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Figure 1: 256×256 samples of class-conditional generation on ImageNet using our AliTok-XL model (662M).

ABSTRACT

Autoregressive image generation aims to predict the next token based on previ-
ous ones. However, this process is challenged by the bidirectional dependencies
inherent in conventional image tokenizations, which creates a fundamental mis-
alignment with the unidirectional nature of autoregressive models. To resolve this,
we introduce AliTok, a novel Aligned Tokenizer that alters the dependency struc-
ture of the token sequence. AliTok employs a bidirectional encoder constrained by
a causal decoder, a design that compels the encoder to produce a token sequence
with both semantic richness and forward-dependency. Furthermore, by incorpo-
rating prefix tokens and employing a two-stage tokenizer training process to en-
hance reconstruction performance, AliTok achieves high fidelity and predictabil-
ity simultaneously. Building upon AliTok, a standard decoder-only autoregressive
model with just 177M parameters achieves a gFID of 1.44 and an IS of 319.5 on
ImageNet-256. Scaling to 662M, our model reaches a gFID of 1.28, surpassing
the SOTA diffusion method with 10× faster sampling. On ImageNet-512, our
318M model also achieves a SOTA gFID of 1.39. Code and weights at AliTok.

1 INTRODUCTION

Autoregressive models, particularly GPT-style decoder-only transformers (Achiam et al., 2023; Tou-
vron et al., 2023a;b), have achieved revolutionary success in natural language processing owing to
their simple yet scalable next-token prediction paradigm. Inspired by this triumph, the research com-
munity is actively exploring the application of this powerful paradigm to image generation (Team
et al., 2025; Han et al., 2024; Wei et al., 2025) by sequentially predicting a stream of tokens, show-
casing a promising path for multi-modal unification (Team, 2024; Wu et al., 2025; Chen et al., 2025).

∗Equal contribution. † Corresponding author.
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Figure 2: Reconstruction vs generation with different transformer-based tokenizers. Images are compressed
into raster-scan order 1D sequences by the tokenizers. AR are standard decoder-only autoregressive models.
green for poor results and red for good results. The best results are bolded. Tok. : Tokenizer. Acc: Training
accuracy. Fair setup with matched parameter counts and computational loads. See Appendix A.2 for details.

However, as demonstrated in previous literature (Pang et al., 2024; Li et al., 2024b), the inherent
bi-directional property of visual sequences makes it difficult for the raster-scan decoder-only autore-
gressive model (e.g., LlamaGen (Sun et al., 2024)) to achieve excellent performance, since the uni-
directional transformer is hard to model bi-directional sequences. Consequently, recent works have
shifted focus towards paradigms like masked autoregressive (Li et al., 2024b; Chang et al., 2022;
Yu et al., 2024c; Fan et al., 2024) and next-scale prediction (Tang et al., 2024; Tian et al., 2024;
Han et al., 2024), which employ bidirectional attention in autoregressive models and demonstrate a
superior choice for visual modeling. However, these approaches complicate visual generation and
diverge from the traditional autoregressive paradigm, increasing the challenges for multi-modal uni-
fication. In contrast to existing works that modify the model to fit the data properties, we propose
an alternative perspective: Can we instead instill a forward-dependency into the token sequence, to
align with the powerful simplicity of decoder-only AR models?

Unlike natural language, which is inherently compact and allows for one-to-one mapping between
words and indices with a non-parametric tokenizer, images are high-dimensional and redundant,
requiring a learnable tokenizer for effective compression. In pursuit of maximal reconstruction fi-
delity, conventional tokenizer implicitly incentivizes global collaborative encoding among all tokens
to efficiently eliminate redundancy. This means the representation of a token becomes functionally
dependent on its non-causal context, particularly on subsequent tokens in the raster-scan order. This
bidirectional dependency of representations creates a fundamental conflict with the strictly unidirec-
tional predictive paradigm of autoregressive models. Since the target token depends on unseen future
content, the conditional probability distribution learned by the AR model exhibits extremely high
uncertainty, rendering the learning task exceedingly complex and limiting its generative capability.

To empirically validate this analysis, we construct an intuitive method where the encoder is forced
to adopt a causal structure, strictly forbidding the preceding image patches access to future infor-
mation and thus ensuring a purely unidirectional dependency. As shown in Fig. 2(b), the results
are instructive: the training accuracy of AR model skyrockets from 5.4% to 11.2%, demonstrating
that the predictability of sequence is substantially improved. However, this loss of global receptive
field catastrophically degrades reconstruction quality (rFID: 0.98→1.56). A core challenge there-
fore emerges: Can we preserve the efficient compression of a bidirectional encoder while ensuring
its output token sequence possesses the high predictability required by AR models?

To address this dilemma, we propose AliTok, whose core insight is to decouple the process of
global semantic construction from the causal constraints of sequence. Specifically, AliTok lever-
ages the global receptive field of a bidirectional encoder to build semantically rich representations,
but critically, couples it with a causal decoder that acts as a powerful implicit regularizer. During
reconstruction, the visibility of encoded tokens is strictly confined to the causal context along a
raster-scan order. This architectural constraint, in turn, forces the encoder to suppress non-causal
dependencies from its representations, thereby ensuring that the relevant contextual information re-
quired for reconstruction is efficiently organized within each token’s causal history. Ultimately, this
process yields a token sequence that is both semantically rich and highly predictable. Experiments
in Fig. 2(c) demonstrate that this approach achieves high reconstruction fidelity (rFID: 1.07) while
dramatically enhancing generative performance (gFID: 2.96→1.88).

Building upon this core design, we introduce several key implementation details to address its prac-
tical challenges and maximize performance. While the causal, raster-scan decoding is effective at
enforcing forward-dependency, it leads to poor reconstruction of the initial tokens (i.e., the first row
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Figure 3: Sampling time and gFID (w/o cfg and
w/ cfg). Sampling time is evaluated on an A800.

of the image) due to a lack of preceding context.
To address this problem, we introduce prefix to-
kens specific to the first row, guided by a dedi-
cated auxiliary loss to provide the necessary con-
textual priors for compensation. Finally, to further
enhance reconstruction quality without compromis-
ing its generation-friendliness, we introduce a two-
stage tokenizer training strategy. The second stage
retrains a powerful bidirectional decoder over the
frozen encoder and codebook, significantly boosting
visual continuity and detail consistency.

To validate the effectiveness of AliTok, we employ
a standard decoder-only autoregressive model as the
generative model and conduct experiments. The re-
sults, illustrated in Fig. 3, demonstrate a remark-
able leap in performance and efficiency. Even with
a 318M parameter model, our method already sur-
passes all methods on gFID (w/o cfg), including
state-of-the-art diffusion model LightningDiT (Yao
et al., 2025). Upon increasing the parameter count
to 662M, we achieve a better gFID (w/ cfg) than LightningDiT (1.28 vs 1.35), while providing a
10× faster sampling speed. In summary, the contributions of this paper include:

1. We reveal a key factor restricting autoregressive model efficacy: conventional tokenizers tend
to establish bidirectional dependencies within encoded tokens, which fundamentally conflicts
with the unidirectional nature of autoregressive models.

2. We propose a simple yet effective design for an image tokenizer that enables the encoded tokens
to be more easily modeled by autoregressive models while ensuring high reconstruction fidelity.

3. Based on the proposed tokenizer, a standard decoder-only autoregressive model beats state-of-
the-art diffusion models on ImageNet benchmark.

2 RELATED WORK

Autoregressive visual generation. Inspired by GPT-style language models (Achiam et al., 2023;
Touvron et al., 2023a;b), early visual autoregressive methods (Van Den Oord et al., 2017; Lee et al.,
2022) predict image tokens along the raster-scan order. However, this strict unidirectional paradigm
struggles to effectively model the bidirectional spatial dependencies inherent in visual sequence,
thereby limiting its performance ceiling. To resolve this fundamental conflict, research has pivoted
to re-engineering the models or generation paradigms for stronger bidirectional context awareness.
One prominent approach is masked autoregressive modeling, including MaskGIT (Chang et al.,
2022) and MAR (Li et al., 2024b), which leverages bidirectional attention for multi-round parallel
generation. Another category explores hierarchical or next-scale prediction, such as VAR (Tian et al.,
2024), which proceeds autoregressively across scales yet bidirectionally within each scale. Further-
more, other efforts enhance global perception by maximizing all-directional generation probabilities
(RAR, Yu et al. (2024b)) or adopting random generation orders (RandAR, Pang et al. (2024)). While
effective, these approaches compromise the simplicity of the classical autoregressive paradigm by
introducing complex generation mechanisms or training objectives. Unlike these strategies that
adapt models to data, this paper focuses on reshaping the data itself. We propose a novel tokenizer
that instills a causal dependency structure into the token sequence during the encoding stage, thereby
enabling a standard decoder-only autoregressive model to unleash its full potential.

Image tokenizer, a type of Variational Autoencoder (VAE) (Kingma et al., 2013), plays an impor-
tant role in visual generation domain (Wan et al., 2025; Wu et al., 2024; Wei et al., 2024; Tang
et al., 2025; Peng et al., 2025). By mapping high-dimensional image pixels to a low-dimensional
latent space, the image tokenizer significantly enhances the training efficiency of generative models.
Among them, VQ-VAE (Van Den Oord et al., 2017) utilizes quantization techniques to discretize
continuous latent features for autoregressive image generation. Subsequently, VQ-GAN (Esser et al.,
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2021) substantially improves visual fidelity by incorporating an adversarial loss. MagViT-v2 (Yu
et al., 2024a) and FSQ (Mentzer et al., 2023) focus on algorithmic improvements to efficiently
scale the codebook size. Besides, TiTok (Yu et al., 2024c) proposes a transformer-based tokenizer,
encoding 2D image patches into a 1D sequence. FlexTok (Bachmann et al., 2025) explores multi-
granularity semantic encoding, ranging from coarse to fine-grained. Despite numerous efforts, there
has been limited exploration of how to design a tokenizer that simultaneously achieves high-quality
reconstruction while being more conducive to subsequent autoregressive generation. Bridging this
critical gap is the core goal of our work.

3 METHOD

3.1 PRELIMINARIES

The modeling assumption of the autoregressive model is to factorize the joint probability distri-
bution of a sequence x = [x1, . . . , xT ] into a product of unidirectional conditional probabilities:

pθ(x) =

T∏
i=1

pθ(xi | x1, . . . , xi−1), (1)

where pθ is the parameterized autoregressive model. Consequently, the learning efficiency of an
autoregressive model fundamentally depends on whether its modeling target, the token sequence x,
possesses a strong unidirectional dependency structure. When the critical information required to
predict xi is predominantly contained within its preceding context [x1, . . . , xi−1], the learning task
for the model becomes significantly more well-defined and efficient.

Image tokenizer. The inherent spatial continuity in images leads to redundancy not only within
individual patches but also extensively among adjacent ones. To achieve effective compression,
multiple tokens must collaborate to eliminate overall redundancy and construct a compact represen-
tation, which inevitably creates strong bidirectional representational dependencies among encoded
tokens. This directly conflicts with the autoregressive learning paradigm: the model aims to learn the
conditional distribution p(xi | x<i), while the ground-truth token xi has a representation that implic-
itly depends on the future context x>i. Consequently, the target conditional distribution p(xi | x<i)
becomes a marginalization over all possible unseen futures x>i. Such a distribution is inherently
high-entropy, severely limiting the model’s convergence and generation quality.

3.2 ALITOK TOKENIZER

To resolve the dilemma posed in Introduction (Sec. 1), we introduce AliTok, a novel tokenizer. Its
core insight is to employ a causal decoder to constrain the training of a bidirectional encoder, com-
pelling it to produce a highly predictable token sequence while retaining its efficient compression
capabilities. Furthermore, to address the issue of insufficient initial context arising from the causal
constraint, we introduce extra prefix tokens for contextual priming. Finally, we mitigate the core
trade-off by adopting a two-stage tokenizer training process: the first stage learns a generation-
friendly encoder, while the second stage retrains a separate, high-fidelity bidirectional decoder.

Definition. As depicted in Fig. 4, the architecture of AliTok is built upon a vanilla vision transformer.
An input image I ∈ Rh×w×3 is first processed into a sequence of patch tokens P ∈ R(H×W )×D.
Here, H = h/f , W = w/f , D is the number of channels, and f is patch size (set to 16). Simultane-
ously, we introduce K+H×W latent tokens in the input space (with K = W = 16, H×W = 256)
as information carriers, with the first K tokens serving as prefix tokens, and the remaining H ×W
latent tokens corresponding to H ×W patch tokens. After concatenating the latent tokens with the
patch tokens, the sequence is fed into the encoder (Enc) for tokenization, which compresses the in-
formation of the image patches into 1D latent tokens. Subsequently, the patch tokens are discarded,
and we retain only the encoded latent tokens, denoted as Z ∈ R(K+H×W )×D. Finally, these tokens
Z undergo vector quantization (Quant) (Van Den Oord et al., 2017) (see Appendix A.3 for details)
and pass through the decoder (Dec) to reconstruct the image patch sequence {p̂n}K+H×W

n=1 .

Causal decoder. The core of our method lies in the first stage of training, which aims to produce
a generation-friendly encoder and codebook. To achieve this, we introduce a causal decoder as a
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Figure 4: Two-stage training process of the proposed AliTok. Stage 1: Training an image tokenizer with a
causal decoder. Stage 2: Freezing the encoder and codebook of the tokenizer, training the autoregressive model
and retraining a bidirectional tokenizer decoder.

critical architectural constraint. Unlike a conventional bidirectional decoder, the causal decoder’s
visibility of the encoded tokens is strictly confined to a causal, raster-scan order during reconstruc-
tion. Specifically, the reconstruction of the i-th image patch p̂i is conditioned only on its causal
context. This process is formally defined as:

{p̂k}ik=1 = Deccausal({Quant(zk)}ik=1). (2)

This architectural constraint acts as a powerful implicit regularizer. It compels the bidirectional
encoder to alter its encoding behavior in order to minimize reconstruction loss under this limited re-
ceptive field, ultimately learning an autoregressively-structured representation, where the contextual
information required to reconstruct patch pi is strategically organized within the causal sequence
z1...i. This learned strategy establishes a forced alignment between the token dependency structure
and the autoregressive generation process (Fig. 4(b) and (c)). As a result, the next-token prediction
task becomes substantially more well-defined for the AR model, enabling a more stable and effective
training process that directly leads to higher generation quality.

The reconstruction loss Lrecon for the first stage, follows standard practices (Yu et al., 2024c),
combining a mean squared error (MSE) loss Lmse, perceptual loss Lperc, quantization loss (Zheng
& Vedaldi, 2023) Lquant, and adversarial loss Ladv:

Lrecon = Lmse + Lperc + Lquant + λLadv, (3)

where λ is set to 0.1. For adversarial loss, we employ the GAN in Open-MagViT2 (Luo et al., 2024).

Prefix token. However, a causal decoder forces latent tokens to only reference features from pre-
ceding tokens, leading to poor reconstruction of the first row (16×256 pixels) of the image. To solve
this problem, an intuitive solution is to add an extra row to the training image, i.e., using images
with 272×256 resolution for training, and crop out the unsatisfactory first row in the final gener-
ated result. But this simple approach may result in generating images with incomplete objects, as
information in the topmost row is lost during cropping.

To provide contextual priors for the problematic first row, we introduce 16 prefix tokens as supple-
mentary aids, each dedicated to a patch in the first row. These tokens are optimized via a specialized
auxiliary loss, Laux, which incorporates both MSE and perceptual losses. Since the perceptual loss
requires a full image for accurate assessment, we form a complete image by concatenating the first
row, reconstructed from the prefix tokens, with the remaining 15 rows, reconstructed from the last
240 latent tokens. Critically, we detach the gradient from the latter component before concatenation.
This design allows the perceptual network to evaluate a spatially coherent image while ensuring the
optimization signal is backpropagated only to the reconstruction result of prefix tokens.

Retraining a bidirectional decoder. In the second stage, we freeze the encoder and codebook of the
tokenizer and retrain a bidirectional decoder to improve detail consistency. As shown in Fig. 4(d),
in addition to converting the attention mechanism in the decoder, we integrate 64 buffer tokens (Li
et al., 2024b) to enhance modeling capabilities by increasing computational load. Meanwhile, the
loss previously imposed on prefix tokens is removed to allow the decoder to focus on reconstruc-
tion quality. This two-stage training strategy enables our AliTok tokenizer to not only produce
generation-friendly encoded tokens, but also maintain good reconstruction performance.
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Table 1: ImageNet 256×256 conditional generation. “Diff.”: Diffusion. “Mask.”: Masked transformer
models. Pre.: Precision. Rec.: Recall. RAR does not report results w/o cfg. Thus, we test it using the weights
provided in the original paper, adjusting the temperature at intervals of 0.01 to select the best gFID w/o cfg.

Type Generator Training
epochs

#Para. w/o cfg w/ cfg

gFID↓ IS↑ gFID↓ IS↑ Pre.↑ Rec.↑

Diff.
SiT-XL (Ma et al., 2024) 800 675M 8.61 131.7 2.06 270.3 0.82 0.59
REPA (Yu et al., 2024d) 800 675M 5.90 157.8 1.42 305.7 0.80 0.65

LightningDiT (Yao et al., 2025) 800 675M 2.17 205.6 1.35 295.3 0.79 0.65

VAR VAR-d24 (Tian et al., 2024) 350 1.0B − − 2.09 312.9 0.82 0.59
VAR-d30 (Tian et al., 2024) 350 2.0B − − 1.92 323.1 0.82 0.59

Mask.
MaskGIT (Chang et al., 2022) 300 227M 6.18 182.1 − − − −
MAGVIT-v2 (Yu et al., 2024a) 1080 307M 3.65 200.5 1.78 319.4 − −
TiTok-S-128 (Yu et al., 2024c) 800 287M 4.44 168.2 1.97 281.8 − −

MAR
MAR-B (Li et al., 2024b) 800 208M 3.48 192.4 2.31 281.7 0.82 0.57
MAR-L (Li et al., 2024b) 800 479M 2.60 221.4 1.98 290.3 0.81 0.60
MAR-H (Li et al., 2024b) 800 943M 2.35 227.8 1.55 303.7 0.81 0.62

Causal
AR

LlamaGen-XL (Sun et al., 2024) 300 775M − − 2.62 244.1 0.80 0.57
LlamaGen-XXL (Sun et al., 2024) 300 1.4B − − 2.34 253.9 0.80 0.59
LlamaGen-3B (Sun et al., 2024) 300 3B 9.38 112.9 2.18 263.3 0.81 0.59

RAR-B (Yu et al., 2024b) 400 261M 7.12 124.8 1.95 290.5 0.82 0.58
RAR-L (Yu et al., 2024b) 400 461M 5.39 149.1 1.70 299.5 0.81 0.60

RAR-XL (Yu et al., 2024b) 400 955M 3.72 179.9 1.50 306.9 0.80 0.62
RAR-XXL (Yu et al., 2024b) 400 1.5B 3.26 193.3 1.48 326.0 0.80 0.63

Causal
AR

AliTok-B 800 177M 2.40 177.1 1.44 319.5 0.77 0.65
AliTok-L 800 318M 1.98 200.8 1.38 326.2 0.78 0.65

AliTok-XL 400 662M 1.88 228.4 1.28 306.3 0.79 0.65

3.3 AUTOREGRESSIVE MODEL

Our decoder-only autoregressive architecture follows the standard design in LlamaGen (Sun et al.,
2024), which uses RMSNorm (Zhang & Sennrich, 2019) for pre-normalization and applies 2D rotary
positional embeddings (RoPE) (Su et al., 2024) at each layer. Building upon LlamaGen, we make
only a few modifications. First, since our method has 16 extra prefix tokens and needs to model 272
tokens, 2D RoPE cannot be used directly. Therefore, we use 1D RoPE for the prefix tokens and
2D RoPE for the remaining 256 tokens. Secondly, we introduce the QK-Norm operation (Team,
2024) in the attention module to stabilize the large-scale model training, aligning with recent multi-
modal autoregressive models (Xie et al., 2024; Ma et al., 2025; Team, 2024). We do not conduct
extensive exploration of autoregressive models and only use the conventional architecture to verify
the effectiveness of the proposed tokenizer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and evaluations. The design of the proposed tokenizer is based on TA-TiTok (Kim et al.,
2025), utilizing ViT-B (Yu et al., 2024c) for the encoder and ViT-L for the decoder. We set the
vocabulary size to 4096 and adopt the online feature clustering method (Zheng & Vedaldi, 2023)
to ensure that the codebook utilization is 100%. For simplicity, we call the autoregressive models
trained using our AliTok tokenizer as AliTok-B/L/XL, comprising three different sizes, more details
are provided in Appendix A.4. Following common practice, FID (including rFID and gFID) (Heusel
et al., 2017), IS (Salimans et al., 2016), Precision, and Recall are adopted as metrics. We generate
50,000 images to test the gFID and adopt the evaluation code from RAR (Yu et al., 2024b). For rFID,
we use the ImageNet-1K val set for evaluation, consistent with other methods (Sun et al., 2024; Yu
et al., 2024c; Yao et al., 2025). During the test, KV-cache is employed to enhance sampling speed.
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Figure 5: 256×256 samples generated by our models of different sizes.

Dataset and training details. We train our image tokenizer from scratch on ImageNet-1K (Rus-
sakovsky et al., 2015). The tokenizer is trained for 600K steps in the first stage and 300K steps in
the second stage on 32 A800-80G GPUs. For the autoregressive model training, we employ ten-
crop (Szegedy et al., 2015) for data augmentation and cache (Li et al., 2024b) the encoded results of
the tokenizer to reduce training time. We train the base model and large model for 800 epochs and
the XL model for 400 epochs, with a batch size of 2048 and a learning rate of 4e-4. For the first 100
epochs, the learning rate is linearly warmed up, then decayed using a cosine decay schedule down
to 1e-5, following RAR (Yu et al., 2024b). During training, class conditioning is randomly dropped
with a probability of 0.1 to support the use of classifier-free guidance (cfg) (Ho & Salimans, 2022).

4.2 MAIN RESULTS

Generation comparison. We report a comprehensive comparison with state-of-the-art methods on
the ImageNet-1K 256×256 benchmark in Table 1. Utilizing our AliTok image tokenizer, even a
standard autoregressive model demonstrates exceptional performance. Specifically, our AliTok-B
model achieves a gFID (w/ cfg) of 1.44, using less than 6% of the parameter count compared to
its raster-order counterpart LlamaGen-3B (Sun et al., 2024), which achieves a gFID of 2.18 with
a 3B model. Furthermore, our AliTok-L model, with a parameter count of 318M, attains a gFID
(w/ cfg) of 1.38, eclipsing all existing autoregressive methods and outperforming the state-of-the-art
autoregressive model RAR-XXL (1.5B parameters) (Yu et al., 2024b) in both IS and gFID. Upon
increasing the parameter count to 662M, our AliTok-XL beats all competing methods, particularly
in gFID w/o cfg, markedly outperforming the previous best method LightningDiT (Yao et al., 2025)
(1.88 vs 2.17). When using the cfg, our AliTok-XL achieves a gFID of 1.28, surpassing Light-
ningDiT (1.35) while also achieving a superior IS. To the best of our knowledge, this represents the
first time a standard autoregressive model beats state-of-the-art diffusion models.

Table 2: Sampling speed comparison. Throughput
(images/sec) measured on an A800 GPU (FP32, batch
size=64), using the original codebases for all methods.

Method Type #Para. gFID↓ images/sec↑
VAR-d30 VAR 2.0B 1.92 12.3

AliTok-B (ours) AR 177M 1.44 10.9

MAR-H MAR 943M 1.55 0.3
RAR-XXL AR 1.5B 1.48 5.0

AliTok-L (ours) AR 318M 1.38 10.1

LightningDiT Diff. 675M 1.35 0.6
AliTok-XL (ours) AR 662M 1.28 6.3

Sampling efficiency comparison. Beyond
its excellent generation quality, AliTok also
demonstrates a significant advantage in sam-
pling efficiency benefiting from the use of
KV-cache. As shown in Table 2, with simi-
lar gFID scores, AliTok-L improves through-
put by 33.7× and 2.0× compared to MAR-
H (Li et al., 2024b) and RAR-XXL (Yu et al.,
2024b), respectively. Compared to the state-
of-the-art diffusion model LightningDiT (Yao
et al., 2025), our AliTok-XL requires less than
10% of the time needed by LightningDiT to
produce an image, establishing a substantial
improvement in image generation efficiency.

Generation visualization. We further show the generation results under different model sizes in
Fig. 5. It can be observed that even the smallest model is capable of producing high-quality visual
results and reasonably generating complex structures, such as the coral reef and altar. As the model
size increases, the generated images exhibit enhanced detail and more intricate structures, illustrated
by the realistic texture of the feathers of the parrot, the fine-grained structure of the space shuttle
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Figure 6: Training curves. (a) training loss (b) training error rate (%) (c) gFID scores w/o cfg (d) gFID scores
w/ cfg varies with training steps and model parameters. 250,000 training steps corresponds to 400 epochs.

Table 3: Ablation studies of main components on AliTok-Base model. Experiment (A) employs a bidi-
rectional Transformer as the baseline. Subsequent experiments progressively incorporate a causal tokenizer
decoder (Causal Dec), prefix tokens (Prefix), auxiliary loss (Laux), and two-stage tokenizer training strategy
(Two-stage). Key metrics including AR training loss (Loss), AR training accuracy (Acc.), generation gFID,
and reconstruction rFID are reported to show the impact of each component.

Training Setting Tokenizer Setting AR Training Evaluation

Causal Dec Prefix Laux Two-stage Loss↓ Acc.↑ gFID↓ IS↑ rFID↓

Tokenizer trained
for 300K steps &

AR for 200 epochs

(A) 5.75 5.4% 2.96 270.6 0.98
(B) ✓ 5.18 10.7% 1.88 285.6 1.07
(C) ✓ ✓ 5.20 9.7% 1.86 283.5 1.01
(D) ✓ ✓ ✓ 5.06 10.2% 1.82 286.5 1.02

Best rFID & (E) ✓ ✓ ✓ 4.98 10.5% 1.47 316.3 0.91
AR for 800 epochs (F) ✓ ✓ ✓ ✓ 4.98 10.5% 1.44 319.5 0.86

and the altar, demonstrating a superior level of realism in image quality. More results generated by
the different model sizes are provided in the Appendix (Fig. 14, 15, 16, 17, and 18).

Training curves. As shown in Fig. 6, we explore the training behavior of the proposed AliTok.
With the increase in model parameters and training steps, both the training loss and training error
rate decrease significantly and steadily. Additionally, larger models achieve lower loss and superior
gFID scores with fewer training steps. Experiments verify that our generative model effectively in-
herits the scaling ability of autoregressive models. However, the gFID curves indicate that after 400
training epochs, neither our AliTok-B model nor AliTok-L model shows clear signs of convergence.
Therefore, we extend the training duration for these two models to 800 epochs to further improve
the performance. More analysis is provided in Appendix A.4.

Table 4: Reconstruction quality. Size:
vocabulary size.

Tokenizer Tokens Size rFID↓
CVQ-VAE 256 1024 1.57
TiTok-B-64 64 4096 1.70

GigaTok-B-L 256 16384 0.81

AliTok (Stage 1) 272 4096 0.91
AliTok (Stage 2) 272 4096 0.86

Reconstruction performance. We report the reconstruc-
tion performance of various tokenizers (Yu et al., 2024c;
Zheng & Vedaldi, 2023; Xiong et al., 2025) in Table 4.
By introducing a powerful bidirectional decoder in the sec-
ond stage, AliTok significantly improves the rFID to 0.86.
This result remains competitive with GigaTok-B-L (rFID:
0.81), particularly given that the latter relies on a substan-
tially larger vocabulary size (16384 vs 4096). Experiments
demonstrate that our proposed AliTok successfully achieves
an ideal balance between the goals of generation-friendly
and high-fidelity through its ingenious decoupling design.

4.3 ABLATION STUDIES

Ablation studies of main components. In Table 3, we ablate the main components of the proposed
AliTok. First, introducing a causal decoder (B) dramatically improves predictability over the bidi-
rectional baseline (A). This is evidenced by the AR model’s training accuracy soaring from 5.4% to
10.7% and its gFID dropping from 2.96 to 1.88, confirming the critical role of aligning token depen-
dencies with the model’s causal nature. Next, we examine the effect of prefix tokens. Simply adding
them (C) not only increases the modeling burden due to a longer sequence, but these unconstrained
tokens also tend to learn global features. This makes the prediction task for the autoregressive model
more difficult and fails to alleviate the poor first-row reconstruction (Fig. 7(e)). In contrast, when
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Figure 7: Reconstruction visualization comparison. (a) Original image. (b, c) Comparison results. (d-g)
Ablation study showing the progressive addition of our components. red boxes highlight noticeable artifacts.

guided by the auxiliary loss Laux (D), the prefix tokens are forced to represent the features of the
first image row. This creates a more progressive and consistent learning process, as the AR model
consistently predicts a token based on adjacent context, unifying the prediction task and leading to
a rebound in training accuracy (10.2%) and a better gFID of 1.82. Finally, by reintroducing a bidi-
rectional decoder (F) through a two-stage training process, AliTok further enhances reconstruction
fidelity and improves generative quality.

Ablation studies of reconstruction visualization. We visualize the impact of each component on
reconstruction quality in Fig. 7. First, adopting a causal encoder (c) introduces noticeable visual
discontinuities and grid-like artifacts (highlighted by red boxes), as its unidirectional structure limits
compression efficiency. In contrast, a causal decoder (d) yields generally natural reconstructions, but
its sequential reconstruction process leads to poor quality in the first row, marked by severe blurring
and distortion at the top of the bookshelf. To address this, we introduce prefix tokens with Laux

(f) to provide the necessary contextual prior, leading to a significant restoration of detail in the first
row. Finally, retraining a bidirectional decoder in the second stage (g) smooths patch boundaries and
rectifies detail inaccuracies, such as the lack of clarity on the metal mesh. Through these sequential
designs, our final reconstruction (g) becomes visually comparable to the baseline (b).

Figure 8: Visualization of attention maps from
bidirectional decoders. (a) The input image and
selected tokens (red boxes) for analysis. (b) The
mean local (3×3) attention patterns across all to-
kens. (c) Attention maps for the selected tokens.

Visualization of attention maps. To demonstrate
the intrinsic dependency structure within AliTok’s
latent tokens, we analyze the attention maps from the
bidirectional decoders of both baseline model and
AliTok (Stage 2) in Fig. 8. We first examine the
mean local (3×3) attention pattern averaged across
all tokens in Fig. 8(b). As expected, the baseline’s
attention is symmetrically distributed, indicating a
balanced reliance on past and future context. In
stark contrast, AliTok’s mean attention map reveals a
clear systemic shift towards the top-left, demonstrat-
ing a strong preference for causally preceding tokens
even with full access to future ones. To demon-
strate the generality of this behavior, Fig. 8(c) dis-
plays attention maps for several uniformly sampled
tokens, which consistently exhibit this same causal
bias. More examples are provided in the Appendix
(Fig. 11). This striking asymmetry provides com-
pelling visual evidence that our training strategy ef-
fectively regularizes the encoder. It compels the en-
coder to learn autoregressively-structured represen-
tations, where the necessary context for reconstruct-
ing a patch is primarily packed into its causal tokens. This process instills a strong causal bias
into the token sequence itself, shaping it to be inherently amenable to forward prediction. Such
fundamental alignment unlocks the high performance of a standard autoregressive model.

Table 5: 512×512 generation quality.

Method #params gFID↓ IS↑
REPA 675M 2.08 274.6

MAR-L 481M 1.73 279.9

AliTok-L 318M 1.39 295.3

Scalability in high-resolution generation. To verify the
scalability of our method on the high-resolution image gen-
eration task, we trained AliTok on the ImageNet dataset
at 512×512 resolution. For this experiment, both the to-
kenizer and autoregressive model are fine-tuned from pre-
trained weights at 256 resolution, where the embedding of
tokenizer is linearly interpolated to match the shape. The gen-
eration results are shown in Table 5. Our AliTok-L achieves
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Figure 9: 512×512 samples of class-conditional generation on ImageNet using our AliTok-L model (318M).

a gFID of 1.39 and an IS of 295.3, significantly surpassing MAR-L (Li et al., 2024b) and REPA (Yu
et al., 2024d). The result highlights the strong scalability and robustness of our AliTok. Fig. 9
provides generated samples, visually confirming the high quality of the outputs.

Table 6: AliTok-XL reconstruction and gener-
ation performance at different codebook sizes.
AR models are trained for 400 epochs.

Size rFID↓ gFID↓ IS↑ Loss↓ Acc↑
4096 0.86 1.28 306.3 4.67 12.2%

16384 0.81 1.30 304.9 6.42 4.3%

Scalability in codebook size. To further validate
the adaptability of the AliTok framework to larger
discrete vocabularies, we conducted an experiment
expanding the codebook size from 4096 to 16384.
As shown in Table 6, the 16384 codebook achieves
a lower reconstruction FID (from 0.86 to 0.81), in-
dicating a higher upper bound for potential genera-
tion quality. On the generation side, after training
our XL-sized model for 400 epochs, the generative performance with the 16384 codebook (gFID:
1.30) is slightly inferior to that of the 4096 codebook (gFID: 1.28). We attribute this temporary
performance gap to the increased difficulty of the next-token prediction task within a 4× larger vo-
cabulary space, which is clearly evidenced by the sharp drop in training accuracy and the rise in loss.
Consequently, we posit that with extended training epochs or an increase in model parameters, the
tokenizer with 16384 codebook size is expected to achieve better generation performance.

5 CONCLUSION

This paper introduces AliTok, a novel tokenizer designed to mitigate the fundamental misalignment
between conventional tokenizers and autoregressive models. By employing a causal decoder to con-
strain a bidirectional encoder, AliTok instills a significant causal bias into the image token sequence,
making it inherently compatible with the autoregressive paradigm. This strategy enables a stan-
dard decoder-only generator to surpass state-of-the-art diffusion models in both generation quality
and sampling efficiency. Our work confirms that when data and the model paradigm are properly
aligned, the concise autoregressive approach remains a powerful pathway toward building efficient,
high-performance generative models, paving the way for future multimodal unification.
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A APPENDIX

A.1 LIMITATION AND FUTURE WORK

Benefiting from the AliTok tokenizer, our 662M AR model reaches a significantly high training ac-
curacy of 12.2%. In this context, the reconstruction performance of the discrete tokenizer becomes
a critical bottleneck for the generative performance. To test the limiting value of gFID that can be
achieved under this tokenizer, we randomly select 50 real images per class from the training set and
calculate the gFID after reconstruction (differently from rFID evaluation), obtaining a FID of 1.15.
This implies that even if the accuracy in the generation phase is close to 100% (which is not possi-
ble), the generation performance still cannot reach the upper limit of 1.15. This experimental result
explains the phenomenon observed in Fig. 6, where the training loss and error rate of AliTok-XL
continue to decrease steadily, yet the gFID metric struggles to achieve further improvement. While
our experiments with a 16384-size codebook have demonstrated a higher ceiling for reconstruction
quality (as shown in Table 5), they also revealed an increased learning challenge for the autore-
gressive model. This paper does not explore generative models larger than our XL variant, and we
leave the comprehensive exploration, such as training larger-scale models or extending the training
duration on the 16384 codebook to fully unlock its generative potential to future work.

A.2 EXPERIMENTAL DETAILS IN INTRODUCTION

The experiments depicted in Fig. 2 of the main paper are conducted under a controlled setting to
ensure a fair comparison. For all three configurations, the tokenizer is trained for 300K steps, and
the corresponding AliTok-Base autoregressive model is trained for 200 epochs. The conventional
approach serves as our baseline. It employs a standard architecture with a bidirectional Transformer
for both the encoder and decoder. The tokenizer for our approach uses a bidirectional encoder
but is constrained by a causal decoder. This configuration is identical to the model presented in
Table 3(b) of our ablation study. For the intuitive approach using a causal encoder, we consider the
following factors to design the tokenizer: Firstly, it is challenging to compress the information within
image patches into latent tokens with causal logic. Secondly, for a causal encoder, adding more
learnable tokens does not effectively increase computational load, as the direction of interaction is
limited. Therefore, we remove the 256 latent tokens from the input space of the encoder and treat the
encoded patch tokens as the encoding result. To ensure fairness, we relocate the 256 removed latent
tokens to the input space of the bidirectional decoder as buffer tokens. Concurrently, to maintain the
computational load of the encoder, we reverse the model sizes of the encoder and decoder by using
a ViT-L model for the encoder and a ViT-B model for the decoder. In this way, we ensure that the
computational effort of each tokenizer is similar and the design is reasonable. Finally, the codebook
utilization of each tokenizer is 100% to avoid the impact on the training accuracy.

A.3 METHOD DETAILS

Vector quantization. After the latent tokens pass through the encoder, a continuous encoded latent
vector z is produced. The nearest vector to z, based on Euclidean distance, is then queried from
the discrete codebook Z to serve as the quantized result. This vector quantization process can be
formalized by the following equation:

Quant(z) = argmin
zi∈Z

∥z − zi∥. (4)

Hyperparameters. In the first stage, we define the total loss Ltotal as a straightforward sum of the
reconstruction loss (Lrec) and the auxiliary loss (Laux), treating them with equal importance:

Ltotal = Lrec + Laux (5)

Positional embedding in autoregressive models. In autoregressive models, we employ 1D RoPE
for the 16 prefix tokens, with positions ranging from 0 to 15. Following this, we use 2D RoPE for
the remaining 16×16 tokens, with positions extending from 16 to 31.
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Table 7: Improvements and curves of training 800 epochs. 500,000 training steps corresponds to
800 epochs. Acc.: final training accuracy. Since we employ cosine learning rate decay instead of a
fixed learning rate, we train the models for 800 epochs from scratch rather than continuing training
based on the weights from the 400 epochs.

Model Epochs Loss Acc. gFID gFID
w/o cfg w/ cfg

AliTok-B 400 5.02 10.3% 2.69 1.61
800 4.98 10.5% 2.40 1.44

AliTok-L 400 4.90 10.9% 2.09 1.49
800 4.85 11.1% 1.98 1.38

A.4 EXPERIMENTS

Model configurations. For simplicity, we call the autoregressive models trained using our AliTok
tokenizer as AliTok-B/L/XL, comprising three different sizes. For all autoregressive models, we set
the number of attention heads to 16. Specifically, AliTok-B has a depth of 24 and a width of 768,
AliTok-L has a depth of 24 and a width of 1024, and AliTok-XL has a depth of 32 and a width of
1280, following the RAR (Yu et al., 2024b) configuration.

Improvements of training 800 epochs. In Table 7, we show the enhancements achieved by in-
creasing the training epochs from 400 to 800, which significantly reduces gFID scores both w/o
cfg and w/ cfg. We further plot the training curves on the right side of Table 7. It is evident that
the training loss and error rate continue to decrease linearly without convergence, suggesting that
extending the number of training epochs may yield further improvements. However, since we use
cosine learning rate decay rather than a fixed learning rate, additional epochs require training from
scratch. Consequently, we do not explore the improvements that might result from extending the
training period.

Figure 10: More reconstruction result comparisons. The same regions in (c) and (e) are enlarged
for detailed comparison.

More reconstruction results. Fig. 10 presents additional comparisons of reconstruction results,
with enlarged views of the detailed regions from both the intuitive approach (baseline + causal
encoder) and our AliTok approach. From the enlarged region, it is obvious that the causal encoder
causes texture mismatches between different reconstructed patches with discontinuities and detail
deviations. Notably, significant grid artifacts persist even after the usage of adversarial loss. In
contrast, our AliTok method achieves continuous and realistic reconstruction results. Furthermore,
as seen in Fig. 10(d), solely applying the causal decoder on the baseline leads to color deviation and
blurriness in the first row of the reconstructed images due to poor reconstruction quality, especially
in the first image patch. In certain scenes, like the edge of the plate in the first row, unnatural
transitions may also be present. However, after implementing our proposed series of improvements,
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Table 8: Comparison of training configurations and model specifications.

Tokenizer TiTok-B TiTok-L GigaTok-B-L AliTok (Stage 1) AliTok (Stage 2)

Codebook size 4096 4096 16384 4096 4096
Codebook dimension 12 12 8 32 32

Training epochs 200 200 200 120 60
#Param 204.8M 641.1M 621.6M 389.8M 390.0M

Total batch size 256 256
Base learning rate 1e-4 1e-4

Minimum learning rate 1e-5 1e-5

Table 9: Hyperparameters for sampling include without and with cfg.

Model Temperature Scaler Power Guidance Scale

AliTok-B 0.95 w/o cfg
AliTok-L 0.95 w/o cfg

AliTok-XL 0.95 w/o cfg

AliTok-B 1.00 1.3 11
AliTok-L 1.00 0.6 5

AliTok-XL 1.00 1.4 8

including prefix tokens, auxiliary loss, and a two-stage training strategy, this issue is significantly
alleviated. Our AliTok (Fig. 10(e)) can ultimately achieve similar reconstruction quality and visual
perception as the baseline approach (Fig. 10(b)).

More generation results. We present more generation results of our AliTok-XL model in Fig. 14.
As can be seen, our method is capable of producing detailed textures and realistic image quality. In
Fig. 15, Fig. 16, Fig. 17, Fig. 18, we present various images generated by AliTok-B and AliTok-XL
across different categories. Even our smallest model can generate great visual outcomes.

Tokenizer training specifications. This subsection details the training configurations and model
specifications for AliTok and other tokenizers, summarized in Table 8. As shown, our comparative
experiments are conducted under fair conditions, with aligned batch sizes and learning rate sched-
ules, ensuring the validity of our system-level performance analysis.

Hyperparameters for sampling. We list the sampling hyperparameter settings in Table 9. When
cfg is not used, we employ a temperature hyperparameter. When cfg is used, we apply pow-cosine
as the guidance schedule, following RAR (Yu et al., 2024b).

Table 10: System-level reconstruction performance comparison across different tokenizers.

Tokenizer Tokens Size PSNR↑ SSIM↑ LPIPS↓ rFID↓ #Param

TiTok-L-32 32 4096 16.15 0.5098 0.3232 2.21 641.1M
TiTok-B-64 64 4096 17.39 0.5491 0.2539 1.70 204.8M

AliTok (Stage 1) 272 4096 20.66 0.6571 0.1659 0.91 389.8M
AliTok (Stage 2) 272 4096 20.97 0.6610 0.1573 0.86 390.0M

GigaTok-B-L 256 16384 21.24 0.6873 0.1284 0.81 621.6M
AliTok (Stage 1) 272 16384 21.08 0.6805 0.1367 0.84 390.2M
AliTok (Stage 2) 272 16384 21.30 0.6851 0.1303 0.81 390.4M

System-level comparison of reconstruction performance. To comprehensively evaluate the per-
formance of our proposed AliTok on the image reconstruction task, we detail the performance of Al-
iTok against other tokenizers across several standard reconstruction metrics, including Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Learned Perceptual Image
Patch Similarity (LPIPS), and reconstruction FID (rFID).

The results in Table 10 highlight AliTok’s competitiveness. In the comparison with GigaTok-B-L
using a 16384 codebook, our method achieves on-par reconstruction fidelity, matching its rFID of
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0.81, while using approximately 37% fewer parameters (390.4M vs 621.6M). This performance
also validates our two-stage design, as Stage 2 significantly enhances the reconstruction quality
from Stage 1 to reach this state-of-the-art level. This demonstrates that AliTok can maintain great
reconstruction performance while simultaneously creating a generation-friendly token sequence.

Figure 11: More attention maps for selected tokens in the bidirectional decoder. In contrast to
the symmetric attention distribution of the baseline, AliTok’s attention exhibits a strong causal bias
(concentrating on the top-left), even within a fully bidirectional decoder.

Visualization of more attention maps. To confirm the generality of the attention pattern revealed
in the main text, we provide additional attention maps in Fig. 11 for individual tokens at various
spatial locations, particularly from the edges and the center of the image. For the baseline model,
its bidirectional decoder widely references the global context during reconstruction, with attention
freely dispersed across both causal history and future regions. In contrast, the attention in AliTok’s
bidirectional decoder is heavily skewed towards drawing information from historical tokens, largely
ignoring the available context from future regions. This indicates that the necessary contextual in-
formation for each token has been effectively organized within its causal history, thereby facilitating
the subsequent unidirectional generation process.

Figure 12: t-SNE visualization of codebook vectors. The plot compares the feature distributions
of codebook vectors used for a single ImageNet class, generated by the baseline ViT-VQ tokenizer
(blue) and AliTok (red).

Visualization of codebook. We performed a t-SNE analysis to visualize the codebooks learned by
a standard ViT-VQ (conventional approach in our paper) and AliTok. We encoded 200 images from
a single ImageNet class with each tokenizer, and collected the utilized codebook vectors for 2D
projection. The resulting visualization in Fig. 12 shows a clear topological divergence. The base-
line’s feature space (blue) is diffuse and continuous, characterized by ambiguous cluster boundaries
and significant feature entanglement. This suggests that the unconstrained bidirectional encoder
creates non-causal dependencies across tokens to achieve high reconstruction fidelity. AliTok (red),
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by contrast, learns a well-structured discrete manifold of compact, clearly separated semantic clus-
ters. This demonstrates that AliTok’s causal decoder constraint forces the encoder to learn more
deterministic and disentangled representations. This structured and predictable feature distribution
presents a more learnable target for the autoregressive model, which partly explains the significant
improvement in generation accuracy observed with AliTok.

Table 11: KV-Caching Ablation (256×256, w/ cfg, batch=64).

Setting Sampling Time (batch=64) Speedup

AliTok-XL (w/o KV-Cache) 107.76s 1.0×
AliTok-XL (w/ KV-Cache) 10.07s 10.7×

Table 12: Sampling cost at different resolutions.

Tokenizer 256×256 (batch=64, w/ cfg) 512×512 (batch=64, w/ cfg)
Tokens Sampling time Memory Tokens Sampling time Memory

Baseline-XL 256 9.20s 14.81G 1024 95.17s 46.98G
AliTok-XL 272 10.07s 15.48G 1056 100.67s 48.33G

∆ (+6.3%) (+9.5%) (+4.5%) (+3.1%) (+5.8%) (+2.9%)

Detailed Analysis of Sampling Efficiency and Scalability. we provide a comprehensive analysis
of the sampling efficiency of AliTok, explaining the primary driver behind its significant speed
advantage and detailing the scalability of our approach with respect to the prefix tokens. First,
AliTok’s 10× speedup over masked models and diffusion-based models primarily stems from its
full compatibility with Key-Value (KV) caching. In sequential generation, KV-caching stores past
states to avoid re-computation at each step. Our ablation study in Table 11 confirms its dominant
role: disabling KV-caching skyrockets inference time from 10.07s to 107.76s.

Regarding scalability, we further quantified the overhead of additional prefix tokens at higher resolu-
tions. As shown in Table 12, the relative impact of these tokens decreases significantly as resolution
increases. For instance, scaling from 256×256 to 512×512 reduces the extra sampling time over-
head from 9.5% to 5.8%. This favorable trend occurs because prefix tokens grow linearly (O(W))
while total tokens grow quadratically (O(W×H)), making the overhead asymptotically negligible.

Figure 13: Comparison of text-to-image generation between Janus-pro-1B and ours-0.5B. Note
that our model was trained for merely 30K steps.

Generalization to Multimodal Text-to-Image Generation. To investigate AliTok’s generalization
capability, we conducted a preliminary text-to-image experiment. Following the unified paradigm of
Janus-pro (Chen et al., 2025), we built a 0.5B parameter model where a single autoregressive (AR)
architecture handles both text understanding and visual generation. This model is based on LLaVA-
OV-0.5B (Li et al., 2024a) and incorporates AliTok as its visual tokenizer. The model was trained
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on the CC12M dataset (Changpinyo et al., 2021) at 512×512 resolution for only 30,000 steps on 64
A100 GPUs.

Fig. 13 shows a qualitative comparison against the 1B-parameter Janus-pro model (trained for 460K
steps). Despite the significant disparity in model scale and training duration, our model demonstrates
the ability to generate coherent images corresponding to the text prompts. This result serves as an
initial validation of AliTok’s effectiveness and efficiency in a challenging multimodal autoregressive
setting, highlighting its potential for broader applications.

A.5 USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR 2026 policy, we report our use of a large language model (LLM) during the
preparation of this manuscript. The LLM’s role was strictly confined to language polishing, such as
correcting grammar and refining word choices. The authors are solely responsible for all scientific
contributions, including the ideation, methodology, experimental design, and final conclusions. The
authors have reviewed and take full responsibility for the final manuscript.
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Figure 14: More generation results on the ImageNet 256×256 benchmark using our AliTok-XL.
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AliTok-B (177M) AliTok-XL (662M)

Figure 15: More generation results. The left images are generated by AliTok-B (177M), and the
right images are generated by AliTok-XL (662M).
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Figure 16: More generation results. The left images are generated by AliTok-B (177M), and the
right images are generated by AliTok-XL (662M).
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Fountain (562)
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AliTok-B (177M) AliTok-XL (662M)

Figure 17: More generation results. The left images are generated by AliTok-B (177M), and the
right images are generated by AliTok-XL (662M).
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Figure 18: More generation results. The left images are generated by AliTok-B (177M), and the
right images are generated by AliTok-XL (662M).
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