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Abstract

Sparse Mixture of Experts (SMoE) is an effective solution for scaling up model capacity
without increasing the computational costs. A crucial component of SMoE is the router,
responsible for directing the input to relevant experts; however, it also presents a major
weakness, leading to routing inconsistencies and representation collapse issues. Instead of
fixing the router like previous works, we propose an alternative that assigns experts to
input via indirection, which employs the discrete representation of input that points to
the expert. The discrete representations are learned via vector quantization, resulting in
a new architecture dubbed Vector-Quantized Mixture of Experts (VQMoE). We provide
theoretical support and empirical evidence demonstrating the VQMoE’s ability to overcome
the challenges present in traditional routers. Through extensive evaluations on both large
language models and vision tasks for pre-training and fine-tuning, we show that VQMoE
achieves a 28% improvement in robustness compared to other SMoE routing methods while
maintaining strong performance in fine-tuning tasks.

1 Introduction

Scaling Transformer models with increasing data and computational resources has led to remarkable advances
across a wide range of domains, including natural language processing (NLP) (Du et al., 2022; Fedus et al.,
2022; Zhou et al., 2024) and visual representation learning (Riquelme et al., 2021a; Shen et al., 2023b).
Despite these successes, training and deploying large-scale dense Transformer models often require substantial
computational resources, frequently amounting to hundreds of thousands of GPU hours and incurring costs
in the millions of dollars (Kaddour et al., 2023). To address this scalability bottleneck, Sparse Mixture of
Experts (SMoE) architectures have emerged as a promising alternative (Shazeer et al., 2017; Zoph et al.,
2022; Xue et al., 2024; Jiang et al., 2024). Inspired by classical mixture-of-experts formulations (Jacobs
et al., 1991a), SMoE models consist of multiple expert subnetworks with shared architectures, where a
routing mechanism dynamically selects a small subset of experts (often one or two) for each input token.
This sparsity significantly reduces inference costs compared to dense counterparts of similar model capacity
(Artetxe et al., 2022; Krajewski et al., 2024), making SMoEs attractive for efficient scaling.

Despite their efficiency benefits, SMoEs face critical training challenges, most notably, representation col-
lapse. This phenomenon occurs when only a small subset of experts are frequently activated, or when all
experts converge to similar representations, thereby negating the diversity and specialization that the ar-
chitecture is intended to promote. Prior works have sought to mitigate this issue by improving the routing
policy through regularization and auxiliary losses (Chi et al., 2022; Chen et al., 2023a; Do et al., 2023).
However, these approaches focus on the routers improvement rather than questioning its necessity.

In this work, we explore a more fundamental question: Is an explicit router necessary at all? We argue that
incorporating discrete representations offers a principled alternative. Discrete latent variables are inherently
suited to capturing structured and interpretable patterns within data, aligning with the symbolic nature of
human cognition, where concepts are often discretized as words, tokens, or categories. In the SMoE context,
discrete representations can improve input routing by naturally clustering similar inputs, thereby enhancing
expert specialization and utilization without relying solely on a learned gating mechanism.
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Employing vector quantization (VQ) techniques to learn discrete representation, this paper proposes a novel
mixture of expert framework, named VQMoE, which overcomes the representation collapse and inconsistency
in training sparse mixture of experts. More specifically, we prove that the existing router methods are
inconsistent and VQMoE suggests an optimal expert selection for training SMoE. Additionally, our method
guarantees superior SMoE training strategies compared to the existing methods by solving the representation
collapse by design.

We evaluate the proposed method by conducting pre-training of Large Language Models (LLMs) on several
advanced SMoE architectures, such as SMoE (Jiang et al., 2024), StableMoE (Dai et al., 2022), or XMoE (Chi
et al., 2022), followed by fine-tuning on downstream tasks on both Language and Vision domains.

In summary, the primary contributions of this paper are as follows:

• We theoretically demonstrate that learning discrete representations provides an effective mechanism
for expert selection, and that VQMoE intrinsically mitigates the problem of representation collapse.

• We propose the use of vector quantization (VQ) to learn structured and interpretable expert clusters.

• We conduct extensive experiments on large language models as well as vision pre-training and fine-
tuning tasks to validate the effectiveness of our method.

• We provide a comprehensive analysis of VQMoE’s behavior, offering insights into its performance
and robustness.

2 Related Work

Sparse Mixture of Experts (SMoE). Sparse Mixture of Experts (SMoE) builds on the Mixture of
Experts (MoE) framework introduced by Jacobs et al. (1991b); Jordan & Jacobs (1994), with the core idea
that only a subset of parameters is utilized to process each example. This approach was first popularized by
Shazeer et al. (2017). SMoE’s popularity surged when it was combined with large language models based
on Transformers (Zhou et al., 2022; Li et al., 2022; Shen et al., 2023a), and its success in natural language
processing led to its application across various fields, such as computer vision (Riquelme et al., 2021b; Hwang
et al., 2023; Lin et al., 2024), speech recognition (Wang et al., 2023; Kwon & Chung, 2023), and multi-task
learning (Ye & Xu, 2023; Chen et al., 2023b).

However, SMoE faces a major problem in training known as representation collapse, i.e., the experts converge
to similar outputs. To address this, various methods have been introduced. XMoE (Chi et al., 2022) cal-
culates routing scores between tokens and experts on a low-dimensional hypersphere. SMoE-dropout (Chen
et al., 2023a) uses a fixed, randomly initialized router network to activate experts and gradually increase the
number of experts involved to mitigate collapse. Similarly, HyperRouter (Do et al., 2023) utilizes HyperNet-
works (Ha et al., 2016) to generate router weights, providing another pathway for training SMoE effectively.
StableMoE (Dai et al., 2022) introduces a balanced routing approach where a lightweight router, decoupled
from the backbone model, is distilled to manage token-to-expert assignments. The StableMoE strategy
ensures stable routing by freezing the assignments during training, while SimSMoE Do et al. (2024) forces
experts to learn dissimilar representations. Despite these extensive efforts, the representation collapse issue
persists, as highlighted by Pham et al. (2024). While most solutions focus on improving routing algorithms,
our approach takes a different path by learning a discrete representation of input that points to relevant
experts.

Discrete Representation. Discrete representations align well with human thought processes; for example,
language can be understood as a series of distinct symbols. Nevertheless, the use of discrete variables in deep
learning has proven challenging, as evidenced by the widespread preference for continuous latent variables in
most current research. VQVAE (van den Oord et al., 2017) implements discrete representation in Variational
AutoEncoder (VAE) (Kingma & Welling, 2022) using vector quantisation (VQ). IMSAT (Hu et al., 2017)
attains a discrete representation by maximizing the information-theoretic dependency between data and
their predicted discrete representations. Recent works follow up the vector quantisation ideas and make
some enhancements for VAE, for example: (Yu et al., 2022); (Mentzer et al., 2023); and (Yang et al., 2023).
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Mao et al. (2022) utilize a discrete representation to strengthen Vision Transformer (ViT) (Dosovitskiy et al.,
2021). To the best of our knowledge, our paper is the first to learn a discrete representation of Sparse Mixture
of Experts.

3 Method

We propose a novel model, Vector-Quantized Mixture of Experts (VQMoE), which learns discrete represen-
tations for expert selection. As illustrated in Fig. 1a, our approach selects experts directly based on the
input representation, eliminating the need for a trained router. To prevent information loss, we integrate
discrete and continuous representations within the model.

3.1 Preliminaries

Sparse Mixture of Experts. Sparse Mixture of Experts (SMoE) is often a transformer architecture that
replaces the MLP layers in standard transformers with Mixture of Experts (MoE) layers (Shazeer et al.,
2017). Given x ∈ Rn×d as the output of the multi-head attention (MHA), the output of SMoE with N
experts is a weighted sum of each expert’s computation Ei(x) by the router function S(x):

fSMoE(x) =
N∑

i=1
S(x)i · Ei(x)

=
N∑

i=1
S(x)i · W 2

FFNi
ϕ

(
W 1

FFNi
x

) (1)

Where S(x) is computed by TopK function as equation (2) that determines the contribution of each expert
to the SMoE output.

S(x) = TopK(softmax(G(x)), k),

TopK(v, k) =
{

vi if vi ∈ top k largest of v,

−∞ otherwise.
(2)

Discrete Representation Learning. van den Oord et al. (2017) propose VQVAE, which uses Vector
Quantisation (VQ) to learn a discrete representation. Given an input x ∈ Rn×d, VQVAE discretized the
input into a codebook V ∈ RK×d where K is the codebook size and d is the dimension of the embedding.
Let denote zv(x) ∈ Rn×d denotes the output of the VQVAE and 1() is the indicator function. The discrete
representation zq(xi) = vk, where k = argminj ∥zv(xi) − vj∥2 is achieved by vector quantizer qθ that
maps an integer z for each input x as:

qθ(z = k | x) = 1
(

k = arg min
j=1:K

∥zv(x) − Vj∥2

)
(3)

3.2 Vector-Quantized Mixture of Experts (VQMoE)

Pre-training VQMoE.; Traditional Sparse Mixture of Experts (SMoE) models utilize continuous token
representations and route them to experts based on learned token-expert affinity scores. We propose a
novel architecture, VQMoE, that learns both continuous and discrete representations jointly during pre-
training (see Figure 1a). The continuous component captures fine-grained data patterns, while the discrete
component, learned via vector quantization, encodes robust latent structure useful for downstream transfer.

Let x ∈ Rn×d denote the input to the VQMoE layer (e.g., output from a multi-head attention block), and
let fvq denote the vector quantization operator. The VQMoE output during pre-training is defined as:
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fVQMoE(x) = gc(x) · fSMoE(x)︸ ︷︷ ︸ + gd(x) ·
K∑

l=1
fFFN

l (x̃l)︸ ︷︷ ︸ (4)

(Continuous representation) (Discrete representation)

where:

• fSMoE(x) denotes the output from a standard SMoE layer;

• fFFN
l represents the l-th expert feedforward network (FFN) block;

• x̃l = vk if xl ∈ Vl, i.e., the input xl is assigned to the l-th codebook vector vk; otherwise, x̃l = 0;

• gc(x) and gd(x) are the gating weights for the continuous (SMoE) and discrete (VQ) paths, respec-
tively, computed as:

[
gc(x) gd(x)

]
= softmax(Wgx), Wg ∈ R2×d (5)

Here, K is the number of vector quantization codebooks, and vk is a learned codebook vector assigned by
fvq.

Fine-tuning VQMoE.; Based on insights from Geva et al. (2021), which note that feed-forward layers
(FFNs) constitute a significant portion of a transformer’s parameters, we adopt a lightweight fine-tuning
strategy that retains only the discrete path of the VQMoE. This allows efficient adaptation while leveraging
pre-trained latent representations (see Figure 1b). The fine-tuning output becomes:

fVQMoE(x) =
K∑

l=1
fFFN

l (x̃l) (6)

3.3 Training Procedure

Pretraining. The training objective is jointly minimizing the loss of the target task and losses of the Vector
Quantization module (Ll2 and Lcommitment ) as in (van den Oord et al., 2017). Equation 7 specifies the overall
loss function for training VQMoE with three components: (1) task loss; (2) l2 loss; (3) a commitment loss.
While Ll2 helps to move the embedding vi towards the outputs zv(x), the commitment loss makes sure the
output of the Vector Quantization module commits to the embedding and its output does not grow. The
Vector Quantization algorithm does not vary with β, we follow β = 0.25 as van den Oord et al. (2017). We
introduce a new parameter, α, to regulate the contribution of the Vector Quantization loss to the overall
loss. A higher value of α favors a stronger adherence to the discrete representation, and vice versa.

L = Ltask + α(∥sg [zv(x)] − v∥2
2 + β ∥zv(x) − sg[v]∥2

2) (7)

where sg(.) is the stop gradient operator defined as follows:

sg(x) =
{

x forward pass
0 backward pass

(8)

Fine-tuning. For downstream tasks, we fine-tune the pretraining model by utilizing the codebook learned
from the Equation 7 by freezing all parameters at the Vector Quantization module. Thus, the training
objective simply becomes: L = Ltask .
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(a) VQMoE Pre-training (b) VQMoE Fine-tuning

Figure 1: Illustration of the proposed VQMoE architecture for Pre-training and fine-tuning. (a) At the
Pre-training stage, VQMoE architecture learns simultaneously continuous and discrete representation at the
Pre-training phase. The continuous representation is learned by the conventional SMoE, while the Vector
Quantization block facilitates the learning of a discrete representation. The final output is then combined by
a gate layer. (b) VQMoE learns a discrete representation that is capable of operating efficiently and robustly
on downstream tasks. VQMoE computes the discrete representation only during the fine-tuning stage to
achieve robustness and efficiency.

4 Theory Analysis

4.1 Optimal Experts Selection

Problem settings. We consider an MoE layer with each expert being an MLP layer which is trained by
gradient descent and input data {(xi, yi)}n

i=1 generated from a data distribution D. Same as (Chen et al.,
2022); (Dikkala et al., 2023), we assume that the MoE input exhibits cluster properties, meaning the data
is generated from K distinct clusters (C1, C2, ..., Ck).

Definition 4.1 (Consistent Router) A sequence of points x1, x2, . . . , xn and a corresponding sequence of
clusters C1, C2, . . . , Ck are said to be consistent if, for every point xp ∈ Ci, the condition

dist(xp, ui) ≤ min
j ̸=i

dist(xp, uj)

is satisfied, where dist(a, b) denotes the distance between a and b, and ui is the center of cluster Ci.

Definition 4.2 (Inconsistent Router) A sequence of points x1, x2, . . . , xn and a corresponding sequence
of clusters C1, C2, . . . , Ck are said to be inconsistent if there exists a point xp ∈ Ci such that

dist(xp, ui) > min
j ̸=i

dist(xp, uj),

where dist(a, b) represents the distance between a and b, and ui is the center of cluster Ci.

Inspired by (Dikkala et al., 2023), we conceptualize the router in Sparse Mixture of Experts as a clustering
problem. This leads us to define a consistent router in Definition 4.1. Furthermore, we introduce a definition
for an inconsistent router in SMoE as outlined in Definition 4.2, along with the concept of inconsistent expert
selection presented in Theorem 4.3 during the training of SMoE.

Theorem 4.3 (Inconsistent Experts Selection) Let fMHA be a multi-head attention (MHA) function
producing an output x ∈ Rn×d, and consider N experts with embeddings ei for expert i where i ∈ [1, N ].
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Assume that fMHA converges at step tm, while the expert embeddings e converge at step te, with tm ≫ te.
For each output x, the expert K ∈ [1, N ] is selected such that

K = arg min
j∈[1,N ]

dist(x, ej).

Under these conditions, the expert embeddings e form an inconsistent routing mechanism.

The proof of Theorem 4.3 is given in Appendix A, and we have the following insights. Theorem 4.3
implies that an expert selection process by a router as the conventional SMoE leads to the inconsistent
router. Indeed, the router layer is designed as a simple linear layer, x is the output of MHA function in
practice. In practice, an SMoE router is significantly simpler than the MHA function. Consequently, this
design leads to the router functioning as an inconsistent router, contributing to the representation collapse
issue and instability during training.

Proposition 4.4 (Optimal Experts Selection) Given input data partitioned into k clusters
(C1, C2, . . . , Ck) and a mixture of experts (MoE) layer with k experts (E1, E2, . . . , Ek), the assignment of
each cluster Ci to expert Ei for i ∈ [1, k] constitutes an optimal expert selection solution.

Proposition A.1 demonstrates that if we are given a clustering structure as input, assigning each part of
the input to its corresponding expert results in an optimal expert selection. This implies that learning a
discrete representation and directing each component to the appropriate expert yields an optimal solution.
The proof of Proposition A.1 can be found in Appendix A.

4.2 Experts Representation Collapse

The representation collapse problem in Sparse Mixture-of-Experts (SMoE), where all experts converge to
similar representations, was first highlighted by Chi et al. (2022). Following Chi et al. (2022) and Do et al.
(2023), we analyze this issue using the Jacobian matrix of the model output with respect to the input
x ∈ Rn×d. The Jacobian for SMoE is expressed as:

JSMoE = S(x)kJFFN +
N∑

j=1
S(x)k(δkj − S(x)j)E(x)ie

⊤
j

= S(x)kJFFN +
N∑

j=1
cje⊤

j ,

(9)

where cj = S(x)k(δkj −S(x)j)E(x)i, JFFN is the Jacobian of the selected expert’s feedforward network, and
ej are the expert embedding vectors. Equation 9 consists of two components:

• S(x)kJFFN: the main signal path from the input to the output through the selected expert.

•
∑N

j=1 cje⊤
j : the contribution from the gating function’s gradient with respect to the expert embed-

dings.

Since the summation over expert embeddings lies in a subspace of dimension N , and typically N ≪ d, this
projection restricts the output space from Rd to RN , which effectively causes representation collapse.

Jacobian Analysis of VQMoE. To examine whether VQMoE mitigates this collapse, we derive the
Jacobian of the VQMoE output with respect to the input x ∈ Rn×d. The detailed expression of the VQMoE
Jacobian matrix is provided in Section A.1.1. Specifically, we have:
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JVQMoE = gc(x) · JSMoE + ∂gc(x)
∂x

fSMoE(x)

+ gd(x) ·
K∑

l=1
JFFN

l + ∂gd(x)
∂x

K∑
l=1

fFFN
l (x̃l)

= J1 +
N+K+2∑

j=1
oje⊤

j .

(10)

Same as the Jacobian matrix of SMoE, the Jacobian matrix of VQMoE consists two terms: (1) J1 depends
on input token and experts to the final output; (2)

∑N+K+2
j=1 oje⊤

j indicates to learn better gating function
to minimize the task loss. We can see that N + K + 2 >> N , implying that VQMoE is better than SMoE in
solving the representation collapse issue. In theory, we can choose the number of codes to be approximately
d − N − 2 with a hashing index to experts to address the issue. However, this involves a trade-off with the
computational resources required to learn the codebook.

5 Experiment
We conduct experiments to explore the following hypotheses: (i) VQMoE provides an effective SMoE training
algorithm for LLMs; (ii) VQMoE delivers a robust and efficient solution during the fine-tuning phase; and
(iii) VQMoE outperforms other routing methods in vision domain.

5.1 Experimental Settings

To answer the three above hypotheses, we conduct experiments on Vision, Language, and Time-series tasks.
For Pre-training language models, we examine two common tasks in the training and evaluation of
large language models: character-level language modeling using the enwik8 and text8 datasets (Mahoney,
2011), and word-level language modeling with the WikiText-103 (Merity et al., 2016) and One Billion Word
datasets (Chelba et al., 2014). For Parameter-efficient fine-tuning, we consider pre-trained base models
on enwik8 and efficient Fine-tuning it on a downstream task. We choose the SST-2 (Socher et al., 2013),
SST-5 (Socher et al., 2013), IMDB (Maas et al., 2011), and BANKING77 (Casanueva et al., 2020) datasets.
For vision tasks, we employ the Vision Transformer model (Dosovitskiy et al., 2021) with the state-of-the-
art routing method and our method to train and evaluate the image classification task. Our experiments
encompass five widely recognized image classification datasets: Cifar10, Cifar100 (Krizhevsky, 2009), STL-
10 (Coates et al., 2011), SVHN (Netzer et al., 2011), ImageNet-1K(Deng et al., 2009).

5.2 Pre-training Language Models

Training tasks We explore two common tasks in the training and evaluation of LLMs. First, character-
level language modeling on the enwik8 or text8 datasets (Mahoney, 2011), which are common datasets to
evaluate the model’s pre-training capabilities. We also consider the word-level language modeling task on
WikiText-103 (Merity et al., 2016) and One Billion Word dataset (Chelba et al., 2014), a much larger and
more challenging dataset, to test the models scaling capabilities. For all datasets, we follow the default splits
of training-validation-testing. Second, we consider Fine-tuning the models on downstream applications to
investigate the models’ capabilities of adapting to different domains. To this end, we consider pre-trained
medium models on enwik8 and Fine-tuning them on a downstream task. We choose the SST-2 (Socher et al.,
2013), SST-5 (Socher et al., 2013), IMDB (Maas et al., 2011), and BANKING77 (Casanueva et al., 2020)
datasets, which are common NLP tasks to evaluate pre-trained models. Following Chen et al. (2023a), we
freeze the router and only optimize the experts’ parameter in this experiment.

Models. For the language tasks, we follow the same settings as in SMoE-Dropout (Chen et al., 2023a). We
consider two decoder-only architectures: (i) the standard Transformer (Vaswani et al., 2017); and (ii) and
Transformer-XL (Dai et al., 2019a) with the same number of parameters as Transformer. We evaluate our
method versus the state of art Sparse Mixture of Expert Layers such as StableMoE (Dai et al., 2022) and
XMoE (Chi et al., 2022) with topk = 2 in the experiments. We consider two model configurations: (i) base:
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Configuration Enwik8 (BPC) Text8 (BPC) WikiText-103 (PPL) lm1b (PPL)
Architecture Algorithm Base Large Base Large Base Large Base Large

Transformer

VQMoE 1.48 1.41 1.47 1.40 38.74 31.98 59.48 49.30
SMoE 1.49 1.41 1.49 1.40 39.50 32.30 60.88 51.30
SMoE-Dropout 1.82 2.22 1.70 1.89 72.62 107.18 97.45 159.09
XMoE 1.51 1.42 1.49 1.42 39.56 32.65 61.17 51.84
StableMoE 1.49 1.42 1.49 1.41 39.45 32.34 60.72 50.74

Transformer-XL

VQMoE 1.19 1.08 1.28 1.17 29.48 23.85 56.85 48.70
SMoE 1.20 1.09 1.29 1.18 30.16 24.02 58.00 48.71
SMoE-Dropout 1.56 2.24 1.56 1.86 58.37 40.02 93.17 68.65
XMoE 1.21 1.09 1.28 1.17 30.34 24.22 58.33 50.64
StableMoE 1.20 1.10 1.28 1.19 29.97 24.19 58.25 49.17

# Params 20M 210M 20M 210M 20M 210M 20M 210M

Table 1: BPC on the enwik-8 and text8 test sets; and perplexity on the Wikitext-103 and One Billion Word
test sets. Lower is better, best results are in bold.

with four SMoE blocks and 20M parameters; (ii) large: with twelve SMoE layers and 210M parameters. We
emphasize that we are not trying to achieve state-of-the-art results due to the limited resource constraints.
Instead, we evaluate the small and large models on various datasets to demonstrate the scalability and
efficacy of our algorithm. Lastly, we conduct extensive investigations using the tiny model to understand
the algorithm behaviours and their robustness to different design choices.

Baselines. We compare our VQMoE with state-of-the-art SMoE training strategies for LLMs. SMoE (Jiang
et al., 2024) employs a simple router trained end-to-end with the experts. StableMoE (Dai et al., 2022)
proposes a two-phase training process where the first phase trains only the router, and then the router is
fixed to train the experts in the second phase. XMoE (Chi et al., 2022) implements a deep router that
comprises a down-projection and normalization layer and a gating network with learnable temperatures.
Lastly, motivated by SMoE-Dropout (Chen et al., 2023a), we implement the SMoE-Dropout strategy that
employs a randomly initialized router and freeze it throughout the training process.

Training procedure. For the language modeling experiments, we optimize the base models and the large
models for 100,000 steps. We use an Adam (Kingma & Ba, 2017) optimizer with a Cosine Annealing learning
rate schedule (Loshchilov & Hutter, 2017). The lowest validation loss checkpoint is used to report the final
performance on the test set.

Q1: Does VQMoE perform better on Pre-training tasks compared to routing methods? A1:
Yes.

Table 1 presents the evaluation metrics comparing VQMoE with state-of-the-art approaches. We also show
the performance progression of the base model on the validation set. Notably, across all methods, the
Transformer-XL architecture consistently outperforms the standard Transformer on all datasets. While
advanced strategies like XMoE and StableMoE tend to surpass vanilla SMoE when model complexity is
increased (from small to medium) or more data is introduced (moving from enwik8 to WikiText-103 or One
Billion Word), these improvements are often inconsistent or marginal. In contrast, VQMoE consistently
outperforms all competitors across benchmarks (keeping in mind that the BPC metric is log-scaled), archi-
tectures, and also converges more quickly. This highlights VQMoE’s effectiveness in learning an efficient
routing policy for the language modeling pre-training task.

Q2: Does VQMoE keep outperforming the router method when scaling up? A2: Yes.

Table 1 also demonstrates that VQMoE maintains consistently strong performance when scaled up to 12-
layer Transformer and Transformer-XL architectures. Across all four datasets, the performance gap between
VQMoE and other routing methods widens as the dataset size increases, from enwik8 to the One Billion
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(a) Robust VQMoE Benchmark (Enwik8) (b) Robust VQMoE Benchmark (Text8)

Figure 2: Illustration of the proposed Robust VQMoE architecture for Pre-training on Enwik8 and Text8
dataset. (a) Robust VQMoE architecture achieves the same performance with the routing methods while
only using 80% of the parameters on Enwik8 dataset. (b) Roubust VQMoE demonstrates robustness on the
Text8 dataset. Bits-per-character (BPC) on the Enwik8 and Text8 datasets, and lower is better.

Architecture FLOPs(x1010) Transformer Transformer-XL
Dataset SST-2 SST-5 IMDB BANKING77 SST-2 SST-5 IMDB BANKING77
VQMoE 5.6145 82.6 41.1 89.5 84.8 83.3 42.0 89.1 85.3
SMoE 7.7620 82.1 39.5 89.3 82.6 80.8 40.4 88.6 80.2
SMoE-Dropout 7.7620 81.3 39.6 88.9 77.9 81.8 40.0 89.1 77.3
XMoE 7.7620 82.4 39.9 89.0 83.1 81.3 40.3 88.7 82.7
StableMoE 7.7620 82.2 40.4 89.1 82.7 82.5 41.1 88.5 78.6

Table 2: Accuracy of the model after fine-tuned on various datasets. Higher is better, best results are in
bold.

Word dataset. This suggests that our approach has the potential to scale effectively with larger language
models and bigger datasets. An interesting observation is that SMoE-Dropout (Chen et al., 2023a) performs
the worst among all methods, indicating that a random routing policy is insufficient and requires updating
for effective training. This finding highlights that the success of SMoE-Dropout is largely due to its self-
slimmable strategy, which linearly increases the number of activated experts (K) during training. However,
this approach transforms the sparse network into a dense one, contradicting the original motivation behind
using SMoE for large-scale models.

Q3: When does VQMoE outperform router methods in terms of robustness? A3: The lower
hidden size of FFN.

Compared to the routing methods, VQMoE achieves competitive performance which only requires 80%
number of parameters. Figure 2a and Figure 2b demonstrate the robustness of our method on the Enwik8
and Text8 datasets, respectively.

5.3 Parameter-Efficient Fine-Tuning

Q4: What is the biggest advantage of SMoE, compared to the conventional SMoE? A4:
Parameter-Efficient Fine-Tuning.

We see that the discrete representation that VQMoE learns at the Pretraning stage 5.2 might consist of
rich knowledge. To test this hypothesis, we use only the discrete representation for downstream tasks,
allowing VQMoE to save 28% of computational resources compared to SMoE. Table 2 reports the accuracy
of the models fine-tuned on the test sets of various datasets. Overall, we observe that VQMoE demonstrates
strong transfer learning capabilities by achieving the highest accuracy on all datasets. Notably, on the
more challenging datasets of SST-5 and BANKING77, which have fewer training samples or more classes,
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we observe larger performance gains from VQMoE versus the remaining baselines (over 5% improvements
compared to the second-best method). This result shows that VQMoE can learn a discrete representation
that is not only good for pre-training but also exhibits strong transfer capabilities to various downstream
tasks.

5.4 Vision

Q5: Can VQMoE compete with SMoE in the Vision domain? A5: Yes.

To make our performance comparison informative and comprehensive, we consider two kinds of baselines
that are fairly comparable to VQMoE: (1) Dense Model (Vision Transformer) (Dosovitskiy et al., 2021);
(2) SoftMoE (Puigcerver et al., 2024) - the most advanced MoE in Vision domain. We perform two
configurations for training the Mixture of Experts: (1) small - 10 million parameters (10M); (2) large - 110
million parameters (110M). The result at Table 3 shows that VQMoE outperforms both Vision Transformer
Dense (Dosovitskiy et al., 2021), SoftMoE (Puigcerver et al., 2024), and other routing methods such as
(Dai et al., 2022), (Chi et al., 2022) on six out of eight tasks across four image classification datasets. We
conduct our experiments three times on four datasets (CIFAR-10, CIFAR-100, STL-10, and SVHN) using
different seeds, reporting the average results along with the standard deviation. For the large-scale dataset
ImageNet-1K, we perform a single run due to resource constraints. The average performance of our method
surpasses other baselines and is more stable, as indicated by the low standard deviation.

Architecture Vision Transformer (Small) Vision Transformer (Large) Average
# params 10M 110M -
Dataset Cifar10 Cifar100 STL-10 SVHN ImageNet-1K Cifar10 Cifar100 STL-10 SVHN ImageNet-1K -
VQMoE 89.7±0.4 67.3±0.4 66.5±0.3 95.6±0.1 54.8 92.8±0.3 67.0±0.5 64.3±0.5 96.0±0.2 71.3 76.5±0.3
SMoE 88.7±0.2 65.4±0.5 66.4±0.1 95.4±0.1 52.8 85.7±8.5 55.5±2.8 64.4±0.2 94.5±0.1 71.0 74.0±1.6
XMoE 88.8±0.2 65.5±0.5 66.3±0.2 95.4±0.1 52.5 87.1±6.4 55.9±0.6 64.6±0.3 94.1±0.2 70.8 74.2±1.1
StableMoE 88.8±0.1 65.5±0.1 66.5±0.2 95.4±0.1 52.5 84.7±10.5 55.5±1.8 64.3±0.6 94.5±0.9 70.6 73.8±1.8
SoftMoE 85.6±0.3 61.4±0.3 65.4±0.2 94.8±0.1 41.6 80.3±9.7 42.9±1.4 63.2±0.5 93.5±0.1 68.2 69.7±1.6

ViT (Dense) 89.0±0.2 65.7±0.3 66.6±0.2 95.6±0.1 52.2 92.2±0.3 60.2±2.6 64.1±0.5 96.0±0.1 71.1 75.3±0.5

Table 3: Accuracy of models evaluated on vision datasets. Higher is better, the best results are in bold.

5.5 In-depth Analysis

Consistent Score. Figure 3a illustrates that expert selections when training SMoE face inconsistent
problems. As the Theorem 4.3, this inconsistency arises because the router’s coverage rate significantly
exceeds that of the Transformer representation. Figure 3a also shows that our method achieves the highest
consistency score compared to the SMoE and XMoE models. However, the VQMoE model’s consistency
score is around 75%, as our method also requires learning a continuous representation during the Pre-training
phase.

Representation Collapse issue. To visualize the Representation collapse problem in practice, we apply
Principal Component Analysis (PCA) method to reduce from d dimension of the Transformer to 2D for
plotting purposes, thanks to (Chi et al., 2022). Figures 3b and 3c show the expert representations from
the pretrained VQMoE and SMoE models. The results suggest that VQMoE experiences less representation
collapse in the expert space compared to SMoE. The analysis is in line with the theorem proof at Section
4. However, projecting the d-dimensional space onto 2D for visualization may lead to information loss.

5.6 Ablation Study

We examine the effectiveness of VQMoE across various hyper-parameter settings, with all experiments
conducted using the base Transformer architecture on the WikiText-103 dataset.

Vector Quantization Method. To learn a discrete representation, we research various types of Vector
Quantization methods, including VQVAE (van den Oord et al., 2017), VQGAN (Yu et al., 2022), LFQ (Yu
et al., 2023), and ResidualVQ (Yang et al., 2023). We observe that VQGAN using cosine similarity for
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(a) Consistent Score. (b) VQMoE Representation. (c) SMoE Representation.

Figure 3: Analysis Inconsistent Expert Selection and Representation Collapse issues when training SMoE.
Figure 3a demonstrates consistent score movement from VQMoE, compared with SMoE and XMoE. Figure
3b and Figure 3c visualize the representation by experts in 2D dimension using Principal Component
Analysis (PCA) method.

distance achieves good and stable results in practice as Figure 5a. Interestingly, VQGAN with lower dimen-
sionality also delivers strong performance and exhibits robustness.

Number of codebook impact. The number of codebook entries is a crucial hyperparameter when training
Vector Quantization techniques. As shown in Figure 5b, we can see the best performance when the number
of codebook entries matches the number of experts. This aligns with the proof by (Dikkala et al., 2023),
which demonstrates that in the optimal case, the number of clusters equals the number of experts.

Sensitiveness of VQ loss contribution α. Figure 5c illustrates the impact of α, which controls the
contribution of the Vector Quantization loss to the overall loss. If α is too high, it leads to a better discrete
representation but may negatively affect the final target. Conversely, if α is too low, it may result in a poor
discrete representation. Therefore, α should be selected based on the data, typically within the range of
(0.05, 0.15).

6 Conclusion and Future Directions

This study illustrates Vector-Quantized Mixture of Experts (VQMoE), a novel and theoretically-grounded
architecture, to overcome challenges in training SMoE such as representation collapse and inconsistency. We
evaluate our method on various Pre-training and Fine-tuning tasks, for both language and vision domains.
The results show that VQMoE outperforms the routing methods both theoretically and empirically. Further-
more, fine-tuning VQMoE with the discrete representation for downstream tasks could reduce computational
resource usage by 28%. We believe that focusing on discrete representation learning will offer a promising
strategy for training and testing sparse mixtures of experts (SMoE) at a large scale. Finally, we believe that
our approach opens up new research avenues for effectively training SMoE, where cutting-edge techniques
in discrete representation learning and vector quantization can be harnessed to enhance their performance.
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A Appendix

Supplementary Material for “On the Role of Discrete
Representation in Sparse Mixture of Experts”

This document is organized as follows. Appendix A.1 provides a detailed proof for Section 4. Appendix A.2
presents additional experimental results demonstrating the effectiveness of our method compared to the
baselines. Finally, Appendix A.3 offers an in-depth analysis of representation collapse, while Appendix A.4
details the implementation aspects.

A.1 Proof for Results in Section 4

A.1.1 Jacobian Matrix of VQMoE

To investigate whether VQMoE alleviates this collapse, we derive the Jacobian of the VQMoE output with
respect to the input x ∈ Rn×d:

JVQMoE = gc(x) · JSMoE + ∂gc(x)
∂x

fSMoE(x)

+ gd(x) ·
K∑

l=1
JFFN

l + ∂gd(x)
∂x

K∑
l=1

fFFN
l (x̃l)

= gc(x) ·

J1 +
N∑

j=1
cje⊤

j

 +
∑

m∈{c,d}

gme⊤
m +

K∑
l=1

dle
⊤
l

= J1 +
N∑

j=1
cje⊤

j +
K∑

l=1
dle

⊤
l +

∑
m∈{c,d}

gme⊤
m

= J1 +
N+K+2∑

j=1
oje⊤

j .

(11)

where:

ej : Embedding of the j-th expert in the SMoE;
J1 = S(x)kJFFN : Jacobian of the top-k FFN block;

As in SMoE, the Jacobian of VQMoE consists of two major components:

• J1: the primary contribution from the input and selected expert.

•
∑N+K+2

i=1 oie
⊤
i : additional gradient contributions from both the continuous part and the discrete

part.
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Proposition A.1 (Optimal Experts Selection) Given input data partitioned into k clusters
(C1, C2, . . . , Ck) and a mixture of experts (MoE) layer with k experts (E1, E2, . . . , Ek), the assignment of
each cluster Ci to expert Ei for i ∈ [1, k] constitutes an optimal expert selection solution.

Proposition A.1 demonstrates that if we are given a clustering structure as input, assigning each part of
the input to its corresponding expert results in an optimal expert selection. This implies that learning a
discrete representation and directing each component to the appropriate expert yields an optimal solution.
The proof of Proposition A.1 can be found in Appendix A.

A.1.2 Proof of Theorem 4.3

In this proof, we use contradiction to establish the theorem. Assume that the expert embeddings e form a
consistent router. By Definition 4.1, we have:

dist(xp, ui) ≤ min(dist(xp, Cj)),

where ui is the representation corresponding to the closest expert ei.

According to (Chi et al., 2022), projecting information from a hidden representation space Rd to the expert
dimension N leads to representation collapse. Now, consider three experts x, y, z whose embeddings ex, ey, ez

collapse. Without loss of generality, assume that ey lies between ex and ez in the embedding space. Then,
we have:

dist(y, uy) ≤ min(dist(x, ex), dist(y, ey), dist(z, ez))
≤ dist(ex, ez).

(12)

Let te denote the step at which the embeddings ex and ez converge, and tm denote the step at which the
Multi-Head Attention (MHA) module converges. From step te, it follows that:

lim
te→tm

dist(y, uy) = lim
te→tm

dist(ex, ez) = 0.

Thus, y (the output of MHA) converges at step te.

This directly contradicts the assumption that the MHA converges at step tm, where te ≪ tm.

A.1.3 Proof of Proposition A.1

We use contradiction to prove the proposition. Assume that, at training step t, there exists a set of pairs
(Ci, Ej) such that i ̸= j. Let x1, x2, . . . , xk represent a sequence of inputs sampled from K clusters. From
step t0 to step tk−1, each pair (xj , Ej), where j ∈ [1, k], is updated using the following gradient descent
equation:

W l+1
Ej

= W l
Ej

− ηJ (xj),

where W l
Ej

is the weight of expert Ej at iteration l, J (xj) is the Jacobian matrix with respect to input xj ,
and η is the learning rate.

Let L denote the loss function during the training process described by Equation 7. After tk training steps,
the following condition holds:

Ej(xj) = min
c∈[1,k]

Ej(xc).

Under the assumption of contradiction, there exists a set of pairs

K∑
i,j=1;i ̸=j

(Ci, Ej)
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Scale TopK # Experts SMoE VQMoE (Discrete Only)

Base 20M-50K Steps

1 16 1.28 1.25
2 16 1.26 -
4 16 1.26 -
8 16 1.27 -
16 16 1.27 -

Base 20M-100K Steps

1 16 1.22 1.18
2 16 1.20 -
4 16 1.21 -
8 16 1.21 -
16 16 1.21 -

Large (210M)

1 64 1.12 1.14
2 64 1.09 -
4 64 1.09 -
8 64 1.09 -
16 64 1.10 -
32 64 1.10 -
64 64 1.12 -

Table 4: Performance comparison of SMoE and VQMoE (Discrete Only) on the Enwik8 (BPC) dataset.

where the loss function L is minimized. However, by definition of the loss minimization process, the inequality

K∑
i=1

(Ci, Ei) ≤
K∑

i,j=1;i ̸=j

(Ci, Ej)

must hold.

This leads to a contradiction with our initial assumption.

A.2 Additional Experiment Results

Q6: Can VQMoE learn Discrete Representation Only from scratch? A6: Yes for small and
medium scale, but no for large scale.

The answer is yes for small and medium-scale models. However, training a discrete representation-only
approach is feasible primarily for small to medium-scale models with a moderately sized dataset. The results
of the Transformer-XL model in Table 4 on the Enwik8 dataset support this observation. As the model
scales up, relying solely on discrete representation reaches its limitations, leading to performance below the
SMoE baselines.

Q7: Can VQMoE outperform the clustering-based approach such as KMean? A7: Yes.

We explored a clustering-based approach similar to MoCLEGou et al. (2024) but found it unsuitable for
our method. Unlike MoCLE, Vector Quantization allows the model greater flexibility in learning cluster
representations during training, making it more competitive in practical applications. The training results
using the Transformer-XL model on the Enwik8 dataset are presented in Table 5.

Q8: Can VQMoE contribute to AI real-world applications? A8: Yes.

We found that VQMoE can directly benefit real-world AI applications, such as image segmentation, demon-
strating its strong generalization capabilities. Specifically, our method outperforms both the baseline and
dense models in terms of Mean Accuracy and mIoU metrics on the ADE20K dataset Zhou et al. (2018) using
the Segmenter modelStrudel et al. (2021). Detailed results are provided in Table 6.

18



Under review as submission to TMLR

Scale TopK # Experts SMoE MoCLE VQMoE

Base 20M-50K Steps

1 16 1.28 1.29 1.25
2 16 1.26 1.28 -
4 16 1.26 1.28 -
8 16 1.27 1.28 -
16 16 1.27 1.28 -

Table 5: Performance comparison of VQMoE and MoCLE (Clustering approach) on the Enwik8 (BPC)
dataset.

Model ViT SoftMoe SMoE StableMoE XMoE VQMoE Metrics

Segmenter 20.8 19.0 23.1 22.4 22.3 23.4 Mean accuracy
15.0 14.0 15.5 16.0 15.7 16.6 mIoU

Table 6: Comparison of VQMoE versus the baselines on the ADE20K dataset.

A.3 Representation Collapse Analysis

To illustrate Theorem 4.3, we perform a language model task as described in Section A.4.2, examining the
movement of Expert Input Representation in Figure 4a and Expert Embedding (router) in Figure 4b. We
analyze the dynamics of the expert input representations by tracking their changes across training iterations.
The results indicate that the inputs to the experts become increasingly divergent over time. This divergence
suggests that the model learns to represent the data in a more specialized and diverse manner, allowing
each expert to focus on distinct features or patterns within the data. Similarly, we track the changes in
expert embeddings (router) throughout the training process. However, the trend is the opposite: the expert
embeddings appear to converge quickly, stabilizing around 10,000 iterations. The findings align with our
assumption stated in Theorem 4.3, indicating that Expert Embedding converges more quickly than Expert
Input Representation. These results provide further evidence supporting the Theorem 4.3.

A.4 Experiments implementation details

This section provides detailed parameters of our experiments in Section 5.

A.4.1 General Settings

The experiments are based on the publicly available SMoE-Dropout implementation(Chen et al., 2023a)1.
However, the pre-training was conducted on two H100 GPUs, so results might differ when using parallel
training on multiple GPUs.

A.4.2 Pre-training Experiments

Table 7 provides the detailed configurations for pre-training Transformer (Vaswani et al., 2017), Transformer-
XL Dai et al. (2019b) on Enwik8, Text8, WikiText-103,and One Billion Word.

A.4.3 Fine-tuning Experiments

For fine-tuning experiments, we employ the identical model architecture as in pre-training. Table 8 presents
the detailed configurations utilized for fine-tuning experiments on SST-2, SST-5, IMDB, and BANKING77
datasets. We start with the pretrained checkpoint of the base model on enwik8, remove the final layer, and
replace it with two randomly initialized fully connected layers to serve as the classifier for each fine-tuning
dataset. All methods are fine-tuned for 5,000 steps with a uniform learning rate.

1https://github.com/VITA-Group/Random-MoE-as-Dropout
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Dataset Input length Batch size Optimizer Lr # Training Step # Experts TopK
Enwik8 512 48 Adam 3.5e-4 100k 16 2
Text 512 48 Adam 3.5e-4 100k 16 2
WikiText-103 512 22 Adam 3.5e-4 100k 16 2
One Billion Word 512 11 Adam 3.5e-4 100k 16 2

Table 7: Hyperparameter settings for pre-training experiments on Enwik8, Text8 , WikiText-103 , and One
Billion Word.

Dataset Input length Batch size Optimizer Lr # Epochs
SST-2 512 16 Adam 1e-4 5
SST-5 512 16 Adam 1e-4 5
IMDB 512 4 Adam 1e-4 5
BANKING77 512 16 Adam 1e-4 5

Table 8: Detail settings for fine-tuning experiments on the evaluation datasets.

(a) Training Input Token Representations.
(b) Training Router Representation (Expert embed-
ding).

Figure 4: Comparison of Token Representation and Expert Representation across Training Iteration.

(a) Vector Quantization method. (b) Number of codebook. (c) Impact of α for VQMoE.

Figure 5: Pre-training small Transformer-XL on WikiText-103 across different hyperparameters.
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