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ABSTRACT

Memes are a powerful medium for expressing emotions, opinions, and humor on
social media, but they can also propagate misogyny, hate speech, and child abuse.
While harmful content detection has advanced, no prior work addresses child-
abusive memes. We propose the Multi-modal Child Abuse Detection (MM-CAD)
framework, a novel two-stage system that identifies and explains such memes by
combining visual and textual cues. MM-CAD integrates features from images,
overlaid text, and titles, enabling cross-modal reasoning even with missing inputs.
A key innovation is the Quantum-inspired Embedding Enhancement (Q-EE) mod-
ule, which enriches multimodal representations via quantum feature mapping to
better capture subtle abuse patterns. We introduce DACAM, the first benchmark
dataset for child-abusive memes. Experiments show that MM-CAD with Q-EE
achieves state-of-the-art F1 score of 0.90 for classification which is a significant
improvement, outperforming unimodal and non-quantum baselines by around 10-
points. Beyond detection, MM-CAD generates human-aligned explanations and
high-quality rationale generation (BERTScore: 0.884, Fluency: 3.48, Informative-
ness: 3.55 on 4-point scale), promoting interpretability and contributing to safer
online spaces, especially for vulnerable groups.

1 INTRODUCTION

In the digital era, content sharing on social media is effortless, but this ease also enables online
harms, including abuse, terrorist propaganda, pornography, hate speech, spam, and child sexual
abuse Barker & Jurasz (2019); Arora et al. (2023)1. Among these, child sexual abuse is most alarm-
ing due to victim vulnerability and severe consequences Ali et al. (2023). Studies suggest that
awareness could prevent many cases Patterson et al. (2022), yet the circulation of child sexual abuse
material (CSAM) persists, requiring proactive detection and removal to avoid re-victimization Lee
et al. (2020).

While child sexual abuse is most severe, other harms such as violence against children and child
labor remain critical. Abuse manifests across text, audio, images, memes, and videos; however,
memes warrant special focus as they are widely consumed, cross-cultural, and capable of concealing
harmful cues. Despite this, no prior work has targeted child-abusive memes, leaving a key research
gap.

We propose the Multi-modal Child Abuse Detection (MM-CAD) framework, a two-stage system
combining image and text (overlaid text, title) for robust detection even with incomplete inputs.
Central to MM-CAD is the Quantum-inspired Embedding Enhancement (Q-EE) module, which
projects multimodal embeddings into higher-dimensional Hilbert spaces to capture subtle, entangled
abuse patterns.

Our goals are twofold: (1) detect child-abusive memes, and (2) explain why content is abusive. To
support this, we introduce the Dataset for Analysis of Child Abusive Memes (DACAM), the first

1ChatGPT is used to refine and rephrase English content.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

benchmark of its kind. Experiments show that MM-CAD, particularly with Q-EE, outperforms
unimodal baselines and enhances interpretability.

The primary contributions of this work are as follows:

• MM-CAD Framework with Quantum-inspired Enhancement: A two-stage system in-
tegrating image and text features for robust detection, even with missing inputs. Its core
Q-EE module enriches multimodal embeddings, capturing subtle abuse patterns and boost-
ing accuracy and interpretability.

• DACAM Dataset: A first-of-its-kind benchmark curated for child-abusive meme detec-
tion, enabling systematic study and evaluation in this domain.

• Interpretability and Rationale Generation: Beyond detection, MM-CAD provides
human-readable explanations of abuse types, with Q-EE enhancing contextual reasoning
to aid awareness and mitigation.

• Comprehensive Evaluation: Extensive experiments on DACAM show that MM-CAD,
especially with Q-EE, achieves state-of-the-art performance and superior interpretability.

Alignment with UN SDGs and LNOB: This work contributes to SDG 10 (Reduced Inequalities),
SDG 16 (Peace, Justice), and SDG 4 (Quality Education) by protecting children online, fostering
awareness, and advancing the Leave No One Behind principle.

2 RELATED WORK

Detecting child-abusive content online is vital for ensuring minors’ safety, reducing parental anxiety,
and fostering a society where children thrive. Yet, to the best of our knowledge, no comprehensive
study specifically addresses abusive memes Sharma et al. (2022); Arora et al. (2023); Lee et al.
(2020). Prior research has focused on harms like hate, misogyny, cyberbullying, and violence At-
tanasio et al. (2022); Gomez et al. (2020); Yuan et al. (2024); Pramanick et al. (2021); Hee & Chong
(2023), while areas like sexual aggression, extremism, self-harm, and adult sexual services remain
underexplored in automated detection and intervention Sharma et al. (2022). We next review uni-
modal and multimodal approaches for harmful content detection.

2.1 UNIMODAL APPROACHES

Early detection methods relied on unimodal features like N-grams, Bag-of-Words, TF-IDF, word
embeddings Pamungkas et al. (2018); Anzovino et al. (2018); Bakarov (2018); Garcı́a-Dı́az et al.
(2021), and handcrafted cues (e.g., part-of-speech, sentiment, offensive lexicons) Anzovino et al.
(2018); Garcı́a-Dı́az et al. (2021); Vargas et al. (2021); Jahan & Oussalah (2023); Huang et al.
(2023); Chernyavskiy et al. (2024). Transformer-based models further improved performance by
generating rich contextual embeddings Attanasio et al. (2022); Calderon-Suarez et al. (2023); Muti
et al. (2022). However, text-only models struggle to capture multimodal nuances found in images or
videos.

2.2 MULTIMODAL APPROACHES

Recent work addresses these gaps using multimodal methods that fuse textual and visual cues.
State-of-the-art systems leverage transformer architectures Samghabadi et al. (2020); Hee & Chong
(2023), multimodal fusion techniques Rizzi et al. (2023); Pramanick et al. (2021), and diverse
datasets Fersini et al. (2022); Hwang & Shwartz (2023); Kiela et al. (2020); Vempala & Preoţiuc-
Pietro (2019) to build context-aware models capable of detecting both explicit and subtle harmful
content across media types.

3 DATASET

Although large-scale datasets exist for general memes and hateful content, they often lack dedi-
cated, high-quality annotations for child abuse. Given the legal, ethical, and contextual sensitivity of
child abuse, relying solely on broadly labeled data risks under-representation and misclassifications;
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thus, human-labeled data curated with domain expertise is indispensable for reliable detection and
intervention Liu (2023).

3.1 DATA COLLECTION

DACAM was created via web-scraping and manual downloads, with duplicates removed and memes
labeled as Abusive or Non-Abusive. Memes (with or without overlay text or title) were further
categorized into four types: Text in Image (TI), Text in Title (TT), Text in Both (TB), and Image-
only (I). Of the 2103 memes, 1068 were abusive and 1035 non-abusive, forming a balanced dataset
(Table 1). The inter-annotator agreement statistics is given in table Table 2.

Category Count TI TT TB I Class Ratio
Abusive 1068 801 983 742 0 0.51
Non-Abusive 1035 785 857 648 0 0.49
Total 2103 1586 1840 1390 0 1.000

Table 1: Statistics of the DACAM dataset: distribution of abusive and non-abusive memes across
modality categories.

Annotator Accuracy (A) Consistency (C) Kappa (κ)
Annotator 1 4.6 4.5 0.79
Annotator 2 4.5 4.5 0.81
Annotator 3 4.7 4.6 0.83

Average 4.6 4.5 0.81

Table 2: Evaluation scores for annotation quality, including Accuracy (A), Consistency (C), and
Fleiss’s Kappa (κ) for inter-annotator agreement. Scores are on a scale of 1-5, and κ values indicate
strong agreement among annotators.

The details of DACAM’s review process, consistency checks, annotation challenges, sample memes
from DACAM, frequent words and phrases from its titles and overlaid image text (in the form of
word clouds), as well as are provided in Appendix A.

ETHICAL CONSIDERATIONS

This study involves detecting and explaining child-abusive memes, a sensitive task requiring ethical
safeguards. All DACAM memes were collected from publicly available sources and anonymized to
remove identifiable content, including blurred faces. No private user data or restricted material was
used.

Annotators were briefed on psychological risks, could opt out freely, and followed structured anno-
tation protocols to minimize bias, achieving high inter-annotator agreement (Table 2). The project
was formally reviewed and approved by the Institutional Review Board (IRB) and followed institu-
tional ethics guidelines throughout. No minors were involved, and the dataset is shared strictly for
academic research.

A set of FAQs and annotator safeguards are provided in Appendix B.

4 METHODOLOGY

We propose MM-CAD (Multi-modal Child Abuse Detection), a two-stage framework for detecting
and explaining abusive memes (Figure 1). Operating on the DACAM dataset, which contains memes
with offensive visual and textual content, MM-CAD first classifies memes as abusive or non-abusive
(Stage 1), then generates a natural language explanation for abusive cases (Stage 2), promoting
transparency in moderation.

Each input meme Ii is processed through complementary visual and textual streams, detailed below.

Visual Encoder (CLIP-ViT): We extract semantic and contextual cues from meme images using
CLIP’s ViT-B/32 visual encoder Radford et al. (2021). The image is encoded as:

vi = EncI(Ii) ∈ Rdv

3
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Figure 1: Overview of MM-CAD architecture: CLIP encodes the image, OCR extracts text, and
a fine-tuned LLM classifies abuse (Stage 1); if abusive, an instruction-tuned LLM generates an
explanation (Stage 2).

where |dv| = 1024.CLIP, trained on 400M image-text pairs, aligns vision and language to detect
offensive cues like gestures, body language, and symbols.

Textual Encoder (LLM-based): Memes often hide abuse in subtle or sarcastic text. We apply
OCR to extract text, combine it with the title (if present) as Ti, and encode it using an LLM-based
sentence encoder:

ti = EncT (Ti) ∈ Rdt

where |dt| = 512. We use lightweight sentence encoders from open-source LLMs (e.g., LLaMA 2
(7B) Touvron et al. (2023), Mistral 7B Jiang et al. (2023)) to generate context-aware embeddings
capturing sentiment, sarcasm, and toxicity. To handle domain-specific slang, code-mixed text, and
informal abuse, we fine-tune them on DACAM captions. Auxiliary features (e.g., syntax, sentiment)
further improve robustness to OCR noise and ambiguity.

Embedding Alignment: The visual embedding vi and the textual embedding ti are projected into
a shared latent space using learnable matrices:

T′ = tiWT , V′ = viWV

where WT ∈ Rdt×d and WV ∈ Rdv×d. We then apply a bidirectional cross-attention mechanism to
integrate the two modalities. The resulting multimodal embedding is:

zi = LayerNorm(Concat(AT←V , AV←T )) ∈ R2d

where |d| = 768. This alignment enables cross-modal fusion, letting text guide image focus and
vice versa—crucial for detecting implicit abuse missed by single modalities.

Quantum-inspired Embedding Enhancement (Q-EE): We introduce a quantum-inspired em-
bedding enhancement module, transforming the aligned multimodal embedding zi into a higher-
dimensional Hilbert space using quantum principles like superposition and entanglement:

qi = QMap(zi) ∈ C2d

where QMap(·) is a learnable quantum feature mapping and |2d| = 1536. The QMap module is
implemented using Qiskit’s parameterized quantum circuits (PQCs), combining ZZFeatureMap
for entanglement-aware encoding with optional variational layers like EfficientSU2. Circuit
construction utilizes QuantumCircuit, observables are defined via opflow, and simulations are
run on classical backends (e.g., qasm simulator) through QuantumInstance. This quantum-
inspired mapping projects input zi into a complex, non-linear feature space that captures subtle
visual-textual dependencies beyond standard cross-attention. The enriched embedding qi enhances
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ambiguous abuse detection and supports future hybrid quantum-classical models. Stage 1 – Abusive
Meme Classification (LLMclass): The quantum-enhanced embedding qi is fed into a fine-tuned
classification head based on open-source LLMs (e.g., Mistral-7B). The model predicts whether the
meme is abusive:

yi = LLMclass(qi), yi ∈ {0, 1}

The classifier is trained with binary cross-entropy on DACAM labels; if yi = 0, no explanation is
produced; else, the reasoning module runs.

Stage 2 – Explanation Generation (LLMexplain): If classified as abusive, a prompt-based LLM
decoder takes qi and yi to generate a human-readable explanation (Ei):

Ei = LLMexplain(Prompt(qi, yi))

This LLM is selected from a suite of open-source instruction-tuned models including LLaMA 2 (7B)
Touvron et al. (2023), Mistral 7B Jiang et al. (2023), Gemma 7B Anil et al. (2024), Phi-2 Gunasekar
et al. (2023), and Yi 6b Yi et al. (2023). The prompt highlights offensive language, stereotypes, or
cultural insensitivity, improving model accountability and interpretability.

5 EXPERIMENTS

In this section, we present a comprehensive experimental evaluation of the proposed MMCAD
framework, incorporating quantum-inspired embedding enhancement (Q-EE), across multiple large
language models and learning paradigms. We analyze its performance through ablation studies,
multimodal fine-tuning, and rationale quality assessments to demonstrate its effectiveness, inter-
pretability, and robustness on the DACAM dataset.

5.1 EXPERIMENTAL SETUP

We evaluated MM-CAD on the DACAM dataset under zero-shot, few-shot, and fine-tuning across
text-only, multimodal, and Q-EE settings. Experiments used NVIDIA A100 GPUs with Python
3.10, PyTorch 2.1, and Qiskit 1.0, with batch size 8 and learning rate 2× 10−5.

Performance was measured via F1 for MMC and rationale metrics—Relevance, Coherence, Read-
ability, and Semantic Similarity (SemSim) Teh & Uwasomba (2024); Flesch (2007); Faysse et al.
(2023).

Open-Source LLM Ensemble: Five models—LLaMA 2 (7B), Mistral 7B, Gemma 7B, Phi-2, and
Yi 6B—were tested with and without Q-EE, assessing generalizability and robustness.

5.2 PERFORMANCE RESULTS

Table 3 summarizes the performance of MMCAD on the DACAM dataset across multiple LLMs
under zero-shot, few-shot, text-only, and multimodal fine-tuning, including ablation studies.

5.2.1 OVERALL PERFORMANCE TRENDS

Across all settings, the multimodal variants of MMCAD using both textual and visual features
consistently outperform the text-only setups, affirming the criticality of visual context in meme
analysis. Notably, LLaMA 2 and Mistral 7B demonstrate strong performance when integrated with
CLIP-ViT, achieving high scores in both classification (MMC F1) and rationale generation metrics.

5.2.2 IMPACT OF QUANTUM-INSPIRED EMBEDDING ENHANCEMENT (Q-EE)

The Q-EE module (Table 3) notably boosts MM-CAD performance. LLaMA 2 + CLIP-ViT +
Q-EE attains the best MMC F1 of 0.90, a 2-point gain over the non-Q-EE setup (0.88). Rationale
metrics also improve, with Relevance, Coherence, and Readability at 0.91, and SemSim at 0.888.
These consistent gains highlight Q-EE’s ability to model fine-grained, entangled visual-textual cues,
enhancing both detection and explanation.

5
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Model MMC (F1) Rationale Generation (RG)
Relevance Coherence Readability SemSim (BERTScore)

Zero-shot Prompting (Text-Only)
LLaMA 2 (7B) 0.76 0.78 0.76 0.75 0.862
Mistral 7B 0.74 0.76 0.75 0.74 0.861
Gemma 7B 0.72 0.74 0.73 0.72 0.857
Phi-2 0.71 0.72 0.72 0.71 0.851
Yi 6B 0.73 0.75 0.74 0.73 0.859

Few-shot Prompting (Text-Only)
LLaMA 2 (7B) 0.79 0.81 0.80 0.79 0.867
Mistral 7B 0.77 0.79 0.78 0.77 0.869
Gemma 7B 0.75 0.77 0.76 0.75 0.860
Phi-2 0.74 0.75 0.75 0.74 0.857
Yi 6B 0.76 0.78 0.77 0.76 0.865

Fine-tuning (Text-Only)
LLaMA 2 (7B) 0.83 0.84 0.84 0.83 0.874
Mistral 7B 0.81 0.83 0.82 0.81 0.871
Gemma 7B 0.80 0.81 0.81 0.80 0.868
Phi-2 0.78 0.80 0.80 0.79 0.863
Yi 6B 0.82 0.83 0.83 0.82 0.870

[Ours] MM-CAD: Multimodal Fine-tuning (Text + CLIP-ViT) + Prompting (for RG)
LLaMA 2 (7B) + CLIP-ViT 0.88 0.89 0.89 0.89 0.884
Mistral 7B + CLIP-ViT 0.86 0.87 0.88 0.88 0.881
Gemma 7B + CLIP-ViT 0.85 0.86 0.86 0.86 0.879
Phi-2 + CLIP-ViT 0.83 0.84 0.84 0.84 0.874
Yi 6B + CLIP-ViT 0.87 0.88 0.87 0.88 0.880

[Ours + Q-EE] MM-CAD: Multimodal Fine-tuning (Text + CLIP-ViT + Q-EE) + Prompting (for RG)
LLaMA 2 (7B) + CLIP-ViT + Q-EE 0.90 0.91 0.91 0.91 0.888
Mistral 7B + CLIP-ViT + Q-EE 0.89 0.90 0.90 0.90 0.886
Gemma 7B + CLIP-ViT + Q-EE 0.87 0.88 0.87 0.88 0.883
Phi-2 + CLIP-ViT + Q-EE 0.85 0.86 0.86 0.86 0.878
Yi 6B + CLIP-ViT + Q-EE 0.89 0.90 0.89 0.90 0.885

[Ablation 1] Multimodal Fine-tuning (MMC) + Prompting (RG) w/o CLIP-ViT
LLaMA 2 (7B) 0.84 0.85 0.84 0.84 0.871
Mistral 7B 0.82 0.83 0.82 0.83 0.868
Gemma 7B 0.81 0.82 0.81 0.82 0.866
Phi-2 0.79 0.80 0.80 0.80 0.862
Yi 6B 0.83 0.84 0.83 0.83 0.869

[Ablation 2] Multimodal Fine-tuning (MMC) + Prompting (RG) w/ CLIP-ViT only
LLaMA 2 (7B) + CLIP-ViT 0.86 0.87 0.86 0.86 0.875
Mistral 7B + CLIP-ViT 0.84 0.85 0.84 0.85 0.872
Gemma 7B + CLIP-ViT 0.83 0.84 0.83 0.84 0.870
Phi-2 + CLIP-ViT 0.81 0.83 0.82 0.82 0.867
Yi 6B + CLIP-ViT 0.85 0.86 0.86 0.86 0.874

[Ablation 3] Multimodal Fine-tuning (MMC) + Prompting (RG) w/o Q-EE (Equivalent to [Ours] section)
LLaMA 2 (7B) + CLIP-ViT 0.88 0.89 0.89 0.89 0.884
Mistral 7B + CLIP-ViT 0.86 0.87 0.88 0.88 0.881
Gemma 7B + CLIP-ViT 0.85 0.86 0.86 0.86 0.879
Phi-2 + CLIP-ViT 0.83 0.84 0.84 0.84 0.874
Yi 6B + CLIP-ViT 0.87 0.88 0.87 0.88 0.880

Table 3: Performance of MM-CAD on DACAM using different open-source LLMs in zero-shot,
few-shot, fine-tuned, and multimodal settings, including the impact of Quantum-inspired Embed-
ding Enhancement (Q-EE). MMC: Multimodal Meme Classification. RG: Rationale Generation.

5.2.3 ZERO-SHOT AND FEW-SHOT PROMPTING (TEXT-ONLY)

In the zero-shot setting, performance is moderate—LLaMA 2 (F1: 0.76) and Mistral 7B (F1: 0.74)
lead—but rationale quality remains weak due to limited domain grounding.

Few-shot prompting improves both classification and rationale quality across the board. LLaMA
2 again leads (F1: 0.79), followed closely by Mistral 7B and Yi-6B. The increase in relevance and
semantic similarity (e.g., BERTScore improving from 0.862 to 0.867 for LLaMA 2) indicates that
few-shot examples help models better capture subtle cues related to child safety.

5.2.4 FINE-TUNING (TEXT-ONLY)

When fine-tuned specifically for Multimodal Child Abuse Detection, all models achieve further
gains. LLaMA 2 and Yi-6B reach F1 scores of 0.83 and 0.82, respectively, while rationale metrics
also improve notably (BERTScore: 0.874 and 0.870). This shows that domain-specific supervised
fine-tuning enables models to better internalize patterns of abusive behavior in both language and
tone.

5.2.5 MULTIMODAL FINE-TUNING (TEXT + CLIP-VIT)

Our proposed complete pipeline, which combines text and CLIP-ViT image features (highlighted
in green in Table 3), yields significantly higher performance across all models compared to text-

6
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Figure 2: Average Likert scores (1–4) for abuse rationale generation across key metrics.
Quantum-RAG with Q-EE shows consistent improvement across Fluency, Knowledge Consistency,
and Informativeness.

only methods. LLaMA 2 + CLIP-ViT achieves an F1 score of 0.88, along with superior rationale
generation metrics (Relevance: 0.89, Coherence: 0.89, BERTScore: 0.884). Yi-6B + CLIP-ViT is a
close second (F1: 0.87, BERTScore: 0.880). These results confirm that vision-language pre-training
via CLIP-ViT is crucial in detecting memes with subtle or purely visual indicators of abuse.

5.3 ABLATION STUDIES

We conducted three ablation studies to isolate the impact of different components:

1. Ablation 1 (w/o CLIP-ViT): Removing visual features led to a modest performance drop
(e.g., LLaMA 2’s F1: 0.88 → 0.84), showing the importance of visual cues alongside text.

2. Ablation 2 (CLIP-ViT only): Using only visual features outperformed text-only models
but underperformed the full multimodal setup, confirming the complementarity of modali-
ties.

3. Ablation 3 (w/o Q-EE): Excluding Q-EE caused consistent F1 drops (e.g., LLaMA 2:
0.90 → 0.88), underscoring its role in capturing fine-grained, entangled abusive patterns.

5.4 HUMAN EVALUATION

To assess the quality and interpretability of the generated rationales in the proposed MMCAD
framework, we conducted a human evaluation study on a randomly sampled set of 200 abusive
memes from the test split of the DACAM dataset2. Each meme was processed using the multimodal
pipeline, and explanations were generated using five instruction-tuned open-source LLMs, including
configurations with Q-EE.

Three expert annotators independently evaluated each explanation along the following axes:

• Fluency: Grammatical correctness and natural language quality.
2Scores were assigned on a 4-point Likert scale (1 = poor, 2 = acceptable, 3 = good, and 4 = excellent).

Figure 2 presents the average scores obtained by each model.
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Meme Text (OCR or Title) Model Prediction Generated Rationale
– With Quantum-inspired Embedding Enhancement (Q-EE) –

“Drake is a ped* — This
meme promotes or normalizes
pedophilia.”

LLaMA 2 (7B) + CLIP-
ViT + Q-EE: Abusive

The meme explicitly uses a pejorative slur tied to child abuse, and
the visual context further intensifies the harm. Q-EE’s ability
to capture entangled semantic and visual patterns allows for
a robust identification of the underlying abusive intent, even
with subtle visual cues, leading to a more comprehensive un-
derstanding of the harm.

– Without Quantum-inspired Embedding Enhancement (Q-EE) –
Mistral 7B + CLIP-ViT:
Abusive

It explicitly calls someone a pedophile, reinforcing abusive stereo-
types. The tone is accusatory and harmful, and the lack of context
increases the offensiveness, prompting a correct classification.

Yi 6B + CLIP-ViT: Non-
Abusive

Although the text includes a serious claim, the model misclassifies
it possibly due to missing sarcasm or intent cues, demonstrating a
limitation in recognizing explicit yet context-dependent abuse with-
out quantum enhancement.

– With Quantum-inspired Embedding Enhancement (Q-EE) –
“When the kid cries, give
them vodka lol — old school
parenting ftw.”

LLaMA 2 (7B) + CLIP-
ViT + Q-EE: Abusive

The text trivializes child harm by suggesting alcohol as a remedy
for a crying child. The Q-EE module significantly enhances the
model’s capacity to discern implicit normalization of abusive
parenting behavior disguised as dark humor, effectively untan-
gling the sarcastic intent from the harmful underlying message,
providing a highly nuanced rationale.

– Without Quantum-inspired Embedding Enhancement (Q-EE) –
LLaMA 2 (7B) + CLIP-
ViT: Abusive

The statement promotes dangerous practices under the guise of hu-
mor. It undermines child safety and can be misinterpreted as accept-
able. (While correct, the rationale is less detailed than with Q-EE).

Phi-2 + CLIP-ViT: Non-
Abusive

Misclassifies the meme due to its humorous structure. It fails to
detect the implicit endorsement of abuse, highlighting a struggle
with subtle abusive patterns that Q-EE is designed to address.

– With Quantum-inspired Embedding Enhancement (Q-EE) –
“The baby is crying again...
yeet it.”

LLaMA 2 (7B) + CLIP-
ViT + Q-EE: Abusive

The phrase ”yeet it” in context of a baby suggests violence toward
a child masked as humor. Q-EE’s enhanced feature space allows
for more precise interpretation of complex slang and implicit
threats, leading to a highly accurate identification of physical
abuse trivialization and a detailed explanation of its harmful
nature.

– Without Quantum-inspired Embedding Enhancement (Q-EE) –
Mistral 7B + CLIP-ViT:
Abusive

The meme portrays child harm in a joking manner, contributing to
desensitization around abusive behavior. The classification is cor-
rect, but the rationale offers a general observation.

Gemma 7B + CLIP-ViT:
Non-Abusive

While recognizing the slang, the model misses the clear violent im-
plication, likely due to a failure to capture the full severity when
combined with the visual context, leading to misclassification with-
out the enhanced pattern recognition from Q-EE.

– With Quantum-inspired Embedding Enhancement (Q-EE) –
“Just a little nip... it’s fine.
– (Image of an infant’s bottle
filled with dark liquid)”

LLaMA 2 (7B) + CLIP-
ViT + Q-EE: Abusive

The text ”Just a little nip” combined with the image of a baby bottle
containing dark liquid (implying alcohol) promotes child endanger-
ment. Q-EE excels in linking subtle visual cues with ambiguous
linguistic expressions, resolving this complex multimodal entan-
glement to clearly identify the harmful intent and provide a spe-
cific, actionable rationale.

– Without Quantum-inspired Embedding Enhancement (Q-EE) –
LLaMA 2 (7B) + CLIP-
ViT: Abusive

The meme suggests giving a baby alcohol, which is harmful. The
text and image clearly indicate child endangerment. (Correct clas-
sification, but the Q-EE rationale is more granular.)

Phi-2 + CLIP-ViT: Non-
Abusive

Despite the multimodal input, the model fails to correctly classify
this meme, potentially due to its inability to infer the harmful sub-
stance from the visual context or effectively combine it with the
subtle text without the advanced feature mapping provided by Q-
EE.

Table 4: Predictions of different LLMs on abusive memes from DACAM, highlighting the enhanced
performance with Q-EE. Blue indicates correct predictions and Red indicates incorrect ones. Ra-
tionales are generated using each model’s explanation module in MM-CAD.

• Knowledge Consistency: Logical consistency of the explanation with the abusive context.

• Informativeness: Ability of the explanation to identify and describe harmful elements
(textual or visual) contributing to abuse.

As shown in Figure 2, LLaMA 2 (7B) + CLIP-ViT + Q-EE achieves the highest scores in fluency
(3.48), consistency (3.49), and informativeness (3.55), highlighting its ability to capture subtle mul-
timodal cues and generate coherent, human-aligned explanations for abusive meme moderation.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.5 QUALITATIVE ANALYSIS

Table 4 presents model predictions and rationales—including Q-EE variants—for selected memes,
with correctness annotated in blue (correct) and red (incorrect). To better understand the behavior
of the proposed MMCAD framework and its underlying LLMs in challenging meme scenarios, we
conduct a qualitative analysis using four samples from the DACAM dataset in form of cases.

5.5.1 CASE 1: EXPLICIT ACCUSATION MEME

Meme Text: “Drake is a ped* — This meme promotes or normalizes pedophilia.”

Both LLaMA 2 + CLIP-ViT + Q-EE and Mistral 7B + CLIP-ViT correctly classify the meme as
abusive, with the Q-EE-enhanced LLaMA 2 offering a more detailed rationale by capturing complex
semantic-visual links. In contrast, Yi 6B + CLIP-ViT fails, revealing limitations in handling explicit
yet context-sensitive abuse without quantum enhancement.

5.5.2 CASE 2: SARCASTIC PARENTING JOKE

Meme Text: “When the kid cries, give them vodka lol — old school parenting ftw.”

This case examines abuse masked by humor. Both LLaMA 2 + CLIP-ViT + Q-EE and its non-Q-
EE variant detect the abusive undertone, but the enhanced model provides a sharper explanation by
disentangling sarcasm from harm. Phi-2 + CLIP-ViT fails, revealing difficulty with subtle abuse
that Q-EE is built to capture.

5.5.3 CASE 3: SLANG AND VIOLENCE TOWARD A BABY

Meme Text: “The baby is crying again... yeet it.”

The slang “yeet it” subtly suggests violence. Both LLaMA 2 + CLIP-ViT + Q-EE and Mistral
7B + CLIP-ViT correctly classify the meme as abusive, with Q-EE offering a detailed rationale by
capturing implicit threats. Gemma 7B + CLIP-ViT fails, struggling to link slang with visual cues
in the absence of Q-EE’s enhanced pattern recognition.

5.5.4 CASE 4: SUBTLE CHILD ENDANGERMENT

Meme Text: “Just a little nip... it’s fine. – (Image of an infant’s bottle filled with dark liquid)”

This case shows Q-EE’s ability to resolve subtle multimodal abuse: LLaMA 2 + CLIP-ViT + Q-EE
links vague text (“nip”) with visual cues to detect intent and give precise rationales, unlike LLaMA 2
without Q-EE or Phi-2 + CLIP-ViT, which misclassify. Across four challenging DACAM cases, Q-
EE consistently outperforms baselines, capturing nuanced abuse and producing clearer explanations.

6 CONCLUSION

We proposed MM-CAD, a multimodal framework for child-abusive meme detection that integrates
image, text, and titles via CLIP, LLM encoders, and a quantum-inspired Q-EE module. Alongside,
we introduced DACAM, the first curated dataset for this task. Experiments under zero-shot, few-
shot, and fine-tuned settings show that multimodal fusion with Q-EE—notably with LLaMA 2
and Yi 6B—significantly improves both classification and explanation quality. MM-CAD thus sets
a benchmark for child safety research, emphasizing accuracy, transparency, and explainability in
harmful content detection.
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