
DANNTe: a case study of a turbo-machinery sensor
virtualization under domain shift

Luca Strazzera
Baker Hughes

luca.strazzera@bakerhughes.com

Valentina Gori
Baker Hughes

valentina.gori@bakerhughes.com

Giacomo Veneri
Baker Hughes

giacomo.veneri@bakerhughes.com

Abstract

We propose an adversarial learning method to tackle a Domain Adaptation time1

series regression task (DANNTe). The task concerns the virtualization of a physical2

sensor of a turbine with aim to build a reliable virtual sensor working on operating3

conditions not considered during the training phase. Our approach is directly4

inspired by the need to have a domain-invariant representation of the features to5

correct the covariate shift present in the data. The learner has access to both a6

labeled source data and unlabeled target data (Unsupervised DA) and is trained7

on both, exploiting the minmax game between a task regressor neural network8

and a domain classifier neural network. Both models share the same feature9

representation in terms of a feature extractor neural network. This work is based on10

the work of Ganin et al. [7]; we present an extension suitable to be applied to time11

series data. The results report a significant improvement in regression performance,12

compared to the base model trained on the source domain only.13

1 Introduction14

In recent modern applications, it is critical the ability to learn new concepts from a domain-dependent15

data and transfer them to related, but different contexts. Generally speaking, we refer to it as transfer16

learning [15]. In this context, the model is trained on a source domain or task and evaluated on17

a different but related target domain or task, where either the task or domains (or both) differ. A18

domain consists of a feature space and a marginal probability distribution. A task consists of a label19

space and an objective predictive function. Thus, a transfer learning problem [15] might be either20

transferring knowledge from a source domain to a different target domain or transferring knowledge21

from a source task to a different target task, or a combination of both. By this definition, a change in22

the domain may result from either a change in feature space or a change in the marginal probability23

distribution.24

Unsupervised Domain Adaptation [17], with generalization bounds stated by Ganin et al. [3], [4] is a25

type of transfer learning where the task remains the same while the domains are different (transductive26

transfer learning). Formally, the learner has access to a labeled source dataset S = {(xsi , ysi )}
ns
i=1 and27

an unlabeled target dataset T = {(xti)}
nt
i=1, where datapoints xs and xt are sample respectively from28

a source distribution Ps and a target distribution Pt both over X.29

We seek to build a domain-invariant feature representation, where the emergent features are invariant30

with respect to the domain. We expect that a model based on domain-invariant features will perform31

with good performance in both domains, so that the difference between them is not very significant.32

Most of the literature focuses on problems applied to independent and identically distributed data; we33

Submitted to NeurIPS 2021 AI for Science Workshop.



try to fill this gap by addressing a problem concerning the time series where the time dependencies34

within the data are critical for a correct regression. In particular, we apply the unsupervised domain35

adaptation method to an industrial turbo-machinery context providing practical results and showing36

that domain adaptation can be an answer also applied to complex timeseries application, even in37

presence of a non-independently and identically distributed assumption.38

1.1 Related works39

The approach we follow attempts to match feature space distributions, however this is accomplished40

by modifying the feature representation itself. It is a related idea to Geneative Adversarial Netowrks41

(GAN) [8], [12], [18] while their goal is quite different (building generative deep networks that can42

synthesize samples).43

Several line of research address the unsupervised domain adaptation task. The line of Domain44

Invariant feature aims to learn a domain-invariant feature representation, typically in the form of a45

feature extractor neural network. A representation is domain invariant if the features follow the same46

distribution regardless the input data are from source domain or target domain [9], [20], [16], [1]. The47

line of Domain Mapping aims to learn a mapping from one domain to another. The map is typically48

created at the pixel level [2], or trough a specific GAN [14] , where a generator performs adaptation49

translating a source input image to an image that closely resembles the target distribution. The line of50

Normalization statistics exploits the batch normalization layer [11] to learn domain knowledge [19].51

The line of Ensemble methods consists of using multiple models [6] averaging their output to keep52

domains separated.53

1.2 Use case54

In turbo-machinery applications it is common to observe a domain shift. Domain shift can be55

generated from operative conditions not observed during test phase or from the environmental56

characteristics of the customer site, often different from those where the prototype is validated (test57

rig). In our specific case, a model of a physical sensor is learnt from prototype data and needs to be58

applied to fleet data, where that physical sensor is not present. In other words, our challenge is to59

combine the lack of the sensor in target data and the domain shift due to different features distribution.60

With this statement we are providing the needs to a unsupervised DA approach to deal with the61

observed domain shift.62

1.3 DataSet63

To validate our implementation (called DANNTe) we tested on prototype data, splitting source/target64

between winter and summer period respectively. In particular, the source domain is represented by65

timeseries collected during a winter period and the target domain acquired during a summer period.66

Dataset has been acquired from 30 sensors installed on a turbine running for test from December67

2019 to August 2020. Winter data from December to February is used as labeled source dataset, and68

the summer data from June to July as unlabeled target dataset. Both the datasets are collected from69

the same machine in a prototype state where the conditional operation might be different and the70

environmental conditions generate two different distributions. We would like to remind that the fully71

supervised approach is not feasible in our real use case since no ground truth for yt is available in72

target domain. The availability of the ground truth for the physical sensor in the target domain allows73

us to score the model performance at test-time.74

2 The implemented library75

2.1 Model76

We adapted the Domain-Adversarial Neural Networks (DANN) by Ganin et al. [7] to a regression task77

(Domain-Adversarial Neural Networks applied to Timeseries, DANNTe). It seeks to learn features78

that combine discriminativeness and domain-invariance. This is achieved by jointly optimizing the79

underlying features as well as two classifiers operating on these features: label predictor predicts80

class labels and the domain classifier discriminates between the source and the target domains. While81

the parameters of the label predictor are optimized in order to minimize their error on the training set,82

2



Figure 1: Architecture of our proposed approach (DANNTe), based on Ganin et al. [7]. Feature
extractor weights are modified by both the task solver (in our case, a regressor trying to minimize
the reconstruction loss) and the domain classifier (trying to minimize the source vs target domain
classification loss). The gradient reversal layer acts so that a minimization problem is solved (instead
of a min-max one), just reversing the sign of the domain classifier gradient during backpropagation.

.

the parameters of the underlying deep feature mapping are optimized in order to minimize the loss of83

the label predictor and to maximize the loss of the domain classifier. The latter update thus works84

adversarially with respect to the label predictor encouraging domain-invariant features to emerge in85

the course of the optimization.86

The architecture is composed by a feature extractor recurrent network stacked on two networks (see87

Fig. 1). The first head is a task solver (previously "label predictor") neural network, a regressor88

whose goal is to minimize the reconstruction loss for the source domain, where y is available. Its loss89

is not affected by target domain examples, which are skipped because of the target mask layer. The90

second head is a domain classifier neural network, aiming at discriminate examples coming from91

source from those coming from target domain, exploiting the x information, the only available in both92

domains. To correctly discriminate, a new dataset U = {(xi, 0)}ns
i=1 ∪ {(xi, 1)}

nt
i=1 is built, where93

samples from source domain are labelled with 0 and samples from target domain are labelled with 1.94

The task predictor loss Ly is the MSE, while the domain classifier loss Ld is the Negative Log Loss95

defined as:96

Ld = − 1

n

n∑
i=1

(yilog(p(yi)) + (1− yi)log(1− p(yi))) (1)

where yi denotes the binary variable (domain label) for the i-th sample, which indicates whether it97

comes from the source distribution (yi = 0) or from the target distribution (yi = 1).98

99

The total loss combines the contribution of the losses of the two branches, defined as:100

Ltot = Ly − λLd (2)

where λ is the domain loss multiplier; λ influences the contribution of the domain classifier loss101

during backpropagation. Once trained, only the feature extraction and task solver parts are kept and102

used for inference.103

3



2.2 Model adaptation104

Our architecture (DANNTe) differs in some implementation details from the DANN vanilla architec-105

ture [7]. The differences in our implementation are due to the nature of our data (time series) and by106

some implementation choices made to optimize training time and have an end-to-end architecture.107

Ganin et al. ([7]) propose to use the data in different formats according to the branch: the task108

solver expects the training data {(xsi , ysi )}
ns
i=1, and the domain classifier expects the training data109

{(xsi , 0)}
ns
i=1 ∪ {(xti, 1)}

nt
i=1. Using two different datasets to train the model causes the need to110

perform multiple forward and backward passes, making training computationally demanding. To111

reduce the computational complexity, we propose a solution based on the addition of a target mask112

layer.113

The target mask layer modifies the loss Ly contribution of the task predictor for the samples114

belonging to the target domain, by assigning them a loss weight of 0. This approach is equivalent115

to computing the loss Ly first using only transformed samples from the source domain, and then116

computing the loss Ld using the combined batches. However, with this mask we significantly cut117

down training time, allowing to compute weight update in a single forward and backward pass.118

Another proposal by Ganin et al. ([7]) is to build the datasets by i.i.d from Ps and Pt. In our specific119

use case, since we use an RNN (LSTM) as a feature extractor, generating the datasets by uniformly120

and identically distributed sampling would lose the temporal dependencies within the data and we121

cannot apply.122

The solution we propose is to train the model by creating equally divided batches where half123

of each batch is filled with samples from the source domain, and half with samples from the124

target domain, keeping the temporal order. The reason why we select this approach is to hold the125

sequential behaviour of measurements in successive time slots, granted by having portion of batch126

with consecutive measurements.127

3 Results128

3.1 Performance assessment strategy129

Model performance has been evaluated by exploiting the variable y which in this simplified use case130

is available in both domains. We remind once again that this ground truth will not be available in our131

real use case, instead.132

The DANNTe regression performance has been compared to:133

• an upper-bound performance, given by the case when ground truth is available also in134

target set, so that both source and target sets are used for a fully supervised training (fully-135

supervised model);136

• a lower-bound performance, given by the case when we simply perform supervised training137

on source target data and directly apply the model to target domain data (baseline model).138

3.2 Evaluation framework139

Our evaluation framework considers two steps: model selection and model assessment. Model140

selection estimates the performance of different learning models, that includes searching the best141

hyper-parameters of the model, in order to choose the best one (to generalize). Model assessment142

evaluates the final model by its prediction error on new test data.143

To correctly select the hyperparameters of our models, we use an outer and an inner grid-search. The144

outer grid-search is used to produce the first configurations of the hyperparameters where values from145

a very broad range are tested, for each hyperparameter. This allows us to have a first rough selection146

of values. Subsequently, the range of values to be used in the inner grid-search is selected starting147

from the results obtained in the outer grid search. Here values from a smaller range are tested, for148

each hyperparameter, for a finer tuning. To test each configuration produced by the outer or inner149

grid search we apply the k-fold cross validation with 4 folds and a validation percentage of 20%.150

4



3.3 Model performance and comparison151

Performance comparison summarized in Tab. 1 shows the improvement achieved using DANNTe,152

with respect to the baseline model. Related uncertainties are referring to the variance achieved trough153

cross validation phase.154

MSE Source MSE Target

Baseline model 8.4 ± 0.1 3567.6 ± 0.9

DANNTe model 120.6 ± 0.2 1398.2 ± 0.2

Fully-supervised model 16.4 ± 0.7 17.8 ± 0.8

Table 1: DANNTe performance compared to baseline and fully-supervised models. Metric MSE
refers to the Mean Squared Error.

We found that the hyperparameter λ, which is the constant multiplier of the domain classifier’s loss155

during backpropagation, plays a key role in feature extraction. The higher its value, the higher the156

influence of the domain classifier loss, meaning a stronger push towards domain invariance in the157

feature extractor. The network will therefore tend to find features that are shared by the two domains,158

but which are not necessarily good for regression task. A small λ, on the other hand, will cause the159

extracted features to be less domain-invariant but more effective to predict the signal in the source160

domain samples. For our experiments, we found that a value equal to 1, yielded the best performance.161

3.4 Features encoding162

To get a graphic insight about how the feature embedding changes with DANNTe, we use the UMAP163

method [13] to lower the embedding dimension to 2 (see Figure 2). From the comparison of Figure 2a164

corresponding to the baseline model and Figure 2b corresponding to the fully supervised model, we165

observe a clear clustering between source and target datasets. However, when we use the proposed166

approach, the representation in Figure 2c shows a lower ability to distinguish between clusters.

(a) Baseline model (b) Fully supervised model (c) Proposed approach

Figure 2: Data representation reduced to 2 dimensions using UMAP. We can observe a clear
separation between the two domains (blue and yellow, summer and winter) using by the baseline

model (a). Our DANN adaptation to timeseries (DANNTe) seems to construct a less discriminative
feature representation.

167

3.4.1 Parameters168

The configuration of the hyperparameters for the proposed baseline and the fully supervised models169

that yielded the best results (with ratings shown in Table 1) are the same: a LSTM with 2 layers (each170

with 64 neurons) and on top other 2 fully connected layers with 64 neurons. The activation function171

for the LSTM is the "tanh" and for the fully connected the "ReLU". The penalty applied was an172

elastic net regularization with value of 1.0e-5 for both L1 and L2. The best window size was 1.173

The configuration of the hyperparameters for the proposed DANNTe that yielded the best results174

(with ratings shown in Table 1) are the following: a LSTM with 2 layers for the feature extractor175

5



(each with 16 neurons), a NN with one 8-neuron dense layer for the task predictor and a NN with176

one 32-neuron layer for the domain classifier. The activation function of the task predictor and the177

domain classifier is the "ReLU". The penalty applied was an elastic net regularization with value178

of 1.0−5 for both L1 and L2. The best window size was 1 with the batch size supplied to the model179

being 1024.180

4 Conclusions181

The results are promising and allowed us to improve the reliability of a model in two different182

domains, correcting the domain shift present in the data, showing how improvement is guaranteed183

if virtualization is based on features that combine discriminativeness and domain invariance. We184

adapted DANN method to a regression task applied to a industrial use case. Results report that the185

DANNTe approach improves performance. Despite there is still room for improvement in order186

to achieve results as close as possible to the fully-supervised approach, our findings show that is a187

promising approach also in real applications.188

4.1 Future work189

In the next future we will focus on an improved version of the feature extractor, evaluating a deeper190

autoencoder [10, 5] approach. Our work demonstrates how the loss of the discriminator is correlated191

with the ability of the network to do a correct regression in target domain, but we need to investigate192

further in how non-i.i.d. data could hamper the statement of the impossibility theorem [4].193

References194

[1] David Acuna et al. “f-Domain-Adversarial Learning: Theory and Algorithms”. In: (2021).195

[2] Shrivastava Ashish et al. “Learning from simulated and unsupervised images through adversar-196

ial training”. In: (2017).197

[3] Shai Ben-David et al. “Analysis of Representations for Domain Adaptation”. In: Advances in198

Neural Information Processing Systems 19 (NIPS 2006) (2007), pp. 137–144.199

[4] Shai Ben-David et al. “Impossibility Theorems for Domain Adaptation”. In: Proceedings of the200

Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR 9 (2010),201

pp. 129–136.202

[5] Rewon Child. Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them203

on Images. 2021. arXiv: 2011.10650 [cs.LG].204

[6] Mostafa El Habib Daho et al. “Weighted vote for trees aggregation in Random Forest”. In:205

IEEE:10.1109 (2014).206

[7] Yaroslav Ganin et al. “Domain-Adversarial Training of Neural Networks”. In:207

arXiv:1505.07818 (2016).208

[8] Ian J. Goodfellow et al. “Generative Adversarial Networks”. In: arXiv:1406.2661 (2014).209

[9] Zhao Han et al. “On Learning Invariant Representations for Domain Adaptation”. In: (2019),210

pp. 7523–7532.211

[10] Geoffrey E. Hinton and R.R. Salakhutdinov. “Reducing the dimensionality of Data with Neural212

Networks”. In: (2006).213

[11] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network214

Training by Reducing Internal Covariate Shift”. In: (2015).215

[12] Salome Kazeminia et al. “GANs for Medical Image Analysis”. In: arXiv:1806.06222 (2018).216

[13] McInnes Leland, Healy John, and Melville James. “UMAP: Uniform ManifoldApproximation217

and Projection forDimension Reduction”. In: arXiv:1802.03426 (2018).218

[14] Julian Alberto Palladino, Diego Fernandez Slezak, and Enzo Ferrante. “Unsupervised Domain219

Adaptation via CycleGAN for White Matter Hyperintensity Segmentation in Multicenter MR220

Images”. In: (2020).221

[15] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: (2010), pp. 1345–1359.222

[16] Eric Tzeng et al. “Adversarial Discriminative Domain Adaptation”. In: (2017).223

[17] Garret Wilson and Diane J. Cook. “A Survey of Unsupervised Deep Domain Adaptation”. In:224

(2020).225

6

https://arxiv.org/abs/2011.10650


[18] Lijun Wu et al. “Adversarial Neural Machine Translation”. In: arXiv:1704.06933 (2018).226

[19] Li Yanghao et al. “Adaptive Batch Normalization for practical domain adaptation”. In: (2018),227

pp. 109–117.228

[20] Chaohui Yu et al. “Transfer Learning with Dynamic Adversarial Adaptation Network”. In:229

(2019).230

7


	Introduction
	Related works
	Use case
	DataSet

	The implemented library
	Model
	Model adaptation

	Results
	Performance assessment strategy
	Evaluation framework
	Model performance and comparison
	Features encoding
	Parameters


	Conclusions
	Future work


