
Under review as a conference paper at ICLR 2024

PARAMETER-EFFICIENT LONG-TAILED RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

The “pre-training and fine-tuning” paradigm in addressing long-tailed recognition
tasks has sparked significant interest since the emergence of large vision-language
models like the contrastive language-image pre-training (CLIP). While previous
studies have shown promise in adapting pre-trained models for these tasks, they
often undesirably require extensive training epochs or additional training data to
maintain good performance. In this paper, we propose PEL, a fine-tuning method
that can effectively adapt pre-trained models to long-tailed recognition tasks in
fewer than 20 epochs without the need for extra data. We first empirically find
that commonly used fine-tuning methods, such as full fine-tuning and classifier
fine-tuning, suffer from overfitting, resulting in performance deterioration on tail
classes. To mitigate this issue, PEL introduces a small number of task-specific
parameters by adopting the design of any existing parameter-efficient fine-tuning
method. Additionally, to expedite convergence, PEL presents a novel semantic-
aware classifier initialization technique derived from the CLIP textual encoder
without adding any computational overhead. Our experimental results on four
long-tailed datasets demonstrate that PEL consistently outperforms previous state-
of-the-art approaches. The source code is available in the supplementary material.

1 INTRODUCTION

0 1 10 100
Learnable Parameters (Million)

50

60

70

80

A
cc

ur
ac

y
(%

)

LWS

PaCo
LiVT

Full fine-tuning

Decoder
PEL (Ours)

BALLAD

VL-LTR
GML

ImageNet-LT

0 1 10 100
Learnable Parameters (Million)

36

40

44

48

52

A
cc

ur
ac

y
(%

)

LWS

PaCo LiVT

Full fine-tuning

Decoder

PEL (Ours)

BALLAD
RAC

VL-LTR

LPT

Places-LT

0 1 10 100
Learnable Parameters (Million)

60

65

70

75

80

A
cc

ur
ac

y
(%

)

LWS

PaCo

LiVT

Full fine-tuning

Decoder

PEL (Ours)

GML

RAC
VL-LTR

LPT

iNaturalist 2018

Figure 1: Comparison with prior state-of-the-art methods. The x-axis represents the number of
learnable parameters, while the y-axis shows the test accuracy. The size of each point corresponds
to the number of training epochs, with larger points indicating longer training times. Gray labels
denote methods that incorporate external data. PEL consistently achieves higher performance with
lower computational costs and is even comparable with methods that leverage external data.

Long-tailed recognition addresses the challenge of learning from highly imbalanced data, where a
small set of classes (head classes) is well-represented in the training data, while other classes (tail
classes) have only a limited number of training samples available. Given its widespread attention,
numerous long-tailed recognition approaches have emerged to enhance generalization, particularly
for tail classes. These approaches typically fall into three categories: 1) data manipulation (Zhou
et al., 2020; Kang et al., 2020), 2) representation learning (Zhong et al., 2021; Cui et al., 2021), and
3) model output adjustment (Menon et al., 2021; Ren et al., 2020). While these existing methods
have made substantial strides in improving classification accuracy, a significant gap still persists
compared to models trained on class-balanced datasets.

Instead of training deep neural networks from scratch, recent results from BALLAD (Ma et al.,
2021), RAC (Long et al., 2022), VL-LTR (Tian et al., 2022), and LPT (Dong et al., 2023) show that

1

Under review as a conference paper at ICLR 2024

properly fine-tuning pre-trained models can surprisingly improve the long-tailed recognition per-
formance. For example, LPT fine-tunes the vision Transformer pre-trained on ImageNet, utilizing
prompt tuning (Jia et al., 2022) via two-phrase training. VL-LTR adopts contrastive language-image
pre-training (CLIP) (Radford et al., 2021) and incorporates additional image-text web data for fine-
tuning. Nevertheless, the performance improvements come at the cost of 1) longer training epochs
(≈ 100), 2) a two-staged procedure, and 3) an external training dataset (size ≈ 106).

To overcome the aforementioned limitations, we introduce PEL, a novel and unified approach for
fine-tuning pre-trained models in long-tailed recognition. We empirically discover that two prevalent
fine-tuning methods, i.e., full fine-tuning (which fine-tunes all network parameters) and classifier
fine-tuning (which focuses solely on the classifier), both suffer from issues of overfitting. In contrast
to previous efforts, this paper explores parameter-efficient fine-tuning (PEFT), where pre-trained
parameters remain fixed while incorporating a limited number of task-specific learnable parameters.
This approach preserves the discriminative capacity required for handling tail classes effectively.
Moreover, our proposed framework is general, allowing for the integration of various PEFT methods
such as VPT (Jia et al., 2022), LoRA (Hu et al., 2022), and Adapter (Houlsby et al., 2019).

Despite PEFT optimizing only a small set of parameters, training Transformer models on large
datasets still incurs notable computational overhead. In pursuit of fast convergence, we introduce
a simple yet effective classifier initialization method. Specifically, we harness textual features ex-
tracted from CLIP using the prompt template to initialize the classifier weights, drawing upon knowl-
edge from the pre-trained CLIP model and leveraging semantic relationships among classes. In
terms of model optimization, this equips PEL with a robust starting point for adapting pre-trained
models, even in scenarios where only a small number of training samples are available.

The contributions of this paper are summarized as follows: 1) We identify a critical limitation in
commonly used fine-tuning methods, such as full fine-tuning and classifier fine-tuning, revealing
their susceptibility to overfitting on tail classes. 2) We introduce a unified parameter-efficient tuning
framework, featuring a novel semantic-aware classifier initialization technique and a test-time en-
semble method. 3) Through comprehensive experiments, we demonstrate that our proposed method
consistently outperforms the prior state-of-the-art on four benchmark datasets. 4) Our method stands
out as a one-staged approach, achieving convergence in fewer than 20 training epochs without re-
quiring supplementary training data, which significantly improves its practicality.

2 RELATED WORKS

Long-tailed recognition via training from scratch. Conventional methods train convolutional
neural network models like ResNet and ResNeXt on long-tailed datasets. Concerning the class
imbalance, there are three main directions to improve the performance: 1) data manipulation (Zhou
et al., 2020; Kang et al., 2020), 2) representation learning (Zhong et al., 2021; Cui et al., 2021), and 3)
model output adjustment (Menon et al., 2021; Ren et al., 2020). Data manipulation typically includes
designing re-sampling strategies, and data augmentations. Many works improve the performance
by adopting two-stage training where the first stage learns representations and the second stage
learns the classifier (Zhong et al., 2021; Wei & Gan, 2023). The adjustment of the model’s outputs
can be done during training by optimizing unbiased loss functions or after training. In contrast
to the aforementioned works, this paper presents an end-to-end training framework that combines
the advantages of multiple existing techniques through optimizing an unbiased loss function and
ensembling the model outputs generated by several data augmentations during test time.

Long-tailed recognition via fine-tuning pre-trained model. Recent progresses utilize pre-
trained Transformer models such as CLIP (Radford et al., 2021) and ViT (Dosovitskiy et al., 2021).
Fine-tuning models pre-trained on large-scale datasets has emerged as an effective strategy to ad-
dress class imbalance due to the strong representation learning capabilities (Ma et al., 2021; Long
et al., 2022; Tian et al., 2022; Dong et al., 2023). However, it is important to note that these methods
often require prolonged training iterations and, in some cases, rely on external training datasets to
facilitate the learning. In contrast, our proposed approach exhibits the remarkable ability to achieve
convergence in fewer than 20 epochs and does not need external data. Furthermore, our method is
general, allowing for seamless integration with various parameter-efficient fine-tuning approaches.

2

Under review as a conference paper at ICLR 2024

3 PARAMETER-EFFICIENT LONG-TAILED RECOGNITION

3.1 ZERO-SHOT CLIP IS A STRONG REPRESENTATION LEARNER

Preliminary. Different from convolutional neural networks, the Transformer architecture
(Vaswani et al., 2017; Dosovitskiy et al., 2021) is more simply designed while exhibiting remarkable
capabilities. A Transformer model consists of an embedding layer and multiple Transformer blocks.
Formally, it first divides an input image x into m patches {xp

i}mi=1. These patches are then embe-
ded into sequences of d-dimensional vectors E0 = Embed([xp

1; · · · ;x
p
m]) ∈ Rm×d. The input

embeddings are subsequently passed through L Transformer blocks {Φl}Ll=1 within the model:

X l = Φl(X l−1). Specifically,
{

X̂ l = MSA(l)(LN(X l−1)) +X l−1

X l = FFN(l)(LN(X̂ l)) + X̂ l (1)

MSA(l)(X) = ConcatHh=1

(
Softmax

(
XW l,h

Q (XW l,h
K)⊤

√
d

)
XW l,h

V

)
W l

O (2)

FFN(l)(X) = ReLU(XW l
1)W

l
2 (3)

Here, MSA denotes the multi-head self-attention and H is the number of heads. FFN indicates the
feed-forward network, and LN denotes layer normalization (Ba et al., 2016). W l,h

Q ,W l,h
K ,W l,h

V ∈
Rd× d

H , W l
O ∈ Rd×d, W l

1 ∈ Rd×4d and W l
2 ∈ R4d×d are learnable projection weights. We hide

the bias terms for simplification. X0 (X l with l = 0) is normally set as E0, and will be added with
an extra learnable token c0 when performing classification tasks, i.e., X0 = [c0;E0]. The feature
is extracted from the same location of the last-layer sequence, which is f = LN(cL).

Transformer has gained remarkable success due to its strong generalization capabilities, making it
adaptable to a wide range of computer vision and natural language processing tasks (Devlin et al.,
2019; Dosovitskiy et al., 2021). Notably, the recent vision-language pre-training model, CLIP, fur-
ther underscores its efficacy by demonstrating impressive zero-shot performance (Radford et al.,
2021). When processing an image x and considering K candidate classes, CLIP first generates the
textual prompts for each of the K classes. These prompts are descriptive phrases, such as “a photo
of a cat” or “a photo of a dog”. CLIP extracts corresponding textual features fT1 , · · · ,fTK

and the
image feature fI . To predict the label for the given image, CLIP computes the cosine similarity
between the image feature fI and each of the class prompts’ features:

ypred = arg max
k∈[K]

f⊤
I fTk

∥fI∥2∥fTk
∥2

(4)

Zero-shot CLIP for long-tailed recognition. In Figures 2a to 2c, we evaluate the performance
of zero-shot CLIP on long-tailed benchmark datasets. We discover that zero-shot CLIP outperforms
most well-designed methods. Furthermore, by freezing the pre-trained backbone and introducing an
additional classifier, the performance can be further improved, thereby highlighting the robustness
of the representations learned by CLIP.

While zero-shot CLIP exhibits impressive performance on ImageNet-LT and Places-LT, its perfor-
mance on another dataset, iNaturalist 2018, has been observed to be suboptimal. iNaturalist 2018
dataset poses a fine-grained long-tailed challenge, featuring a hierarchical categorization system
spanning from 7 kingdoms to 8142 species. Although zero-shot CLIP underperforms in predict-
ing the fine-grained species, it achieves high accuracy for predicting coarse-grained categories like
“kingdom” and “phylum”. Furthermore, by simply introducing an additional classifier, the accuracy
increases from 4.2% to 57.9%. This underscores the utility of the representations extracted from
CLIP when appropriately leveraged.

3.2 CLIP FINE-TUNING HURTS TAIL-CLASS PERFORMANCE

While the pre-trained model demonstrates commendable performance on downstream long-tailed
recognition tasks, it does exhibit limitations. As shown in Figures 2d and 2e, zero-shot CLIP
achieves high accuracy for tail classes, but falls short in achieving strong accuracy for head classes

3

Under review as a conference paper at ICLR 2024

cR
T
LW

S

MiSLAS LA

DisA
lig

n
BCL

PaC
o
NCL

LiV
T

40

60

80

A
cc

ur
ac

y
(%

)

zero-shot CLIP

CLIP + classifier
ImageNet-LT

(a)
OLT

R
cR

T
LW

S

MiSLAS

DisA
lig

n
ALA

PaC
o
LiV

T
30

40

50

A
cc

ur
ac

y
(%

)

zero-shot CLIP

CLIP + classifier
Places-LT

(b)

0 20 40
Accuracy (%)

species
genus

family
order
class

phylum
kingdom

iNat 2018 (different grains)

4.2

57.9

species

zero-shot
classifier

(c)

zero-shot classifier full
30

60

90

A
cc

ur
ac

y
(%

)

ImageNet-LT
head tail

(d)

zero-shot classifier full
20

40

60

A
cc

ur
ac

y
(%

)

Places-LT
head tail

(e)
Figure 2: (a-b) On ImageNet-LT and Places-LT, zero-shot CLIP has surpassed many prior methods.
(c) However, on iNaturalist 2018, zero-shot CLIP encounters challenges in achieving high accuracy
for fine-grained categories. By simply introducing an additional classifier, the accuracy for species
increases significantly. (d-e) Learning classifiers or full fine-tuning improves head-class accuracy
while decreasing tail-class accuracy, even if we optimize the balanced LA loss.

because it does not effectively leverage downstream training datasets to improve the performance.
A direct approach to address this problem is to fine-tune the CLIP model by keeping the backbone
fixed and introducing a dedicated classifier. Figures 2d and 2e show that this approach yields notable
improvements in head-class accuracy, at the expense of a reduction in tail-class accuracy. Another
commonly adopted method is full fine-tuning, where the entire set of model parameters is updated.
Nevertheless, full fine-tuning often comes with significant computational overheads on large-scale
datasets. Moreover, it tends to encounter severe overfitting on long-tailed datasets due to the lim-
ited amount of tail-class samples. Note that we have already optimized Logit-Adjusted (LA) loss
(Menon et al., 2021) for balanced prediction. In addition, we quantitatively assess the overfitting
issue of CLIP fine-tuning methods. Due to space constraints, we present the results in Appendix A.

To mitigate the issue of performance deterioration on tail classes, recent approaches have explored
two-stage training procedures (Ma et al., 2021) or the inclusion of additional training data (Tian
et al., 2022). However, these strategies often introduce significant training overhead or require exter-
nal training data, thereby limiting their practicality. In response to this, we introduce PEL, a simple
yet effective parameter-efficient long-tailed fine-tuning method tailored for long-tailed recognition.

3.3 HOW PARAMETER-EFFICIENT FINE-TUNING HELPS?

Mitigating overfitting via PEFT. In this paper, we explore parameter-efficient fine-tuning (PEFT)
(Yu et al., 2023) which freezes the pre-trained model while introducing a few learnable parameters
for the adaptation. This approach prevents the decline of generalization ability benefiting from
image-text pre-training. As only a small set of task-specific parameters is introduced, the model
not only mitigates overfitting but also exhibits rapid convergence. Concretely, we propose a unified
framework capable of accommodating various PEFT methods. This framework is versatile and
inclusive, allowing for the incorporation of a range of PEFT methods, including but not limited to

• LN tuning (Kim et al., 2021) adjusts the scaling and shifting parameters γ and β for LN modules,
since an LN module can be formulated as LN(X) = Normalize(X) ◦ γ + β.

• Bias-terms Fine-tuning (BitFit) (Zaken et al., 2022) aims to fine-tune only the bias parts of the
model. Formally, given a projection function XW + b, it freezes W and optimizes b.

• Visual Prompt Tuning (VPT) (Jia et al., 2022) prepends learnable prompts P l ∈ Rp×d at each
layer to extend X l = [cl;El] to [cl;P l;El]. It has two variations: 1) VPT-Shallow, which only
prepends prompts at the first layer; 2) VPT-Deep, which prepends prompts at all layers.

• Adapter (Houlsby et al., 2019) proposes to optimize a bottleneck module. The definition is
Adapter(X) = ReLU(LN(X)Wdown)Wup, where Wdown ∈ Rd×r and Wup ∈ Rr×d(r ≪ d).
In practical, it can be appended to the FFN layer to reconstruct FFN(·) to Adapter(FFN(·)).

• Low-Rank Adapter (LoRA) (Hu et al., 2022) is applied to the MSA module. Specifically, it
optimizes Wdown and Wup to update W (e.g., WQ or WV) to W +WdownWup.

• AdaptFormer (Chen et al., 2022) changes the sequential Adapter to a parallel one. Formally, it
computes s ·Adapter(X̂ l) and adds it to X l in Eq. (1). Here s is a learnable scaling parameter.

Without loss of generality, we default to use AdaptFormer considering its state-of-the-art perfor-
mance. We provide an overview of the proposed framework in Figure 3.

Apart from the PEFT module, an additional classifier is essential for adaptation. The linear classifier
is widely employed due to its simplicity and versatility. Given a feature vector f , the predicted logit

4

Under review as a conference paper at ICLR 2024

Patch
EmbeddingA photo of

a [CLASS].
Prompt

Templates

Forward
Initialize
Frozen
Learnable

··

L ×

Feed-Forward
Network

Layer Norm

Multi-Head
Self-Attention

Layer Norm

Patch Embedding
Learnable
Frozen

AdaptFormer

Adapter

LN tuned

BitFit

LoRA

LN tuned

VPT

PEFT Modules
(optional)

Embedding Layer

Image EncoderText Encoder

PEFT ModulesClassifierSemantic
Features

43210 *

Figure 3: An overview of the framework PEL. Left: Reconstruct CLIP by employing PEFT and
semantic-aware initialization. Right: Transformer-based image encoder with typical PEFT modules.

for class k is computed as zk = w⊤
k f + b. However, when training with long-tailed data, the norms

of classifier weight wk tend to exhibit imbalanced distribution, which can lead to biased predictions
(Kang et al., 2020). To mitigate this issue, several approaches (Liu et al., 2020; Wu et al., 2021)
propose to use the cosine classifier zk = σ · w⊤

k f
∥wk∥2∥f∥2

. Here, σ is a scaling factor, which is
equivalent to dividing by a temperature τ in some literature. To underline the effectiveness of PEL,
we opt for the logit-adjusted (LA) loss for training a cosine classifier:

LLA(x, y = j) = − log
exp(zj + log P(y = j))∑

k∈[K] exp(zk + log P(y = k))
(5)

Here, y = j represents the ground-truth label of x and zj is the predicted logit. P(y = k) signifies
the class prior probability, which can be estimated based on the training data. We delve deeper into
the theoretical understanding of the LA loss in Appendix B.

Accelerating convergence via semantic-aware initialization. When adapting the CLIP model
using PEFT, it discards valuable knowledge embedded within the text modality, which inherently
contains rich semantic information. While CLIP possesses strong visual feature extraction capabil-
ities for downstream tasks, its classifier is not optimized for these tasks. To better capture poten-
tial relationships between classes and accelerate convergence, we propose to leverage the embed-
ded semantic knowledge. Specifically, our approach involves using textual features associated with
class labels to initialize the classifier weights. We generate hand-crafted textual prompts (e.g.,, “a
photo of a [CLASS].”) and compute their features fT1 , · · · ,fTK

, which are then employed
to initialize the classfier weights w1, · · · ,wK .

In contrast to previous CLIP fine-tuning methods like BALLAD (Ma et al., 2021) and VL-LTR (Tian
et al., 2022), our approach stands out in its simplicity and efficiency. Unlike prior methods that use
the text encoder in complex loss optimization processes, we solely rely on a single forward pass
of the text encoder for each class description. This simple approach allows us to achieve a better
initial state of the classifier without adding any computational overhead. Moreover, by harnessing
the semantic knowledge inherent in class labels, our method leads to significant improvements in
generalization. Unlike other initialization techniques such as linear probing and class mean features,
our approach benefits from this semantic-aware information.

Test-time ensembling can improve the generalization. In the context of deep neural networks
(DNNs), it is well-established that applying random perturbations to each input can lead to improved
generalization. This principle is particularly crucial for Vision Transformers, where an image is
divided into multiple patches, potentially resulting in the segmentation of continuous patterns into
different patches. In this paper, we propose an enhancement to generalization by aggregating the
predictions from a set of perturbed versions of the input image. Formally, given a test data point x,
its predicted logits z are obtained by averaging the predictions from M perturbed versions:

z = log P(y | x) = 1

M

M∑
i=1

log P(y | αi(x)) (6)

5

Under review as a conference paper at ICLR 2024

Here, αi(x) represents different perturbed versions of x. In practice, we employ different image
cropping positions as these perturbations (see Appendix C for further details). This approach helps
mitigate bias introduced by image cropping. We term this technique test-time ensembling (TTE),
and it can be seamlessly integrated into existing frameworks with minimal computational overhead.

4 EMPIRICAL STUDY

4.1 EXPERIMENTAL SETTINGS

Datasets and evaluation. We conduct experiments on four long-tailed datasets, including
ImageNet-LT (Liu et al., 2019), Places-LT (Liu et al., 2019), iNaturalist 2018 (Van Horn et al.,
2018) and CIFAR-100-LT (Cao et al., 2019). ImageNet-LT has 115.8K images from 1000 classes,
with a maximum of 1280 and a minimum of 5 images per class. Places-LT contains 62.5K im-
ages from 365 classes, from a maximal 4980 to a minimum of 5 images per class. iNaturalist 2018
consists of 437.5K images distributed across 8142 species, with the number of images per species
varying from as few as 2 to as many as 1000. In addition to measuring overall accuracy, we adhere
to the evaluation protocol introduced by Liu et al. (2019) to report accuracy across three splits of
classes: many-shot (>100 images), medium-shot (20∼100 images), and few-shot (<20 images).
Due to limited space, the results for CIFAR-100-LT are presented in Appendix A.

Implementation details. For all experiments, we use the SGD optimizer with a batch size of 128,
weight decay of 5× 10−4, and momentum of 0.9. For parameter-efficient fine-tuning methods, the
learning rate is 0.01. For full fine-tuning, we search the learning rate from {0.02, 0.01, 0.005, 0.002,
0.001, 0.0005} considering its weak stability. For ImageNet-LT and Places-LT, we train the model
for only 10 epochs; and for iNaturalist 2018, we train 20 epochs considering it has much more data.
We set the bottleneck dimension r = 2⌊log2 (K

2L)⌋ for AdaptFormer such that it learns even fewer
parameters than the classifier (see Appendix E for detailed analysis). The scaling factor σ of the
cosine classifier is set to 25. All experiments are conducted on a single NVIDIA A800 GPU. In fact,
a GPU with 20GB of memory is sufficient for all reproduction.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Results on ImageNet-LT. We report the test accuracy in Table 1. While existing approaches such
as VL-LTR (Tian et al., 2022) and GML (Suh & Seo, 2023) rely on extensive auxiliary data to
facilitate fine-tuning, our method PEL achieves superior performance by leveraging the test-time
ensembling (TTE) technique alone. The use of external data not only incurs significant computa-
tional overhead but also reduces practicality due to the unavailability of such data in many real-world
applications. The advantage of PEL is more significant compared with methods that do not use aux-
iliary data, i.e.,PEL surpasses the previous best method by 1.3% in accuracy. Importantly, PEL
only needs 10 epochs of training and fine-tunes far fewer model parameters (i.e., from 21.26M to
0.62M). It is worth noting that we do not include LPT (Dong et al., 2023) for comparison since it is
pre-trained on ImageNet-21K, its results on ImageNet-LT were not reported in the original paper.

Results on Places-LT. From Table 2, we can see that PEL outperforms existing methods by a
larger margin than that on ImageNet-LT. Even without TTE, PEL surpasses VL-LTR and RAC which
use external training data by 1.4% in accuracy. By integrating TTE, the number increases to 2.1%.
Similar to ImageNet-LT, we only need 10 epochs of training in contrast to 80 epochs (40 in each
stage) for LPT. The amount of tunable parameters is also much fewer, i.e., 0.18M. Nevertheless, PEL
outperforms LPT by 1.4% in accuracy. When taking a closer look, we can see that PEL significantly
improves the tail class performance, i.e., from 46.9 to 50.5.

Results on iNaturalist 2018. We report the results in Table 3. Overall, our method achieves the
best performance on this challenging dataset, surpassing LPT, VL-LTR, and RAC. We acknowledge
that Decoder (Wang et al., 2023) uses fewer training epochs, however, its performance trails far
behind PEL. Particularly, PEL (without using TTE) improves LPT by 3% in accuracy and PEL only
needs 20 epochs of training compared with 160 epochs (80 per stage) for LPT. Although LPT uses
fewer learnable parameters, we can reduce the parameters of PEL to reach a comparable quantity
(i.e., reduce the bottleneck dimension r to 64, more details are given in Figure 6). In this case, PEL

6

Under review as a conference paper at ICLR 2024

Table 1: Comparison with state-of-the-art methods on ImageNet-LT.

Methods Backbone Learnable
Params. #Epochs Overall Many Medium Few

Training from scratch
cRT (Kang et al., 2020) ResNet-50 23.51M 90+10 47.3 58.8 44.0 26.1
LWS (Kang et al., 2020) ResNet-50 23.51M 90+10 47.7 57.1 45.2 29.3
MiSLAS (Zhong et al., 2021) ResNet-50 23.51M 180+10 52.7 62.9 50.7 34.3
LA (Menon et al., 2021) ResNet-50 23.51M 90 51.1 - - -
DisAlign (Zhang et al., 2021) ResNet-50 23.51M 90 52.9 61.3 52.2 31.4
BCL (Zhu et al., 2022) ResNet-50 23.51M 100 56.0 - - -
PaCo (Cui et al., 2021) ResNet-50 23.51M 400 57.0 - - -
NCL (Li et al., 2022a) ResNet-50 23.51M 400 57.4 - - -
LiVT (Xu et al., 2023) ViT-B/16 85.80M 100 60.9 73.6 56.4 41.0

Fine-tuning pre-trained model
BALLAD (Ma et al., 2021) ViT-B/16 149.62M 50+10 75.7 79.1 74.5 69.8
Decoder (Wang et al., 2023) ViT-B/16 21.26M ∼18 73.2 - - -
PEL (Ours) ViT-B/16 0.62M 10 77.0 80.2 76.1 71.5
PEL w/ TTE (Ours) ViT-B/16 0.62M 10 78.3 81.3 77.4 73.4
Fine-tuning with Extra Data
VL-LTR (Tian et al., 2022) ViT-B/16 149.62M 100 77.2 84.5 74.6 59.3
GML (Suh & Seo, 2023) ViT-B/16 149.62M 100 78.0 - - -

Table 2: Comparison with state-of-the-art methods on Places-LT.

Methods Backbone Learnable
Params. #Epochs Overall Many Medium Few

Training from scratch (with an ImageNet-1K pre-trained backbone)
OLTR (Liu et al., 2019) ResNet-152 58.14M 30 35.9 44.7 37.0 25.3
cRT (Kang et al., 2020) ResNet-152 58.14M 90+10 36.7 42.0 37.6 24.9
LWS (Kang et al., 2020) ResNet-152 58.14M 90+10 37.6 40.6 39.1 28.6
MiSLAS (Zhong et al., 2021) ResNet-152 58.14M 90+10 40.4 39.6 43.3 36.1
DisAlign (Zhang et al., 2021) ResNet-152 58.14M 30 39.3 40.4 42.4 30.1
ALA (Zhao et al., 2022) ResNet-152 58.14M 30 40.1 43.9 40.1 32.9
PaCo (Cui et al., 2021) ResNet-152 58.14M 30 41.2 36.1 47.9 35.3
LiVT (Xu et al., 2023) ViT-B/16 85.80M 100 40.8 48.1 40.6 27.5

Fine-tuning pre-trained model
BALLAD (Ma et al., 2021) ViT-B/16 149.62M 50+10 49.5 49.3 50.2 48.4
Decoder (Wang et al., 2023) ViT-B/16 21.26M ∼34 46.8 - - -
LPT (Dong et al., 2023) ViT-B/16 1.01M 40+40 50.1 49.3 52.3 46.9
PEL (Ours) ViT-B/16 0.18M 10 51.5 51.3 52.2 50.5
PEL w/ TTE (Ours) ViT-B/16 0.18M 10 52.2 51.7 53.1 50.9
Fine-tuning with Extra Data
VL-LTR (Tian et al., 2022) ViT-B/16 149.62M 100 50.1 54.2 48.5 42.0
RAC (Long et al., 2022) ViT-B/16 85.80M 30 47.2 48.7 48.3 41.8

achieves an accuracy of 77.7% (without TTE) / 79.0% (with TTE), which still outperforms LPT. In
fact, due to the large number of classes of iNaturalist 2018, the classifier already contains 6.25M
parameters. Therefore, the parameter quantity of PEL does not lead to too much cost.

4.3 COMPONENT ANALYSIS AND ABLATION STUDIES

PEL improves representation separability. Compared with the original CLIP, PEL embeds a few
task-specific learnable parameters into each Transformer block. We show that this helps improve the
representation separability among different classes. Figure 4 visualizes the cosine similarity between
pairs of class mean features, the left one is produced by the original CLIP while the right one is
produced by our method. From the plots, we can easily find that directly using CLIP representations

7

Under review as a conference paper at ICLR 2024

Table 3: Comparison with state-of-the-art methods on iNaturalist 2018.

Methods Backbone Learnable
Params. #Epochs Overall Many Medium Few

Training from scratch
cRT (Kang et al., 2020) ResNet-50 23.51M 90+10 65.2 69.0 66.0 63.2
LWS (Kang et al., 2020) ResNet-50 23.51M 90+10 65.9 65.0 66.3 65.5
MiSLAS (Zhong et al., 2021) ResNet-50 23.51M 200+30 71.6 73.2 72.4 70.4
DiVE (He et al., 2021) ResNet-50 23.51M 90 69.1 70.6 70.0 67.6
DisAlign (Zhang et al., 2021) ResNet-50 23.51M 90 69.5 61.6 70.8 69.9
ALA (Zhao et al., 2022) ResNet-50 23.51M 90 70.7 71.3 70.8 70.4
RIDE (Wang et al., 2021) ResNet-50 23.51M 100 72.6 70.9 72.4 73.1
BCL (Zhu et al., 2022) ResNet-50 23.51M 100 71.8 - - -
PaCo (Cui et al., 2021) ResNet-50 23.51M 400 73.2 70.4 72.8 73.6
NCL (Li et al., 2022a) ResNet-50 23.51M 400 74.2 72.0 74.9 73.8
GML (Suh & Seo, 2023) ResNet-50 23.51M 400 74.5 - - -
LiVT (Xu et al., 2023) ViT-B/16 85.80M 100 76.1 78.9 76.5 74.8

Fine-tuning pre-trained model
Decoder (Wang et al., 2023) ViT-B/16 21.26M ∼5 59.2 - - -
LPT (Dong et al., 2023) ViT-B/16 1.01M 80+80 76.1 - - 79.3
PEL (Ours) ViT-B/16 4.75M 20 79.1 72.4 79.0 81.1
PEL w/ TTE (Ours) ViT-B/16 4.75M 20 80.4 74.0 80.3 82.2
Fine-tuning with Extra Data
VL-LTR (Tian et al., 2022) ViT-B/16 149.62M 100 76.8 - - -
RAC (Long et al., 2022) ViT-B/16 85.80M 20 80.2 75.9 80.5 81.1

(a) ImageNet-LT (b) Places-LT (c) iNaturalist 2018

Figure 4: Visualization of the cosine similarities of class mean features on three datasets. For each
dataset, the left is produced using the original CLIP, and the right is by our method.

0 5 10
Epoch

40

60

80

A
cc

ur
ac

y
(%

)

Mean Class Accuracy

PEL (Ours)
PEFT only

0 5 10
Epoch

0

50

A
cc

ur
ac

y
(%

)

Few-shot Class Accuracy

PEL (Ours)
PEFT only

(a) ImageNet-LT

0 5 10
Epoch

20

40

60

A
cc

ur
ac

y
(%

)

Mean Class Accuracy

PEL (Ours)
PEFT only

0 5 10
Epoch

0

25

50

A
cc

ur
ac

y
(%

)

Few-shot Class Accuracy

PEL (Ours)
PEFT only

(b) Places-LT

Figure 5: Convergence curve of mean class and few-shot class training accuracy.

does not provide much discriminative information for the classifier. In contrast, our method recovers
the diagonal, showing that it can learn useful features that separate distinct classes. Due to the large
amount of classes in iNaturalist 2018, the diagonal is more obvious if we zoom in on the plot.

PEL improves convergence. Figure 5 presents the mean class and few-shot class training accu-
racy as a function of epochs. Overall, we can observe that PEL converges rapidly with 10 training
epochs on both datasets. As expected, the semantic-aware initialization attributes to the fast conver-
gence, especially in the case of the tail classes.

On parameter-efficient fine-tuning methods. PEL is a general framework in which many ex-
isting parameter-efficient fine-tuning (PEFT) methods can be integrated. In addition to commonly
used full fine-tuning and classifier fine-tuning, we test PEL with other 7 types of PEFT methods in
Table 4. Overall, the integration of most PEFT methods yields enhanced performance. Specifically,
AdaptFormer performs best on both datasets and Adapter achieves slightly low accuracy (i.e., 0.2%).

8

Under review as a conference paper at ICLR 2024

Table 4: Comparison of different fine-tuning methods. All methods use semantic-aware initialization
for the classifier (if have) and test-time ensemble for fair comparison.

Methods ImageNet-LT Places-LT
Overall Many Medium Few Overall Many Medium Few

Zero-shot CLIP 68.3 69.2 67.6 67.7 40.2 38.3 39.2 45.9
Full fine-tuning 74.4 82.2 73.9 53.8 47.2 51.6 48.5 36.2
Classifier fine-tuning 74.0 77.9 73.9 62.8 49.3 50.0 50.9 44.2

PEL w/

LN tuning 73.5 76.9 72.5 67.1 50.5 50.2 51.6 48.3
BitFit 77.0 79.7 76.3 71.9 51.5 51.2 52.3 50.0
VPT-shallow 75.2 78.8 74.8 66.8 49.9 50.5 51.4 45.3
VPT-deep 77.2 79.5 76.5 72.8 51.5 51.4 52.3 49.8
Adapter 78.1 81.3 77.1 72.8 52.0 51.7 52.7 51.0
LoRA 76.9 79.6 76.2 71.7 51.8 51.5 52.5 50.5
AdaptFormer 78.3 81.3 77.4 73.4 52.2 51.7 53.1 50.9

Table 5: Comparison of PEL with different classifier initialization methods. All methods use the
test-time ensemble for fair comparisons.

Methods ImageNet-LT Places-LT
Overall Many Medium Few Overall Many Medium Few

Random initialization 76.1 80.8 75.9 63.2 49.6 51.2 52.1 41.0
Linear probing 77.1 81.8 76.4 66.6 49.9 51.2 51.0 45.0
Class mean features 77.5 81.3 76.8 69.4 51.3 51.6 52.1 48.8
Semantic-aware initialization 78.3 81.3 77.4 73.4 52.2 51.7 53.1 50.9

0 1 2 4 8 16 32 64 128 256
Bottleneck Dimension

0

2

4
 Param

s (M
illion)73

75

77

79

A
cc

ur
ac

y
(%

) ImageNet-LT

0 1 2 4 8 16 32 64 128 256
Bottleneck Dimension

0

2

4

 Param
s (M

illion)49

50

51

52

53

A
cc

ur
ac

y
(%

) Places-LT

0 64 128 192 256 320 384 448 512
Bottleneck Dimension

0

4

8

 Param
s (M

illion)

60

70

80

A

cc
ur

ac
y

(%
) iNaturalist 2018

Figure 6: Comparison of different learnable parameters by changing the bottleneck dimension r. In
the yellow area, the PEFT module has fewer learnable parameters than the classifier. While in the
blue area, the quantity of parameters of the PEFT module surpasses the classifier.

Effect of semantic-aware initialization. In Table 5, we test three kinds of classifier initialization
strategies in comparison with the random initialization baseline. In PEL, we use the textual fea-
ture by default because it transfers semantic relations between classes during fine-tuning. Another
intuitive strategy using the class mean features to initialize the classifier achieves slightly poor per-
formance but still significantly improves the baseline. This experiment shows that a good starting
point for parameter optimization can lead to a better solution and faster convergence.

Impact of the quantity of learnable parameters. In PEL, we can define the amounts of learnable
parameters. In Figure 6, we study how much the parameters impact performance by controlling the
bottleneck dimension r. Overall, we find that the performance is robust to the change of dimensions
and it achieves the best results when employing comparable learnable parameters to the classifier.

5 CONCLUSION

In summary, this paper introduces PEL, a straightforward yet effective framework for fine-tuning
the CLIP model on long-tailed datasets. The proposed framework is versatile, allowing for the in-
tegration of various parameter-efficient fine-tuning methods, and notably achieves convergence in
fewer than 20 training epochs. Importantly, our method does not rely on the availability of exter-
nal training datasets, setting it apart from previous approaches. Despite its simplicity, our method
consistently outperforms numerous baselines across a range of datasets, including CIFAR-100-LT,
ImageNet-LT, Places-LT, and iNaturalist 2018. We emphasize the ease of training and hope that our
approach serves as an inspiration for further advancements in the field of long-tailed recognition.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In Advances in Neural Information Processing
Systems, volume 32, pp. 1565–1576, 2019.

Shoufa Chen, Chongjian GE, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. In Advances in Neural
Information Processing Systems, volume 35, pp. 16664–16678, 2022.

Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 715–724, 2021.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9268–9277, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Bowen Dong, Pan Zhou, Shuicheng Yan, and Wangmeng Zuo. LPT: Long-tailed prompt tuning for
image classification. In International Conference on Learning Representations, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Yin-Yin He, Jianxin Wu, and Xiu-Shen Wei. Distilling virtual examples for long-tailed recognition.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 235–244,
2021.

Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-
entangling label distribution for long-tailed visual recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6626–6636, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, pp. 2790–2799,
2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In Proceedings of the 17th European Conference on
Computer Vision, pp. 709–727, 2022.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In International
Conference on Learning Representations, 2020.

10

Under review as a conference paper at ICLR 2024

Konwoo Kim, Michael Laskin, Igor Mordatch, and Deepak Pathak. How to adapt your large-scale
vision-and-language model. 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, University of Tront, 2009.

Jun Li, Zichang Tan, Jun Wan, Zhen Lei, and Guodong Guo. Nested collaborative learning for long-
tailed visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6949–6958, 2022a.

Mengke Li, Yiu-ming Cheung, and Yang Lu. Long-tailed visual recognition via gaussian clouded
logit adjustment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6929–6938, 2022b.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features:
A new baseline for efficient model tuning. In Advances in Neural Information Processing Systems,
volume 35, pp. 109–123, 2022.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision, pp.
2980–2988, 2017.

Jialun Liu, Yifan Sun, Chuchu Han, Zhaopeng Dou, and Wenhui Li. Deep representation learning
on long-tailed data: A learnable embedding augmentation perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2970–2979, 2020.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2537–2546, 2019.

Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait, Ravi Garg, Alan
Blair, Chunhua Shen, and Anton van den Hengel. Retrieval augmented classification for long-tail
visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6959–6969, 2022.

Teli Ma, Shijie Geng, Mengmeng Wang, Jing Shao, Jiasen Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. A simple long-tailed recognition baseline via vision-language model. arXiv preprint
arXiv:2111.14745, 2021.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on Learning
Representations, 2021.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
In International Conference on Learning Representations, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proceedings of the 38th International Conference
on Machine Learning, pp. 8748–8763, 2021.

Jiawei Ren, Cunjun Yu, shunan sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, and hongsheng Li. Balanced
meta-softmax for long-tailed visual recognition. In Advances in Neural Information Processing
Systems, volume 33, pp. 4175–4186, 2020.

Min-Kook Suh and Seung-Woo Seo. Long-tailed recognition by mutual information maximization
between latent features and ground-truth labels. In Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202, pp. 32770–32782, 2023.

Changyao Tian, Wenhai Wang, Xizhou Zhu, Jifeng Dai, and Yu Qiao. VL-LTR: learning class-
wise visual-linguistic representation for long-tailed visual recognition. In Proceedings of the 17th
European Conference on Computer Vision, pp. 73–91, 2022.

11

Under review as a conference paper at ICLR 2024

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–
8778, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, pp. 5998–6008, 2017.

Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella Yu. Long-tailed recognition by
routing diverse distribution-aware experts. In International Conference on Learning Representa-
tions, 2021.

Yidong Wang, Zhuohao Yu, Jindong Wang, Qiang Heng, Hao Chen, Wei Ye, Rui Xie, Xing Xie,
and Shikun Zhang. Exploring vision-language models for imbalanced learning. arXiv preprint
arXiv:2304.01457, 2023.

Tong Wei and Kai Gan. Towards realistic long-tailed semi-supervised learning: Consistency is
all you need. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3469–3478, 2023.

Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin. Adversarial robustness under long-
tailed distribution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8659–8668, 2021.

Zhengzhuo Xu, Ruikang Liu, Shuo Yang, Zenghao Chai, and Chun Yuan. Learning imbalanced data
with vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15793–15803, 2023.

Bruce XB Yu, Jianlong Chang, Haixin Wang, Lingbo Liu, Shijie Wang, Zhiyu Wang, Junfan Lin,
Lingxi Xie, Haojie Li, Zhouchen Lin, et al. Visual tuning. arXiv preprint arXiv:2305.06061,
2023.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. Distribution alignment: A
unified framework for long-tail visual recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2361–2370, 2021.

Yan Zhao, Weicong Chen, Xu Tan, Kai Huang, and Jihong Zhu. Adaptive logit adjustment loss for
long-tailed visual recognition. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 3472–3480, 2022.

Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for long-tailed recogni-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16489–16498, 2021.

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. BBN: Bilateral-branch network with
cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 9719–9728, 2020.

Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang Jiang. Balanced
contrastive learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 6908–6917, 2022.

12

Under review as a conference paper at ICLR 2024

A ADDITIONAL EXPERIMENTS

Due to the page limitation, we report additional experimental results here, including 1) results
on CIFAR-100-LT dataset; 2) additional results on iNaturalist 2018; 3) Partial fine-tuning vs.
parameter-efficient fine-tuning; 4) effects of the AdaptFormer module on different layers; 5) quan-
tifying the overfitting issue of fine-tuning methods; 6) more detailed observations on model conver-
gence; 7) comparison of different classifiers; 8) comparison of different losses; 9) ablation study of
components; 10) PEL with ResNet as backbone.

Results on CIFAR-100-LT dataset. CIFAR-100-LT (Cao et al., 2019) is derived from CIFAR-100
(Krizhevsky et al., 2009) and is constructed with various imbalance ratios, including 100, 50, and 10.
The implementation settings for CIFAR-100-LT remain consistent with those used for ImageNet-LT
and Places-LT, as described in Section 4.1. Table 6 presents the results on CIFAR-100-LT. Following
the experimental setup used for large-scale datasets, we fine-tune the CLIP model for 10 epochs. The
results clearly demonstrate that PEL outperforms other methods, including LiVT, BALLAD, and
various training-from-scratch approaches. These results hold true regardless of whether Test-Time
Ensembling (TTE) is applied or not. Additionally, we extend our experiments by replacing the CLIP
with ViT which is pre-trained on the ImageNet-21K dataset. Notably, ViT lacks a corresponding
text encoder. In this case, we employ the class mean features to initialize the classifier. Despite
the inherent class overlaps between ImageNet-21K and CIFAR-100, which naturally lead to higher
performance, our method surpasses LPT with fewer training epochs and learnable parameters.

Table 6: Comparison with state-of-the-art methods on CIFAR-100-LT with various imbalance ra-
tios. †Pre-trained model from ImageNet-21K1 has several classes related to CIFAR-1002, which
potentially leads to data leakage.

Methods Backbone Learnable
Params. #Epochs Imbalance Ratio

100 50 10

Training from scratch

LDAM (Cao et al., 2019) ResNet-32 0.46M 200 42.0 46.6 58.7
BBN (Zhou et al., 2020) ResNet-32 0.46M 200 42.6 47.0 59.1
DiVE (He et al., 2021) ResNet-32 0.46M 200 45.4 51.1 62.0
MiSLAS (Zhong et al., 2021) ResNet-32 0.46M 200+10 47.0 52.3 63.2
BS (Ren et al., 2020) ResNet-32 0.46M 400 50.8 54.2 63.0
PaCo (Cui et al., 2021) ResNet-32 0.46M 400 52.0 56.0 64.2
BCL (Zhu et al., 2022) ResNet-32 0.46M 200 51.9 56.6 64.9

Fine-tuning pre-trained model

LiVT (Xu et al., 2023) ViT-B/16 85.80M 100 58.2 - 69.2
BALLAD (Ma et al., 2021) ViT-B/16 149.62M 50+10 77.8 - -
PEL (Ours) ViT-B/16 0.10M 10 80.3 82.0 83.8
PEL w/ TTE (Ours) ViT-B/16 0.10M 10 81.7 83.1 84.9

Fine-tuning pre-trained model from ImageNet-21K†

LPT (Dong et al., 2023) ViT-B/16 1.01M 40+40 89.1 90.0 91.0
PEL (Ours) ViT-B/16 0.10M 10 89.1 90.2 91.3

Additional results on iNaturalist 2018. In PEL, we train 20 epochs on iNaturalist 2018 con-
sidering its large data scale. In Table 7, we report the results of training different epochs. When
training for 5 epochs, PEL achieves an overall accuracy of 67.3% (w/o TTE) / 68.6% (w/ TTE),
which surpasses Decoder (Wang et al., 2023) by more than 8% (please refer to Table 3 for compar-
ison). Moreover, by training more epochs (e.g., more than 30 epochs), PEL achieves an additional
performance improvement by 1%. However, this will increase the computational overhead, so we
abort this costly training approach in PEL.

1
https://storage.googleapis.com/bit_models/imagenet21k_wordnet_lemmas.txt

2
https://www.cs.toronto.edu/%7Ekriz/cifar.html

13

https://storage.googleapis.com/bit_models/imagenet21k_wordnet_lemmas.txt
https://www.cs.toronto.edu/%7Ekriz/cifar.html

Under review as a conference paper at ICLR 2024

Table 7: Results of PEL (with and without TTE) on iNaturalist 2018 by training different epochs.

Methods #Epochs Overall Many Medium Few

PEL (Ours)

5 67.3 70.4 71.0 61.8
10 76.1 71.3 75.9 77.5
20 79.1 72.4 79.0 81.1
30 80.1 73.8 80.0 81.9
40 80.2 74.4 79.9 82.1
50 80.3 75.3 79.9 82.1

PEL w/ TTE (Ours)

5 68.6 70.5 72.3 63.5
10 77.3 71.9 77.1 78.9
20 80.4 74.0 80.3 82.2
30 81.3 75.1 81.2 83.0
40 81.3 75.0 81.1 83.3
50 81.4 75.9 80.9 83.5

Partial fine-tuning vs. parameter-efficient fine-tuning. Partial fine-tuning (He et al., 2022) is an
intuitive way to reduce the learnable parameters and avoid overfitting. Specifically, it fine-tunes the
last k layers of Transformer blocks while freezing the others. In Figure 7, we compare partial fine-
tuning and PEL on ImageNet-LT, Places-LT, and iNaturalist 2018. Similar to full fine-tuning, partial
fine-tuning is also sensitive to learning rate. When k is small (e.g., 0, 1, 2), a higher learning rate is
better. However, when k is large (e.g., 9, 12), the high learning rate leads to a severe deterioration in
the accuracy, thus a smaller learning rate is more appropriate. Moreover, even if we have searched
for the optimal learning rate, it is non-trivial to choose the number of fine-tuned layer k for different
datasets, as the best k is 2 for ImageNet-LT, 1 for Places-LT, and 6 for iNaturalist 2018. In contrast,
PEL consistently performs well with fixed hyperparameters.

0 1 2 3 6 9 12
layers fine-tuned

65

70

75

A
cc

ur
ac

y
(%

)

ImageNet-LT

0 1 2 3 6 9 12
layers fine-tuned

40

45

50

A
cc

ur
ac

y
(%

)

Places-LT

0 1 2 3 6 9 12
layers fine-tuned

0

20

40

60

80

A
cc

ur
ac

y
(%

)

iNaturalist 2018
zero-shot
lr=0.0005
lr=0.001
lr=0.002
lr=0.005
lr=0.01
lr=0.02
PEL

Figure 7: Partial fine-tuning the last k layers. Both methods use cosine classifier and semantic-
aware initialization for fair comparison. Similar to full fine-tuning, we search learning rate from
{0.02, 0.01, 0.005, 0.002, 0.001, 0.0005} for partial fine-tuning. For PEL, we fix the learning rate
to 0.01. Partial fine-tuning needs to elaborately choose the proper learning rate and the fine-tuned
layers for the best performance, while PEL consistently performs optimally.

Effects of the AdaptFormer module on different layers. In each layer, the output of the Adapt-
Former module is multiplied by a learnable scaling parameter s before being added to the corre-
sponding block. Therefore, we can compare the values of s to analyze the effects of AdaptFormer
for different layers. In Figure 8, we visualize the learned s from each layer. It is inspiring that Adapt-
Former can adaptively learn suitable scaling parameters for different layers. Moreover, the values of
the last layers tend to be larger, which indicates that the adaptation of the last several layers is more
significant for downstream classification tasks.

3 6 9 12
Layer Id

0.0

0.6

1.2

Sc
al

in
g

Pa
ra

m
et

er ImageNet-LT

3 6 9 12
Layer Id

0.0

0.5

1.0

Sc
al

in
g

Pa
ra

m
et

er Places-LT

3 6 9 12
Layer Id

0

2

4

Sc
al

in
g

Pa
ra

m
et

er iNaturalist 2018

Figure 8: Learned scaling parameters of the PEFT modules (AdaptFormer) in different layers.
AdaptFormer adaptively learns suitable scaling parameters for each layer, and the last several layers
tend to have larger scaling parameters.

14

Under review as a conference paper at ICLR 2024

Quantifying the overfitting issue of fine-tuning methods. To give a more thorough comparison
between classifier fine-tuning, full fine-tuning and PEL, we compute their training and test accuracy,
as well as the accuracy gap, and report the results in Table 8. We highlight the overfitting results
with red colors. The results show that full fine-tuning tends to cause overfitting, as the gaps between
training and test accuracy are higher. Besides, classifier fine-tuning also cause overfitting regarding
the tail-class performance.

Table 8: Training and test accuracy of different fine-tuning methods on ImageNet-LT, Places-LT,
and iNaturalist 2018. The red number denotes that the gap between training and test accuracy is
larger than PEL, which indicates overfitting.

(a) ImageNet-LT

Methods
Overall Many-shot Medium-shot Few-shot

train test ∆ train test ∆ train test ∆ train test ∆

Classifier (best lr) 83.4 73.5 9.9 83.2 76.6 6.6 86.9 72.8 14.1 91.7 67.2 24.5
Classifier (lr equal to PEL) 82.4 73.1 9.3 82.6 77.0 5.6 83.8 73.1 10.7 79.3 61.6 17.7
Full (best lr) 91.6 72.9 18.7 92.3 80.8 11.5 88.5 72.4 16.1 72.8 52.1 20.7
Full (lr equal to PEL) 91.6 61.7 29.9 91.8 70.3 21.5 91.3 60.0 21.3 86.0 43.4 42.6

PEL (Ours) 87.1 77.0 10.1 86.8 80.2 6.6 87.9 76.1 11.8 88.9 71.5 17.4

(b) Places-LT

Methods
Overall Many-shot Medium-shot Few-shot

train test ∆ train test ∆ train test ∆ train test ∆

Classifier (best lr) 56.8 48.5 8.3 55.0 48.6 6.4 66.3 49.1 17.2 79.1 46.8 32.3
Classifier (lr equal to PEL) 56.2 48.3 7.9 54.5 49.3 5.2 62.4 49.9 12.5 62.6 42.5 20.1
Full (best lr) 75.2 46.4 28.8 74.8 51.0 23.8 78.1 47.6 30.5 66.8 35.3 31.5
Full (lr equal to PEL) 75.7 41.8 33.9 77.0 46.3 30.7 85.7 43.1 42.6 82.0 30.5 51.5

PEL (Ours) 59.3 51.5 7.8 58.3 51.3 7.0 65.9 52.2 13.7 71.1 50.5 20.6

(c) iNaturalist 2018

Methods
Overall Many-shot Medium-shot Few-shot

train test ∆ train test ∆ train test ∆ train test ∆

Classifier (best lr) 60.2 57.9 2.3 53.7 46.7 7.0 74.7 56.8 17.9 85.4 62.1 23.3
Classifier (lr equal to PEL) 60.2 57.9 2.3 53.7 46.7 7.0 74.7 56.8 17.9 85.4 62.1 23.3
Full (best lr) 92.6 72.7 19.9 91.8 70.3 21.5 96.1 73.1 23.0 96.8 72.7 24.1
Full (lr equal to PEL) 87.8 70.1 17.7 85.1 63.7 21.4 95.8 70.0 25.8 98.7 71.8 26.9

PEL (Ours) 90.4 79.1 11.3 88.0 72.4 15.6 97.4 79.0 18.4 99.4 81.1 18.3

0 5 10
Epoch

0.6

1.4

2.2

Lo
ss

Training Loss

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

40

60

80

A
cc

ur
ac

y
(%

)

Mean Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

60

70

80

A
cc

ur
ac

y
(%

)

Many-shot Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

40

60

80

A
cc

ur
ac

y
(%

)

Medium-shot Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

0

50

A
cc

ur
ac

y
(%

)

Few-shot Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

Figure 9: Convergence curves of training loss and accuracy on ImageNet-LT.

0 5 10
Epoch

1.2

1.8

2.4

Lo
ss

Training Loss

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

20

40

60

A
cc

ur
ac

y
(%

)

Mean Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

40

50

A
cc

ur
ac

y
(%

)

Many-shot Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

40

60

A
cc

ur
ac

y
(%

)

Medium-shot Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

0 5 10
Epoch

0

25

50

A
cc

ur
ac

y
(%

)

Few-shot Class Accuracy

PEL (Ours)
w/o PEFT module
w/o initialization

Figure 10: Convergence curves of training loss and accuracy on Places-LT.

15

Under review as a conference paper at ICLR 2024

More detailed observations on model convergence. In Figures 9 and 10, we illustrate the con-
vergence curve on training loss and training accuracy. We report the mean accuracy of all classes,
as well as many-shot, medium-shot, and few-shot classes. The results show that PEL converges
rapidly with 10 training epochs on both head and tail classes. Without the PEFT module, the train-
ing loss and accuracy converge suboptimally on all classes. Without semantic-aware initialization,
the head-class accuracy is slightly affected, while the tail-class accuracy decreases by a large margin.

Comparison of different classifiers. In PEL, we default to optimize the cosine classifier with a
scaling factor σ = 25. One may be concerned about other classifiers or scaling factor σ. We further
adopt the linear classifier zk = w⊤

k f + b, L2-normalized classifier zk =
w⊤

k

∥wk∥2
f , as well as cosine

classifier with σ ∈ {15, 20, 25, 30, 35}, and report the results in Table 9. The results show that the
linear classifier performs well on ImageNet-LT and Places-LT, but unsatisfactorily on iNaturalist
2018. This can be inferred from the classifier weight norms shown in Figure 11, where the weight
norms of iNaturalist 2018 are much more skewed. By removing the impact of weight norms, the
L2-normalized classifier achieves higher performance, especially on the tail classes. When adopting
the cosine classifier, setting σ to 25 or 30 leads to the best performance. Without loss of generality,
we default to set σ = 25.

Table 9: Performance of PEL with different classifiers. All methods use semantic-aware initializa-
tion and test-time ensemble for fair comparison.

Classifiers ImageNet-LT Places-LT iNaturalist 2018
Overall Many Med. Few Overall Many Med. Few Overall Many Med. Few

Linear 78.2 81.2 77.2 72.8 52.3 51.7 52.8 52.0 75.7 75.8 77.4 73.6
L2-normalized 78.4 81.2 77.2 74.7 52.2 51.3 52.7 52.4 80.0 74.1 79.9 81.8

Cosine

σ = 15 75.3 81.1 76.1 55.9 49.4 52.8 52.8 35.3 76.5 73.4 76.4 77.4
σ = 20 77.5 81.1 77.1 69.1 51.6 52.2 53.3 46.8 79.6 73.9 79.3 81.6
σ = 25 78.3 81.3 77.4 73.4 52.2 51.7 53.1 50.9 80.4 74.0 80.3 82.2
σ = 30 78.5 81.5 77.3 74.2 52.1 51.5 52.6 51.8 80.3 73.8 80.4 81.9
σ = 35 78.4 81.5 77.1 73.9 51.7 51.3 52.1 51.7 79.8 74.1 79.9 81.3

0 999
Sorted Class Index

1.0

1.2

C
la

ss
ifi

er
 W

ei
gh

t N
or

m ImageNet-LT

0 364
Sorted Class Index

1.0

1.2

C
la

ss
ifi

er
 W

ei
gh

t N
or

m Places-LT

0 8141
Sorted Class Index

0.5

1.0

C
la

ss
ifi

er
 W

ei
gh

t N
or

m iNaturalist 2018

Figure 11: Weight norms of the learned linear classifier on three long-tailed datasets. Classes are
sorted by their frequency in the training dataset. On iNaturalist 2018, the weight norms are much
more imbalanced, leading to a suboptimal performance of the linear classifier.

Table 10: Performance of PEL with different losses. All methods use semantic-aware initialization
and test-time ensemble for fair comparison.

Losses ImageNet-LT Places-LT
Overall Many Medium Few Overall Many Medium Few

CE 71.8 86.1 68.7 42.1 42.1 56.7 38.0 24.5
Focal (Lin et al., 2017) 72.1 85.5 69.1 44.7 42.7 56.1 38.8 26.8
LDAM (Cao et al., 2019) 69.6 86.4 66.5 33.4 40.4 56.8 36.0 20.1
CB (Cui et al., 2019) 76.9 82.3 76.3 63.5 50.0 52.6 51.5 41.9
GRW (Zhang et al., 2021) 76.9 82.3 76.3 63.7 50.1 52.4 51.7 42.0
LADE (Hong et al., 2021) 78.0 81.2 76.7 73.4 51.2 51.3 51.7 49.6
LA (Menon et al., 2021) 78.3 81.3 77.4 73.4 52.2 51.7 53.1 50.9

Comparison of different losses. In Table 10, we compare the performance of PEL with different
loss functions, including cross-entropy (CE) loss, focal loss (Lin et al., 2017) proposed for hard

16

Under review as a conference paper at ICLR 2024

example mining, label-distribution-aware margin (LDAM) loss (Cao et al., 2019), class-balanced
(CB) loss (Cui et al., 2019), generalized re-weighting (GRW) loss (Zhang et al., 2021), label dis-
tribution disentangling (LADE) loss (Hong et al., 2021). The results are shown in Table 10, which
demonstrate that logit-adjusted (LA) loss achieves the highest performance. Furthermore, we give a
theoretical analysis of logit-adjusted loss in Appendix B.

Ablation study of components. To assess the impact of each component, we conduct a sys-
tematical ablation study on different components in PEL including 1) the PEFT module, 2) the
Logit-Adjusted (LA) loss, 3) Semantic-Aware Initialization (abbreviated as SAI), and 4) Test-Time
Ensembling (TTE). The results presented in Table 11 demonstrate the effectiveness of each com-
ponent. Specifically, 1) PEFT enhances performance on both head and tail classes; 2) without the
LA loss, predictions tend to be biased to head classes; 3) Semantic-Aware Initialization (SAI) con-
sistently improves the generalization, particularly on tail classes; 4) Test-Time Ensembling (TTE)
further boosts the performance across both head and tail classes.

Table 11: Ablation study of each key component in PEL. The baseline involves learning a cosine
classifier using Cross-Entropy (CE) loss.

PEFT LA SAI TTE ImageNet-LT Places-LT
Overall Many Medium Few Overall Many Medium Few

60.9 82.6 56.7 13.8 34.3 53.6 30.5 7.5
✓ 68.9 84.7 66.3 33.7 38.9 55.6 35.3 16.4
✓ ✓ 74.9 79.7 74.7 61.7 48.7 50.6 50.8 40.5
✓ ✓ ✓ 77.0 80.2 76.1 71.5 51.5 51.3 52.2 50.5
✓ ✓ ✓ ✓ 78.3 81.3 77.4 73.4 52.2 51.7 53.1 50.9

PEL with ResNet as the backbone PEL incorporates Transformer-based models as its backbone.
One may have concerns regarding adopting the widely used ResNet (He et al., 2016). However,
since there is no off-the-shelf PEFT method specifically designed for ResNet, it is challenging to
integrate our method with ResNet. Despite this constraint, we have explored some straightforward
strategies, including 1) incorporating a scaling and shifting (SSF) (Lian et al., 2022) module after
the backbone, and 2) fine-tuning solely the bias terms of ResNet. The results are presented below.
In comparison to zero-shot CLIP and previous methods (reported in Tables 1 and 2), our method
achieves significantly superior performance with lower computational costs.

Table 12: Results on ImageNet-LT with ResNet as the backbone. All methods use semantic-aware
initialization and test-time ensemble for fair comparison.

Methods Backbone Learnable
Params. #Epochs Overall Many Medium Few

Zero-shot CLIP ResNet-50 - - 57.6 58.6 56.9 56.9
PEL w/ SSF ResNet-50 0.002M 10 66.9 72.0 66.5 54.1
PEL w/ bias tuning ResNet-50 0.034M 10 67.8 72.0 67.3 57.6
PEL w/ bias tuning & SSF ResNet-50 0.036M 10 68.3 72.5 67.8 58.2

Table 13: Results on Places-LT with ResNet as backbone. All methods use semantic-aware initial-
ization and test-time ensemble for fair comparison.

Methods Backbone Learnable
Params. #Epochs Overall Many Medium Few

Zero-shot CLIP ResNet-50 - - 35.2 33.1 34.6 40.4
PEL w/ SSF ResNet-50 0.002M 10 46.7 47.5 48.7 40.7
PEL w/ bias tuning ResNet-50 0.034M 10 47.9 48.2 49.8 42.9
PEL w/ bias tuning & SSF ResNet-50 0.036M 10 48.1 48.1 50.0 43.9

17

Under review as a conference paper at ICLR 2024

On representation separability of different PEFT methods In Figures 12 and 13, we illustrate
the impacts of different PEFT methods on representation separability. Compared to the origin CLIP,
all of these PEFT methods contribute to more distinctive features. Notably, Adapter and Adapt-
Former are more effective in enhancing separability. Conversely, LN tuning and VPT-shallow may
yield relatively weaker effects, which is aligned with their inferior performance in Table 4.

(a) CLIP (b) LN Tuning (c) BitFit (d) VPT-shallow

(e) VPT-deep (f) LoRA (g) Adapter (h) AdaptFormer

Figure 12: Visualization of the cosine similarities of class mean features on ImageNet-LT.

(a) CLIP (b) LN Tuning (c) BitFit (d) VPT-shallow

(e) VPT-deep (f) LoRA (g) Adapter (h) AdaptFormer

Figure 13: Visualization of the cosine similarities of class mean features on Places-LT.

B UNDERSTANDING LOGIT-ADJUSTED LOSS

Logit-adjusted loss (Menon et al., 2021) (or termed Balanced-Softmax (Ren et al., 2020)) is widely
used in previous literature (Hong et al., 2021; Zhao et al., 2022; Li et al., 2022b) because of its
theoretical optimality and formal simplicity. Following we give a brief proof:

Ps(y = j | x) =
Ps(y = j | x)∑

k∈[K] Ps(y = k | x)

=

Pt(y = j | x) ·
Ps(y = j | x)
Pt(y = j | x)∑

k∈[K] Pt(y = k | x) ·
Ps(y = k | x)
Pt(y = k | x)

=

Pt(y = j | x) ·
Ps(x | y = j)

Pt(x | y = j)
·
Ps(y = j)

Pt(y = j)
·
Pt(x)

Ps(x)∑
k∈[K] Pt(y = k | x) ·

Ps(x | y = k)

Pt(x | y = k)
·
Ps(y = k)

Pt(y = k)
·
Pt(x)

Ps(x)

18

Under review as a conference paper at ICLR 2024

=

Pt(y = j | x) ·
Ps(x | y = j)

Pt(x | y = j)
·
Ps(y = j)

Pt(y = j)∑
k∈[K] Pt(y = k | x) ·

Ps(x | y = k)

Pt(x | y = k)
·
Ps(y = k)

Pt(y = k)

where Ps is the probability distribution in the source domain (i.e., the training dataset) and Pt is
the probability distribution in the target domain (i.e., the test dataset). For long-tailed recognition,

Ps(y) appears a long-tailed distribution and Pt(y) is a uniform distribution, i.e., Pt(y = k) =
1

K
.

Moreover, by assuming that Ps(x | y) = Pt(x | y), we have

Ps(y = j | x) =
Pt(y = j | x) · Ps(y = j)∑

k∈[K] Pt(y = k | x) · Ps(y = k)
(7)

In deep classification models, Pt(y | x) is estimated by the Softmax of the output logits z, which is

Pt(y = j | x) =
exp(zj)∑

k∈[K] exp(zk)
(8)

In order to get the optimal probability model in the target domain, we substitute Pt(y | x) in Eq. (7)
with Eq. (8). In this way, we optimize the predicted probability in the source domain as

Ps(y = j | x) =

exp(zj)∑
k∈[K] exp(zk)

· Ps(y = j)

∑
k∈[K]

exp(zk)∑
k′∈[K] exp(z

′
k)

· Ps(y = k)

=
exp(zj) · Ps(y = j)∑

k∈[K] exp(zk) · Ps(y = k)

=
exp (zj + log Ps(y = j))∑

k∈[K] exp (zk + log Ps(y = k))

In practice, Ps(y) can be estimated by calculating the class frequency in the training dataset. Com-
pared to other elaborately designed losses, the logit-adjusted loss does not require any hyperparam-
eters and has fewer assumptions about the data distribution, making it more generalizable across
different backbone models. As shown in Table 10, some other elaborately designed losses such as
LDAM and LADE, perform unsatisfactorily when applied to the CLIP model.

C EXPLANATION OF TEST-TIME ENSEMBLING

We present the detailed procedures of test-time ensembling (TTE) in Algorithm 1, using ViT-B/16
(224 × 224 resolution) as the backbone model. The highlighted lines denote the additional steps
introduced by TTE. Traditionally, an image is first resized and center-cropped, and then split into
patches before being fed into the Transformer model. However, this conventional approach in-
evitably leads to the segmentation of important patterns across different patches, thus impeding the
generalization. By employing diverse croppings, patterns that might be segmented in one cropping
will be preserved in another. It is crucial to emphasize that the expanded size e should not be a mul-
tiple of the patch size 16; otherwise, the five cropped images will share a significant portion of the
same patches, rendering the expected diversity unattainable. In PEL, we default to set e = 24. Fur-
thermore, we conduct a comparison of different expanded sizes and report the results in Figure 14.

Aside from TTE, we explore additional augmentation techniques such as TTE + Flipping and Ran-
dom Augmentations (He et al., 2016) for multiple times. The results in Table 14 demonstrate that
TTE is more effective than other augmentation methods.

D TEXTUAL PROMPTS FOR SEMANTIC-AWARE INITIALIZATION

In PEL, we use “a photo of a [CLASS].” as the template to generate textual prompts and
then compute their features to initialize the classifier weights. One may be concerned with the impact

19

Under review as a conference paper at ICLR 2024

Algorithm 1 TEST-TIME ENSEMBLING

Input: Image x, expanded size e, input resolution (224).
1: Resize x to x′ sized (224 + e)× (224 + e).
2: Crop the center 224× 224 portion of x′, denoted by xc.
3: Split xc evenly into m patches [xp

1; · · · ;xp
m] (each xp

i is sized 16× 16, and m = 224
16

× 224
16

= 196).
4: Calculate the feature f c according to Section 3.1.
5: Calculate the logits zc according to Section 3.3.
6: Crop the top left 224× 224 portion of x′, repeat procedure 3-5 and obtain the logits ztl.
7: Crop the top right 224× 224 portion of x′, repeat procedure 3-5 and obtain the logits ztr.
8: Crop the bottom left 224× 224 portion of x′, repeat procedure 3-5 and obtain the logits zbl.
9: Crop the bottom right 224× 224 of portion x′, repeat procedure 3-5 and obtain the logits zbr.

Output: Predicted logits z = Average(zc + ztl + ztr + zbl + zbr).

0 16 32 48
Expanded Size

77.0

78.4

A
cc

ur
ac

y
(%

)

ImageNet-LT

0 16 32 48
Expanded Size

51.5

52.2
A

cc
ur

ac
y

(%
)

Places-LT

0 16 32 48
Expanded Size

79.1

80.5

A
cc

ur
ac

y
(%

)

iNaturalist 2018

Figure 14: Performance of test-time ensembling (TTE) with different expanded size e. Setting
e = 0 indicates not applying TTE. Setting e to a multiple of the patch size 16 yields suboptimal
performance. Generally, e = 24 is suitable for enhancing the generalization.

Table 14: Comparison of different augmentation methods on ImageNet-LT.

Augmentation methods Augmentation times Overall Many Medium Few

TTE (Ours) 5 78.3 81.3 77.4 73.4
TTE + Flipping 10 78.3 81.3 77.3 73.3
Random Augmentation 5 76.7 79.7 75.5 71.9
Random Augmentation 10 77.3 80.3 76.3 72.2
Random Augmentation 15 77.7 80.8 76.6 72.3
Random Augmentation 20 77.8 80.9 76.7 72.7

of the used prompts. We conduct experiments to compare different prompting methods, including 1)
the original class name (“[CLASS]”) and 2) prompt ensembling (Radford et al., 2021) which applies
different templates to class names. The results in Table 15 show that these prompts have a similar
performance, and using “a photo of a [CLASS]” is adequate for generalization.

Moreover, we posit that CLIP has seen sufficient language corpus, considering its pre-training on
web-scale datasets. However, it is noteworthy that CLIP may fail to recognize specific class names.
This probably stems from its limited vocabulary size (CLIP contains approximately 49K vocab-
ulary) or encountering uncommon or novel concepts. In this case, semantic-aware initialization
may regress to random initialization. In response to this, we explore an alternative approach by
incorporating class descriptions (which can be crafted manually or generated using large language
models). In practice, we follow Menon & Vondrick (2023) to generate the descriptions for each
class, then combine these descriptions and calculate the textual feature for initialization. The results
are reported in the bottom line of Table 15, which shows that the use of class descriptions can also
enhance the performance compared to random initialization.

E MODEL PARAMETER QUANTITY ANALYSIS

The components of the CLIP Vision Transformer (CLIP-ViT) are detailed in Table 17. CLIP-ViT
comprises an Embedding layer and L Transformer blocks. While there may be various versions
of pre-trained Vision Transformers, the differences between them are generally minor. The total
number of parameters in CLIP-ViT can be computed as follows: (12L + 1)d2 + (13L +m + 6)d,
where d represents the dimension of the embedding features, and m denotes the number of image

20

Under review as a conference paper at ICLR 2024

Table 15: Comparison of different prompting methods on ImageNet-LT.

Prompting methods Overall Many Medium Few

None prompt (random initialization) 76.1 80.8 75.9 63.2
“[CLASS]” 78.2 81.4 77.3 72.3
“A photo of a [CLASS]” 78.3 81.3 77.4 73.4
Prompt ensembling 78.3 81.3 77.4 73.3
Class descriptions (w/o class names) 77.4 81.3 76.9 68.2

patches. For instance, in the case of ViT-B/16, where L = 12, d = 768, m = 196, the parameter
quantity amounts to 85,799,424 (≈ 85.80M).

In addition, we present the parameter quantities of the PEFT modules in Table 18 (for detailed
definitions, please refer to Section 3.3). The table illustrates that for all PEFT modules, the parameter
quantities are at the polynomial level of d. Notably, p for VPT and r for Adapter are manually set
hyperparameters and are much smaller than d. In comparison to the entire Transformer block, a
PEFT module is significantly more lightweight.

Moreover, the parameter quantity for a classifier is approximately Kd, where K is the number of
classes. In PEL, we set the bottleneck dimension r = 2⌊log2 (K

2L)⌋ ≤ K
2L for the AdaptFormer, so

that the total parameter quantity is L · 2rd ≤ Kd (ignoring constant terms). As a result, it learns
even fewer parameters than the classifier.

We also record the time cost of PEL with each PEFT method and report the results in Table 16. The
results suggest that the time costs for different PEFT methods are highly close.

Table 16: Training time per epoch when using different PEFT methods.

Methods ImageNet-LT Places-LT

PEL w/

LN tuning 2 min 49 s 1 min 30 s
BitFit 2 min 51 s 1 min 33 s
VPT-shallow 2 min 46 s 1 min 31 s
VPT-deep 2 min 56 s 1 min 37 s
Adapter 2 min 49 s 1 min 33 s
LoRA 2 min 58 s 1 min 31 s
AdaptFormer 2 min 58 s 1 min 38 s

21

Under review as a conference paper at ICLR 2024

Table 17: Model architecture and parameter quantity for CLIP-ViT.

Layers Components Variables Size #Params.

Embedding

Projection - d× d

d2 + (m+ 2)dClass Token c0 d

Positional - (m+ 1)× d

LN γ,β d, d 2d

Block-1
(l = 1)

LN γ,β d, d

12d2 + 13d

MSA

{W l,h
Q , bl,hQ }Hh=1 {d× d

H
, d
H
} ×H

{W l,h
K , bl,hK }Hh=1 {d× d

H
, d
H
} ×H

{W l,h
V , bl,hV }Hh=1 {d× d

H
, d
H
} ×H

W l
O, b

l
O d× d, d

LN γ,β d, d

FFN
W l

1, b
l
1 d× 4d, 4d

W l
2, b

l
2 4d× d, d

...
...

...
...

...

Block-L · · · · · · · · · 12d2 + 13d

LN γ,β d, d 2d

Table 18: Parameter quantities for different PEFT modules in a Transformer block.

Modules Components Variables Size #Params.

LN tuning
LN γ,β d, d

4d
LN γ,β d, d

BitFit

LN-bias β d

11d

MSA-bias

{bl,hQ }Hh=1 { d
H
} ×H

{bl,hK }Hh=1 { d
H
} ×H

{bl,hV }Hh=1 { d
H
} ×H

blO d

LN-bias β d

FFN-bias
bl1 4d

bl2 d

VPT Prompts P l p× d pd

Adapter

LN γ,β d, d

(2r + 3)d+ r
Projection

Wdown, bdown d× r, r

Wup, bup r × d, d

LoRA Projection
Wdown,Wup (for WQ) d× r, r × d

4rd
Wdown,Wup (for WV) d× r, r × d

AdaptFormer

LN γ,β d, d

(2r + 3)d+ r + 1Projection
Wdown, bdown d× r, r

Wup, bup r × d, d

Scaling s 1

22

	Introduction
	Related Works
	Parameter-Efficient Long-Tailed Recognition
	Zero-shot CLIP is a Strong Representation Learner
	CLIP Fine-tuning Hurts Tail-class Performance
	How Parameter-efficient Fine-tuning Helps?

	Empirical Study
	Experimental Settings
	Comparison with State-of-The-Art Methods
	Component Analysis and Ablation Studies

	Conclusion
	Additional Experiments
	Understanding Logit-Adjusted Loss
	Explanation of Test-Time Ensembling
	Textual Prompts for Semantic-Aware Initialization
	Model Parameter Quantity Analysis

