover, suppose that θmin in (14) satisfies
θmin > L2

f/σf . Then there exist constants δ and S > 0 such that if q > δ,

(1 + δ)kΦk ≤ τζΦ1 + S. (30)

Hence after k = O
(

1
δ log

(
τζΦ1

ϵ

))
iterations,

Φk ≤ ϵ.

The proof of Theorem 2 is deferred to Section 6.3. As Gk ≻ 0 for all k, Theorem 2 implies the iter-
ates (x̃k, z̃k, ũk) converge linearly to optimum (x⋆, z⋆, u⋆). Thus, despite inexactly solving approximations
of the original ADMM subproblems, GeNI-ADMM still enjoys linear convergence when the objective is
strongly convex. An unattractive aspect of Theorem 2 is the requirement that θmin satisfy θmin > L2

f/σf .
Although this condition can be enforced by adding a damping term σI to Θk, this is undesirable as a
large regularization term can lead GeNI-ADMM to converge slower. We have found that this condition
is unnecessary—our numerical experiments do not enforce this condition, yet GeNI-ADMM achieves linear
convergence. We believe this condition to be an artifact of the analysis, which stems from lower bounding
the term −⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩ in Lemma 7.
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6.2 Sufficient descent

From Theorem 2, to establish linear convergence of GeNI-ADMM, it suffices to show Φk decreases geomet-
rically. We take two steps to achieve this. First, we show that ∥w̃k −w⋆∥2

Gk − ∥w̃k+1 −w⋆∥2
Gk decreases for

every iteration k (Lemma 7). Second, we show that Φk+1 decreases geometrically by a factor of 1/(1 + δ)
with respect to Φk and some small error terms that stem from inexactness (Lemma 8).

As in the convex case, the optimality conditions of the subproblems play a vital role in the analysis. Since
the subproblems are only solved approximately, we must again consider the inexactness of the solutions
in these two steps. For the first step, we use strong convexity of f and convexity of g with appropriate
perturbations to account for the inexactness. We call these conditions perturbed convexity conditions, as
outlined in Lemma 6.

Lemma 6 (Perturbed convexity). Instate the assumptions of Theorem 2. Let x̃k+1 and z̃k+1 be the inexact
solutions of x and z-subproblems under Definition 1. Recall (x⋆, z⋆, u⋆) is a saddle point of (1). Then for
some constant C ≥ 0, the following inequalities are satisfied:

1. (Semi-inexact f -strong convexity)

⟨x̃k − x̃k+1, x̃k+1 − x⋆⟩Θk + ρ⟨N(z̃k+1 − z̃k) + u⋆ − ũk+1,M(x̃k+1 − x⋆)⟩ + Cεkx (31)
≥ σf∥x̃k+1 − x⋆∥2 − ⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩,

2. (Semi-inexact g-convexity)

⟨z̃k+1 − z⋆, ρNT (u⋆ − ũk+1) + Ψk(z̃k − z̃k+1)⟩ ≥ −C
√
εkz . (32)

A detailed proof of Lemma 6 is presented in Appendix B.3. In Lemma 6, we call (31) and (32) semi-inexact
(strong) convexity because x⋆ (z⋆) is part of the exact saddle point but x̃k+1 (z̃k+1) is an inexact subproblem
solution. With Lemma 6, we establish a descent-type inequality, which takes into inexactness.

Lemma 7 (Inexact sufficient descent). Define εkw = εkx +
√
εkz , then the following descent condition holds.

∥w̃k − w⋆∥2
Gk − ∥w̃k+1 − w⋆∥2

Gk + Cεkw ≥ 1
2∥w̃k − w̃k+1∥2

Gk + 2σf
ρ

∥x̃k+1 − x⋆∥2 (33)

− 2
ρ

⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩.

Proof. Adding the inequalities (31) and (32) together, and using the relation M(x̃k+1 − x⋆) = ũk+1 − ũk +
N(z⋆ − z̃k+1), we reach

⟨x̃k − x̃k+1, x̃k+1 − x⋆⟩Θk + ⟨z̃k − z̃k+1, z̃k+1 − z⋆⟩Ψk+ρNTN + ρ⟨ũk − ũk+1, ũk+1 − u⋆⟩ + Cεkx

≥ σf∥x̃k+1 − x⋆∥2 − ⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩ − C
√
εkz + ρ⟨ũk − ũk+1, N(z̃k+1 − z̃k)⟩

Recalling the definitions of w̃, εkw, and Gk, and using the identity ⟨a − b,Υ(c − d)⟩ =
1/2

(
∥a− d∥2

Υ − ∥a− c∥2
Υ
)

+ 1/2
(
∥c− b∥2

Υ − ∥d− b∥2
Υ
)
, we arrive at

∥w̃k − w⋆∥2
Gk − ∥w̃k+1 − w⋆∥2

Gk + εkw ≥ 2σf
ρ

∥x̃k+1 − x⋆∥2 + ∥w̃k+1 − w̃k∥2
Gk

+ ⟨ũk − ũk+1, N(z̃k+1 − z̃k)⟩ − 2
ρ

⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩.
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Now, for the term ∥w̃k+1 − w̃k∥2
Gk + ⟨ũk − ũk+1, N(z̃k+1 − z̃k)⟩, Cauchy-Schwarz implies

∥w̃k+1 − w̃k∥2
Gk + ⟨ũk − ũk+1, N(z̃k+1 − z̃k)⟩

≥ ∥w̃k+1 − w̃k∥2
Gk − 1

2∥ũk+1 − ũk∥2 − 1
2∥z̃k+1 − z̃k∥2

NTN

≥ ∥w̃k+1 − w̃k∥2
Gk − 1

2∥ũk+1 − ũk∥2 − 1
2∥z̃k+1 − z̃k∥2

1/ρΨk+NTN

= 1
2∥w̃k+1 − w̃k∥2

Gk .

Hence we obtain

∥w̃k − w⋆∥2
Gk − ∥w̃k+1 − w⋆∥2

Gk + Cεkw ≥ 2σf
ρ

∥x̃k+1 − x⋆∥2 + 1
2∥w̃k+1 − w̃k∥2

Gk

− 2
ρ

⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩,

as desired. □

Given the inexact sufficient descent condition (33), the next step in proving linear convergence is to show
(33) leads to a contraction relation between Φk+1 and Φk.

Lemma 8 (Inexact Contraction Lemma). Under the assumptions of Theorem 2, there exists constants δ > 0,
and C ≥ 0 such that

(1 + δ)Φk+1 ≤ (1 + ζk)
(
Φk + Cεkw

)
. (34)

The proof of Lemma 8, and an explicit expression for δ, appears in Appendix B.3. As in Theorem 2, the
constant δ gives the rate of linear convergence and depends on the conditioning of f and the constraint
matrices M and N . The better the conditioning, the faster the convergence, with the opposite holding true
as the conditioning worsens. With Lemma 8 in hand, we now prove Theorem 2.

6.3 Proof of Theorem 2

Proof. By induction on (34), we have

(1 + δ)kΦk ≤

 k∏
j=1

(1 + ζj)

Φ1 + C

k∑
j=1

 k∏
i=j

(1 + ζi)

 (1 + δ)j−1εjw

≤ τζΦ1 + Cτζ

k∑
j=1

(1 + δ)j−1εjw ≤ τζΦ1 + Cτζ

k∑
j=1

(
1 + δ

1 + q

)j−1

≤ τζΦ1 + Cτζ

1 − 1+δ
1+q

= τζΦ1 + S,

where the second inequality uses Assumption 8 to reach εjw ≤ C
(1+q)j , and the third inequality uses q > δ to

bound the sum by the sum of the geometric series. Hence, we have shown the first claim. The second claim
follows immediately from the first via a routine calculation. □

7 Applications

This section applies our theory to establish convergence rates for NysADMM and sketch-and-solve ADMM.
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7.1 Convergence of NysADMM

Algorithm 3 NysADMM
input: penalty parameter ρ, step-size η, regularization σ ≥ 0, forcing sequences {εkx}k≥1, {εkz}k≥1

repeat
Find εkx-approximate solution x̃k+1 of

(ηHk
f + (ρ+ ησ)I)x = η(Hk

f + σI)x̃k − ∇f(x̃k) + ρ(z̃k − ũk)

z̃k+1
εk

z

≊ argmin
z∈Z

{g(z) + ρ
2 ∥Mx̃k+1 − z + ũk∥2}

ũk+1 = ũk +Mx̃k+1 − z̃k+1

until convergence
output: solution (x⋆, z⋆) of problem (1)

We begin with the NysADMM scheme from Zhao et al. (2022). Recall NysADMM is obtained from Algo-
rithm 2 by setting f1 = 0, f2 = f , using the exact Hessian Θk = Hf (x̃k) = η(Hk

f + σI), and setting Ψk = 0.
Instantiating these selections into Algorithm 2, we obtain NysADMM, presented as Algorithm 3. Compared
to the original NysADMM, Algorithm 3 adds a regularization term σI to the Hessian. In theory, when f is
only convex, this regularization term is required to ensure the condition Θk ⪰ θmin of Assumption 2, as the
Hessian along the optimization path may fail to be uniformly bounded below. The addition of the σI term
removes this issue. However, the need for this term seems to be an artifact of the proof, as Zhao et al. (2022)
runs Algorithm 3 on non-strongly convex objectives with σ = 0, and convergence is still obtained. Similarly,
we set σ = 0 in all our experiments, and convergence consistent with our theory is obtained. Hence, in
practice, we recommend setting σ = 0, or some small value, say σ = 10−8, so that convergence isn’t slowed
by unneeded regularization.

The x-subproblem for NysADMM is a linear system. NysADMM solves this system using the Nyström PCG
method from Frangella et al. (2023). The general convergence of NysADMM was left open in Zhao et al.
(2022), which established convergence only for quadratic f . Moreover, the result in Zhao et al. (2022) does
not provide an explicit convergence rate. We shall now rectify this state of affairs using Theorem 1. We
obtain the following convergence guarantee by substituting the parameters defining NysADMM (with the
added σI term) into Theorem 1.

Corollary 1 (Convergence of NysADMM). Instate the assumptions of Theorem 1. Let σ > 0. Set f1 =
0, f2 = f , η = L̂f , Θk = η(Hk

f + σI), and Ψk = 0 in Algorithm 2. Then

f(x̄t+1) + g(z̄t+1) − p⋆ ≤ Γ
t
, ∥Mx̄t+1 +Nz̄t+1∥ ≤ 2

t

√
Γ
ρ

+ d2
u⋆ .

Here Γ and d2
u⋆ are the same as in Theorem 1.

NysADMM converges at the same O(1/t)-rate as standard ADMM, despite all the approximations it makes.
Thus, NysADMM offers the same level of performance as ADMM, but is much faster due to its use of
inexactness. This result is empirically verified in Section 8, where NysADMM converges almost identically
to ADMM. Corollary 1 supports the empirical choice of a constant step-size η = 1, which was shown to have
excellent performance uniformly across tasks in Zhao et al. (2022): the theorem sets η = L̂f and L̂f = 1
for quadratic functions, and satisfies L̂f = O(1) for loss functions such as the logistic loss. We recommend
setting η = 1 as the default value for GeNI-ADMM. Given NysADMM’s superb empirical performance in
Zhao et al. (2022) and the firm theoretical grounding given by Corollary 1, we conclude that NysADMM
provides a reliable framework for solving large-scale machine learning problems.
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7.2 Convergence of sketch-and-solve ADMM

Algorithm 4 Sketch-and-solve ADMM
input: penalty parameter ρ, step-size η, {εkz}k≥1

repeat
Find solution x̃k+1 of

(ηĤk + (ρ+ ηγk)I)x = η
(
Ĥk + γkI

)
x̃k − ∇f(x̃k) + ρ(z̃k − ũk)

z̃k+1
εk

z

≊ argmin
z∈Z

{g(z) + ρ
2 ∥Mx̃k+1 − z + ũk∥2}

ũk+1 = ũk +Mx̃k+1 − z̃k+1

until convergence
output: solution (x⋆, z⋆) of problem (1)

Sketch-and-solve ADMM is obtained from GeNI-ADMM by setting Θk to be an approximate Hessian com-
puted by a sketching procedure. The two most popular sketch-and-solve methods are the Newton sketch
(Pilanci & Wainwright, 2017; Lacotte et al., 2021; Derezinski et al., 2021) and Nyström sketch-and-solve
(Bach, 2013; Alaoui & Mahoney, 2015; Frangella et al., 2023). Both methods use an approximate Hessian
that is cheap to compute and yields a linear system that is fast to solve. ADMM together with sketching
techniques, provides a compelling means to handle massive problem instances. The recent survey Buluc et al.
(2021) suggests using sketching to solve a quadratic ADMM subproblem for efficiently solving large-scale
inverse problems. However, it was previously unknown whether the resulting method would converge. Here,
we formally describe the sketch-and-solve ADMM method and prove convergence.

Sketch-and-solve ADMM is obtained from Algorithm 2 by setting

Θk = η
(
Ĥk + γkI

)
, (35)

where Ĥk is an approximation to the Hessian Hf (x̃k) at the kth iteration, and γk ≥ 0 is a constant chosen
to ensure convergence. The term γkI ensures that the approximate linearization satisfies the Θ-relative
smoothness condition when γk is chosen appropriately, as in the following lemma:

Lemma 9. Suppose f is L̂f -relatively smooth with respect to its Hessian Hf . Construct {Θk}k≥1 as in (35)
and select γk > 0 such that γk ≥ ∥Ek∥ = ∥Hf (x̃k) − Ĥk∥ for every k. Then

f(x) ≤ f(x̃k) + ⟨∇f(x̃k), x− x̃k⟩ + L̂f
2 ∥x− x̃k∥2

Θk .

Lemma 9 shows we can ensure relative smoothness by selecting γk > 0 appropriately. Assuming rela-
tive smoothness, we may invoke Theorem 1 to guarantee that sketch-and-solve ADMM converges. Unlike
with NysADMM, we find it is necessary to select γk carefully (such as in Lemma 9) to ensure the relative
smoothness condition holds, otherwise sketch-and-solve ADMM will diverge, see Section 8.3 for numerical
demonstration. This condition is somewhat different from those in prior sketching schemes in optimiza-
tion, such as the Newton Sketch (Pilanci & Wainwright, 2017; Lacotte et al., 2021), where convergence is
guaranteed as long as the Hessian approximation is invertible.

Corollary 2. Suppose f is L̂f -relatively smooth with respect to its Hessian Hf and instate the assumptions
of Theorem 1. In Algorithm 2, Set Θk = η(Ĥk + γkI) with η = L̂f , γk = ∥Ek∥ = ∥Ĥk − Hf (x̃k)∥, and
Ψk = 0. Then

f(x̄t+1) + g(z̄t+1) − p⋆ ≤ 1
t

(
L̂f

(
d2
x⋆,Hf (x̃1) + ∥E1∥d2

x⋆

)
+ ρ

2d
2
z⋆ + CxEx + CzEz + CζEζ

)
=: 1

t
Γ̂
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and

∥Mx̄t+1 − z̄t+1∥ ≤ 2
t

√
Γ̂
ρ

+ d2
u⋆ .

Here variables x̄t+1 and z̄t+1, diameters d2
x⋆,Hf (x̃1), d2

z⋆ , and d2
u⋆ , and constants Cx, Cz, Ex, Ez, Eζ , R⋆, and

p⋆ are all defined as in Theorem 1.

Remark 2. It is not hard to see Corollary 2 also holds for any γ > 0 if the {Θk}k≥1 satisfy

(1 − τ)(Hk
f + γI) ⪯ Θk ⪯ (1 + τ)(Hk

f + γI),

for some τ ∈ (0, 1), and η ≥ L̂f/(1−τ). Many sketching methods can ensure this relative error condition with
high probability (Karimireddy et al., 2018) by choosing the sketch size proportional to the effective dimension
of Hf + γI (Frangella et al., 2023; Lacotte et al., 2021).

Corollary 2 shows sketch-and-solve ADMM obtains an O(1/t)-convergence rate. The main difference between
NysADMM and sketch-and-solve is the additional error term due to the use of the approximate Hessian,
which results in a slightly slower convergence rate. In this sense, sketch-and-solve ADMM can be regarded
as a compromise between NysADMM (Θk = η(Hf (x̃k) + σI)) and gradient descent ADMM (Θk = ηI) —
with the convergence rate improving as the accuracy of the Hessian approximation increases.

8 Numerical experiments

In this section, we numerically illustrate the convergence results developed in Section 5 for several methods
highlighted in Section 3.1.1 that fit into the GeNI-ADMM framework: sketch-and-solve ADMM (Algo-
rithm 4), NysADMM (Algorithm 3), and “gradient descent” ADMM (GD-ADMM) (11). As a baseline, we
also compare to exact ADMM (Algorithm 1) to see how various approximations or inexactness impact the
convergence rate. We conduct three sets of experiments that verify different aspects of the theory:

• Section 8.1 verifies that NysADMM, GD-ADMM and sketch-and-solve ADMM converge sublinearly
for convex problems. Moreover, we observe a fast transition to linear convergence, after which all
methods but GD-ADMM converge quickly to high accuracy.

• Section 8.2 verifies that NysADMM, GD-ADMM, and sketch-and-solve ADMM converge linearly for
strongly convex problems.

• Section 8.3 verifies that, without the correction term, sketch-and-solve ADMM diverges, showing
the necessity of the correction term in Section 7.2.

We consider three common problems in machine learning and statistics in our experiments: lasso (Tibshi-
rani, 1996), elastic net regression (Zou & Hastie, 2005), and ℓ1-logistic regression (Hastie et al., 2015). All
experiments use the realsim dataset from LIBSVM (Chang & Lin, 2011), accessed through OpenML (Van-
schoren et al., 2013), which has 72, 309 samples and 20, 958 features. Our experiments use a subsample of
realsim, consisting of 10, 000 random samples, which ensures the objective is not strongly convex for lasso
and ℓ1-logistic regression.

For NysADMM, a sketch size of 50 is used to construct the Nyström preconditioner, and for sketch-and-
solve ADMM, we use a sketch size 500 to form the Hessian approximation. For sketch-and-solve ADMM,
the parameter γk in (35) is chosen by estimating the error of the Nyström sketch using power iteration.

All experiments are performed in the Julia programming language (Bezanson et al., 2017) on a MacBook Pro
with a M1 Max processor and 64GB of RAM. To compute the “true” optimal values, we use the commercial
solver Mosek (ApS, 2022) (with tolerances set low for high accuracy and presolve turned off to preserve the
problem scaling) and the modeling language JuMP (Dunning et al., 2017; Legat et al., 2021).
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(a) Primal residual convergence (b) Dual residual convergence

(c) Dual gap convergence (d) Objective value convergence

Figure 1: Convergence of lasso regression for NysADMM, sketch-and-solve ADMM, and gradient descent
ADMM.

8.1 GeNI-ADMM converges sublinearly and locally linearly on convex problems

To illustrate the global sublinear convergence of GeNI-ADMM methods on convex objectives, we look at
the performance of ADMM, NysADMM, GD-ADMM, and sketch-and-solve ADMM on solving a lasso and
ℓ1-logistic regression problem with the realsim dataset. Note, as the number of samples is smaller than the
number of features, the corresponding optimization problems are convex but not strongly convex.

Lasso regression The lasso regression problem is to minimize the ℓ2 error of a linear model with an ℓ1
penalty on the weights:

minimize (1/2)∥Ax− b∥2
2 + γ∥x∥1.

This can be easily transformed into the form (1) by taking f(x) = (1/2)∥Ax − b∥2
2, g(z) = γ∥z∥1, M = I,

N = −I, and X = Z = Rn. We set γ = 0.05 · γmax, where γmax = ∥AT b∥∞ is the value above which the all
zeros vector is optimal Hastie et al. (2015). We stop the algorithm when the gap is less than 10−4, or after
500 iterations.

The results of lasso regression are illustrated in Figure 1. Figure 1 shows all methods initially converge at
sublinear rate, but quickly transition to a linear rate of convergence after reaching some manifold containing
the solution. ADMM, NysADMM, and sketch-and-solve ADMM (which use curvature information) all
converge converge much faster then GD-ADMM, confirming the predictions of Section 5 that methods
which use curvature information will converge faster than methods that do not. Moreover, the difference
in convergence between NysADMM and ADMM is negligible, despite the former having a much cheaper
iteration complexity due to the use of inexact linear system solves.

L1-Logistic Regression We set γ = 0.05 ·γmax, where γmax = (1/2)∥AT1∥∞ is the value above which the
all zeros vector is optimal. For NysADMM, the preconditioner is re-constructed after every 20 iterations.
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(a) Primal residual convergence (b) Dual residual convergence

(c) Dual gap convergence (d) Objective value convergence

Figure 2: Convergence of logistic regression for NysADMM, sketch-and-solve ADMM, and gradient descent
ADMM.

For sketch-and-solve ADMM, we re-construct the approximate Hessian at every iteration. Since the x-
subproblem is not a quadratic program, we use the L-BFGS (Liu & Nocedal, 1989) implementation from the
Optim.jl package (Mogensen & Riseth, 2018) to solve the x-subproblem.

Figure 2 presents the results for logistic regression. The results are consistent with the lasso experiment—all
methods initially converge sublinearly before quickly transitioning to linear convergence, and methods using
better curvature information, converge faster. In particular, although sketch-and-solve-ADMM converges
slightly faster than GD-ADMM, its convergence is much slower than NysADMM, which more accurately
captures the curvature due to using the exact Hessian. The convergence of NysADMM and ADMM is
essentially identical, despite the former having a much cheaper iteration cost due to approximating the
x-subproblem and using inexact linear system solves.

8.2 GeNI-ADMM converges linearly on strongly convex problems

To verify the linear convergence of GeNI-ADMM methods in the presence of strong convexity, we experiment
with the elastic net problem:

minimize (1/2)∥Ax− b∥2
2 + γ∥x∥1 + (µ/2)∥x∥2

2.

We set µ = 1, and use the same problem data and value of γ as the lasso experiment. The results of the
elastic-net experiment are presented in Figure 3. Comparing Figures 1 and 3, we clearly observe the linear
convergence guaranteed by the theory in Section 6. Although in Figure 1, ADMM and NysADMM quickly
exhibit linear convergence, Figure 3 clearly shows strong convexity leads to an improvement in the number
of iterations required to converge. Moreover, we see methods that make better use of curvature information
converge faster than methods that do not, consistent with the results of the lasso and logistic regression
experiments.
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(a) Primal residual convergence (b) Dual residual convergence

(c) Objective value convergence

Figure 3: Convergence of elastic net regression for NysADMM, sketch-and-solve ADMM, and gradient descent
ADMM.

(a) Lasso regression (b) Logistic regression

Figure 4: We show the convergence or lack thereof for sketch-and-solve ADMM with (solid lines) and without
(dashed lines) the correction term required by the theoretical results (see section 7.2). When this term is
not included, the algorithm does not converge.

8.3 Sketch-and-solve ADMM fails to converge without the correction term

To demonstrate the necessity of the correction term in Section 7.2, we run sketch-and-solve ADMM on lasso
and ℓ1-logistic regression without the correction term. Figure 4 presents the results of these simulations.
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Without the correction term in (35), sketch-and-solve ADMM quickly diverges on the lasso problem. For
the logistic regression problem, it oscillates and fails to converge. These results highlight the importance of
selecting this term appropriately as discussed in Section 7.2.

9 Conclusion

In this paper, we have developed a framework, GeNI-ADMM, that facilitates efficient theoretical analysis
of approximate ADMM schemes and can aid the design of new, practical approximate ADMM methods.
GeNI-ADMM encompasses prior approximate ADMM schemes as special cases by allowing various approx-
imations to the x and z-subproblems, which can be solved inexactly. We have established the usual ergodic
O(1/t)-convergence rate for GeNI-ADMM under standard hypotheses, and linear convergence under strong
convexity. We have shown how to derive explicit rates of convergence for ADMM variants that exploit
randomized numerical linear algebra using the GeNI-ADMM framework. Specifically, we have provided con-
vergence results for NysADMM and sketch-and-solve ADMM, resolving whether these schemes are globally
convergent. Numerical experiments on real-world data generally show an initial sublinear phase, followed by
linear convergence, validating the theory we developed.
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A Appendix

B Proofs not appearing in the main paper

B.1 Proofs for Section 4

We begin with the following lemma, which plays a key role in the proof of Lemma 1. For a proof, see
Example 1.2.2. in Chapter XI of Hiriart-Urruty & Lemaréchal (1993).

Lemma 10 (ε-subdifferential of a quadratic function). Let h(z) = ⟨b, z⟩ + 1
2 ∥z∥2

A, where A is a symmetric
positive definite linear operator. Then

∂εh(z) =
{
b+A(z + v)

∣∣∣∣ ∥v∥2
A

2 ≤ ε

}
.

With Lemma 10 in hand, we now prove Lemma 1.

Proof of Lemma 1

Proof. Observe the function defining the z-subproblem may be decomposed as G(z) = g(z) + h(z) with

h(z) = ρ

2∥Mx̃k+1 +Nz + ũk∥2
2 + 1

2∥z − z̃k∥2
Ψk .

Now, by hypothesis z̃k+1 gives an εkz -minimum of G(z). Hence by Proposition 1,

0 ∈ ∂εk
z
G(z̃k+1) and ∂εk

z
G(z̃k+1) ⊂ ∂εk

z
g(z̃k+1) + ∂εk

z
h(z̃k+1).

Thus, we have 0 = sg + sh where s ∈ ∂εk
z
g(z̃k+1) and sh ∈ ∂εk

z
h(z̃k+1). Applying Lemma 10, with A =

Ψk + ρNTN and b = ρNT (Mx̃k+1 + ũk) − Ψkz̃k, we reach

sh = ρNT (Mx̃k+1 +Nz̃k+1 + ũk) + Ψk(z̃k+1 − z̃k) + v.

The desired claim now immediately follows from using s = −sh.

B.2 Proofs for Section 5

Proof of Proposition 2

Proof. Using the eigendecomposition, we may decompose Hf as

Hf = λ1(Hf )vvT +
d∑
i=2

λi(Hf )vivTi .

So

∥x⋆∥2
Hf

= λ1(Hf )⟨v, x⋆⟩2 +
d∑
i=2

λi(Hf )⟨vi, x⋆⟩2

≤ λ1(Hf )µv∥x⋆∥2 + λ2(Hf )
d∑
i=2

⟨vi, x⋆⟩2

≤
(
µv + λ2(Hf )

λ1(Hf )

)
λ1(Hf )∥x⋆∥2.
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Recalling that σ = τλ1(Hf ) with τ ∈ (0, 1), we may put everything together to conclude

(λ1(Hf ) − σ)∥x⋆∥2

∥x⋆∥2
Hf

≥ (1 − τ)λ1(Hf )∥x⋆∥2

∥x⋆∥2
Hf

≥ (1 − τ)
(
µv + λ2(Hf )

λ1(Hf )

)−1
,

proving the first claim. The second claim follows immediately from the first.

Proof of Proposition 3

Lemma 11 (Exact Gap function 1-step bound ). Let wk+1 = (xk+1, zk+1, uk+1) denote the iterates generated
by Algorithm 2 at iteration k+1, when we solve the subproblems exactly. Then, the following inequality holds

Q(w,wk+1) ≤ 1
2
(
∥z − x̃k∥2

Θk − ∥x− xk+1∥2
Θk

)
+ 1

2
(
∥z − z̃k∥2

Ψk − ∥z − zk+1∥2
Ψk

)
ρ

2
(
∥z̃k −Mx∥2 − ∥zk+1 −Mx∥2)+ ρ

2
(
∥ũk − u∥2 − ∥uk+1 − u∥2) .

Proof. The argument is identical to the proof of Lemma 5. Indeed, the only difference is εkx = εkz = 0, as
the subproblems are solved exactly. So the same line of argumentation may be applied, except the exact
subroblem optimality conditions are used. □

We now prove Proposition 3.

Proof. First, observe that item 2. is an immediate consequence of item 1, so it suffices to show item 1. To
this end, plugging in w = w⋆, using Q(w⋆, wk+1) ≥ 0, and rearranging, we reach

∥xk+1 − x⋆∥2
Θk + ∥zk+1 − z⋆∥2

Ψk+ρNTN + ρ∥uk+1 − u⋆∥2

≤ ∥x̃k − x⋆∥2
Θk + ∥z̃k − z⋆∥2

Ψk+ρNTN + ρ∥ũk − u⋆∥2.

Defining the norm ∥w∥W,k =
√

∥x∥2
Θk + ∥z∥2

Ψk+ρNTN
+ ρ∥u∥2, the preceding inequality may be rewritten as

∥wk+1 − w⋆∥W,k ≤ ∥w̃k − w⋆∥W,k.

Now, our inexactness hypothesis (Assumption 3) along with ν-strong convexity of the z-subproblem (which
follows by Assumption 2) implies

∥x̃k+1 − xk+1∥ ≤ εkx, ∥z̃k+1 − zk+1∥ ≤
√
εkz
ν
.

Using ũk+1 = Mx̃k+1 +Nz̃k+1 + ũk and uk+1 = Mxk+1 +Nzk+1 + ũk, we find

ρ∥ũk+1 − uk+1∥ ≤ εkx + C
√
εkz ,

where C is some constant. Hence we have,

∥w̃k+1 − w⋆∥W,k ≤ ∥wk+1 − w⋆∥W,k + ∥w̃k+1 − wk+1∥W,k ≤ ∥w̃k − w⋆∥W,k + C

(
εkx +

√
εkz

)
.

Defining the summable sequence εkw = C(εkx +
√
εkz), the preceding display may be written as

∥w̃k+1 − w⋆∥W,k ≤ ∥w̃k − w⋆∥W,k + εkw (△),

Now, Assumption 4 implies that ∥w̃k −w⋆∥W,k ≤
√

1 + ζk∥w̃k −w⋆∥W,k−1. Combining this inequality with
induction on (△), we find

∥w̃k+1 − w⋆∥W,k ≤

 k∏
j=2

√
1 + ζj

 ∥w̃1 − w⋆∥W,1 +

 k∏
j=2

√
1 + ζj

 k∑
j=1

εjw.
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Hence, √
min{θmin, ν}∥w̃k+1 − w⋆∥ ≤ ∥w̃k+1 − w⋆∥W,k ≤ √

τζ
(
∥w̃1 − w⋆∥W,1 + Ew

)
.

It follows immediately that:

sup
k≥1

∥w̃k+1 − w⋆∥ ≤ max
{√

τζ
(
∥w̃1 − w⋆∥W,1 + Ew

)√
min{θmin, ν}

, ∥w̃0 − w⋆∥

}
< ∞,

and so the sequence {w̃k}k≥0 is bounded, which in turn implies {x̃k}k≥0, {z̃k}k≥0, and {ũk}k≥0 are bounded.

Proof of Lemma 3

Proof. Throughout the proof, we shall denote by Skx(x), the function defining the x-subproblem at iteration
k. The exact solution of the x-subproblem shall be denoted by xk+1. To begin, observe that:

∇Skx(x) = ∇f1(x) + ∇f2(x̃k) + (Θk + ρMTM)(x− x̃k) + ρMT (Mx̃k +Nz̃k + ũk).

Now,

⟨∇Skx(x̃k+1), x⋆ − x̃k+1⟩ = ⟨∇Skx(x̃k+1) − ∇Skx(xk+1) + ∇Skx(xk+1), x⋆ − xk+1 + xk+1 − x̃k+1⟩
= ⟨∇Skx(x̃k+1) − ∇Skx(xk+1), x⋆ − xk+1⟩
+ ⟨∇Skx(x̃k+1) − ∇Skx(xk+1), xk+1 − x̃k+1⟩
+ ⟨∇Skx(xk+1), x⋆ − xk+1⟩ + ⟨∇Skx(xk+1), xk+1 − x̃k+1⟩
(1)
≥ ⟨∇f1(x̃k+1) − ∇f1(xk+1), x⋆ − x̃k+1⟩ + ⟨x̃k+1 − xk+1, x⋆ − xk+1⟩Θk+ρMTM

+ ⟨∇f1(x̃k+1) − ∇f1(xk+1), x̃k+1 − xk+1⟩ + ⟨x̃k+1 − xk+1, x̃k+1 − xk+1⟩Θk+ρMTM

+ ⟨∇Skx(xk+1), xk+1 − x̃k+1⟩
(2)
≥ −C1ε

k
x − C2(εkx)2 + ⟨∇Skx(xk+1), xk+1 − x̃k+1⟩.

Here (1) uses ∇Skx(x)−∇Skx(y) = ∇f1(x)−∇f1(y)+(Θk+ρMTM)(x−y), and that xk+1 is the exact solution
of the x-subproblem, while (2) uses that x̃k+1 is an εkx minimizer of the x-subproblem and that f1 has a
Lipschitz gradient. Now, as the iterates all belong to a compact set, it follows that supk ∥∇Skx(xk+1)∥ ≤ C3.
So,

⟨∇Skx(x̃k+1), x⋆ − x̃k+1⟩ ≥ −C1ε
k
x − C2(εkx)2 − C3ε

k
x ≥ −Cxεkx.

This establishes the first inequality, and the second inequality follows from the first by plugging x̃k+1 into
the expression for ∇Skx(x).

Proof of Lemma 4

Proof. By hypothesis, z̃k+1 is an εkz -approximate minimizer of the z-subproblem, so Lemma 1 shows there
exists a vector s̃ with ∥s̃∥ ≤ C

√
εkz , such that

g(z⋆) − g(z̃k+1) ≥ ρ⟨ũk+1 + Ψk(z̃k − z̃k+1) + s̃, z⋆ − z̃k+1⟩ − εkz .

Rearranging, using Cauchy-Schwarz, along with the boundedness of the iterates, the preceding display be-
comes

g(z⋆) − g(z̃k+1) − ρ⟨ũk+1 + Ψk(z̃k − z̃k+1), z⋆ − z̃k+1⟩ ≥ −C
√
εkz − εkz ≥ −Cz

√
εkz ,

where the last display uses εkz ≤ Kεz , and absorbs constant terms to get the constant Cz.
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B.3 Proofs for Section 6

Proof of Lemma 6

Proof. 1. We begin by observing that strong convexity of f implies

⟨∇f(x̃k+1) − ∇f(x⋆), x̃k+1 − x⋆⟩ ≥ σf∥x̃k+1 − x⋆∥2.

Decomposing f as f = f1 + f2, the preceding display may be rewritten as

⟨∇f1(x̃k+1) + ∇f2(x̃k) − ∇f(x⋆), x̃k+1 − x⋆⟩ + ⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩
≥ σf∥x̃k+1 − x⋆∥2.

Now, the exact solution xk+1 of the x-subproblem at iteration k satisfies ∇Skx(xk+1) = 0. Moreover,
x̃k+1 is an εkx minimizer of the x-subproblem, and ∇Skx(x) is Lipschitz continuous. Combining these
three properties, it follows there exists a vector Errk∇ satisfying:

∇Skx(x̃k+1) = ∇Skx(xk+1) + Errk∇ = Errk∇, where ∥Errk∇∥ ≤ Cεkx.

Consequently, we have

∇f1(x̃k+1) + ∇f2(x̃k) = Θk(x̃k − x̃k+1) + ρMTN(z̃k+1 − z̃k) − ρMT ũk+1 + Errk∇.

Utilizing the preceding relation, along with the fact that the iterates are bounded, we reach

⟨x̃k − x̃k+1, x̃k+1 − x⋆⟩Θk + ρ⟨N(z̃k+1 − z̃k) + u⋆ − ũk+1,M(x̃k+1 − x⋆)⟩ + Cεkx

≥ σf∥x̃k+1 − x⋆∥2 − ⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩. □

2. As −ρNTu⋆ ∈ ∂g(z⋆), and −ρNT ũk+1 + Ψk(z̃k − z̃k+1) + s̃ ∈ ∂εk
z
g(z̃k+1), we have

g(z̃k+1) − g(z⋆) ≥ ⟨−ρNTu⋆, z̃k+1 − z⋆⟩,
g(z⋆) − g(z̃k+1) ≥ ⟨−ρNT ũk+1 + Ψk(z̃k − z̃k+1), z⋆ − z̃k+1⟩ − εkz .

So, adding together the two inequalities and rearranging, we reach

⟨z̃k+1 − z⋆, ρNT (u⋆ − ũk+1) + Ψk(z̃k − z̃k+1) + s̃⟩ ≥ −εkz .

Now using boundedness of the iterates and ∥s̃∥ ≤ C
√
εkz , Cauchy-Schwarz yields

⟨z̃k+1 − z⋆, ρNT (ũk+1 − u⋆) + Ψk(z̃k − z̃k+1)⟩ ≥ −C
√
εkz .

□

Proof of Lemma 8 We wish to show for some δ > 0, that the following inequality holds

∥wk − w⋆∥2
Gk − ∥wk+1 − w⋆∥2

Gk + εkw ≥ δ∥wk+1 − w⋆∥2
Gk .

To establish this result, it suffices to show the inequality

∥wk+1 − wk∥2
Gk + 2σf

ρ
∥xk+1 − x⋆∥2 − 2

ρ
⟨∇f2(xk+1) − ∇f2(xk), xk+1 − x⋆⟩ ≥ δ∥wk+1 − w⋆∥2

Gk .

We accomplish this by upper bounding each term that appears in ∥wk+1 − w⋆∥2
Gk , by terms that appear in

the left-hand side of the preceding equality. To that end, we have the following result.

Lemma 12 (Coupling Lemma). Under the assumptions of Theorem 2, the following statements hold:
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1. Let µ1 ≥ 2, c1 = 12L2
f

ρ2λmin(MMT ) , c2 = 4(2L2
f +θ2

max)
ρ2λmin(MMT ) , c3 = 8∥M∥2

λmin(MMT ) . Then for some constant C ≥ 0,
we have

∥uk+1 − u⋆∥2 ≤ c1∥x̃k+1 − x⋆∥2 + c2∥x̃k − x̃k+1∥2 + c3∥z̃k − z̃k+1∥2
1/ρΨk+NTN + Cεkw.

2. There exists constants c4 = 2
(

∥N∥2+ψmax/ρ
σ2

min(N)

)
∥M∥2, c5 = c4/∥M∥2, such that

∥zk+1 − z⋆∥2
1/ρΨk+NTN ≤ c4∥xk+1 − x⋆∥2 + c5∥uk+1 − uk∥2.

3. For all µ > 0, we have

⟨∇f2(xk+1) − ∇f2(xk), xk+1 − x⋆⟩ ≤ µ/2∥xk+1 − x⋆∥2 +
L2
f

2µ ∥xk+1 − xk∥2.

Taking Lemma 12 as given, let us prove Lemma 8.

Proof. Observe Lemma 12 implies
1
2∥wk+1 − wk∥2

Gk + 2σf
ρ

∥xk+1 − x⋆∥2 − 2
ρ

⟨∇f2(xk+1) − ∇f2(xk), xk+1 − x⋆⟩ − δ∥wk+1 − w⋆∥2
Gk

≥
(

2σf − µ2

ρ
− δ(c1 + c4)

)
∥x̃k+1 − x⋆∥2 +

(
θmin

2ρ −
L2
f

2ρµ2
− δc2

)
∥x̃k − x̃k+1∥2

+ (1/2 − δc3) ∥z̃k − z̃k+1∥2
1/ρΨk+NTN + (1/2 − δc5) ∥ũk − ũk+1∥2 − Cεkw.

Setting µ2 = σf , and using θmin > L2
f/σf = κfLf , we find by setting

δ = min
{

σf
ρ(c1 + c4) ,

θmin − κfLf
2ρc2

,
1

2c3
,

1
2c5

}
> 0,

that
∥w̃k − w⋆∥2

Gk − ∥w̃k+1 − w⋆∥2
Gk + Cεkw ≥ δ∥w̃k+1 − w⋆∥2

Gk ,

as desired. □

We now turn to to the proof of Lemma 12.

Proof of Lemma 12

Proof. 1. Observe by Lf -smoothness of f , that

2L2
f

(
∥x̃k+1 − x⋆∥2 + ∥x̃k − x⋆∥2) ≥ ∥∇f1(x̃k+1) − ∇f1(x⋆) + ∇f2(x̃k) − ∇f2(x⋆)∥2

= ∥Θk(x̃k − x̃k+1) + ρMTN(z̃k − z̃k+1) + ρMT (u⋆ − ũk+1) + Errk∇∥2

≥ 1
2ρ

2∥MT (ũk+1 − u⋆)∥2 − ∥Θk(x̃k − x̃k+1) + ρMTN(z̃k − z̃k+1) + Errk∇∥2.

Here the last inequality uses with µ = 2, the identity (valid for all µ > 1)

∥a+ b∥2 ≥ (1 − µ−1)∥a∥2 + (1 − µ)∥b∥2.

So, rearranging and using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we reach

ρ2

2 ∥MT (ũk+1 − u⋆)∥2 ≤ 6L2
f∥x̃k+1 − x⋆∥2 + 2

(
2L2

f + ∥Θk∥2) ∥x̃k − x̃k+1∥2

+ 4ρ2∥M∥2∥N(z̃k − z̃k+1)∥2 + 4∥Errk∇∥2.

33



Under review as submission to TMLR

Now, using ∥Errk∇∥2 ≤ Cεkx ≤ Cεkw and ∥v∥NTN ≤ ∥v∥1/ρΨk+NTN , we reach

∥ũk+1 − u⋆∥2 ≤
12L2

f

ρ2λmin(MMT )∥x̃k+1 − x⋆∥2 +
4
(

2L2
f + θ2

max

)
ρ2λmin(MMT ) ∥x̃k − x̃k+1∥2

8∥M∥2

λmin(MMT )∥z̃k − z̃k+1∥2
1/ρΨk+NTN + Cεkw. □

2. This inequality is a straightforward consequence of the relation

M(x̃k+1 − x⋆) = ũk+1 − ũk +N(z⋆ − z̃k+1).

Indeed, using the identity ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we reach

∥N(z̃k+1 − z⋆)∥2 ≤ 2∥M∥2∥x̃k+1 − x⋆∥ + 2∥ũk − ũk+1∥2.

Consequently

∥z̃k+1 − z⋆∥2
1/ρΨk+NTN ≤ 2

(
∥N∥2 + ψmax/ρ

σ2
min(N)

)
∥M∥2∥x̃k+1 − x⋆∥

+ 2
(

∥N∥2 + ψmax/ρ

σ2
min(N)

)
∥ũk − ũk+1∥2,

which is precisely the desired claim. □

3. Young’s inequality implies for all µ > 0, that

⟨∇f2(x̃k+1) − ∇f2(x̃k), x̃k+1 − x⋆⟩ ≤ 1
2µ∥∇f2(x̃k+1) − ∇f2(x̃k)∥2 + µ

2 ∥x̃k+1 − x⋆∥2.

The desired claim now follows from Lf -smoothness of f2. □

34


	Introduction
	Contributions
	Roadmap
	Notation and preliminaries

	Problem statement and ADMM
	Generalized Newton Inexact ADMM
	Related work
	Algorithms recovered from GeNI-ADMM


	Technical preliminaries and assumptions
	Assumptions

	Sublinear convergence of GeNI-ADMM
	The benefits of using a better approximation
	Our approach
	Controlling the gap function
	Proof of thm:generalconv

	Linear convergence of GeNI-ADMM
	Our approach
	Sufficient descent
	Proof of thm:linearconvabs

	Applications
	Convergence of NysADMM
	Convergence of sketch-and-solve ADMM

	Numerical experiments
	GeNI-ADMM converges sublinearly and locally linearly on convex problems
	GeNI-ADMM converges linearly on strongly convex problems
	Sketch-and-solve ADMM fails to converge without the correction term

	Conclusion
	Appendix
	Proofs not appearing in the main paper
	Proofs for section:TechPrelimsAssump
	Proofs for section:SubLinConvergence
	Proofs for section:linearconvergence


