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Abstract

Despite Flow Matching and diffusion models having emerged as powerful genera-
tive paradigms for continuous variables such as images and videos, their application
to high-dimensional discrete data, such as language, is still limited. In this work,
we present Discrete Flow Matching, a novel discrete flow paradigm designed
specifically for generating discrete data. Discrete Flow Matching offers several key
contributions: (i) it works with a general family of probability paths interpolating
between source and target distributions; (ii) it allows for a generic formula for
sampling from these probability paths using learned posteriors such as the proba-
bility denoiser (x-prediction) and noise-prediction (ϵ-prediction); (iii) practically,
focusing on specific probability paths defined with different schedulers improves
generative perplexity compared to previous discrete diffusion and flow models;
and (iv) by scaling Discrete Flow Matching models up to 1.7B parameters, we
reach 6.7% Pass@1 and 13.4% Pass@10 on HumanEval and 6.7% Pass@1 and
20.6% Pass@10 on 1-shot MBPP coding benchmarks. Our approach is capable of
generating high-quality discrete data in a non-autoregressive fashion, significantly
closing the gap between autoregressive models and discrete flow models.

1 Introduction

Despite the remarkable success of diffusion and flow models in generating continuous spatial signals
such as images (Ho et al., 2020; Rombach et al., 2022; Esser et al., 2024) and videos (Singer et al.,
2022; Blattmann et al., 2023), their performance still falters when applied to discrete sequential data
compared to autoregressive models. Recent progress in adapting diffusion and flow models to the
discrete setting has been made via mostly two approaches: embedding the discrete data in continuous
space and applying continuous diffusion (Dieleman et al., 2022; Stark et al., 2024) or designing
diffusion or flow processes over discrete state spaces (Austin et al., 2021a; Campbell et al., 2022).

In this paper, we pursue the discrete flow approach of Campbell et al. (2024) and introduce Discrete
Flow Matching, a theoretical framework and algorithmic methodology for discrete flow models that
yields a state-of-the-art discrete non-autoregressive generative approach. Surprisingly, Discrete Flow
Matching exhibits similarities with the continuous Flow Matching (Lipman et al., 2022) approach
proposed for continuous signals. Notably, its generating probability velocity, employed in the
sampling algorithm, is identical in form to its continuous counterpart. Additionally, Discrete Flow
Matching offers the following advancements and simplifications over prior methods: It encompasses
a more comprehensive family of probability paths transforming source (noise) distributions into
target (data) distributions, accommodating arbitrary source-target couplings and time-dependent
schedulers. Furthermore, it provides a unified formulation for the generating probability velocity
directly expressed in terms of the learned posteriors and schedulers, along with a unified and
general theory and algorithm for corrector sampling and iterations. In practice, we observe that path
and corrector schedulers are pivotal, and their proper tuning leads to substantial improvements in
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def fib(n: int):
"""Return n-th Fibonacci
number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
"""
if n < 1: return 0
if n < 2: return 1

return fib(n-1) + fib(n-2)

def find_position_of_value(arr, x):

low, mid = 0, 0
high = len(arr) - 1

while high >= low:

mid = (high + low) // 2

# If x is greater
if arr[mid] < x:

low = mid + 1
# If x is smaller

elif arr[mid] > x:

high = mid - 1
else:

return mid
return -1

def binary_search(arr, x):

start = 0
end = len(arr)-1

# While performing binary search
while start <= end:

mid = (start + end) // 2
# If x is greater
if arr[mid] < x:

start = mid + 1
# If x is smaller

elif arr[mid] > x:
end = mid - 1

else:
return mid

return -1

Figure 1: Code generation examples using Discrete Flow Matching. Code condition is marked
in gray , model generation is marked in yellow . Left sub-figure presents the standard left-to-right
prompting; Middle and Right sub-figures, presents complex infilling setup.

generation quality. We have trained a 1.7B parameter Discrete Flow Matching model on the same
data mix as in Llama-2 (Touvron et al., 2023) and CodeLlama (Roziere et al., 2023), achieving
6.7% Pass@1 and 13.4% Pass@10 on HumanEval and 6.7% Pass@1 and 20.6% Pass@10 on 1-shot
MBPP coding benchmarks; Figure 1 shows some code generation examples. In conditional text
generation our model produces texts with a generative perplexity score of 9.7 as measured by the
Llama-3 8B model, surpassing a 1.7B autoregressive model that achieves 22.3 and not far from
the Llama-2 7B model that achieves 8.3 in generative perplexity score. We strongly believe that
Discrete Flow Matching represents a significant step in bridging the performance gap between discrete
diffusion and autoregressive models, and that further enhancements are possible by exploring the vast
design space that Discrete Flow Matching has to offer.

2 Discrete Flow Matching

2.1 Setup and notations

In discrete sequence modeling, we denote a sequence x as an array of N elements (x1, x2, . . . , xN ).
Each element, or token, within this sequence is selected from a vocabulary of size d. Consequently,
the entire set of possible sequences is given by D = [d]N , where [d] = {1, . . . , d}. A random variable
taking values in the space D is denoted by X and its corresponding probability mass function (PMF)
is P (X = x). For simplicity, throughout the paper, we sometimes omit the random variable X and
use p(x) to denote the PMF.

To describe marginalization properties, we denote p(xi) the xi marginal of p, i.e., p(xi) =
∑

xī p(x),
where xī = (. . . , xi−1, xi+1, . . .) ∈ [d]N−1 are all the arguments excluding i. Similarly, p(xī) =∑

xi p(x), and xi ∈ [d]. A useful PMF is the delta function, δy , y ∈ D, which is defined by

δy(x) =

N∏
i=1

δyi(xi), where δyi(xi) =

{
1 xi = yi

0 xi ̸= yi
. (1)

With the marginal notation δy(x
i) = δyi(xi) and δy(x

ī) = δyī(xī) =
∏

j ̸=i δyj (xj) which simplifies
notation.

2.2 Source and target distributions

In discrete generative models our goal is to transform source samples X0 ∼ p to target samples
X1 ∼ q. Our training data, consist of pairs X0 and X1 that are sampled from a joint distribution
π(x, y), satisfying the marginals constraints p(x) =

∑
y∈D π(x, y), q(y) =

∑
x∈D π(x, y), i.e.,

(X0, X1) ∼ π(X0, X1). (2)
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In the simplest case, the training pairs X0 and X1 are sampled independently from the source and
target distributions respectively,

(X0, X1) ∼ p(X0)q(X1). (3)

Example: source and couplings. Common instantiations of source distribution p are: (i) adding a
special token value often referred to as a ‘mask’ or ‘dummy’ token, denoted here by m, and setting the
source distribution to be all-mask sequences, i.e., p(x) = δm(x); and (ii) using uniform distribution
over D, which is equivalent to drawing each xi independently to be some value in [d] with equal
probability, denoted p(x) = pu(x). In this paper we focus mainly on (i). We further consider two
choices of couplings π: Independent coupling, which we call unconditional coupling (U-coupling),
π(x0, x1) = p(x0)q(x1). A random sample that realizes this choice have the form

(X0, X1) =
(
(m, . . . ,m), X1

)
, (4)

where X1 ∼ q(X1) is a random sample from the training set. The second choice of coupling
π(x0, x1) = p(x0|x1)q(x1), which we find improves conditional sampling, partially masks inputs
with samples of the form

(X0, X1) = (I ⊙X1 + (1− I)⊙ (m, . . . ,m), X1), (5)

where X1 ∼ q(X1) and I ∈ {0, 1}N is a random variable indicating the conditioning, ⊙ denotes
the entry-wise product, and 1 ∈ RN is the vector of all ones. We call this conditional coupling
(C-coupling).

2.3 Probability paths

We follow the Flow Matching approach (Lipman et al., 2022; Liu et al., 2022; Albergo and Vanden-
Eijnden, 2022) that uses a predefined probability path pt interpolating p and q, i.e.,

p0 = p and p1 = q (6)

to train the generative model taking a source sample X0 ∼ p to a target sample X1 ∼ q. We use
arbitrary coupling of source and target (Pooladian et al., 2023; Tong et al., 2023), π(x0, x1), and
the symmetric Flow Matching path (Albergo and Vanden-Eijnden, 2022) to define the marginal
probability path,

pt(x) =
∑

x0,x1∈D
pt(x|x0, x1)π(x0, x1), where pt(x|x0, x1) =

N∏
i=1

pt(x
i|x0, x1), (7)

and pt(x
i|x0, x1) is a time-dependent probability on the space of tokens [d] conditioned on the pair

x0, x1, and satisfying p0(x
i|x0, x1) = δx0

(xi) and p1(x
i|x0, x1) = δx1

(xi). If the conditional path
pt(x

i|x0, x1) satisfies these boundary conditions then the marginal path pt(x) satisfies equation 6.

In developing the framework, we would like to consider as general as possible set of probability
paths that are also tractable to learn within the Flow Matching framework. We consider conditional
probability paths as a convex sum of m conditional probabilities wj(xi|x0, x1), i.e.,

pt(x
i|x0, x1) =

m∑
j=1

κi,j
t wj(xi|x0, x1), (8)

where
∑

j κ
i,j
t = 1 and κi,j

t ≥ 0 are collectively called the scheduler. Note that the scheduler can
be defined independently for each location in the sequence i ∈ [N ] or uniformly for all tokens,
κi,j
t = κj

t .

A simple yet useful instance of these conditional paths is reminiscent of the continuous Flow Matching
paths formulated as convex interpolants,

pt(x
i|x0, x1) = (1− κt)δx0(x

i) + κtδx1(x
i), (9)

where the scheduler κt satisfies κ0 = 0, κ1 = 1, and monotonically increasing in t. Another
interesting instantiation of equation 8 is adding uniform noise with some probability depending on t,

pt(x
i|x0, x1) = κ1

t δx1
(xi) + κ2

tpu(x
i) + κ3

t δx0
(xi), (10)

where κ1
0 = 0, κ1

1 = 1, κ2
0 = κ2

1 = 0 (remembering that
∑

j κ
i,j
t = 1 and κi,j

t ≥ 0).
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Figure 2: Discrete flow in D = [d]N with d = 4, N = 2 (middle-left) versus continuous flow in
RN , N = 2 (left). The rate of change of probability of a state (gray disk) is given by the divergence
operator shown in the continuous case (middle right) and the discrete case (right).

2.4 Generating Probability Velocities

Continuous generating velocity. Sampling in continuous Flow Matching is performed by updating
the current (continuous) sample Xt ∈ RN , t ∈ [0, 1), according to a learned generating velocity field
ui
t(Xt), i ∈ [N ]. Euler sampling follows the (deterministic) rule

Xi
t+h = Xi

t + hui
t(Xt), (11)

where h > 0 is a user-defined time step. Note that equation 11 is updating separately each of
the sample coordinates, Xi

t , i ∈ [N ], see e.g., Figure 2, left. The velocity ui
t(Xt) can be either

directly modeled with a neural network, or parameterized via the denoiser (a.k.a. x-prediction) or
noise-prediction (a.k.a. ε-prediction), see left column in Table 1. If, for all t ∈ [0, 1), starting at
Xt ∼ pt and sampling with equation 11 provides Xt+h ∼ pt+h+o(h)1 then we say that ut generates
pt.

Generating probability velocity. For defining Flow Matching in the discrete setting, we follow
Campbell et al. (2024) and consider a Continuous-Time discrete Markov Chain (CTMC) paradigm,
namely the sample Xt is jumping between states in D, depending on a continuous time value
t ∈ [0, 1]. Similar to the continuous Flow Matching setting described above, we focus on a model that
predicts the rate of probability change of the current sample Xt in each of its N tokens, see Figure 2,
middle-left. Then, each token of the sample Xt ∼ pt is updated independently by

Xi
t+h ∼ δXi

t
(·) + hui

t(·, Xt), (12)

where we call ut the probability velocity as reminiscent of the velocity field in continuous Flow
Matching, and as in the continuous case, we define:
Definition 1. Probability velocity ut generates the probability path pt if, for all t ∈ [0, 1) and given
a sample Xt ∼ pt, the sample Xt+h defined in equation 12 satisfies Xt+h ∼ pt+h + o(h).

Algorithm 1 formulates a basic sampling algorithm given a generating probability velocity ut. In
order for the r.h.s. of equation 12 to define a proper PMF for sufficiently small h > 0, it is necessary
and sufficient that the probability velocity satisfies the conditions∑

xi∈[d]

ui
t(x

i, z) = 0, and ui
t(x

i, z) ≥ 0 for all i ∈ [N ] and xi ̸= zi. (13)

Algorithm 1 Flow Matching sampling.

Require: velocity ut, sample X ∼ p, step size h = 1
n

for t = 0, h, 2h, . . . , 1− h do
Xi ∼ δXi(·) + hui

t(·, X), for i ∈ [N ] ▷ eq. 24 or 22
end for
return X

Now the main question is how to find a probabil-
ity velocity ut that generates the probability path
defined in equations 7 and 8? A key insight in
Flow Matching (Lipman et al., 2022) is that ut

can be constructed as a marginalization of con-
ditional probability velocities, ui

t(x
i, z|x0, x1),

generating the corresponding conditional probability paths pt(xi|x0, x1). This can also be shown to
hold in the discrete CTMC setting (Campbell et al., 2024), where a reformulation in our context and
notation is as follows.

1The o(hℓ) notation means a function going to zero faster than hℓ as h → 0, i.e., o(hℓ)

hℓ

h→0−→ 0.
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Theorem 2. Given a conditional probability velocity ui
t(x

i, z|x0, x1) generating a conditional
probability path pt(x|x0, x1), the marginal velocity defined by

ui
t(x

i, z) =
∑

x0,x1∈D
ui
t(x

i, z|x0, x1)pt(x0, x1|z) (14)

generates the marginal probability path pt(x), where by Bayes’ rule

pt(x0, x1|z) =
pt(z|x0, x1)π(x0, x1)

pt(z)
. (15)

For completeness we provide a simple proof of this theorem in Appendix E.2. The proof, similar
to the continuous Flow Matching case, shows that ut and pt satisfy the (discrete version of the)
Continuity Equation.

The Continuity Equation. To provide the mathematical tool for showing that a probability velocity
ut does indeed generate the probability path pt, and also to further highlight the similarities to the
continuous case, we next formulate the Kolmogorov Equations, which describe the state probability
rate ṗt(x), x ∈ D, in CTMC as a Continuity Equation (CE). The Continuity Equation, similarly to
Kolmogorov Equations, describes ṗt(x), x ∈ RN in the continuous case, and is formulated as the
Partial Differential Equation (PDE)

ṗt(x) + divx(ptut) = 0, (16)

where the divergence operator divx(v) applied to a vector field v : RN → RN is defined by

divx(v) =

N∑
i=1

∂xivi(x), (17)

and intuitively means the total flux leaving x, see Figure 2 (middle-right). This gives an intuitive
explanation to the Continuity Equation: the rate of the probability ṗt(x) of a state x ∈ RN equals
the total incoming probability flux, ptut, at x. In the discrete case (CTMC) the Continuity Equation
(equation 16) holds as is, once the discrete divergence operator is properly defined, i.e., to measure
the outgoing flux from a discrete state. In more detail, given some vector field, which in the discrete
case is a scalar-valued function over pairs of states, v : D ×D → R, the discrete divergence is

divx(v) =
∑
z∈D

[v(z, x)− v(x, z)] , (18)

where v(z, x) represents the flux x → z and v(x, z) represent the opposite flux z → x; see Figure 2,
right. Now, in our case (see Figure 2, middle-left), the probability flux at a state x ∈ D involves all
sequences with at most one token difference from x, i.e., the probability flux ptut at x takes the form
v(x, z) = pt(z)u

i
t(x

i, z) and v(z, x) = pt(x)u
i
t(z

i, x) for z and x that differ only in the i-th token,
v(x, x) = pt(x)

∑N
i=1 u

i
t(x

i, x), and v(x, z) = 0 for all other (z, x) ∈ D ×D. A direct calculation
now shows (see Appendix E.1):

divx(ptut) = −
∑
z∈D

pt(z)

[
N∑
i=1

δz(x
ī)ui

t(x
i, z)

]
. (19)

Checking that a probability velocity ut generates a probability path pt (in the sense of Definition 1)
amounts to verifying the Continuity Equation (equation 16). Indeed, using arguments from Campbell
et al. (2024) and the discrete divergence operator, the PMF of Xt+h defined by sampling according
to equation 12 is

EXt

N∏
i=1

[
δXt(x

i) + hui
t(x

i, Xt)
]
= EXt

[
δXt(x) + h

N∑
i=1

δXt(x
ī)ui

t(x
i, Xt)

]
+ o(h)

= pt(x)− hdivx(ptut) + o(h)
(16)
= pt(x) + hṗt(x) + o(h) = pt+h(x) + o(h),

(20)

where we assume Xt ∼ pt, the first equality uses the identity
∏

i

[
ai + hbi

]
=
∏

i a
i +

h
∑

i(
∏

j ̸=i a
j)bi + o(h), the second equality uses equation 19, and the previous-to-last equal-

ity uses the Continuity Equation (equation 16). This shows that if the Continuity Equation holds then
ut generates pt in the sense of Definition 1.
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Table 1: Generating (marginal) velocity fields have identical form for the continuous and discrete
Flow Matching when using denoiser/noise-prediction parameterization; x̂1|t(z) = EX1∼pt(·|z)X1 is
the standard continuous denoiser (a.k.a. x-prediction) and x̂0|t(z) = EX0∼pt(·|z)X0 is the standard
noise-prediction (a.k.a. ϵ-prediction).

Continuous Flow Matching Discrete Flow Matching

Marginal prob. pt(x) =
∑

x0,x1

∏N
i=1 pt(x

i|x0, x1)π(x0, x1)

Conditional prob. pt(x
i|x0, x1) = δκtx1+(1−κt)x0

(xi) pt(x
i|x0, x1) = κtδx1(x

i) + (1− κt)δx0(x
i)

VF-Denoiser ui
t(Xt) =

κ̇t

1−κt

[
x̂i
1|t(Xt)−Xi

t

]
ui
t(x

i, Xt) =
κ̇t

1−κt

[
p1|t(x

i|Xt)− δXt(x
i)
]

VF-Noise-pred ui
t(Xt) =

κ̇t

κt

[
Xi

t − x̂i
0|t(Xt)

]
ui
t(x

i, Xt) =
κ̇t

κt

[
δXt(x

i)− p0|t(x
i|Xt)

]

Conditional and marginal generating velocities. We provide the probability velocities generating
the conditional probability paths pt(x|x0, x1) defined in equations 7 and 8. Then, using the marginal-
ization formula in equation 14 we end up with a closed-form marginal velocity for the probability
paths pt(x). In Appendix E.3 we show
Theorem 3 (Probability velocity of conditional paths). A generating probability velocity for the
conditional paths pt(x|x0, x1) defined in equations 7 and 8 is

ui
t(x

i, z|x0, x1) =

m∑
j=1

ai,jt wj(xi|x0, x1) + bitδz(x
i), (21)

with ai,jt = κ̇i,j
t − κi,j

t κ̇i,ℓ
t /κi,ℓ

t , and bit = κ̇i,ℓ
t /κi,ℓ

t where ℓ = argminj∈[m]

[
κ̇i,j
t /κi,j

t

]
.

Now, computing the marginal probability velocity using equation 14 applied to the conditional
probability velocity in equation 21 gives

ui
t(x

i, z) =

m∑
j=1

ai,jt ŵj
t (x

i, z) + bi,jt δz(x
i), (22)

where the posteriors ŵj
t of wj (that are later shown to be tractable to learn) are defined by

ŵj
t (x

i, z) =
∑

x0,x1∈D
wj(xi|x0, x1)pt(x0, x1|z), (23)

where pt(x0, x1|z) (defined in equation 15) is the posterior probability of x0, x1 conditioned on the
current state Xt = z. A useful instantiation of the general velocity in equation 22 is when considering
the path family in equation 9, for which w1(xi|x0, x1) = δx1

(xi), w2(xi|x0, x1) = δx0
(xi), κi,1

t =

κt, κ
i,2
t = 1− κt, κ̇t ≥ 0 (i.e., monotonically non-decreasing in t) and in this case equation 22 reads

as

ui
t(x

i, z) =
κ̇t

1− κt

[
p1|t(x

i|z)− δz(x
i)
]

(24)

where we use the notation p1|t(x
i|z) =

∑
x0,x1

δx1(x
i)pt(x0, x1|z) for the probability denoiser.

Sampling backward in time. We can also sample backwards in time by following the sampling rule
Xi

t−h ∼ δXi
t
(·)− hui

t(·, Xt). In this case −ui
t(x

i, z) should satisfy equation 13. A (backward-time)
generating probability velocity can then be achieved from equation 22 with the simple change to the
coefficients ai,jt and bi,jt , see Appendix E.4. For pt defined with equation 9 the generating velocity is

ui
t(x

i, z) =
κ̇t

κt

[
δz(x

i)− p0|t(x
i|z)
]
, (25)

where in this case p0|t(x
i|z) =

∑
x0,x1∈D δx0

(xi)pt(x0, x1|z) is the probability noise-prediction.
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Remarkably, the generating velocity fields in 24 and 25 take the exact same form as the generating
(a.k.a. marginal) velocity fields in continuous flow matching when parameterized via the denoiser
or noise-prediction parameterizations and using the same schedulers, see Table 1 and Appendix E.9
for explanation of the continuous case. In Appendix E.4 we provide the backward-time version of
Theorem 3.

Corrector sampling. Combining the forward-time ût ( equation 24) and backward-time ǔt ( equa-
tion 25), i.e.,

ūi
t(x

i, z) = αtû
i
t(x

i, z)− βtǔ
i
t(x

i, z), (26)
provides a valid forward-time probability velocity field (i.e., satisfies equation 13) for t ∈ (0, 1) as
long as αt, βt > 0. This velocity field can be used for two types of corrector sampling: (i) When
αt − βt = 1 sampling with ūt leads to corrector sampling where intuitively each step moves 1 + βt

forward in time and −βt backwards, which allows reintroducing noise into the sampling process; and
(ii) when αt − βt = 0 sampling with ūt when fixing t ∈ (0, 1) leads to corrector iterations where
limit samples distribute according to pt. In Appendix E.6 we prove:
Theorem 4. For perfectly trained posteriors and αt, βt > 0, t ∈ (0, 1), ūt in equation 26 is a
probability velocity, i.e., satisfies equation 13, and: (i) For αt − βt = 1, ūt provides a probability
velocity generating pt; (ii) For αt − βt = 0, repeatedly sampling with ūt at fixed t ∈ (0, 1) and
sufficiently small h is guaranteed to converge to a sample from pt.

One simplification to equation 26 can be done in the case of paths constructed with conditional as in
equation 9, independent coupling π(x0, x1) = p(x0)q(x1), and i.i.d. source p(x0) =

∏N
i=1 p(x

i
0),

e.g., p(xi
0) is uniform over [d] or δm(x

i
0). In this case, the backward-time formula in equation 25 take

an equivalent simpler form

ǔi
t(x

i, z) =
κ̇t

κt

[
δz(x

i)− p(xi)
]
, (27)

which does not require estimation of the posterior p0|t. See Appendix E.5 for the derivation.

Training. Equation 22 shows that for generating samples from a probabilty path pt(x) we require
the posteriors ŵj

t (x
i|Xt). Training such posteriors can be done by minimizing the loss

L(θ) = −
∑

j∈[m],i∈[N ]

Et,(X0,X1),Xt,Y i
j
log ŵj

t (Y
i
j |Xt; θ), (28)

where t is sampled according to some distribution in [0, 1] (we used uniform), (X0, X1) ∼ π(X0, X1),
Xt ∼ pt(Xt|X0, X1), and Y i

j ∼ wj(Y i
j |X0, X1); θ ∈ Rp denotes the learnable parameters. In the

common case we use in this paper of learning a single posterior, i.e., the probability denoiser p1|t, the
loss takes the form L(θ) = −

∑
i∈[N ] Et,(X0,X1),Xt

log p1|t(X
i
1|Xt). In Appendix E.7 we prove:

Proposition 5. The minimizer of L (equation 28) is ŵj
t (x

i|Xt) (equation 23).

3 Related work

In the section we cover the most related work to ours; in Appendix A we cover other related work.

Discrete Flows (Campbell et al., 2024) is probably the most related work to ours. We build upon their
CTMC framework and offer the following generalizations and simplifications: We consider arbitrary
couplings (X0, X1), and offer a novel and rather general family of probability paths (equation 8) for
which we provide the generating probability velocities in a unified closed-form formula (equations
22-25). These in particular recreate the same formulas as the continuous Flow Matching counterpart
(Table 1). We furthermore develop a general corrector velocity (equation 26) that unifies both
corrector iterations (Song et al., 2020; Campbell et al., 2022) and stochastic sampling of Campbell
et al. (2024). We show that particular choices of noise schedulers κt (κt = t reproduces Campbell
et al. (2024)) and corrector schedulers provide a boost in results. Lastly, we opted for the term
probability velocity for ui

t(x
i, Xt) as it is not precisely a rate matrix in the state space D ×D used in

CTMC since ui
t(x

i, z) for all i ∈ [N ] define multiple self-edges z → z.

Masked modeling (Ghazvininejad et al., 2019; Chang et al., 2022). In case of a masked model, i.e.,
when the source distribution is p(x) = δm(x), we achieve an interesting connection with MaskGit
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Table 2: Generative perplexity on unconditional text generation compared to prior work. All models
are sampled without the use of temperature or corrector steps. Double precision sampling results are
reported in Table 5.

METHOD NFE LLAMA-2↓ LLAMA-3↓ GPT2↓ ENTROPY

Data - 7.0 9.4 14.7 7.7

Autoregressive 1024 31.4 54.8 45.3 7.1
Savinov et al. (2021) 200 29.5 45.1 34.7 5.2
Austin et al. (2021a) 1000 697.6 768.8 837.8 7.6
Han et al. (2022) >10000 73.3 203.1 99.2 4.8
Lou et al. (2023) 256/512/1024 38.6/33.7/27.2 69.2/58.6/43.9 64.3/53.4/40.5 7.8/7.7/7.6
Campbell et al. (2024) 256/512/1024 38.5/33.5/28.7 69.0/56.5/46.5 65.2/53.3/43.0 7.8/7.7/7.6
FM (equation 9) 256/512/1024 34.2/30.0/22.5 58.5/48.8/33.8 54.2/43.5/29.3 7.7/7.6/7.2
FM (equation 10) 256/512/1024 30.0/27.5/22.3 48.2/43.5/31.9 47.7/41.8/28.1 7.6/7.5/7.1

Table 3: Generative perplexity on conditional text generation.

METHOD MODEL SIZE NFE LLAMA-2↓ LLAMA-3↓ ENTROPY

Llama-3 (Reference) 8B 512 6.4 7.3 6.8
Llama-2 (Reference) 7B 512 5.3 8.3 7.1

Autoregressive 1.7B 512 14.3 22.3 7.2
Savinov et al. (2021) 1.7B 200 10.8 15.4 4.7
FM (U-coupling) 1.7B 256/512 10.7/9.5 11.2/10.3 6.7/6.7
FM (C-coupling) 1.7B 256/512 10.2/8.9 10.0/9.7 6.8/6.7

showing it is actually an instance of Discrete Flow Matching with a small yet crucial change to its
sampling algorithm. First, in Appendix E.8 we prove that in the masked setting, the probability
denoiser p1|t is time-independent:

Proposition 6. For paths defined by equations 7 and 9 with source p(x) = δm(x) the posterior
pt(x0, x1|z) = p(x0, x1|z) is time-independent. Consequently, the probability denoiser p1|t(xi|z) =
p1(x

i|z) is also time-independent.

This shows that the probability denoiser can be learned with no time dependence, similar to the
unmasking probabilities in MaskGit. During sampling however, there are two main differences
between our sampling and MaskGit sampling. First, unmasking of tokens in our algorithm is done
according to the probability δXt(x

i) + hui
t(x

i, Xt) independently for each token xi, i ∈ [N ]. This
procedure is justified as it samples from the correct probability asymptotically via the derivation of
the Continuity Equation 20. This is in contrast to MaskGit that prioritizes the token to be unmasked
according to some confidence. In the experiments section we show that MaskGit’s prioritization,
although has some benefit in the very low NFE regime, is actually introducing a strong bias in the
sampling procedure and leads to inferior overall results. Secondly, using corrector sampling allows
for reintroducing masks to already unmasked tokens in a way that is still guaranteed to produce
samples from pt, see Theorem 4; we find this to have a significant positive effect on the generation
quality.

Discrete diffusion. D3PM (Austin et al., 2021a) and Argmax flows (Hoogeboom et al., 2021)
introduced diffusion in discrete spaces by proposing a corruption process for categorical data. A later
work by Campbell et al. (2022) introduced discrete diffusion models with continuous time, and Lou
et al. (2023) proposed learning probability ratios, extending score matching (Song and Ermon, 2019)
to discrete spaces.

4 Experiments

We evaluate our method on the tasks of language modeling, code generation, and image generation.
For language modeling, we compare the proposed method against prior work considering the widely
used generative perplexity metric. We scale the models to 1.7 billion parameters and present results
on coding tasks, i.e., HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021b), demonstrating
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Table 4: Execution based code generation evaluation.

METHOD DATA
HUMANEVAL↑ MBPP (1-SHOT)↑

Pass@1 Pass@10 Pass@25 Pass@1 Pass@10 Pass@25

Autoregressive Text 1.2 3.1 4.8 0.2 1.7 3.3
Code 14.3 21.3 27.8 17.0 34.3 44.1

FM Text 1.2 2.6 4.0 0.4 1.1 3.6
Code 6.7 13.4 18.0 6.7 20.6 26.5

FM (Oracle length) Code 11.6 18.3 20.6 13.1 28.4 34.2

the most promising results to date in a non-autoregressive context. In image generation, we present
results for a fully discrete CIFAR10 (Krizhevsky et al., 2009). Further details of the experimental
setup for each model are provided in Appendix G.

Experimental setup. In our experiments we used the masked source, i.e., p = δm, and trained
with both unconditional coupling (U-coupling, equation 4) and conditional couplings (C-coupling,
equation 5) with the probability path defined in equations 7, 9 and in one case 10. We trained a
probability denoiser (loss in equation 28) and sampled using the generating velocity in equation 24
and Algorithm 1. We used a particular choice of probability path scheduler κt, as well as corrector
steps defined by a scheduler αt and temperature annealing. We found the choice of these schedulers
to be pivotal for the model’s performance. In Appendix D we perform an ablation study, evaluating
various scheduler choices.

4.1 Language modeling

We experimented with our method in three settings: (i) Small model (150M parameters) - comparison
to other non-autoregressive baselines in unconditional text generation; (ii) Large model (1.7B
parameters) - comparison to autoregressive models in conditional text generation; and (iii) Large
model (1.7B parameters) - conditional code generation. As computing exact likelihood for non-
autoregressive model is a challenge, for (i),(ii) we use the generative perplexity metric (Appendix G
measured with GPT2 (Radford et al., 2019), Llama-2 (Touvron et al., 2023), and Llama-3, and we
also monitor the sentence entropy (Appendix G) to measure diversity of tokens and flag repetitive
sequences, which typically yield low perplexity. Throughout our experiments we noticed entropy
≥ 6 usually corresponds to diverse texts. For (iii) we evaluated using the success rate of coding tasks.

Evaluation against prior work. We evaluate our method against prior work on non-autoregressive
modeling. For a fair comparison, all methods are trained on a 150M parameters models using the
OpenWebText (Gokaslan and Cohen, 2019) dataset. We also fix all sampling hyperparameters to
the most basic settings, i.e., no temperature, top probability, corrector steps, etc. For our method we
tried two paths defined by equations 9 and 10. Results are reported in Table 2, where our method
outperforms all baselines in generative perplexity for all numbers of function evaluations (NFE).

Conditional text generation. In this experiment, we train both C-coupling and U-coupling 1.7B
parameters FM models with paths defined by equation 9 on a large scale data mix (Touvron et al.,
2023). Table 3 presents the generative perplexity of conditional generations from our method; the
conditions we used are the prefixes of the first 1000 samples in OpenWeb dataset. We also compare
to existing state-of-the-art autoregressive models. Our results demonstrate that our model effectively
narrows the gap in generative perplexity with autoregressive models, while maintaining an entropy
comparable to the recent Llama-3 8B model. Furthermore, we note the C-coupling trained model
produces slightly better perplexity in conditional tasks than the U-coupling model. In Appendix I we
present qualitative conditional samples produced by our U-coupling model.

Code generation. Here we trained our basic setting of a 1.7B parameters FM model with U-coupling
and path as in equation 9 on a code-focused data mix (Roziere et al., 2023). Table 4 presents results
on HumanEval and MBPP (1-shot) for pass@{1, 10, 25}. In Table 4, ‘Oracle length’ evaluates
the performance of our model when conditioning on the length of the solution. This is done by
inserting an ‘end of text’ token in the same position of the ground truth solution. Our method
achieves non-trivial results on both tasks, which to the best of our knowledge is the first instance of a
non-autoregressive method being capable of non-trivial coding tasks. In Appendix C, we analyze the
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Figure 3: FID and Inception scores vs. number of function evaluations (NFE).

proposed method for code infilling, which can be achieved as our model allows non-autoregressive
generation. Lastly, in Appendix H we show qualitative examples of success and failure cases produced
by our model on the coding tasks, and in Appendix H.3 we show examples of code infilling.

4.2 Image generation

We performed a fully discrete image generation, without using any metric or neighboring information
between color values. We trained an FM model with U-coupling and path as in equation 9 on CIFAR10
to predict discrete color value for tokens, i.e., d = 256, with sequence length of N = 32×32×3. For
generative quality we evaluate the Fréchet Inception Distance (FID) (Heusel et al., 2017). Ablations
for the probability path schedulers are provided in Figure 8 in the Appendix G. In Figure 3a we
compare our method with: (i) MaskGIT (Chang et al., 2022); and (ii) (Campbell et al., 2024) which
coincides with our method for a linear scheduler. More details in Appendix G. As can be seen in
the Figure 3a, our method outperforms both baselines, achieving 3.63 FID at 1024 NFE. In fig. 3b
we observe a similar trend when evaluating Inception score. As discussed above, MaskGit sampling
performs better for low NFE but quickly deteriorates for higher NFE. We attribute this to a bias
introduced in the sampling process via the confidence mechanism.

5 Conclusions and future work

We introduce Discrete Flow Matching, a generalization of continuous flow matching and discrete
flows that provides a large design space of discrete non-autoregressive generative models. Searching
within this space we were able to train large scale language models that produce generated text with
an improved generative perplexity compared to current non-autoregressive methods and able to solve
coding tasks at rates not achievable before with non-autoregressive models, as far as we are aware.
While reducing the number of network evaluations required to generate a discrete sample compared to
autoregressive models, Discrete Flow Matching still does not achieve the level of sampling efficiency
achieved by its continuous counterpart, flagging an interesting future work direction. Another
interesting direction is to explore the space of probability paths in equation 8 (or a generalization
of which) beyond what we have done in this paper. We believe discrete non-autoregressive models
have the potential to close the gap and even surpass autoregressive models as well as unlock novel
applications and use cases. As our work introduces an alternative modeling paradigm to discrete
sequential data such as language and code, we feel it does not introduce significant societal risks
beyond those that already exist with previous large language models.
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A Related works, continuation

We provide here some more details on relevant related works.

Continuous diffusion and flows. Another line of works has been exploring the use of continuous
space diffusion for discrete data, typically operating in the logits space (Dieleman et al., 2022; Li
et al., 2022; Han et al., 2022; Lin et al., 2022; Chen et al., 2022). An additional body of work has
been focusing on the adoption of latent diffusion-like modeling (Lovelace et al., 2022; He et al.,
2022). Stark et al. (2024) proposed to learn a continuous Flow Matching on the probability simplex
with Dirichlet paths.

Autoregressive modeling. Autoregressive models have been a significant area of focus in recent
years, particularly in the context of natural language processing and machine learning (Zhao et al.,
2023). Autoregressive modeling, in its most fundamental form, utilizes the chain rule to learn the joint
sequence probability by breaking it down into next-token conditional probabilities. GPT-2 (Radford
et al., 2019), showcased the power of autoregressive language models in generating coherent and
contextually relevant text over long passages. Its successor, GPT-3 (Brown et al., 2020), further
pushed the boundaries, demonstrating impressive performance across a range of tasks without task-
specific training data. Later models were adapted to other domains such as, code (Roziere et al., 2023;
Li et al., 2023; Chen et al., 2021), biology (Zhang et al., 2024; Ferruz and Höcker, 2022; Madani
et al., 2023), math (Romera-Paredes et al., 2024; Imani et al., 2023; Ahn et al., 2024), audio (Kreuk
et al., 2022; Copet et al., 2024; Hassid et al., 2024) and more.

Masked generative modeling. Masked generative modeling proposes to mask a variable portion
of the input sequence and training a model to predict this masked section. Ghazvininejad et al.
(2019) proposed Mask-Predict, a masked language modeling with parallel decoding. Savinov et al.
(2021) extended the mask-modeling approach by employing an additional loss term that incorporates
rolling model predictions. MaskGIT (Chang et al., 2022) followed a similar path, for the task
of class-conditioned image synthesis, Chang et al. (2023) extended this approach to high-quality
textually guided image generation over low-resolution images followed by a super-resolution module.
Recently, Ziv et al. (2024) proposed a text-to-music method, which relies on the MaskGIT foundations
while observing that span masking boosts the quality of the generated sequence significantly.

B Further implementation details

Safe sampling. When sampling according to Algorithm 1 using the generating probability velocity
in equation 22, an arbitrary step size h > 0 can make some probabilities in δXi

t
(·) + hui

t(·, Xt)
negative and consequently require clamping and injecting further error into the sampling process that
can in turn accumulate to a non-negligible global sampling error. A simple fix that guarantees a valid
probability distribution while keeping the o(h) sampling error at the relatively manageable price of
potentially more function evaluations is using the following adaptive step size in Algorithm 1: at time
t ∈ [0, 1) use

hadaptive = min

{
h,min

i

∣∣∣∣∣κi,ℓ
t

κ̇i,ℓ
t

∣∣∣∣∣
}
. (29)

As can be verified with the general probability velocity formula in equation 22, the above choice for
hadaptive guarantees δXi

t
(·)+hui

t(·, Xt) is a valid PMF. As mostly used in this paper, for the probability
denoiser parameterization (equation 24) the adaptive step is

hadaptive = min

{
h,

1− κt

κ̇t

}
. (30)

With the corrector sampling (equations 26 and 51) we have the adaptive step:

hadaptive = min

{
h,

[
αtκ̇t

1− κt
+

βtκ̇t

κt

]−1
}
. (31)
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Conditioning. In our unconditional coupling (U-coupling), see equation 5, we define the condition-
ing pattern based on prefixes of random length N0 < N , i.e.,

I = (

N0︷ ︸︸ ︷
1, . . . , 1,

N−N0︷ ︸︸ ︷
0, . . . , 0).

During the training phase, we sample N0 ∼ U(0, N) and adjust the input sequence in accordance
with the mask I.

During conditional sampling with Algorithm 1 we replace, after each update step, the relevant tokens
with the conditioned ones, i.e., X̃ = I ⊙ Y + (1− I)⊙X , where X is the current sample, Y is the
condition, and I is the condition’s mask.

NFE bound. For mask modeling, i.e., p = δm, we have seen that the probability denoiser is
time-independent (see Proposition 6). Consequently, when sampling with Algorithm 1 and ut from
equation 24 without corrector sampling one is not required to recompute the forward pass p1|t(·|Xt)
if Xt is identical to Xt−h (i.e., no m has been unmasked). This means that the NFE of Algorithm 1
in this case is bounded by the number of tokens N .

Post training scheduler change. For a trained posterior ŵt(x
i|z) of a conditional probability path

as in equation 9 with a scheduler κt, the velocity is given by equations 24 or 25, where ŵt(x
i|z) is

either p1|t(xi|z) or p0|t(xi|z) respectively. In this case, we can apply the velocities in equations 24
and 25 for sampling with any scheduler κ′

t, using the change of scheduler formula for posteriors,

ŵ′
t(x

i|z) = ŵt′(x
i|z), (32)

where ŵ′
t(x

i|z), is the posterior of the scheduler κ′
t, t

′ = κ−1
κ′
t

, and κ−1 is the inverse of κ. The
scheduler change formula in equation 32 is proved in Proposition 8. We note that by Proposition 6,
for mask modeling, i.e., p = δm, the posterior ŵt(x

i|z) is time independent. Hence, in that case, the
posterior is not affected by a scheduler change.

C Code infilling

0.0 0.5 1.0

Mask probability

0

20

40

60

80

100

11.59

87.19

compiles@1

pass@1

Figure 4: Pass@1 and compiles@1 scores for the
1.5B parameter models as a function of the input
masking rations on HumanEval.

We additionally evaluate the proposed method
considering the task of code infilling. In which,
we are provided with an input prompt that con-
tains various spans of masked tokens, and our
goal is to predict them based on the unmasked
ones. See Figure 1 (middle and right sub-figures)
for a visual example. Notice, this evaluation
setup is the most similar to the training process.

For that, we randomly mask tokens with
respect to several masking rations, p ∈
{0.0, 0.1, 0.2, . . . , 1.0}, from HumanEval and
report both pass@1 and compiles@1 metrics.
For the purpose of this analysis, we provide the
oracle length for each masked span. In other
words, the model predicts the masked tokens for
already given maks length. Results for the 1.5B
parameters models can be seen in Figure 4. As
expected, both pass@1 and compiles@1 keep
improving as we decrease the level of input masking. Interestingly, when considering the fully
masked sequence, providing the oracle prediction length significantly improves the pass@1 scores
(6.7 vs. 11.6).

D Ablations

Train and sampling path scheduler choice (κt). We study how the choice of the probability
path scheduler affects the model performance. For that, we consider a parametric family of cubic
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(b) Corrector scheduler ta(1− t)b.
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(c) Temperature scheduler (1− t)a.

polynomial with parameters a, b:

κt ≜ −2t3 + 3t2 + a(t3 − 2t2 + t) + b(t3 − t2). (33)

Note that κ0 = 0 and κ1 = 0 and a and b are setting the derivative of κt at t = 0 and t = 1,
respectively. We visualize this κt with choices of a, b ∈ {0, 1, 2} in Figure 5a.
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Figure 6: Path scheduler choice during training using various of constant temperature values.

To test the effect of path schedulers in training we have trained 150M parameters models for all
choices of a, b ∈ {0, 1, 2, 3}. We then generate 1000 samples from each model. The samples are
computed using Algorithm 1 with the path scheduler the model was trained on, and with temperature
levels τ ∈ {0.8, 0.9, 1}, where temperature is applied via

pτ1|t(x
i|Xt) = τ−1 log p1|t(x

i|Xt). (34)

We then evaluate the generative perplexity of these samples with GPT-2. Figure 6 shows the results.
The graphs indicate that, in the context of text modality, the cubic polynomial scheduler with
a ≡ 0, b ≡ 2 (equivalent to a square function) achieves the highest performance. Consequently, we
exclusively used this scheduler for the language models.

Corrector scheduler. In our experiments we only applied corrector sampling to our large models
(U-coupling and C-coupling; 1.7B parameters). We used the optimal path schedulers from previous
section and considered the following parametric family of schedulers for the corrector sampling:

αt = 1 + αta(1− t)b, (35)

where, we set βt = αt − 1 and generate 1000 samples using Algorithm 1 with parameter values
a, b ∈ {0, 0.25, 0.5} and α ∈ {10, 15, 20}. We then evaluated generative perplexity for these samples
with Llama-2, showing results in Figure 7. These plots indicate that smaller values of a and b result
in lower perplexity values, albeit with somewhat reduced entropy. We therefore opted for setting
a = b = 0.25 that strikes a good balance between perplexity and entropy.

Temperature scheduling. For temperature sampling, we consider the following scheduler:

τt = τ(1− t)2. (36)
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Figure 7: Corrector scheduler ablation.

E Theory and proofs

E.1 Computation of the discrete divergence

We present the computation of the discrete divergence in equation 18, i.e.,

divx(ptut) = −
∑
z∈D

pt(z)

[
N∑
i=1

δz(x
ī)ui

t(x
i, z)

]
. (37)

Computing the discrete divergence (equation 18) of the flux ptut at a state x amounts to adding
outgoing flux from x and subtracting the incoming flux into x. Using the fact that δz(xī) = 1 if and
only if z = x or z differs from x only at the i-th token, gives:

divx(ptut) =
∑
z∈D

N∑
i=1

δx(z
ī)
(
pt(x)u

i
t(z

i, x)− pt(z)u
i
t(x

i, z)
)

= pt(x)

N∑
i=1

∑
zi

=1︷ ︸︸ ︷∑
zī

δx(z
ī)

ui
t(z

i, x)−
∑
z∈D

N∑
i=1

δx(z
ī)pt(z)u

i
t(x

i, z)

= pt(x)

N∑
i=1

=0︷ ︸︸ ︷[∑
zi

ui
t(z

i, x)

]
−
∑
z∈D

N∑
i=1

δx(z
ī)pt(z)u

i
t(x

i, z) ▷ equation 13

= −
∑
z∈D

N∑
i=1

δx(z
ī)pt(z)u

i
t(x

i, z),

that gives equation 37 after noting that δx(z ī) = δz(x
ī).
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E.2 Conditional velocities lead to marginal velocities

We provide a simple proof for Theorem 2, originally proved in Campbell et al. (2024):
Theorem 2. Given a conditional probability velocity ui

t(x
i, Xt|x0, x1) generating a conditional

probability path pt(x|x0, x1), the marginal velocity defined by

ui
t(x

i, Xt) =
∑

x0,x1∈D
ui
t(x

i, Xt|x0, x1)pt(x0, x1|Xt), (38)

generates the marginal probability path pt(x), where by Bayes’ rule

pt(x0, x1|Xt) =
pt(Xt|x0, x1)π(x0, x1)

pt(x)
. (39)

Proof (Theorem 2). We start by taking the time derivative of the marginal probability path, pt(x) =∑
x0,x1

pt(x
i|x0, x1)π(x0, x1), as follows,

ṗt(x) =
∑
x0,x1

ṗt(x|x0, x1)π(x0, x1)

=
∑
x0,x1

(∑
z

pt(z|x0, x1)

[
N∑
i=1

δz(x
ī)ui

t(x
i, z|x0, x1)

])
π(x0, x1) ▷ Continuity Equation (16)

=
∑
z

pt(z)

[
N∑
i=1

δz(x
ī)

(∑
x0,x1

ui
t(x

i, z|x0, x1)
pt(z|x0, x1)π(x0, x1)

pt(z)

)]

=
∑
z

pt(z)

[
N∑
i=1

δz(x
ī)ui

t(x
i, z)

]
= −divx(ptut)

Now since ui
t(x

i, z) is a convex combinations of ui
t(x

i, z|x0, x1) and these satisfy equation 13 then
also ui

t(x
i, Xt) satisfies equation 13.

E.3 Probability velocities generating conditional probability paths

Equation 22 with the coefficients ai,jt and bit are provided below,

ui
t(x

i, Xt|x0, x1) =

m∑
j=1

ai,j
t︷ ︸︸ ︷[

κ̇i,j
t − κi,j

t

κ̇i,ℓ
t

κi,ℓ
t

]
wj(xi|x0, x1) +

bit︷ ︸︸ ︷[
κ̇i,ℓ
t

κi,ℓ
t

]
δXt

(xi), (40)

where

ℓ = ℓ(i, t)
def
= argmin

j∈[m]

[
κ̇i,j
t /κi,j

t

]
. (41)

Theorem 3 (Probability velocity of conditional paths). A generating probability velocity for the
conditional paths pt(x|x0, x1) defined in equations 7 and 8 is

ui
t(x

i, Xt|x0, x1) =

m∑
j=1

ai,jt wj(xi|x0, x1) + bitδXt
(xi), (42)

with ai,jt = κ̇i,j
t − κi,j

t κ̇i,ℓ
t /κi,ℓ

t , and bit = κ̇i,ℓ
t /κi,ℓ

t where ℓ = argminj∈[m]

[
κ̇i,j
t /κi,j

t

]
.
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Proof (Theorem 3). First, let us show that equation 40 satisfies the conditions in equation 13: Fix
Xt ∈ D, and∑
xi

ui
t(x

i, Xt|x0, x1) =
∑
xi

m∑
j=1

[
κ̇i,j
t − κi,j

t

κ̇i,ℓ
t

κi,ℓ
t

]
wj(xi|x0, x1) +

κ̇i,ℓ
t

κi,ℓ
t

δXt(x
i)

=

m∑
j=1

[
κ̇i,j
t − κi,j

t

κ̇i,ℓ
t

κi,ℓ
t

]
+

κ̇i,ℓ
t

κi,ℓ
t

=

m∑
j=1

κ̇i,j
t +

κ̇i,ℓ
t

κi,ℓ
t

1−
m∑
j=1

κi,j
t

 ▷
∑
j

κi,j
t = 1, and

∑
j

κ̇i,j
t = 0

= 0.

and for xi ̸= Xi
t we have

ui
t(x

i, Xt|x0, x1) =

m∑
j=1

[
κ̇i,j
t

κi,j
t

− κ̇i,ℓ
t

κi,ℓ
t

]
κi,j
t wj(xi|x0, x1) ≥ 0 (43)

since κi,j
t ≥ 0, ŵt(x

i|z) ≥ 0, and κ̇i,j
t

κi,j
t

− κ̇i,ℓ
t

κi,ℓ
t

≥ 0 since ℓ = argminj∈[m]
κ̇i,j
t

κi,j
t

. Second, we show
that ut satisfies the Continuity Equation (equation 16). To that end we write equation 8 as

wℓ(xi|x0, x1) =
1

κi,ℓ
t

pt(xi|x0, x1)−
∑
j ̸=ℓ

κi,j
t wj(xi|x0, x1)

 , (44)

where ℓ = argminj∈[m]
κ̇i,j
t

κi,j
t

. Now by differentiating pt(x|x0, x1) we get

pt(x|x0, x1) =

N∏
i=1

pt(x
i|x0, x1)

ṗt(x|x0, x1) =

N∑
i=1

pt(x
ī|x0, x1)ṗt(x

i|x0, x1)

=

N∑
i=1

pt(x
ī|x0, x1)

 m∑
j=1

κ̇i,j
t wj(xi|x0, x1)


=

N∑
i=1

pt(x
ī|x0, x1)

∑
j ̸=ℓ

κ̇i,j
t wj(xi|x0, x1) + κ̇i,ℓ

t wℓ(xi|x0, x1)



=

N∑
i=1

pt(x
ī|x0, x1)


m∑
j=1

ai,j
t︷ ︸︸ ︷[

κ̇i,j
t − κi,j

t

κ̇i,ℓ
t

κi,ℓ
t

]
wj(xi|x0, x1) +

bit︷︸︸︷
κ̇i,ℓ
t

κi,ℓ
t

pt(x
i|x0, x1)

 ▷ equation 44

=

N∑
i=1


m∑
j=1

ai,jt

=pt(x
ī|x0,x1)︷ ︸︸ ︷[∑

z

δx(z
ī)pt(z|x0, x1)

]
wj(xi|x0, x1) + bit

=pt(x|x0,x1)︷ ︸︸ ︷[∑
z

δx(z
ī)δx(z

i)pt(z|x0, x1)

]

=
∑
z

pt(z|x0, x1)

N∑
i=1

δx(z
ī)

ui
t(x

i,z|x0,x1)︷ ︸︸ ︷ m∑
j=1

ai,jt wj(xi|x0, x1) + bitδx(z
i)

 ▷ δx(z
i) = δz(x

i), δx(z
ī) = δz(x

ī)

= −divx(pt(·|x0, x1)ut(·|x0, x1)),
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as required.

E.4 Backward-time generating probability velocity.

Here we prove the equivalent of Theorem 3 for backward-time generating probability field. But first,
let us justify the backward sampling formula,

Xi
t−h ∼ δXi

t
(·)− hui

t(·, Xt). (45)

Similar to equation 20 we have

EXt

N∏
i=1

[
δXt(x

i)− hui
t(x

i, Xt)
]
= EXt

[
δXt(x)− h

N∑
i=1

δXt(x
ī)ui

t(x
i, Xt)

]
+ o(h)

= pt(x) + hdivx(ptut) + o(h)
(16)
= pt(x)− hṗt(x) + o(h) = pt−h(x) + o(h).

Therefore if the Continuity equation holds and −ut satisfies the conditions in equation 13 then given
Xt ∼ pt, equation 45 provides an approximation Xt−h ∼ pt−h+ o(h). The change to the generating
probability velocity in equation 22 to accommodate reverse time sampling is to replace the argmin in
equation 41 with argmax,

ℓ = ℓ(i, t) ≜ argmax
j∈[m]

[
κ̇i,j
t /κi,j

t

]
. (46)

An analogous result to Theorem 3 for backward-time sampling is therefore,

Theorem 7 (Probability velocity of conditional paths, backward time). The probability velocity −ut,
where ut defined in equation 21 with ℓ = argmaxj∈[m]

[
κ̇i,j
t /κi,j

t

]
is a backward-time generating

probability velocity for the conditional paths pt(x|x0, x1) defined in equations 7 and 8.

Proof (Theorem 7). We follow the proof of Theorem 3 and indicate the relevant changes. First, for
arbitrary Xt ∈ D, ∑

xi

ui
t(x

i, Xt) = 0, (47)

exactly using the same arguments as the forward-time case. Now, for xi ̸= Xi
t we have

ui
t(x

i, Xt|x0, x1) =

m∑
j=1

[
κ̇i,j
t

κi,j
t

− κ̇i,ℓ
t

κi,ℓ
t

]
κi,j
t wj

t (x
i|x0, x1) ≤ 0 (48)

due to ℓ being now the argmax of κ̇i,j
t

κi,j
t

. Therefore −ut satisfies equation 13. Lastly, we notice that
the proof of the Continuity Equation follows through exactly the same also in this case.

E.5 Backward-time generating velocity for i.i.d. source p(x0) and simple paths

Here we consider the case of probability paths defined via the conditionals in equation 9 with
independent coupling π(x0, x1) = p(x0)q(x1) and i.i.d. source distribution p(x0) =

∏N
i=1 p(x

i
0),

where p(xi
0) is some PMF over [d]. In this case one can simplify the time-backward sampling formula

in equation 25 by using the following one which is equivalent (i.e., their difference is divergence free
and consequently generate the same probability path pt):

ǔt(x
i, Xt) =

κ̇t

κt

[
δXt

(xi)− p(xi)
]
. (49)

The benefit in this equation is that it does not require the posterior p0|t, which needs to be learned in
general cases.

To show that equation 49 is indeed a generating probability velocity it is enough to show that

divx [pt (ǔt − ǔ⋆
t )] = 0, (50)
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where ǔ⋆
t is the probability velocity in equation 25. Let us verify using equation 19:

divx [pt (ǔt − ǔ⋆
t )] =

∑
i,z

pt(z)δz(x
ī)

[
p(xi)−

∑
x0,x1

δx0
(xi)

pt(z|x0, x1)p(x0)q(x1)

pt(z)

]
▷ π(x0, x1) = p(x0)q(x1)

=
∑
i,z

δz(x
ī)

[
p(xi)pt(z)−

∑
x0,x1

δx0(x
i)pt(z|x0, x1)p(x0)q(x1)

]

=
∑

i,x0,x1

[
p(xi)− δx0

(xi)
](∑

z

δz(x
ī)pt(z|x0, x1)

)
p(x0)q(x1)

=
∑

i,x0,x1

[
p(xi)− δx0

(xi)
]
pt(x

ī|x0, x1)p(x
ī
0)p(x

i
0)q(x1)

=
∑

i,xī
0,x1

∑
xi
0

[
p(xi)p(xi

0)− δx0(x
i)p(xi

0)
] pt(x

ī|x0, x1)p(x
ī
0)q(x1)

= 0,

where in the second to last equality we used the fact that the paths we are considering have the form:
pt(x

ī|x0, x1) =
∏

j∈[N ]\i
[
κtδx1(x

j) + (1− κt)δx0(x
j)
]
, and therefore do not depend on the i-th

source token, xi
0.

E.6 Corrector steps

Theorem 4. For perfectly trained posteriors and αt, βt > 0, t ∈ (0, 1), ūt in equation 26 is a
probability velocity, i.e., satisfies equation 13, and: (i) For αt − βt = 1, ūt provides a probability
velocity generating pt; (ii) For αt − βt = 0, repeatedly sampling with ūt at fixed t ∈ (0, 1) and
sufficiently small h is guaranteed to converge to a sample from pt.

Proof (Theorem 4). First let us write explicitly ūt from equation 26:

ūi
t(x

i, Xt) = αtû
i
t(x

i, Xt)− βtǔ
i
t(x

i, Xt)

=
αtκ̇t

1− κt
p1|t(x

i|Xt) +
βtκ̇t

κt
p0|1(x

i|Xt)−
[

αtκ̇t

1− κt
+

βtκ̇t

κt

]
δXt

(xi). (51)

Since equation 51 is a sum of PMFs with coefficients that sum up to zero the first condition in
equation 13, i.e.,

∑
xi ūi

t(x
i, Xt) = 0 holds. The second condition in equation 13 holds since for

t ∈ (0, 1) we have αtκ̇t

1−κt
, βtκ̇t

κt
≥ 0. Now,

divx(ptūt) = αtdivx(ptût)− βtdivx(ptǔt) ▷ linearity of div
= −αtṗt(x) + βtṗt(x) ▷ Equation 16
= −(αt − βt)ṗt(x). (52)

For (i): Using equation 52 with αt − βt = 1 we get that

divx(ptūt) = −ṗt(x),

i.e., ūt satisfies the continuity equation and therefore generates pt.

For (ii): Setting αt − βt = 0 in equation 52 we get divx(ptūt) = 0 and therefore similar to
equation 20 we have

pt(x) = pt(x)− hdivx(ptūt)

= EXt

[
δXt

(x) + h

N∑
i=1

δXt
(xī)ūi

t(x
i, Xt)

]
=
∑
z

p(x|z)pt(z), (53)
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where using equation 51 we have

p(x|z) = h

N∑
i=1

αtκ̇t

1− κt
δz(x

ī)p1|t(x
i|z) + h

N∑
i=1

βtκ̇t

κt
δz(x

ī)p0|1(x
i|z)

+

(
1− h

N∑
i=1

[
αtκ̇t

1− κt
+

βtκ̇t

κt

])
δz(x

i).

For sufficiently small h > 0 therefore p(x|z) is a convex combination of PMFs (in red) x and
consequently is itself a PMF in x, that is p(x|z) is a probability transition matrix, and pt(x) is its
stationary distribution, i.e., it is an eigenvector of p(x|z) with eigenvalue 1, which is maximal. To
prove convergence of the iterations in equation 53 we are left with showing that p(x|z) is irreducible
and a-periodic, see Norris (1998) (Theorem 1.8.3). Irreducibly of p(x|z) can be shown by connecting
each two states z, z′ by changing one token at a time, and assuming that p1|t or p0|t are strictly
positive (which is usually the case since as at-least one of them is defined as soft-max of finite logits);
a-periodicity is proved by showing p(x|x) > 0 which is true as the coefficient of δz(x) is greater
than zero for sufficiently small h > 0. Lastly, note that the iteration in equation 53 changes one token
at a time. An approximation to this sampling can be achieved using our standard parallel sampling
via equation 12, justified by equation 20.

E.7 Training

Proposition 5. The minimizer of L (equation 28) is ŵj
t (x

i|Xt) (equation 23).

Proof (Proposition 5). It is enough to prove the claim for m = 1, with a single w(xi|x0, x1).

L(θ) = − 1

N

N∑
i=1

Et

∑
x0,x1,z,yi

log ŵt(y
i|z; θ)w(yi|x0, x1)pt(z|x0, x1)π(x0, x1)

= − 1

N

N∑
i=1

Et

∑
z

pt(z)

∑
yi

log ŵt(y
i|z; θ)

(∑
x0,x1

w(yi|x0, x1)
pt(z|x0, x1)π(x0, x1)

pt(z)

)
= −Et,Xt

1

N

N∑
i=1

∑
yi

log ŵt(y
i|Xt; θ)ŵt(y

i|Xt)

 ,

that amounts to minimizing the Cross Entropy loss between ŵt(x
i|Xt; θ) and ŵt(x

i|Xt) for all
i ∈ [N ], the minimizer of which satisfies ŵt(x

i|Xt; θ) ≡ ŵt(x
i|Xt).

E.8 Time-independent posterior for masked modeling

Proposition 6. For paths defined by equations 7 and 9 with source p(x) = δm(x) the posterior
pt(x0, x1|z) = p(x0, x1|z) is time-independent. Consequently, the probability denoiser p1|t(xi|z) =
p1(x

i|z) is also time-independent.

Proof (Proposition 6). First,

pt(z
i|x0, x1) = (1− κt)δm(z

i) + κtδx1(z
i) =

{
(1− κt) zi = m
κtδx1(z

i) zi ̸= m

and therefore

pt(z|x0, x1) =

 ∏
i:zi=m

(1− κt)
∏

i:zi ̸=m

κt

 ∏
i:zi ̸=m

δx1
(zi).
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The posterior now gives

pt(z|x0, x1)π(x0, x1)

pt(z)
=

[∏N
i=1 pt(z

i|x0, x1)
]
π(x0, x1)∑

x̃0,x̃1

[∏N
j=1 pt(z

j |x̃0, x̃1)
]
π(x̃0, x̃1)

= ((((((((((((([∏
i:zi=m(1− κt)

∏
i:zi ̸=m κt

] [∏
i:zi ̸=m δx1(z

i)
]
π(x0, x1)∑

x̃0,x̃1((((((((((((([∏
j:zj=m(1− κt)

∏
j:zj ̸=m κt

] [∏
j:zj ̸=m δx̃1(z

j)
]
π(x̃0, x̃1)

= p(x0, x1|z).

showing that the posterior is time-independent for dummy source distributions and convex paths.
Consequently also the probability denoiser,

p1|t(x
i|z) =

∑
x0,x1

δx1
(xi)

pt(z|x0, x1)π(x0, x1)

pt(z)
=
∑
x0,x1

δx1
(xi)p(x0, x1|z),

is time-independent.

E.9 Continuous Flow Matching

For completeness we provide the formulas for denoiser (x-prediction) and noise-prediction (ε-
prediction) parameterizations of the generating velocity field u : [0, 1] × RN → RN appearing
in Table 1.

In Continuous Flow Matching one can chose several ways to define the probability paths (Lipman
et al., 2022; Liu et al., 2022; Albergo and Vanden-Eijnden, 2022; Pooladian et al., 2023; Tong et al.,
2023):

pt(x) =

∫
pt(x|x0, x1)π(x0, x1)dx0dx1 (54)

=

∫
p1|t(x|x1)q(x1)dx1 (55)

=

∫
p0|t(x|x0)p(x0)dx0. (56)

Denoiser parameterization. The conditional generating velocity field ut(x|x1) for pt(x|x1), i.e.,
satisfy the Continuity Equation 16, takes the form (Lipman et al., 2022)

ut(x|x1) =
κ̇t

1− κt
(x1 − x), (57)

and the marginal generating velocity field is therefore given by the marginalization with the posterior
pt(x1|x),

ut(x) =

∫
κ̇t

1− κt
(x1 − x)

p1|t(x|x1)q(x1)

pt(x)
dx1

=
κ̇t

1− κt

[
x̂1|t(x)− x

]
,

where

x̂1|t(x) =

∫
x1

p1|t(x|x1)q(x1)

pt(x)
dx1 = EX1∼pt(·|x)X1. (58)

This shows the continuous Flow Matching denoiser parameterization of the generating velocity field
in Table 1.

Noise-prediction parameterization. The conditional generating velocity field for pt(x|x0) takes
the form

ut(x|x0) =
κ̇t

κt
(x− x0), (59)
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and the marginal generating velocity field in this case is given by marginalization with the posterior
pt(x0|x),

ut(x) =

∫
κ̇t

κt
(x− x0)

p0|t(x|x0)p(x0)

pt(x)
dx0

=
κ̇t

κt

[
x− x̂0|t(x)

]
,

where

x̂0|t(x) =

∫
x0

p0|t(x|x0)p(x0)

pt(x)
dx0 = EX0∼pt(·|x)X0. (60)

This shows the continuous Flow Matching noise-prediction parameterization of the generating velocity
field in Table 1.

E.10 Scheduler change formula

Proposition 8. Assume a conditional probability path as in equation 9, then for any two schedulers
κt, κ

′
t, and ŵt(x

i|z), ŵ′
t(x

i|z) their corresponding posteriors as in equation 23,

ŵt′(x
i|z) = ŵ′

t(x
i|z), (61)

where t′ = κ−1
κ′
t

, and κ−1 is the inverse of κ.

Proof (Proposition 8). For a conditional probability path as in equation 9,

pt′(x
i|x0, x1) =

N∏
i=1

pt′(x
i|x0, x1) (62)

=

N∏
i=1

[
(1− κt′)δx0(x

i) + κt′δx1(x
i)
]

(63)

=

N∏
i=1

[
(1− κ′

t)δx0(x
i) + κ′

tδx1(x
i)
]

(64)

=

N∏
i=1

p′t(x
i|x0, x1) (65)

= p′t(x
i|x0, x1), (66)

where in the 3rd equality we used κt′ = κ′
t. Thus, also for the marginal probability path as in

equation 7,

pt′(x) =
∑

x0,x1∈D
pt′(x|x0, x1)π(x0, x1) (67)

=
∑

x0,x1∈D
p′t(x|x0, x1)π(x0, x1) (68)

= p′t(x), (69)
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where in the 2nd equality we used pt′(x|x0, x1) = p′t(x|x0, x1). Finally the change of scheduler for
a posterior as defined in equation 23,

ŵt′(x
i|z) =

∑
x0,x1∈D

w(xi|x0, x1)pt′(x0, x1|z) (70)

=
∑

x0,x1∈D
w(xi|x0, x1)

pt′(z|x0, x1)π(x0, x1)

pt′(z)
(71)

=
∑

x0,x1∈D
w(xi|x0, x1)

p′t(z|x0, x1)π(x0, x1)

p′t(z)
(72)

=
∑

x0,x1∈D
w(xi|x0, x1)p

′
t(x0, x1|z) (73)

= ŵ′
t(x

i|z) (74)

where in the 3rd equality we used both pt′(z|x0, x1) = p′t(z|x0, x1) and pt′(z) = p′t(z).

F Inference time

One potential benefit of non-autoregressive decoding is improved latency due to a significantly lower
number of decoding steps. To demonstrate that, we measure the average latency of the proposed
method compared with the autoregressive alternative using a single A100 GPU with 80 GB of RAM.
We calculate the average latency time on the HumanEval benchmark using a batch size of 1. When
considering 256 NFEs, the proposed method was found to be ∼2.5x faster than the autoregressive
model (19.97 vs. 50.94 seconds on average per example). However, when considering 512 NFEs,
both methods reach roughly the same latency. These results make sense as the number of tokens in
most of the examples in HumanEval are below 512. Notice, that these results analyze latency and
not model throughput. Due to the kv-caching mechanism following the autoregressive approach will
result in significantly better throughput compared to the proposed approach Ziv et al. (2024). We
leave the construction of a kv-cache mechanism to the proposed approach for future research.

G Experimental setup

G.1 Text

Data. We use three splits of data. First is OpenWebText (Gokaslan and Cohen, 2019). Second
is the same mix used in Llama-2 (Touvron et al., 2023), including textual and code data. For the
code-focused models we use the same split used in CodeLlama (Roziere et al., 2023). For the small
models, we use OpenWebText. For the big models we use the Llama-2 and CodeLlama mixes.

Models. We train two sizes of models: small (150M parameters) and large (1.7B parameters). For
the small model we used a DiT transformer architecture (Peebles and Xie, 2022) with 12 layers, 12
attention heads, and hidden dimension of 768. We also used GPT2 tokenizer. The small models
were trained on OpenWebText. For the large model, we use also used a DiT transformer architecture
but with 48 layers, 24 attention heads, and hidden dimension of 1536 (Peebles and Xie, 2022). For
these models we used a tiktoken tokenizer. The large models were trained on the Llama-2 mix and
the CodeLlama mix. For both models we used ROPE (Su et al., 2024) embedding with θ = 10000.
Models are trained with Adam optimizer with β1 = 0.9 and β2 = 0.999. We use dropout rate of 0.1.
Models are trained with a warm-up of 2500 steps, with a peak learning rate of 3e-4. We train the big
models with batch size of 4096 for 1.3 million iterations and the big models with batch size of 512
for 400 thousand iterations.

Entropy metric. We report the entropy of tokens within a sequence, averaged over all generated
sequences. This intuitively quantifies the diversity of tokens within a given sequence. It’s important
to note that when computing sequence entropy, tokens not present in the sequence are excluded from
consideration.
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Generative perplexity metric. The generative perplexity metric is the average likelihood of
generated text evaluated with a second (usually stronger) model. We report the generative perplexity
when averaged over 1000 samples.

Double precision sampling. Zheng et al. (2024) demonstrated that sampling from a high-
dimensional distribution with full precision can lead to a similar affect as sampling with temperature.
We evaluate our model using a categorical sampler in double precision. Table 5 presents the results
of baselines compared to our method.

Table 5: Double precision sampling. Generative perplexity on unconditional text generation
compared to prior work. All models are sampled without the use of temperature or corrector steps.

METHOD NFE LLAMA-2↓ LLAMA-3↓ GPT2↓ ENTROPY

Data - 7.0 9.4 14.7 7.7

Autoregressive 1024 31.4 54.8 45.3 7.1
Savinov et al. (2021) 200 29.5 45.1 34.7 5.2
Austin et al. (2021a) 1000 697.6 768.8 837.8 7.6
Han et al. (2022) >10000 73.3 203.1 99.2 4.8
Lou et al. (2023) 256/512/1024 56.6/54.0/56.1 122.1/115.7/117.7 115.0/107.8/109.5 8.1/8.1/8.1
Campbell et al. (2024) 256/512/1024 52.0/54.6/50.9 106.0/114.1/102.9 102.6/107.1/103.4 8.0/8.1/8.0
FM (equation 9) 256/512/1024 51.3/53.3/50.1 104.0/115.0/101.3 100.8/107.4/97.5 8.0/8.1/8.0
FM (equation 10) 256/512/1024 51.9/52.7/50.0 104.7/113.9/100.5 99.2/105.1/95.8 8.0/8.1/8.0

G.2 Image

Models. For all our experiments on CIFAR10 we use the U-Net architecture as in Dhariwal and
Nichol (2021), with following three changes to make it fully discrete and time independent (as we
used mask modeling): (i) We replace the first layer with an embedding table of size 257× 96, and
we stack the channel features such that the input to the U-Net is of shape 288 × 32 × 32. (ii) We
enlarge the size of the final layer to output a tensor of shape 3× 32× 32× 257. (iii) We remove the
time dependency from architecture. The hyper-parameters of the architecture: channels 96 , depth
5, channels multiple [3,4,4], heads channels 64, attention resolution 16, dropout 0.4, which gives a
total parameters count of 113M. We optimize the network using Adam optimizer with β1 = 0.9 and
β2 = 0.999, a learning rate of 1e-4. We trained with an effective batch size pf 512 for roughly 300K
iterations.

Scheduler ablation. Figure 8 shows FID of our method with four different schedulers: Linear,
Quadratic, Cubic, Cosine, both for training and evaluation. That is, for each scheduler we trained
a model and evaluate FID with all four schedulers. We observe a high variance in FID between
different schedulers, with the Cubic scheduler generally performing the best on both training and
evaluation.

Comparison with baselines. In the following, we provide implementation details for produc-
ing Figure 3a, that compares our schedulers and sampling algorithm with those employed by previous
works.

Cubic Scheduler (Ours). For the Cubic scheduler we set the corrector scheduler as above to,

αt = 1 + αta(1− t)b, βt = αt − 1, (75)

and we search over the parameters a, b ∈ {0, 0.25, 0.5, 1, 2, 2.5, 3}, and α ∈ {6, 8, 10, 12, 14}.
Additionally, we search over the temperature ∈ {1, 0.9, 0.8}. We find that a = 2, b = 0.25, α = 12
give best FID.

Linear Scheduler (Campbell et al., 2024). For the linear scheduler we search over two additional
hyper-parameters of the method: (i) For corrector scheduler as in equation 26, we set αt = 1 + tη,
βt = αt − 1, where η is the stochasticity parameter as in Campbell et al. (2024), and search over
η ∈ {0, 1, 2, 5, 10, 15}. (ii) We search over temperature in {1, 0.9, 0.8}. Finally, we find that the best
FID is a achieved by η = 10 and temperature 0.9.
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Figure 8: Comparison of FID on CIFAR10 with four schedulers: Linear, Quadratic, Cubic, Cosine,
for both train and evaluation. Corrector sampling is not used in this experiment (i.e., αt = 0 in
equation 26), and temperature is set to 1.

MaskGIT (Chang et al., 2022). For the MaskGIT we train and sample with the Cosine scheduler
κ(t) = 1− cos

(
π
2 t
)

which is reported to achieve best results by Chang et al. (2022). For sampling
we adjust the code from the re-implementation of Besnier and Chen (2023). In addition, we also
search over the temperature in {1, 0.9, 0.8, 0.7, 0.6, 0.5}, and we find the best FID is achieved by
temperature 1.
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H Code generation - qualitative examples

H.1 Success cases

from typing import List

def below_zero(operations: List[int]) -> bool:
""" You're given a list of deposit and withdrawal operations
on a bank account that starts with
zero balance. Your task is to detect if at any point the balance
of account fallls below zero, and
at that point function should return True.
Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""

balance = 0
for operation in operations:

if balance + operation < 0:
return True

balance = balance + operation
return False

def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])

def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function.
Returns decoded string.
"""

decoded = []
for ch in s:

decoded.append(chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")))
return "".join(decoded)
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from typing import List, Any

def filter_integers(values: List[Any]) -> List[int]:
""" Filter given list of any python values only for integers
>>> filter_integers(['a', 3.14, 5])
[5]
>>> filter_integers([1, 2, 3, 'abc', {}, []])
[1, 2, 3]
"""

return [value for value in values if isinstance(value, int)]

def common(l1: list, l2: list):
"""Return sorted unique common elements for two lists.
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]

"""

return sorted(set(l1) & set(l2))

def fibfib(n: int):
"""The FibFib number sequence is a sequence similar to
the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the
n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24
"""

if n == 0:
return 0

elif n == 1:
return 0

elif n == 2:
return 1

else:
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
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H.2 Failure cases

def solve(s):
"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
"""

if s is None:
return ""

if len(s) == 0:
return s

# result string
res = str()
# to lower case
s = s.lower()
for i in range(len(s)):

ch = s[i]
if ch.islower():

res.append(ch)
elif ch.isupper():

res.append(ch.lower())
else:

res.append(ch)
return res

from typing import List, Tuple

def rolling_max(numbers: List[int]) -> List[int]:
""" From a given list of integers, generate a list of rolling maximum element
found until given moment in the sequence.
>>> rolling_max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
"""

max_number = 0
result = []
for number in numbers:

max_number = max(result)
if number > max_number:

result.append(number)
else:

result = [max_number]
return result
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def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""

return math.floor(number)

from typing import List, Tuple

def sum_product(numbers: List[int]) -> Tuple[int, int]:
""" For a given list of integers, return a tuple consisting of a sum and a
product of all the integers in a list. Empty sum should be equal to 0 and
empty product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""

if len(numbers) == 0 or numbers[0] == 0:
return 0, 1

sum = 0
product = 1
for num in numbers:

if abs(num) != 0:
product = product * num
sum += num

return sum, product

from typing import List

def factorize(n: int) -> List[int]:
""" Return list of prime factors of given integer in the order from smallest
to largest. Each of the factors should be listed number of times corresponding
to how many times it appeares in factorization. Input number should be equal
to the product of all factors.
>>> factorize(8)
[2, 2, 2]
>>> factorize(25)
[5, 5]
>>> factorize(70)
[2, 5, 7]
"""

factors = []
factor = 1
for i in range(2, n):

factor *= i
while n % factor == 0:

factors.append(factor)
factor += 1

return factors
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from typing import List, Optional

def longest(strings: List[str]) -> Optional[str]:
""" Out of list of strings, return the longest one. Return the first one in
case of multiple strings of the same length. Return None in case the input
list is empty.
>>> longest([])

>>> longest(['a', 'b', 'c'])
'a'
>>> longest(['a', 'bb', 'ccc'])
'ccc'
"""

long = ""
for string in strings:

if len(string) > len(long):
long = string

return long
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H.3 Infilling

def bubbleSort(arr):
n = len(arr)
# optimize code, so if the array is already sorted, it doesn't need
# to go through the entire process
# Traverse through all array elements
for i in range(n-1):

# range(n) also work but outer loop will
# repeat one time more than needed.
# Last i elements are already in place
swapped = False
for j in range(0, n-i-1):

# traverse the array from 0 to n-i-1
# Swap if the element found is greater
# than the next element
if arr[j] > arr[j + 1]:

swapped = True
arr[j], arr[j + 1] = arr[j + 1], arr[j]

if not swapped:
# if we haven't needed to make a single swap, we
# can just exit the main loop.
return

# Function to perform Breadth First Search on a graph
# represented using adjacency list
def bfs(adjList, source , visited):

# Create a queue for BFS
q = deque()

# Mark the current node as visited and enqueue it
visited[ source ] = True

q.append( source )

# Iterate over the queue
while q:

# Dequeue a vertex from queue and print it
currentNode = q.popleft()
print( currentNode , end=" ")

# Get all adjacent vertices of the dequeued vertex
# If an adjacent has not been visited, then mark it visited and enqueue it
for adjacent in adjList[ currentNode ]:

if not visited[ adjacent ]:

visited[ adjacent ] = True

q.append( adjacent )
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# Returns index of x in arr if present, else -1
def binary_search(arr, low , high , x):

# Check base case
if high >= low :

mid = ( high + low ) // 2

# If element is present at the middle itself
if arr[ mid ] == x:

return mid

# If element is smaller than mid, then it can only
# be present in left subarray
elif arr[ mid ] > x:

return binary_search(arr, low , mid - 1, x)

# Else the element can only be present in right subarray
else:

return binary_search(arr, mid + 1, high , x)

else:
# Element is not present in the array
return -1
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# Python program for Dijkstra's single
# source shortest path algorithm. The program is
# for adjacency matrix representation of the graph
class Graph():

def __init__(self, vertices):
self.V = vertices
self.graph = [[0 for column in range(vertices)]

for row in range(vertices)]

def printSolution(self, dist):
print("Vertex Distance from Source")
for node in range(self.V):

print(node, " ", dist[node])

# A utility function to find the vertex with
# minimum distance value, from the set of vertices
# not yet included in shortest path tree
def minDistance(self, dist, sptSet):

# Initialize minimum distance for next node
min = 1e7

# Search not nearest vertex not in the
# shortest path tree
for v in range(self.V):

if dist[v] < min and sptSet[v] == False:
min = dist[v]
min_index = v

return min_index

# Function that implements Dijkstra's single source
# shortest path algorithm for a graph represented
# using adjacency matrix representation
def dijkstra(self, src ):

dist = [1e7] * self.V

dist [src] = 0

processed = [False] * self.V

for cout in range(self.V):

# Pick the minimum distance vertex from
# the set of vertices not yet processed.
# u is always equal to src in first iteration
uv = self.minDistance(dist, processed )

# Put the minimum distance vertex in the
# shortest path tree
processed [ uv ] = True

# Update distance value of the adjacent vertices
# of the picked vertex only if the current
# distance is greater than new distance and
# the vertex in not in the shortest path tree
for v in range(self.V):

if (self.graph[ uv ][ v ] > 0 and
processed [ uv ] == False and

dist [ uv ] > dist [ cout ] + self.graph[ uv ][ v ]):
dist [ uv ] = dist [ cout ] + self.graph[ uv ][ v ]

self.printSolution(dist)
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I Textual generations

We present below example generations for the proposed method together with several baseline
methods. We provide both conditional and unconditional generations. For the conditional generations,
we mark the prompt in gray.

I.1 Conditional generation

The United States on Wednesday asked the UN Security Council to slap an oil embargo on North Korea and
freeze the assets of leader Kim Jong-un, in response to Pyongyang’s

response to the revelations it had restarted its nuclear work in March. “We will continue working to use maximum
international pressure on North Korea to agree to the suspension of its nuclear program and reinstate sanctions,”
said John Bolton, who served as National Security Advisor and Secretary of State under US President Bill
Clinton. “Here is North Korea’s response to our sanctions,” Bolton wrote in a letter to House Minority Leader
Nancy Pelosi. “We want you to know that the international community is seriously monitoring North Korea at
this time. North Korea is still complying with our requests from the past few days,” Bolton said on Monday. “We
have been working through the United Nations to provide the information that they gave us.” Asked to whether
any international pressure will be put in place for North Korea to give up its nuclear weapons, Bolton said the
United States can use maximum pressure to get North Korea to abandon its nuclear weapons if it wants. “We’ve
been working to use maximum pressure on North Korea, through the Security Council, and we will continue to
do so,” said White House Deputy Press Secretary Sarah Huckabee Sanders in Washington. “We’re committed to
taking any steps necessary to help North Korea pursue its only option for peace, including in this period,” she
added. The United States did not plan to produce any more oil at this time last year and had not planned to do so
this year. “We believe that the North Korea approach is misguided in moving forward with its nuclear program
to endanger peace and security in its homeland and neighbors in Asia,” said Bolton, adding that the US supplies
its nuclear weapons. “We don’t want them to sell their nuclear weapons to other nations,” he said. Bolton said
the US would look for pressure on North Korea, which has been known to use nuclear weapons, as leverage
to negotiations with the US. “I will reiterate what I have said before. So, the US has to put pressure on North
Korea. But who else is going to hold the cards? Somebody else has to hold the cards,” Mr Bolton said. Bolton
described what the United States is prepared to do to get North Korea to agree to give up its weapons and asks
for sanctions. “As far as I know, we have to use the pressure the reason for putting sanctions on North Korea,” he
said, adding that the US does not plan to ask the UN Security Council for sanctions alone.

The defender is available for the Maribor first leg but his club believed he should be suspended. SNS Group
Celtic made an administrative blunder which saw Efe Ambrose left behind
in the midfield in the Maribor department and has given him a potential three-match ban today. Although Efe
Ambrose will be suspended next Friday, according to reports in Scottish media, the Celtic defender will still
be fit for the Champions League first leg at Celtic Stadium in the middle of August. However, the Celtic club
wrongly thought that Efe should only receive a three-match ban because he is available for the first leg. Although
Efe Ambrose may receive a three-match ban next Friday, Efe Ambrose was part of the Celtic squad for the last
match against Liverpool. However, says SNS Group Celtic he was making a tactical error and was left behind in
midfield. It is understood that Efe Ambrose did not make the final squad and only played 11 games for the club
this season. Efe Ambrose made his professional debut for Celtic in 2008 but spent nine months looking for a
new club to return to. With a career-high 72 Celtic appearances, Efe is among Celtic’s most capped players ever.
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Carl Jara aka Grain Damaged is an award-winning, professional sand sculptor from Cleveland, Ohio. Jara says
he has known since high-school that he wanted to be an artist. After studying

English and Art History at the Northeastern University, Jara says one semester he started carving a custom
sculpture into sand molds, but didn’t know how to do it. With the help of an instructor, he found out and learned
how to use rubber molds to make art. Later, he made the decision to learn how to use sand and sculpt himself. In
addition to how he makes his own sculptures, Jara says he does special events for comics companies such as
Stan Lee and also for institutions like local community colleges and universities. In November of this year, he
won the WWHS, The Very Art Of The Very Things Cleveland competition. Afterward, he will continue carving
for clients in the comics industry and looks forward to sand sculpting in Cleveland. The Artist is professional
sculptor who has been making art, for over 25 years, in various shapes and sizes.The artist says art is all about
relationships and the best way to go into the heart is to create art. The artist has taught in various high schools
in the Cleveland area and has taught a full time Honors Studio for High School students in grades 6, 7, and 8
time for over 20 years. Since Art is a personal form of artistic expression, he works individually in a way that
allows the student that his work engages their imagination and presents ideas in ways that inform and challenge
their own paths. Miguel Romano is a professional artist who worked in 3D modeling and animation in the areas
of web design and production. The artist currently works as a digital artist in the ad and mass communication
industries. In coming to Concrete Cleveland, he is excited to apply the 3D development and production skills
he have to his work. The artist has a BFA in sculpture from Ohio University, along with an MFA in sculpture.
We look forward to seeing his work very soon! Designed and installed by Concrete This Week. He is a guy
originally from Cleveland, Ohio where he pursued a career as a nurse. He then moved to the Atlanta, GA area
where he returned to school with a BSN and a BS in nursing and is a licensed nurse. He is a proud sorority
brother and still has extra-curricular, as well as taking music lessons and the occasional play. He is a lovely asset
at Concrete Cleveland and looks forward to seeing concrete
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I.2 Unconditional generation

Here’s how that strategy works for your job:
1) You now plan upon what you accomplish to fulfill your goals.
Management cannot plan what happens to you. This may not be your ultimate personal decision, but it’s perfectly
fine to look at it. You just need to make sure you want to achieve this.
Now, because you’ve worked at goal, you don’t have to talk about your status tomorrow, after all, you have to do
your job and take care of yourself.
Next steps, there may be some work to do. There is a company down the road you right – literally millions
of things that would have to be done. But of course it would have a different outlook. If you’re going to do
something, the customer might not be able to tell you.
2) Between those two steps are the plan in step so that your actions will be executed.
Then you have taken other steps (usually a few less important changes), like delivery. If you already know what
that means, and you’re having to stay up and take action you can make sure you don’t have to point out in the
moment to plan the action.
With business goals, it is not easy to pick up what appears best for us. We have to see what really is. What we
do. We can’t make a plan on the floor and come back up with exactly what you’re doing. If you want to work
every step, then you need to differentiate from the action and what the next step represents.
Eventually, you’ll be less motivated to focus on this step and the previous one. Unfortunately if you don’t change
your main thing, you may be able to lose your motivation to work on “pivot.” Unless that’s possible, and if you
don’t change something, then the task may not be at the right time. Instead of doing something, it is just in
advance of your ultimate goal.
Although you might make a mistake with every single day to day plan, it still is a great opportunity to correct
your mistake, become new and commit to working extra hours and meeting your goals promptly.
The truth is, everything goes right for you no matter how quick a decision you become. The customer will never
allow you to make the worst decisions. Otherwise, you make the very first decision.
3) Take timing as part of action. If you don’t feel like you can keep it, a plan without help of timing stops you
from doing. When it’s like your plan in action can lead to something such as this: Now that you know what to
do. For example, you might live in a place in the building that serves every customer, has 3 employees per team,
and 3 clients on one. You will get things done the next day. Change your performance is the first step towards
greater success, for example. Your team, at this point in the Customer department, will know how the customer
deal with a single employee, the level chain, and more. Make sure you take action now that you change it. As a
company, it won’t be hard but you will have lots of work to do when you change.
4) Make sure it’s your night.

Watch the humour but also the humanity behind the work we’re doing. The truth is something very tragic and
delicate in the middle of a very fractured world. It’s the one thing that makes me proud. I feel like a singular
individual has had to come together with this story. There’s a lot of people who I’ve worked with for the very
beginning, because I have got people, you’ve got people who have just had these eyes on this story, and this
sense of what we are, that run through our final movie.
It’s the very beginning we’re at. The very beginning, we’re not there, we will get there but we won’t need. This
is a story and these amazing actors, these fantastic violence, violence, that was just are elements and a complex
world of conflict. When something like that is set to build this narrative and you’re directing the world of these
characters based around their individual needs it’s very, extremely confusing, very heartbreaking — it’s really
quite intense—this was all built within it, and what it is, it’s a 35-year old period that was slavery and still was
very strong, these guys were operating to the edge and going to the point where we ended up setting up a big
narrative, OK, that’s good, it’s okay, in some ways heroism is a noble imperative that we are fighting against, and
recognize maturity as the mercurial nature and these are all human and we’ve got to clean it up so that that stuff
is there and we’ve got to restore it. And the project we’re looking at here is our common goal is that anything
can be done to make that happen and everybody can do whatever their want to do and do it as they please.
That’s the spirit of it. That’s the movie I’ve made with Steven Wright in writing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] As each experiment is highly resource intensive we did not report error bars.
However, we did report results on a wide range of tasks and setups.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] See Discussion section.

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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