
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TESSERAQ: ULTRA LOW-BIT LLM POST-TRAINING
QUANTIZATION WITH BLOCK RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have revolutionized natural language process-
ing, albeit at the cost of immense memory and computation requirements. Post-
training quantization (PTQ) is becoming the de facto method to reduce the mem-
ory footprint and improve the inference throughput of LLMs. In this work, we aim
to push the upper limit of LLM PTQ by optimizing the weight rounding param-
eters with the block reconstruction technique, a predominant method in previous
vision models. We propose TesseraQ, a new state-of-the-art PTQ technique, to
quantize the weights of LLMs to ultra-low bits. To effectively optimize the round-
ing in LLMs and stabilize the reconstruction process, we introduce progressive
adaptive rounding. This approach iteratively transits the soft rounding variables
to hard variables during the reconstruction process. Additionally, we optimize the
dequantization scale parameters to fully leverage the block reconstruction tech-
nique. We demonstrate that TesseraQ can be seamlessly integrated with existing
scaling or clipping-based PTQ algorithms such as AWQ and OmniQuant, signif-
icantly enhancing their performance and establishing a new state-of-the-art. For
instance, when compared to AWQ, TesseraQ improves the wikitext2 perplexity
from 14.65 to 6.82 and average downstream accuracy from 50.52 to 59.27 with
2-bit weight-only quantization of LLaMA-2-7B. Across a range of quantization
schemes, including W2A16, W3A16, W3A3, and W4A4, TesseraQ consistently
exhibits superior performance.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing with their remark-
able capabilities. LLMs such as, GPT-4 (Bubeck et al., 2023) and LLaMA-3 (Meta, 2024), contain
hundreds of billions of parameters. While this scale enables their impressive performance, it also
poses significant deployment challenges (Zhou et al., 2024). LLMs require substantial memory and
computational resources, making them impractical for many real-world applications, especially on
consumer devices or in resource-limited environments (Dettmers et al., 2022). Quantization ad-
dresses this issue by reducing the precision of the model’s parameters and activations, typically
from 32-bit floating-point (FP32) to lower bit-width representations such as 8-bit or 4-bit integer
(INT8, INT4). This technique significantly decreases the model’s memory footprint to increase the
I/O throughput, often with marginal performance loss.

Post-Training Quantization (PTQ) (Gholami et al., 2022) has perhaps become the most widespread
and the easiest way to compress the LLM by reducing the bitwidth of the pretrained model’s param-
eters. For example, with a single GPU and a small number of input sequences, GPTQ (Frantar et al.,
2022) can compress an FP16 LLM into INT4 format by deriving the exact solution for quantization
error minimization. Recent works like AWQ (Lin et al., 2023), QuaRot (Ashkboos et al., 2024) and
OmniQuant (Shao et al., 2023) have pushed the compression limit further with INT3 weight-only
quantization achieving a small performance gap with respect to the FP16 baseline. However, in a
more challenging scenario like INT2 weight-only quantization and weight-and-activation quantiza-
tion, these methods still incur a large performance gap compared to the original FP16 model.

We conjecture that the major reason for the low performance on ultra low-bit PTQ is limited opti-
mization space. Most works only focus on optimizing distribution transformation or weight clipping
ranges (Lin et al., 2023; Wei et al., 2023; Shao et al., 2023). While being straightforward, they prove
inadequate for extremely low-bit scenarios due to the constrained optimization space. For instance,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Calibration
Data

Scale
Transform

Quantization-friendly
distribution

Weight
Clipping

Reduce
quant. error

Rounding
Optimization

AWQ,
OmniQuant

TesseraQ
(Ours)

Further reduce
block recon.
error

𝛼 (learnable)

Li
ne
ar

M
H
SA

Li
ne
ar Linear

Linear Li
ne
ar

SiLU

Transformer block

Block Reconstruction
min(𝑏𝑙𝑜𝑐𝑘 𝜃, 𝑋 − 𝑏𝑙𝑜𝑐𝑘(𝜃., 𝑋))

Progressive Adaptive Rounding

(a) PTQ Pipeline (b) Reconstruction method

Figure 1: The overall workflow of our proposed method. (a) We apply TesseraQ to optimize the
weight rounding parameters when the transformation scale and clipping range are determined using
prior methods like AWQ/OmniQuant. (b) We propose Progressive Adaptive Rounding (PAR) for
block-wise reconstruction, which iteratively hardens some rounding variables and optimizes the rest
soft rounding variables till all variables become binary.

in per-channel weight quantization, a single clipping range or transformation scale must account
for 4k∼20k weight elements in one channel, resulting in suboptimal quantization performance. We
contend that to enhance LLM PTQ performance further, adjustment of the entire weight tensor is
necessary. However, it is non-trivial to tune billions of parameters simultaneously.

To this end, we propose TesseraQ, a block reconstruction method tailored for LLM rounding opti-
mization. We found that rounding optimization on a transformed and clipped LLM (Fig. 1(a)) brings
significantly better performance than GPTQ. To accommodate the billions of parameter spaces in
LLMs, our approach removes the dependency of regularization loss in the original rounding opti-
mization processes (Nagel et al., 2020; Li et al., 2021) by introducing Progressive Adaptive Round-
ing (PAR). As shown in Fig. 1(b), PAR iteratively hard rounds certain rounding variables to binary
values and optimizes the remainder to compensate for the rounding error. Moreover, we propose
dequantization scale tuning to further decrease the reconstruction error. Leveraging block-wise re-
construction, we can efficiently and effectively optimize each LLM block on a single GPU. We
have validated TesseraQ across various LLMs and uniform quantization bit-widths, demonstrating
superior post-training performance and establishing new state-of-the-art quantized LLMs. We sum-
marize our contributions as follows

1. We propose TesseraQ, a block reconstruction-based weight rounding optimization method for
LLMs. TesseraQ can be combined with existing transformation or clipping methods like AWQ,
OmniQuant, and QuaRot to obtain state-of-the-art results.

2. TesseraQ contains Progressive Adaptive Rounding and Dequantization Scale Tuning. Both meth-
ods can stabilize the reconstruction process and effectively optimize post-training performance.

3. Our method obtains state-of-the-art performance on both perplexity metric and zero-shot accu-
racy metric. For example, our method improves OmniQuant perplexity results from 37.4 to 8.0
on LLaMA-2-7B W2A16 quantization. Moreover, TesseraQ+QuaRot improves the average ac-
curacy by 10% on LLaMA-3.1-8B W3A3 quantization as compared to GPTQ+QuaRot.

2 PRELIMINARIES

This section briefly introduces the existing research directions in LLM PTQ. We adopt uniform affine
quantization, which essentially discretizes the floating-point representation of weights/activations
into low-bit fixed-point representation, given by

Wq = clamp

(⌊W
s

⌉
+z, 0, 2N−1

)
, where s =

γmax(W)− βmin(W)

2N − 1
, z = −

⌊βmin(W)

s

⌉
.

(1)
where s and z denote the quantization step size and the zero point. The resulting Wq is in the INT-N
format. To restore it back to its original range, the dequantization step is given by Ŵ = s×(Wq−z).
Optimization Objective. The plain rounding-to-nearest (RTN) method directly quantifies the
model weights to integers without further optimization. However, this method usually results in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

significantly low task performance. To improve the LLM PTQ performance, parameters related to
quantization are optimized with different objectives. For example, GPTQ (Frantar et al., 2022) and
AWQ (Lin et al., 2023) utilize the layer-wise reconstruction objective, given by

min
ϵ
(L(θ + ϵ)− L(θ)) ≈

∑L

ℓ=1

∣∣∣∣Ŵ(ℓ)X(ℓ) −W(ℓ)X(ℓ)
∣∣∣∣2
F
, (2)

where L is the loss function parameterized by weights in the whole model θ and quantization noise
ϵ = θ̂ − θ. ℓ ∈ {1, 2, . . . , L} is the layer index and X is the input activations. While this layer-wise
objective can provide efficient and exact solutions as in GPTQ, the objective does not consider inter-
layer correlation like self-attention and residual connections in LLM. To this end, the block-wise
reconstruction objective has been proposed (Li et al., 2021), as

min
ϵ
(L(θ + ϵ)− L(θ)) ≈

∑B

b=1

∣∣∣∣block(θ̂(b),X(b))− block(θ(b),X(b))
∣∣∣∣2
F
. (3)

where, block refers to one decoder block in LLMs comprising self-attention, projection, feed-
forward and normalization layers. In practice, both layer-wise and block-wise objectives enable
efficient calibration on a single GPU due to their local computation attributes. However, block-
wise objectives exhibit better performance than layer-wise objectives as they better approximate the
global loss (i.e., Eq. (3) left side) by accounting for contributions from multiple layers.

Optimization Space. Generally, three kinds of optimization spaces are explored in LLM PTQ, (1)
the scale transformation, (2) the clipping range (i.e., finding the suitable γ, β), and (3) the weight
values. They can be tied with either layer-wise or block-wise objectives. For instance, AWQ (Lin
et al., 2023) and OS+ (Wei et al., 2023) optimize transformation and clipping range using Eq. (2),
while OmniQuant (Shao et al., 2023) does similar optimization with Eq. (3). Since scale/clipping
optimization methods are well-explored, in this paper, we aim to optimize weight values using block-
wise objectives to further push the compression limits of LLM PTQ.

3 TESSERAQ: ULTRA LOW-BIT POST-TRAINING QUANTIZATION

3.1 PROBLEM STATEMENT

Element-wise weight adjustments were also studied in GPTQ (Frantar et al., 2022), in which the
weights are computed using closed-form solutions using the inverse Hessian matrix. However, this
technique makes it hard to improve scale-transformed models like AWQ1. Gong et al. (2024) also
report similar observations with GPTQ. We hypothesize that the reason for the failed improvement of
GPTQ+AWQ could be the layer-wise reconstruction objective and its approximation for the Hessian
matrix, for example, to compute the inverse Hessian they dampen the matrix by λI.

In this work, we select a different weight optimization framework, the rounding optimization (Nagel
et al., 2020; Li et al., 2021), which is a different optimization space compared to GPTQ, given by

min
α

∣∣∣∣block(θ̂,X)− block(θ,X)
∣∣∣∣2
F
,

s.t. θ̂ = s× (θq − z), θq = clamp
(
⌊θ
s
⌋+ α+ z, 0, 2N − 1

)
, α ∈ {0, 1}d.

(4)

Here, θ denotes the total d weight parameters of linear layers in the block, α is the rounding vari-
able. Note that we omit the block index for simplicity. This rounding optimization framework shares
both pros and cons. For its pros, rounding optimization space restricts the range of each weight pa-
rameter, allowing us to further improve the other PTQ models like AWQ/OmniQuant/QuaRot by
slightly adjusting each weight element. As for its cons, there is no closed-form solution for round-
ing variables under the block-reconstruction framework. In addition, the binary rounding variables
require either continuous relaxation with regularization loss (Nagel et al., 2020) or Straight-Through
Estimator (Hubara et al., 2020) to be optimized. Thus, optimizing billions of rounding variables is
challenging (Frantar et al., 2022). In Appendix A, we also show traditional rounding optimization
is hard to scale on LLMs.

1GPTQ can be combined with rotation-transformed models like QuaRot. We also compare it in Sec. 4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: TesseraQ Calibration process
Input: FP16 LLM model; Calibration dataset, PAR iteration K, training steps T
for all b = 1, 2, . . . , B-th block in the FP model do

Collect input data to the block X, the FP output block(θ,X) ;
Initialize rounding variable ν, dequantization scale v;
for all k = 1, 2, . . . ,K-iteration do

Calculate score (Eq. (6)) and hard-round the variables with lowest Pk% scores;
for all t = 1, 2, . . . , T -training steps do

Gradient Descend Eq. (7) and update the soft rounding variables in this block as
well as the dequantization scale;

Set all rounding variables to 0/1 and merge them into original parameters;
return Quantized model;

3.2 PROGRESSIVE ADAPTIVE ROUNDING

To optimize α, we introduce a differentiable rounding optimization framework called progressive
adaptive rounding (PAR) that does not rely on regularization loss or the straight-through estimator
in contrast to previous works (Nagel et al., 2020; Hubara et al., 2020).

To start with, we relax the rounding variable into a continuous variable by using the Sigmoid repa-
rameterization α = σ(ν). Therefore, ν can be initialized as ν = σ−1(θ/s − ⌊θ/s⌋), resulting in
θ̂ = θ. The PAR algorithm divides all rounding variables into two sets: SHard and SSoft, standing for
the hard and soft rounding of the variable ν. Formally, we define the rounding function as

αi =

{
σ(νi) =

1
1+exp(−ν) if i ∈ SSoft

σ′(νi) = 1νi>0 if i ∈ SHard
. (5)

The σ′(νi) is a hard rounding function that returns 1 if νi is larger than 0, otherwise it returns 0.
Starting from an empty hard rounding set, we iteratively put variables from SSoft into SHard (called
Harden Phase), and optimize the remaining soft rounding variables to compensate for the hard
rounding loss (called Soften Phase). We elaborate on them in the following two subsections.

Harden Phase. Intuitively, after setting rounding variables to hard ones, we would expect minimum
loss change in the block output error. Therefore, we define a score metric

HS(ν) = |σ(ν)− 0.5|. (6)

Essentially, the lower the score, the closer the soft rounding variable (σ(ν)) is to 0.5, implying that
rounding these variables to binary values will result in a larger increase in reconstruction loss. As a
result, in the Harden Phase, we sort the parameter indices based on their HS and select the lowest
P% of them to SHard. The hyper-parameter P should increase from 0 to near 100 during block
reconstruction. During the early stage of the reconstruction, P can be increased rapidly, however, in
the later stage, we slowly increase P since the learnable soft variables are becoming fewer in each
iteration. In our experiments, we find that TesseraQ is not sensitive to any specific decay schedule
for P , as long as we progressively slow down the increasing rate of P . We conduct an ablation study
of how to schedule the change of P in Sec. 4.3.

Soften Phase. For this stage, we employ the gradient-descent optimization to optimize the soft
rounding variable

min
νi,i∈SSoft

∣∣∣∣block(θ̂,X)− block(θ,X)
∣∣∣∣2
F
. (7)

This objective can be optimized via gradient-based training like Adam (Kingma, 2014). During
implementation, it would be too expensive to use masking to indicate soft rounding or hard rounding.
Instead, for memory-efficient implementation, we can safely set the hard-rounding variables to ∞
or −∞, which returns zero gradients in the sigmoid function. We find that optimizing Eq. (7)
with nearly 200 steps can sufficiently decrease the block reconstruction error across different LLM
models.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Post-Processing. After the entire PAR procedure is finished, we apply hard-rounding σ′(·) to all
variables merge their values into the original weights, and then we can use the standard quantization
formula (i.e., Eq. (1)). The merging can be effectively implemented by

θ ← θ + s× (σ′(ν)− 0.5) (8)

We provide a pseudocode for the learning process in Algorithm 1.

3.3 DEQUANTIZATION SCALE TUNING

During the PAR process, the quantized tensor θq undergoes continuous changes. To accommodate
these dynamic adjustments, we propose a method that optimizes the dequantization scale concur-
rently with the rounding variable. Specifically, for the dequantization step, we introduce an addi-
tional parameter v and represent it as

θ̂ = 2σ(v)× s× (θq − z). (9)

By initializing v = 0, we initialize the dequantization scale factor (2σ(v)) to 1 and subsequently
adjust it to a value within the range (0, 2). The sigmoid reparameterization can smooth the training
process and reduce the efforts to adjust learning rate hyper-parameter. Note that we avoid optimizing
the scale s in the quantization step (Eq. (1)) since, (1) any change in s would result in a change of
the rounding mechanism (Nagel et al., 2020), (2) the optimization requires straight-through estima-
tion (Shao et al., 2023) which leads to biased gradient calculation. Experiments in Sec. 4.3 demon-
strate that dequantization scale tuning can benefit the final quantization performance of TesseraQ by
a large margin.

4 EXPERIMENTS

4.1 EXPERIEMENTS SETUP

Most of our experiment setups are similar to OmniQuant (Shao et al., 2023), which also adopts block
reconstruction loss function. Specifically, we employ asymmetric uniform quantization with 2/3/4-
bit integers. We test both per-group and per-channel weight quantization. For example, we use the
notation W2A16g64 to denote the 2-bit per-group (group size is set to 64) weight-only quantization,
where activations are FP16. In weight-activation quantization experiments (all INT precision), de-
faults are W4A4, W3A3, and W4A8 with per-channel weight and per-token activation quantization
(Dettmers et al., 2022; Shao et al., 2023).

Calibration Data and Comparison. We report two types of evaluation metrics, the perplexity met-
ric for evaluating the upstream datasets like WikiText2 (Merity et al., 2016), C4 (Raffel et al., 2020),
and the average accuracy of 5 downstream reasoning tasks including PIQA (Bisk et al., 2020), ARC
easy/challenge (Clark et al., 2018), WinoGrande (Sakaguchi et al., 2021) and HellaSwag (Zellers
et al., 2019). The perplexity is evaluated with 2048 sequences. We use 512 2048-token segments
from the WikiText2 training dataset as calibration data for perplexity comparison and for down-
stream task comparison, we sample same amount of calibration data from the C4 training dataset.
We use lm eval (ver0.4.2) to evaluate the accuracy.

Training. We set the total PAR number of iterations K to 20 and gradually increase the Pk from
0 to 100%. In each iteration, we optimize the learnable parameters (ν and v) for 250 training steps.
We use the Adam optimizer with a fixed learning rate of 1e − 3. We add 1e − 4 weight decay to
v during training. The batch size is set to 4. We use AWQ transformation (Lin et al., 2023) to
initialize our model since we find AWQ initialization is slightly better than OmniQuant across all
configurations except W2A16 quantization. For W2A16, AWQ yields very high perplexity. Thus,
in the W2A16 case, we directly use the pretrained OmniQuant model for initialization.

Models and Baselines. For the upstream tasks, we follow OmniQuant (Shao et al., 2023) to test
weight-only quantization results on LLaMA-1-7B/13B/30B/65B (Touvron et al., 2023a), LLaMa-
2-7B/13B/70B (Touvron et al., 2023b) and LLaMA-3-8B/70B (Meta, 2024). In this case, we com-
pare GPTQ (Frantar et al., 2022), OmniQuant (Shao et al., 2023), AWQ (Lin et al., 2023), Sign-
Round (Cheng et al., 2023) and GPTQ with QuaRot Ashkboos et al. (2024). For downstream tasks,
we test LLaMA-2-7B, LLaMA-3.1-8B/70B across 5 downstream tasks. We compare GPTQ, AWQ,
OmniQuant, and SignRound.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Weight-only quantization results of LLaMA-1/2/3 models. We report WikiText2 per-
plexity (PPL ↓). *, †, ‡ means initialized from AWQ, OmniQuant, and QuaRot, respectively.

LLaMA1&2 Method 1−7B 1−13B 1−30B 1−65B 2−7B 2−13B 2−70B 3−8B 3−70B

FP16 - 5.68 5.09 4.10 3.53 5.47 4.88 3.31 6.14 2.85

W2A16

GPTQ 2.1e3 5.5e3 499.75 55.91 7.7e3 2.1e3 77.95 8.4e4 1.6e4
GPTQ‡ 11.13 9.14 7.04 5.91 18.77 10.84 5.68 24.98 16.29
AWQ 1.1e5 7002 1.2e5 6.3e6 2.9e6 6.2e3 3973 4.1e5 8.6e4
OmniQuant 15.47 13.21 8.71 7.58 37.37 17.21 7.81 - -
TesseraQ† 7.56 6.56 5.75 5.21 8.05 6.55 5.26 17.88‡ 11.56‡

W2A16
g128

GPTQ 44.01 15.60 10.92 9.51 36.77 28.14 NAN 226.7 16.06
GPTQ‡ 16.25 8.14 6.62 5.61 16.10 9.29 5.32 17.43 30.89
AWQ 13.08 10.02 7.46 6.08 14.65 8.93 5.72 334.1 10.98
SignRound 641.8 8.36 7.13 5.52 NAN 7.64 NAN - -
OmniQuant 9.72 7.93 7.12 5.95 11.06 8.26 6.55 - -
TesseraQ* 6.92 6.07 5.26 4.83 6.82 5.92 4.73 10.03 7.47

W2A16
g64

GPTQ 22.10 10.06 8.54 8.31 20.85 22.44 NAN 86.32 11.78
GPTQ‡ 11.44 7.70 6.23 5.26 15.30 9.17 5.19 16.58 21.50
AWQ 10.65 8.66 6.65 5.58 11.87 7.81 5.30 53.07 9.04
OmniQuant 8.90 7.34 6.59 5.65 9.62 7.56 6.11 - -
TesseraQ* 6.78 5.97 5.18 4.70 6.67 5.81 4.60 9.28 6.96

W3A16

GPTQ 8.06 6.76 5.84 5.06 8.37 6.44 4.82 16.84 18.94
GPTQ‡ 6.15 5.45 4.53 4.01 6.13 5.35 3.72 7.54 5.22
AWQ 8.49 6.38 5.89 6.03 14.17 6.42 4.22 11.79 12.28
OmniQuant 6.49 5.68 4.74 4.04 6.58 5.58 3.92 - -
TesseraQ* 5.99 5.35 4.44 3.89 5.84 5.16 3.68 7.46 5.12

W3A16
g128

GPTQ 6.55 5.62 4.80 4.17 6.29 5.42 3.85 9.58 5.25
GPTQ‡ 6.07 5.41 4.48 3.92 5.99 5.28 3.65 7.42 4.98
AWQ 6.38 5.52 4.59 3.92 6.19 5.30 3.72 8.24 4.63
SignRound 6.28 5.45 4.50 3.90 8.09 5.23 3.68 - -
OmniQuant 6.15 5.44 4.56 3.94 6.03 5.28 3.78 - -
TesseraQ* 5.95 5.32 4.40 3.82 5.71 5.11 3.61 6.90 4.13

W4A16

GPTQ 6.13 5.40 4.48 3.83 5.83 5.13 3.58 7.28 4.94
GPTQ‡ 5.78 5.20 4.24 3.65 5.61 5.00 3.42 6.57 3.59
AWQ 5.99 5.24 4.30 3.71 5.82 5.07 3.49 7.09 5.19
OmniQuant 5.86 5.21 4.25 3.71 5.74 5.02 3.47 - -
SignRound 5.93 5.21 4.23 3.65 5.81 5.00 3.40 - -
TesseraQ* 5.78 5.17 4.20 3.63 5.56 4.96 3.40 6.48 3.33

4.2 MAIN RESULTS

Perplexity Evaluation. We summarized the Wikitext2 perplexity (PPL) results in Table 1. Our
method consistently outperforms existing methods like AWQ and OmniQuant, particularly for the
low-bit W2A16 configuration. Remarkably, in the W2A16 case, all existing methods except Omni-
Quant and GPTQ with QuaRot failed to successfully quantize the models (yielding > 1e3 perplex-
ity). On the LLaMA-2-7B model, OmniQuant only obtains 37.37 PPL while our method largely
improves this result to 8.05. In addition, LLaMA-3-8B demonstrates extremely low quantization
resiliency, where the AWQ model crashed in W2A16g128 quantization. Our method, on the other
hand, significantly improves the wikitext2 PPL from 334 to 10.03. We observe that in general, the
lower the bitwidth, the more improvement we can obtain from TesseraQ. This confirms our initial
intuition that extremely low-bit weight quantization requires a thorough adjustment of each weight
element. Additionally, the C4 (Raffel et al., 2020) PPL results are provided in Appendix: Table 9.
Note that the C4 results for OmniQuant are re-evaluated from the official checkpoint to align the
evaluation protocol. Overall, C4 PPL results concur with the Wikitext2 results, demonstrating a
similar trend in performance improvement. For example, TesseraQ improves the PPL of LLaMA-2-
7B model from 90.64 to 14.82 with W2A16 quantization.

Downstream Tasks Evaluation. We also test the weight-only quantization performance on five
reasoning tasks. The results are summarized in Table 2, for LLaMA-2-7B, LLaMA-3.1-8B/70B2.
Notably, we found that the LLaMA-3.1-8B model demonstrates low quantization resiliency, as also
shown in Huang et al. (2024c). For example, with W2A16g128 AWQ, this model drops more than
30% average accuracy on downstream tasks, while the gap is 15% for the LLaMA-2-7B model.
Fortunately, our TesseraQ can substantially increase the average performance on the downstream

2We did not implement OmniQaunt on LLaMA-3.1 models due to its high resource & time demands.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Weight-only quantization Results of various LLMs. We report the accuracy of 5 common
sense reasoning tasks (↑). * means initialized from AWQ.

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.

LLaMA-2-7B

FP16 - 78.07 76.34 43.51 57.17 69.21 64.87

W2A16
g128

GPTQ 58.21 33.75 19.79 29.60 51.30 38.53
AWQ 67.73 55.47 28.74 41.37 59.27 50.52
OmniQuant 64.79 51.13 24.83 40.30 56.90 47.59
SignRound 72.96 65.99 32.25 47.35 61.01 55.92
TesseraQ* 75.13 70.03 35.83 50.17 65.19 59.27

W3A16
g128

GPTQ 76.65 73.69 40.52 54.43 66.61 52.39
AWQ 76.71 73.56 41.63 54.79 67.64 62.87
OmniQuant 76.93 74.66 39.59 54.95 67.16 62.66
SignRound 76.82 75.25 42.92 55.33 68.27 63.72
TesseraQ* 77.58 74.45 41.46 55.47 68.90 63.59

LLaMA-3.1-8B

FP16 - 80.08 81.43 51.19 59.95 73.55 69.25

W2A16
g128

GPTQ 53.86 26.55 20.64 27.87 53.35 36.46
AWQ 57.34 35.18 18.26 28.05 53.27 38.42
TesseraQ* 75.68 68.98 35.66 50.21 66.29 59.37

W3A16
g128

GPTQ 77.53 75.04 43.60 56.15 71.66 64.80
AWQ 77.91 77.77 44.62 54.89 70.56 65.15
TesseraQ* 79.27 79.46 47.35 57.80 72.93 67.36

LLaMA-3.1-70B

FP16 - 83.13 87.12 60.92 66.47 79.56 75.44

W2A16
g128

GPTQ 65.83 49.54 26.19 42.74 61.33 49.11
AWQ 73.45 68.01 40.27 48.11 62.19 58.40
TesseraQ* 78.23 78.70 47.35 57.91 71.74 66.79

W3A16
g128

GPTQ 80.79 82.70 55.54 63.18 77.03 71.85
AWQ 81.72 84.89 55.98 63.71 78.68 72.99
TesseraQ* 82.86 85.52 58.70 64.99 78.37 74.09

tasks, bringing the gap between W2 and FP16 to only 9%. TesseraQ also outperforms a recent
rounding optimization method, SignRound (Cheng et al., 2023), for W2A16g128, demonstrating
the effectiveness of our method.

Weight-Activation Quantization Evaluation. Finally, we test weight-activation quantization sce-
narios with per-channel weight quantization and per-token activation quantization. With quantized
activations, the inference speed of LLMs on GPUs/TPUs can be improved especially in the prefill
stage (Lin et al., 2023). We experiment with W4A4, and W4A8 quantization and compare with
three baselines, SmoothQuant, OS+, AWQ, QLLM (Liu et al., 2023a). The results are provided in
Table 3. Table 3 summarizes the perplexity on WikiTex2, C4 and average accuracy on downstream
tasks. (The detailed accuracy of each downstream task is located in Appendix: Table 13.) We ob-
serve a consistent improvement of 7% accuracy with TesseraQ compared to AWQ. Additionally,
we also combine our method with a recent rotation-based quantization method, QuaRot (Ashkboos
et al., 2024), and compare QuaRot+GPTQ and QuaRot+TesseraQ with W4A4 and W3A3 quantiza-
tion. Combined with QuaRot, TesseraQ also exceeds GPTQ by 10% accuracy on the 8B model with
W3A3 quantization, demonstrating the superiority of TesseraQ.

Results on Mistral-7B. Additionally, we also test the performance of our method on the Mistral-7B
model Jiang et al. (2023), which achieves high pretrained accuracy and demonstrates higher quan-
tization resiliency. We test its weight-only quantization (W2A16g128, W3A16g128) and weight-
activation quantization (W4A4, W4A8) performance in the Appendix (Table 12). Our TesseraQ
consistently outperforms other methods like SignRound, AWQ, and GPTQ.

4.3 ABLATION STUDIES

Below ablation studies are conducted with the LLaMA-2-7B model with W2A16g128 quantization.

Calibration Data. In this section, we compare the performance of different calibration datasets
and sizes. We sample calibration data from either WikiText2 (Merity et al., 2016) or C4 (Raffel
et al., 2020) training dataset. We also experiment with the different sample sizes, ranging from 128
to 512. Meanwhile, we change the batch size during rounding optimization, ranging from 1 to 4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: W4A4/W3A3 quantization results of LLaMA-1/2/3. We use per-channel weight quanti-
zation and per-token activation quantization *, † means initialized from AWQ, QuaRot.

Bitwidths Methods LLaMA-7B LLaMA-2-7B LLaMA-3.1-8B

WT2(↓) C4(↓) Avg. (↑) WT2(↓) C4(↓) Avg. (↑) WT2(↓) C4(↓) Avg. (↑)
FP16 Pretrained 5.68 7.08 62.30 5.47 6.97 64.87 6.24 9.54 69.25

W4A4

SmoothQuant 585.1 780.5 37.02 NAN NAN 35.29 654.6 508.5 36.09
OS+ 16.47 25.51 50.50 29.03 39.71 50.50 124.2 67.44 40.71
AWQ 12.67 17.58 48.41 13.87 19.54 49.99 60.99 74.08 42.51
OmniQuant 11.26 14.51 50.47 14.61 18.39 49.86 - -
QLLM 9.65 12.29 51.84 11.75 13.26 51.60 - - -
TesseraQ* 8.90 12.29 55.45 9.18 12.55 55.12 25.73 30.71 50.87

Atom (W4A4g128) 6.16 7.70 60.17 6.14 - - - - -
QuaRot 8.37 11.44 55.38 14.19 19.72 47.57 17.83 28.08 51.83
GPTQ† 6.16 8.37 61.37 6.16 8.44 61.45 8.39 13.24 62.87
TesseraQ† 6.27 8.07 61.92 6.23 8.23 61.75 8.05 12.62 65.12

W3A3
Atom (W3A3g128) 11.77 15.43 49.28 - - - - - -
QuaRot 2315 1665 35.53 10996 10940 35.18 91551 65662 35.25
GPTQ† 11.57 13.89 50.82 14.54 20.76 44.62 93.08 104.73 37.87
TesseraQ† 10.79 13.68 51.10 13.90 15.08 50.13 27.80 30.81 47.33

Table 4: Ablation studies of calibration data source and data sizes. We report the LLaMA-2-7B
W2A16g128 quantization results with task performances and calibration costs.

#Samples BS Runtime/ Calib. Data: WikiText2 Calib. Data: C4

GPU Mem. WikiText2(↓) C4(↓) Avg.(↑) WikiText2(↓) C4(↓) Avg.(↑)
128 1 3.2h/17.5GB 7.33 11.39 56.58 8.54 10.83 56.87
256 2 3.9h/28.6GB 7.10 11.16 57.17 8.32 10.66 57.85
512 2 4.0h/40.4GB 7.14 11.22 57.42 8.22 10.47 58.56
512 4 6.0h/65.4GB 6.82 10.77 58.35 8.05 10.29 59.27

Table 4 demonstrates the task performance (PPL and average accuracy metric) as well as the cal-
ibration costs (algorithm runtime and GPU memory footprint). First, we find that the source of
calibration data will impact the perplexity evaluation. The performance benefits if evaluation data
and calibration data are from the same dataset. For example, the C4-calibrated model has 1.2 higher
WikiText2 PPL than the WikiText2-calibrated model. Second, increasing the number of samples
and the batch size consistently improves the task performance. However, it may also lead to higher
runtime and GPU memory consumption, which may be alleviated via multi-GPU calibration. Nev-
ertheless, it is worthwhile to note that even with 128 samples and a batch size of 1, our TesseraQ
can significantly improve the baseline AWQ results.

Algorithm choices. We also test the algorithm choices in TesseraQ . To be more specific,

Table 5: TesseraQ Algorithm choices.
PAR DST WT2 C4 Avg.
✗ ✗ 14.65 18.67 50.52
✓ ✗ 7.72 11.95 56.79
✗ ✓ 8.58 13.14 54.45
✓ ✓ 6.82 10.77 58.35

we experiment with block reconstruction with or without
progressive adaptive rounding (PAR) and dequantization
scale tuning (DST) and compare their final task perfor-
mance. As shown in Table 5, both PAR and DST con-
tribute a lot to the final perplexity metric (denoted by WT2
(WikiText2) and C4) and average accuracy (denoted by
Avg.). Remarkably, applying one of them solely can also
improve the AWQ baseline (first row) results by a large
margin.

PAR Schedule. We investigate how to adjust the P during progressive adaptive rounding. In
our implementation, we use a handcrafted design, which manually decreases the soft rate (i.e., the
percentage of soft rounding variable) as shown in Fig. 2. Our handcrafted design gradually decays
the soft rate. To demonstrate that our PAR is quite robust to the schedule of soft rate, we also test
several rule-based adjustments, which adjust the soft rate as 1

exp(tx) , where x ∈ (0, 1] is the scaled
iteration number and t is the temperature hyper-parameter. We test t = {2, 3, 4, 5, 6, 7} and compare
it with our handcrafted implementation with LLaMA-2-7B W2A16g128 quantization. The results in
Fig. 2 show that t = 4, 5 and our handcrafted adjustments obtain the best performance. Overall, we
find that our algorithm is not sensitive to the scheduling, and has consistently superior performance
than the AWQ initialized model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 5 10 15 20
Iterations

0%

20%

40%

60%

80%

100%

So
ft

 r
at

e
(%

)

t=2
t=3
t=4
t=5
t=6
t=7
handcrafted

t=2 t=3 t=4 t=5 t=6 t=7 hc
PAR Schedules

8.0

8.5

9.0

9.5

Av
g

PP
L.

 (
) 9.47

9.04

8.8 8.86 8.94
9.03

8.8

t=2 t=3 t=4 t=5 t=7 t=7 hc
PAR Schedules

54

55

56

57

58

59

Av
g

Ac
c.

 (
)

56.7 56.81

58.0658.26 58.1 58.0 58.14

Figure 2: Ablation study of PAR schedule. We experiment several rule-based P adjustments and
one handcrafted adjustment. (AWQ baseline results: average PPL: 16.66, average acc.: 50.52).

0 500 1000
Iterations

0.025

0.050

0.075

0.100

0.125

0.150

Av
g.

 R
ec

on
. L

os
s

Block 1

OmniQuant
TesseraQ

0 500 1000
Iterations

4

6

8

10

Block 4

0 500 1000
Iterations

15

20

25

30

35

Block 7

0 500 1000
Iterations

40

60

80

Block 10

Figure 3: Reconstruction loss convergence. We compare the block reconstruction loss of Omni-
Quant and TesseraQ during optimization. Our method significantly reduces the loss in each block.

4.4 VISUALIZATION

In this section, we provide visualizations of our calibration process to interpret the effectiveness of
our method. The experiments are conducted on LLaMA-2-7B with W2A16g128 quantization. We
first compare the loss convergence value in OmniQuant and TesseraQ, both of which calibrate the
model with block reconstruction loss. To ensure a fair comparison, we use the same AWQ initial-
ization to these two methods and align all training hyper-parameters. As shown in Fig. 3, during the
first block reconstruction, TesseraQ reduces more loss than OmniQuant. In the following blocks,
the loss gap between our method and Omniquant keeps on increasing. Consequently, TesseraQ will
have a much lower model output error due to the cumulative effect of reconstruction.

Since rounding variables (α) are binary, we also demonstrate the number or percentage of rounding
variables that flip after TesseraQ. In Table 6, we show the number and the percentage of flipped vari-
ables. Overall we observe around 3%∼8% of variables flip, amounting to over 10M parameters per
block. This proves that tensor-wise adjustment can be used to significantly improve previous scale
transformation adjustments like AWQ. We also found that attention layers tend to have less flipped
rounding compared to MLP layers. 2/3-bit quantization also flips more than 4-bit quantization.

4.5 HARDWARE EVALUATION

To demonstrate the weight compression effect and the inference throughput change, we test LLaMA-
3.1-8B/70B/405B under different GPU environments, kernel backend and different bitwidths. Ta-
ble 7 summarizes the results of inference throughput (generated token per second) with batch size
1 or 16. Remarkably, W2A16g128 reduces the weight memory of the 405B model from 756GB
to 114 GB and the 70B model from 132 GB to 21 GB. However, the INT2 dequantization kernel
(in Triton (JonathanSalwan) support) is currently less optimized, especially for larger models, ex-
pending lower throughput compared to FP16. We find that INT4 with Exllama kernel can increase
the throughput when batch size is 1 and achieve similar throughput with FP16 model when batch
size is 16. Nonetheless, it is worthwhile to note that our TesseraQ complies with standard uniform
quantization formats and can be deployed with various kernels that support uniform quantization on
various devices, e.g., GPU, CPU, TPU, edge processor.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Number (percentages) of rounding variables that flip after TesseraQ.
Bits/Layers q proj k proj v proj o proj gate proj up proj down proj

W4A16g128 498k (2.97%) 477k (2.85%) 520k (3.10%) 620k (3.70%) 1.77M (3.92%) 1.81M (4.02%) 1.91M (4.24%)
W2A16g128 765k (4.55%) 734k (4.37%) 758k (4.52%) 961k (5.73%) 3.00M (6.67%) 2.99M (6.64%) 3.21M (7.12%)

Table 7: Comparison of weight memory compression and inference throughput. We measure
LLaMA-3.1 series model under various bitwidth/backend. WM stands for weight memory, TPn

denotes inference throughput with a batch size of n (output token/s).
LLaMA-3.1 8B (1×A5000) 70B (2×A100-80GB) 405B (4×A100-80GB)

BitWidth Backend WM TP1 TP16 WM TP1 TP16 WM TP1 TP16

FP16 Pytorch 15GB 49.23 358.1 132GB 12.31 104.0 756GB OOM OOM

W4A16g128 Exllama 5.5GB 57.54 361.1 39GB 26.23 86.94 209GB 7.01 18.59
W2A16g128 Triton 3.9GB 165.3 545.5 21GB 4.93 54.35 114GB 0.18 2.94

5 RELATED WORK

Quantization has been a primary method to compress and accelerate off-the-shelf large models.
Survey papers by Gholami et al. (2022) and Nagel et al. (2021) have systematically summarized the
progress of quantization. Here, we list several major quantization works, especially for LLMs.

Post-Training Quantization for LLMs. While Quantization aware Training (QAT) guarantees
better task performance in low-bit quantization, PTQ is more suitable for LLM due to its less
reliance on computing resources and training data. PTQ methods like Frantar et al. (2022); Lin
et al. (2023); Wei et al. (2022; 2023); Shao et al. (2023); Chee et al. (2023); Liu et al. (2023a)
improve the uniform quantization performance by optimizing weights, transformation scales, and
clipping ranges. Our method continues improving the uniform quantization effect by incorporating
rounding optimization. Other works try to improve PTQ in LLMs in different ways. For example,
AQLM and GPTVQ (Egiazarian et al., 2024; van Baalen et al., 2024) explore non-uniform quanti-
zation schemes for weight-only quantization, which may better match the distribution of weights.
LLM.int8 (Dettmers et al., 2022), BiLLM (Huang et al., 2024a), SiLLM (Huang et al., 2024b) apply
mixed-precision quantization to keep salient weights in high precision and maintain the accuracy.
However, these methods cannot be applied to quantize activations and thus cannot support integer
MatMul. QuaRot (Ashkboos et al., 2024), SpinQuant (Liu et al., 2024) target activation outliers
and eliminate them through the rotation matrix. We have demonstrated that our method can also be
combined with them.

QAT for LLM. Recent works also explore QAT-based quantization for LLMs. To reduce data ac-
cess, LLM-QAT (Liu et al., 2023b) generates language data for data-free QAT. To prevent massive
weight memory usage, Q-LoRA (Dettmers et al., 2023) applies quantization-aware low-rank adap-
tation for finetuning. Recently, BitNet and BitNet b.158 (Wang et al., 2023; Ma et al., 2024) trained
a 1-bit and 1.58-bit model from scratch, enabling multiplication-free LLM. However, these methods
are hard to scale up due to the massive memory and computation requirements, especially for more
than 70B models. As a result, they only focus on 1B∼3B-scale models.

6 CONCLUSION

In this paper, we have proposed TesseraQ, a PTQ method for effectively calibrating large language
models. Based on block reconstruction, TesseraQ optimizes weight rounding through a progressive
approach that iteratively hardens and softens the rounding variables. Together with dequantization
scale tuning, TesseraQ can be seamlessly combined with other PTQ methods like transformation,
clipping, and rotation, to reach new state-of-the-art performance. We demonstarte TesseraQ’s su-
periority on open source LLaMA models. TesseraQ establishes a new state-of-the-art for quantized
LLMs, in terms of perplexity, downstream accuracy and hardware performance.

Limitations. TesseraQ shares some limitations in terms of algorithm runtime, which may require
longer processing time than existing baselines. For example, the LLaMA-2-7B takes 3∼6 hours
to finish the calibration process, while for AWQ/GPTQ, the calibration time is around 0.5 hours.
Nevertheless, compared to QAT, our method still exhibits remarkable resource efficiency in required
data and GPU memory. We leave how to accelerate rounding optimization in our future directions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of
large language models with guarantees. arXiv preprint arXiv:2307.13304, 2023.

Wenhua Cheng, Weiwei Zhang, Haihao Shen, Yiyang Cai, Xin He, Kaokao Lv, and Yi Liu. Op-
timize weight rounding via signed gradient descent for the quantization of llms. arXiv preprint
arXiv:2309.05516, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Ruihao Gong, Yang Yong, Shiqiao Gu, Yushi Huang, Chentao Lv, Yunchen Zhang, Xianglong Liu,
and Dacheng Tao. Llmc: Benchmarking large language model quantization with a versatile com-
pression toolkit, 2024. URL https://arxiv.org/abs/2405.06001.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024a.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language
models. arXiv preprint arXiv:2405.14917, 2024b.

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. An empirical study of llama3 quantization: From llms
to mllms, 2024c. URL https://arxiv.org/abs/2404.14047.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2405.06001
https://arxiv.org/abs/2404.14047

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post
training neural quantization: Layer-wise calibration and integer programming. arXiv preprint
arXiv:2006.10518, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

JonathanSalwan. Jonathansalwan/triton: Triton is a dynamic binary analysis library. build your own
program analysis tools, automate your reverse engineering, perform software verification or just
emulate code. URL https://github.com/jonathansalwan/Triton.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm:
Accurate and efficient low-bitwidth quantization for large language models. arXiv preprint
arXiv:2310.08041, 2023a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Meta. Introducing llama 3.1: Our most capable models to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3-1/.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

12

https://github.com/jonathansalwan/Triton
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm quan-
tization. arXiv preprint arXiv:2402.15319, 2024.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xian-
glong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent
and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ABLATION STUDY ON ROUNDING OPTIMIZATION

In order to demonstrate the effectiveness of our proposed PAR, we compare our method with the
several rounding optimization variants here.

AdaRound (Nagel et al., 2020). For AdaRound, the optimization is formulated by

min
ν

∣∣∣∣ŴX−WX
∣∣∣∣2
F
+ λ

∑
i,j

1− |2σ(νi,j)− 1|β ,

s.t. Ŵ = s× (Wq − z), Wq = clamp
(
⌊W
s
⌋+ σ(ν) + z, 0, 2N − 1

)
.

(10)

This method utilizes the layer-wise reconstruction objective and a regularization loss. Both λ and β
control the strength of the regularization loss during optimization, which encourages the rounding
variables to move towards 0 and 1.

AdaQuant (Hubara et al., 2020). This method directly utilizes the STE method to optimize the
weighs, given by

min
V

∣∣∣∣ŴX−WX
∣∣∣∣2
F
,

s.t. Ŵ = s× (Wq − z), Wq = clamp
(
⌊W +V

s
⌉+ z, 0, 2N − 1

)
,
∂⌊x⌉
∂x

= 1.
(11)

Note that AdaRound and AdaQuant have not implemented their method on LLMs before. There-
fore, we implement their method on our own and use the default hyper-parameters in their paper.
Specifically, we experiment with the LLaMA-2-7B W2A16g128 quantization case, where the model
is uniformly initialized from the AWQ checkpoint. Each weight tensor will be optimized for 5000
iterations for a fair comparison. We compare 3 methods, AdaRound, AdaQuant, and our PAR, with
either layer-wise objective (Eq. (2)) or block-wise objective (Eq. (3)). For AdaRound, we set the
learning rate the same as our method and while for AdaQuant the learning rate was 1e-5. The results
are shown in the Table below.

Generally, we find that PAR consistently outperforms the other two rounding methods regardless of
which objective. We think the reason is that we explicitly control the hardness of rounding variables
through the progressive approach. While AdaRound and AdaQuant, they are less optimized on
LLMs and may require more hyper-parameter search.

Table 8: Ablation study on rounding method. The results are reported on LLaMA-2-7B
W2A16g128 quantization.

Rounding Method Objective WT2(↓) C4(↓)
None (AWQ) Layer 14.65 18.67
AdaRound Layer 10.68 15.67
AdaQuant Layer 16.78 21.34
PAR Layer 9.43 12.79

None (OmniQuant) Block 11.06 16.34
AdaRound Block 9.05 11.45
AdaQuant Block 10.05 14.87
PAR Block 6.82 10.77

B MORE EXPERIMENTAL RESULTS

In this section, we include additional experimental results from the main section.

B.1 RESULTS ON C4

We demonstrate the perplexity results on the C4 datasets in Table 9. Note that the OmniQuant
results are re-evaluated using the official checkpoint, which is slightly higher than the original paper
results (Shao et al., 2023). Since the evaluation protocol can be different across different papers,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

we ensure use of the same evaluation protocol to compare different methods. Note, we restrict
all models here from using the WikiText2 calibration data as the calibration data will affect the
perplexity metric as shown in our ablation study. The improvements of our method over existing
approaches are consistent with the results on the WikiText2 dataset.

Table 9: Weight-only quantization results of LLaMA-1 and LLaMA-2 Models. We report C4
perplexity in this table. *, † means initialized from AWQ, and OmniQuant, respectively.

LLaMA1&2 / PPL↓ 1−7B 1−13B 1−30B 1−65B 2−7B 2−13B 2−70B

FP16 - 7.08 6.61 5.98 5.62 6.97 6.46 5.52

W2A16

RTN 1.3e5 5.6e4 2.7e4 2.2e4 4.8e4 7.2e4 2.4e4
GPTQ 689.13 2.5e3 169.80 40.58 NAN 323.12 48.82
OmniQuant 26.03 18.94 14.55 11.47 90.64 26.76 13.33
TesseraQ† 13.28 11.43 10.81 8.52 14.82 11.96 9.15

W2A16
g128

RTN 1.0e3 447.64 99.45 17.15 4.9e3 139.65 42.13
GPTQ 27.71 15.29 11.93 11.99 33.70 20.97 NAN
AWQ 16.35 12.93 10.07 8.78 18.67 11.88 8.49
OmniQuant 14.06 11.27 10.37 8.65 16.34 12.14 9.33
TesseraQ* 10.64 9.36 8.36 7.64 10.77 9.48 7.63

W2A16
g64

RTN 151.43 76.00 30.07 11.34 475.35 28.69 13.43
GPTQ 17.71 11.70 9.92 10.07 19.40 12.48 NAN
AWQ 13.47 11.35 9.12 8.11 15.13 10.85 7.77
OmniQuant 12.79 10.60 9.46 8.18 13.79 11.02 8.61
TesseraQ* 10.32 9.05 8.18 7.48 10.50 9.23 7.44

W3A16

RTN 28.26 13.22 28.66 12.79 402.35 12.51 10.02
GPTQ 9.49 8.16 7.29 6.71 9.81 8.02 6.57
AWQ 11.16 8.37 7.91 8.62 16.25 8.90 6.50
OmniQuant 8.73 7.68 6.86 6.31 9.24 7.89 6.31
TesseraQ* 8.15 7.38 6.60 6.16 8.30 7.41 6.08

Results on Smaller-Size LLM for Edge Inference. In addition to LLMs that are deployed on
GPUs, we also test the performance of smaller-size LLMs geared for edge devices. We test LLaMA-
3.2-1/3B models and compare them with AWQ in Table 10. We observe that our method significantly
outperforms AWQ across different bitwidths in WikiText2 perplexity and average downstream task
performance.

B.2 W4A8 QUANTIZATION

We also provide the W4A8 quantization in Table 11. Overall we find a small difference in W4A8
quantization due to the 8-bit per-token activation quantization.

B.3 DETAILED ACCURACY OF W4A4/W3A3 QUANTIZATION

Table 13 provides the detailed accuracy of each zero-shot tasks in W4A4/W3A3 quantization.

B.4 EVALUATION ON GENERALIZATION

To validate the generalization capability of our method, we test the quantization on LLaMA-
2chat (Touvron et al., 2023b), an instruction-tuned model for chatbots. Following OmniQuant ex-
periments (Shao et al., 2023), we use GPT-4 evaluation protocol (Chiang et al., 2023), performance
is assessed on the Vicuna benchmark, which comprises 80 questions. We compare our TesseraQ and
OmniQuant on LLaMA-2-7B-chat with W3A16g128 quantization. Our model has a 69% win rate
against the OmniQuant model. We also demonstrate some chat cases in Fig. 4.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: Quantization Results of LLaMA-3.2 for edge inference.

Bitwidths Methods LLaMA-3.2-1B LLaMA-3.2-3B

WT2(↓) Avg. (↑) WT2(↓) Avg. (↑)
FP16 Pretrained 9.75 56.50 7.81 63.57

W2A16g128 AWQ 5475 35.42 495.2 38.15
TesseraQ* 18.61 43.36 11.94 51.53

W3A16g128 AWQ 16.69 49.85 10.21 59.94
TesseraQ* 11.08 53.24 8.45 61.58

W4A16g128 AWQ 10.85 54.68 8.25 62.83
TesseraQ* 10.09 54.98 7.96 63.63

Table 11: Weight-activation quantization Results of various LLMs. We report the accuracy of 5
reasoning tasks (↑).

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.

LLaMA-7B

FP16 - 77.47 52.48 41.46 73.00 67.07 62.30

W4A8

SmoothQuant 75.19 70.45 37.45 51.06 64.87 59.81
OS+ 78.42 74.49 40.61 55.53 69.37 63.75
AWQ 77.63 73.31 41.89 55.50 69.85 63.65
TesseraQ* 78.89 75.33 41.55 56.11 69.14 64.21

LLaMA-2-7B

FP16 - 78.07 76.34 43.51 57.17 69.21 64.87

W4A8

SmoothQuant 75.24 70.95 38.39 51.30 63.85 59.95
Outlier Supp.+ 77.09 74.74 42.57 56.37 68.51 63.86
AWQ 77.09 74.36 42.32 56.25 69.53 63.91
TesseraQ* 77.42 76.26 41.63 56.42 69.22 64.19

LLaMA-3.1-8B

FP16 - 79.54 80.09 50.17 60.13 73.24 68.64

W4A8

SmoothQuant 71.98 66.37 34.55 50.46 67.40 58.16
Outlier Supp.+ 77.91 78.78 48.03 58.83 72.53 67.22
AWQ 79.00 78.40 48.63 58.81 72.45 67.46
TesseraQ* 78.99 79.88 47.61 59.09 72.77 67.67

Mistral-8B W4A8

SmoothQuant 79.59 77.56 46.50 57.62 71.11 66.48
OS+ 80.35 79.04 48.03 60.18 72.45 68.02
AWQ 79.92 79.79 47.35 58.80 74.26 68.03
TesseraQ* 80.36 79.92 49.57 60.54 73.79 68.84

Table 12: Weight-activation quantization Results of Mistral-7B. We report the accuracy of 5
reasoning tasks (↑).

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.

Mistral-7B

FP16 - 80.68 80.93 50.42 61.26 73.79 69.42

W2A16
g128

GPTQ 64.20 45.74 22.35 36.68 55.02 44.80
AWQ 68.44 56.73 27.44 40.60 56.03 49.06
SignRound 75.84 70.88 30.73 50.87 62.90 58.24
TesseraQ* 76.87 71.67 39.59 54.09 68.11 62.07

W3A16
g128

GPTQ 79.70 78.70 48.41 59.15 71.98 67.19
AWQ 80.19 78.62 45.56 58.28 71.58 66.85
SignRound 79.54 78.70 46.33 59.60 72.85 67.40
TesseraQ* 79.59 78.36 47.44 59.87 71.98 67.45

W4A4

SmoothQuant 57.94 35.14 21.75 30.51 48.30 38.73
OS+ 66.70 56.73 30.20 42.39 52.01 49.61
AWQ 66.26 54.16 30.80 43.45 53.67 49.67
TesseraQ* 72.19 65.90 33.78 49.02 57.61 55.71

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 13: Detailed W4A4/W3A3 quantization results on each commonsense tasks of LLaMA-
1/2/3. We use per-channel weight quantization and per-token activation quantization *, † means
initialized from AWQ, QuaRot.

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.

LLaMA-7B

FP16 - 78.67 75.33 41.80 56.96 69.85 64.53

W4A4

SmoothQuant 55.49 31.22 21.16 27.31 49.88 37.02
OS+ 67.46 57.74 31.05 41.83 54.38 50.50
AWQ 65.56 57.36 26.10 9.02 53.98 48.41
OmniQuant 66.15 45.20 31.14 56.44 53.43 50.47
QLLM 68.77 45.20 31.14 57.43 56.67 51.84
TesseraQ* 71.98 64.77 32.67 47.59 60.22 55.45

Atom (W4A4g128) 76.28 52.10 38.99 69.81 63.69 60.17
QuaRot 71.70 64.81 30.88 48.25 61.24 55.38
GPTQ† 76.55 72.60 37.11 53.67 66.93 61.37
TesseraQ† 76.22 73.31 39.25 54.45 66.38 61.92

W3A3

Atom (W3A3g128) 65.56 41.41 30.72 53.19 55.56 49.28
QuaRot 52.72 26.09 20.82 26.06 51.93 35.53
GPTQ† 68.98 58.92 26.87 43.90 55.40 50.82
TesseraQ‡ 68.93 57.78 27.30 43.24 58.24 51.10

LLaMA-2-7B

FP16 - 78.07 76.34 43.51 57.17 69.21 64.87

W4A4

SmoothQuant 53.04 25.71 20.22 25.71 51.77 35.29
OS+ 66.86 56.52 29.60 41.93 56.19 50.23
AWQ 64.80 53.87 30.20 43.11 57.93 49.99
OmniQuant 65.94 43.94 30.80 53.53 55.09 49.86
QLLM 67.68 44.40 30.89 58.45 56.59 51.60
TesseraQ* 70.89 63.34 32.93 48.28 60.14 55.12

QuaRot 66.54 55.51 25.76 37.80 52.25 47.57
GPTQ† 75.89 71.96 39.85 54.12 65.43 61.45
TesseraQ* 76.22 74.20 39.50 53.80 65.03 61.75

W3A3
QuaRot 51.74 25.54 22.86 25.84 49.88 35.18
GPTQ† 64.31 47.21 22.18 36.08 53.27 44.62
TesseraQ‡ 68.28 56.82 28.58 41.96 55.01 50.13

LLaMA-3.1-8B

FP16 - 79.54 80.09 50.17 60.13 73.24 68.64

W4A4

SmoothQuant 54.24 27.90 19.79 26.87 51.61 36.09
OS+ 57.34 40.99 20.22 33.19 51.77 40.71
AWQ 59.68 44.90 22.09 34.53 51.30 42.51
TesseraQ* 67.08 59.09 27.13 43.88 57.14 50.87
QuaRot 69.85 58.03 28.07 43.37 59.82 51.83
GPTQ† 76.22 73.94 41.21 55.47 67.48 62.87
TesseraQ† 77.64 77.27 44.80 56.03 69.85 65.12

W3A3
QuaRot 52.28 26.59 20.56 26.11 50.67 35.25
GPTQ† 56.96 33.62 20.47 28.87 49.40 37.87
TesseraQ† 66.05 51.59 24.40 40.59 53.98 47.33

LLaMA-3.1-70B

FP16 - 83.13 87.12 60.92 66.47 79.56 75.44

W4A4

SmoothQuant 57.45 38.46 24.23 30.22 54.93 41.06
OS+ 53.04 25.79 22.01 25.88 48.85 35.12
AWQ 69.91 61.71 34.04 47.98 54.61 53.65
TesseraQ* 78.29 69.15 38.12 53.74 61.16 60.09
QuaRot 57.88 36.36 19.02 28.13 53.19 38.92
GPTQ† 79.76 80.17 50.59 60.71 73.08 68.87
TesseraQ† 81.84 82.64 54.07 63.90 65.64 69.62

W3A3
QuaRot 52.06 24.87 20.05 25.55 49.25 34.26
GPTQ† 55.98 34.80 19.45 28.38 51.46 38.02
TesseraQ† 74.80 66.03 36.42 51.34 58.43 57.42

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Question: What if the Internet had been invented during the Renaissance period?

OmniQuant:
Ah, an intriguing question! If the Internet had been invented during the Renaissance period, it
would have likely been a vastly different technological landscape than what we have today.
Here are a few ways the Internet might have evolved:
1. Renaissance Network: The Renaissance was a time of great cultural and intellectual
exchange, and the Internet might have been conceived as a means of facilitating this
exchange. It could have been a network of scholars and artists sharing ideas and creations
through a series of interconnected nodes.
2. Print Press Reimagined: During the Renaissance, the printing press revolutionized the
dissemination of information. An Internet-like network might have built upon this technology,
with books, pamphlets, and other printed materials being distributed more widely and
efficiently.
3. Urban Communication Networks: Cities like Florence, Venice, and Rome were hubs of
trade and commerce. An Internet-like network might have emerged as a means of facilitating
communication between these cities and their surrounding regions.
4. Artistic Collaboration: The Renaissance saw a renewed interest in classical art and
culture. An Internet-like network might have fostered collaboration and exchange among
artists, musicians, and writers, allowing them to share their work and ideas more widely.
5. Humanist Learning Network: The Renaissance was characterized by a renewed interest in
classical knowledge and the pursuit of humanism. An Internet-like network might have
facilitated the sharing of knowledge and ideas among scholars and thinkers, allowing them
to build upon the achievements of previous generations.
6. Merchant Networks: The Renaissance saw the rise of trade and commerce, with
merchants and traders traveling throughout Europe and beyond. An Internet-like network
might have emerged as a means of facilitating communication and exchange between these
merchants and traders.
7. Scientific Knowledge Sharing: The Renaissance saw a number of scientific breakthroughs
and discoveries, and an Internet-like network might have allowed scientists to share their
findings more widely and rapidly.
8. Renaissance Revival: In the Renaissance, there was a renewed interest in classical culture
and learning. An Internet-like network might have fostered a revival of this culture, allowing
people to connect with and learn from the achievements of the past.
Of course, these are just a few possibilities, and the actual evolution of the Internet would
likely have been shaped by a wide range of factors. However, it is fascinating to consider
what might have been if the Internet had been invented during the Renaissance.

TesseraQ:
Ah, an intriguing question! If the Internet had been invented during the Renaissance period, it
would have been a revolutionary technology that would have transformed the way people
communicated, shared knowledge, and accessed information. Here are some ways it could
have impacted society:
1. Faster dissemination of knowledge: The Renaissance was a time of immense cultural and
intellectual growth, and the Internet would have accelerated the spread of new ideas and
discoveries. Scholars and scientists could have shared their findings more quickly and
easily, leading to a more rapid pace of innovation.
2. More accessible education: The Renaissance saw a renewed interest in classical learning,
and the Internet would have made educational resources more widely available. People
could have accessed educational content from all over Europe, without the need for
expensive and time-consuming travel.
3. Enhanced cultural exchange: The Renaissance was a time of cultural exchange between
Europe and other parts of the world, such as the Middle East and Asia. The Internet would
have facilitated even more direct communication and collaboration between cultures,
fostering greater understanding and mutual respect.
4. Improved communication: The Renaissance saw the development of new forms of
communication, such as printing and the use of the Latin language. The Internet would have
expanded upon these forms of communication, allowing people to share ideas and
information more quickly and efficiently.
5. New forms of art and literature: The Renaissance saw a flowering of artistic and literary
creativity, and the Internet would have provided new mediums for expression. People could
have created digital art, music, and literature, and shared them with a global audience.
6. Increased access to information: The Renaissance saw a growing interest in the works of
ancient Greece and Rome, and the Internet would have made it easier for people to access
and study these texts.
7. More efficient commerce: The Renaissance saw the emergence of new trade routes and
commercial practices, and the Internet would have further transformed the way people
conducted business. Merchants could have easily accessed markets and customers all over
Europe, and traded goods more efficiently.
8. New forms of entertainment: The Renaissance saw the emergence of new forms of
entertainment, such as theater and music. The Internet would have provided new ways for
people to enjoy and engage with these forms of entertainment, such as streaming and
downloading music and videos.
Of course, it's important to note that the Internet as we know it today is a product of the
Information Age, and its development was shaped by many factors beyond the Renaissance.
However, it's fascinating to imagine how the Internet could have evolved if it had been
invented during this time of cultural and intellectual flourishing.

Question: What if Christopher Columbus had not discovered the Americas?

TesseraQ:
If Christopher Columbus had not discovered the Americas, the course of history would have
been significantly different. Here are some possible outcomes:
1. Indigenous Cultures Continue Unimpeded: Without Columbus's arrival, the indigenous
peoples of the Americas would have continued to thrive and develop their own cultures,
traditions, and societies.
2. No European Settlements: Columbus's arrival led to the establishment of European
settlements in the Americas, which had a profound impact on the indigenous populations.
Without these settlements, the native cultures might have continued to flourish without
interference from European colonizers.
3. Different Global Power Dynamics: The discovery of the Americas by Columbus marked the
beginning of a new era of global power dynamics. Without this event, the balance of power
between European nations and the indigenous peoples might have remained more stable,
with fewer opportunities for European colonization and exploitation.
4. No Transatlantic Slave Trade: The transatlantic slave trade was fueled in part by the
discovery of the Americas, as European powers sought to exploit the vast resources of the
New World. Without Columbus's discovery, the transatlantic slave trade might have been
less profitable, or might not have occurred at all.
5. Different Economic and Technological Developments: Columbus's arrival in the Americas
led to the introduction of new technologies, crops, and economic systems. Without these
introductions, the indigenous peoples might have continued to develop their own unique
economic and technological systems, unimpeded by European influence.
6. No European Impact on Indigenous Languages: Columbus's arrival also led to the
introduction of European languages, such as Spanish and English, which had a profound
impact on the indigenous languages of the Americas. Without this influence, the indigenous
languages might have continued to evolve and develop in their own unique ways.
7. Different Environmental Impacts: Columbus's arrival in the Americas also had significant
environmental impacts, including the introduction of new diseases and the exploitation of
natural resources. Without these impacts, the native ecosystems might have continued to
thrive, with fewer disruptions from human activity.
Overall, it is impossible to say exactly how the world would have looked without Christopher
Columbus's discovery of the Americas, but it is clear that the course of history was
significantly altered by this event.

OmniQuant:
If Christopher Columbus had not discovered the Americas, it is likely that the indigenous
peoples of the Americas would have continued to inhabit the lands without European
colonization. The course of history would have been very different, with potentially
significant impacts on the cultures, societies, and economies of both the indigenous
peoples and the European powers.
Here are a few possible scenarios:
1. Continued Indigenous Sovereignty: Without Columbus's discovery, the indigenous
peoples of the Americas may have continued to inhabit and govern their lands without
European interference. This could have resulted in the preservation of their cultures,
languages, and traditions.
2. Indigenous-European Interactions: Without the arrival of European colonizers, the
indigenous peoples may have had more time to interact with European powers through trade
or diplomacy. This could have led to a more peaceful coexistence between the two groups.
3. Different Technological Advancements: Without European contact, the indigenous
peoples may have continued to develop their own technologies and societies at their own
pace. This could have resulted in a more self-sufficient and sustainable way of life.
4. Alternative Global Power Dynamics: Without European colonization, the global power
dynamics may have been very different. The indigenous peoples may have been able to
establish their own empires or federations, or they may have been able to maintain their
independence.
5. Unknown Impact on Ecosystems: Without European colonization, the ecosystems of the
Americas may have been less impacted by invasive species, deforestation, and climate
change. This could have resulted in a healthier and more resilient environment.
Overall, the consequences of Christopher Columbus's discovery of the Americas are
complex and far-reaching, and it is difficult to predict exactly how things would have turned
out without it. However, it is clear that the arrival of European colonizers had a profound
impact on the indigenous peoples of the Americas, and their legacy continues to be felt
today.

Figure 4: Examples of chat cases on Vicuna Benchmark (Chiang et al., 2023). We compare
TesseraQ W3A16g128 and OmniQuan W3A16g128 quantization on LLaMA-2-7B-chat.

18

	Introduction
	Preliminaries
	TesseraQ: Ultra Low-Bit Post-Training Quantization
	Problem Statement
	Progressive Adaptive Rounding
	Dequantization Scale Tuning

	Experiments
	Experiements Setup
	Main Results
	Ablation Studies
	Visualization
	Hardware Evaluation

	Related Work
	Conclusion
	Ablation Study on Rounding Optimization
	More Experimental Results
	Results on C4
	W4A8 Quantization
	Detailed Accuracy of W4A4/W3A3 Quantization
	Evaluation on Generalization

