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Abstract

In this work, we present CoCal, an interpretable and001
consistent object parsing framework based on dictionary-002
based mask transformer. Designed around Contrastive003
Components and Logical Constraints, CoCal rethinks ex-004
isting cluster-based mask transformer architectures used005
in segmentation; Specifically, CoCal utilizes a set of dic-006
tionary components, with each component being explicitly007
linked to a specific semantic class. To advance this con-008
cept, CoCal introduces a hierarchical formulation of dic-009
tionary components that aligns with the semantic hierarchy.010
This is achieved through the integration of both within-level011
contrastive components and cross-level logical constraints.012
Concretely, CoCal employs a component-wise contrastive013
algorithm at each semantic level, enabling the contrast-014
ing of dictionary components within the same class against015
those from different classes. Furthermore, CoCal addresses016
logical concerns by ensuring that the dictionary compo-017
nent representing a particular part is closer to its corre-018
sponding object component than to those of other objects019
through a cross-level contrastive learning objective. To fur-020
ther enhance our logical relation modeling, we implement021
a post-processing function inspired by the principle that a022
pixel assigned to a part should also be assigned to its corre-023
sponding object. With these innovations, CoCal establishes024
a new state-of-the-art performance on both PartImageNet025
and Pascal-Part-108, outperforming previous methods by026
a significant margin of 2.08% and 0.70% in part mIoU, re-027
spectively. Moreover, CoCal exhibits notable enhancements028
in object-level metrics across these benchmarks, highlight-029
ing its capacity to not only refine parsing at a finer level but030
also elevate the overall quality of object segmentation.031

1. Introduction032

Human perception involves the ability to decompose an033
object into its semantically meaningful components (i.e.,034
parts). For instance, when observing a dog, humans not035
only identify it as a dog but also simultaneously discover036
its head, torso, and other components, facilitating a more037

: Part Components : Object Components: Logical Constraints : Contrastive Components

Figure 1. Illustration of the proposed component-wise con-
trastive objectives. CoCal establishes two discriminative dictio-
naries at the part and object levels. Within the same semantic
level, part/object components of the same classes are pulled closer
(→←), while those of different classes are pushed apart (←→)
(i.e., contrastive components). At the cross-semantic level, part
components and their corresponding object components are pulled
closer and vice versa (i.e. logical constraints).

interpretable and resilient understanding of real-world sce- 038
narios. More specifically, humans can estimate the pose of 039
a dog by considering the spatial arrangement of its parts, 040
even in instances where some parts may be missing. 041

By contrast, emulating this innate human visual capa- 042
bility presents a big challenge for modern computer vision 043
models. The predominant focus within the field has been 044
on addressing semantic segmentation at the object level, 045
with minimal attention given to intermediate part represen- 046
tations. Notable works [15, 34, 48, 49] in object parsing 047
primarily extend algorithms designed for general segmenta- 048
tion, overlooking the fact that parts, being at a lower seman- 049
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tic level, can be captured more efficiently and interpretably050
through clustering. As a result, these works often adhere051
to frameworks tailored for object segmentation without in-052
corporating specialized designs for handling parts. More-053
over, even though certain studies [18, 22, 61] highlight the054
mutual benefit between object parsing and object segmen-055
tation, they typically treat these semantic levels separately,056
disregarding the logical relationship between them. Conse-057
quently, the optimization objectives for these two levels are058
disjoint, leading to sub-optimal predictions.059

In this work, we propose CoCal, a dictionary-based060
framework built on top of an off-the-shelf cluster-based061
mask transformer, utilizing a set of dictionary components062
where each component is explicitly associated with a spe-063
cific semantic class to facilitate the grouping of pixels be-064
longing to that class. This enables CoCal to conduct in-065
ference in a straightforward parameter-free manner through066
nearest neighbor search on the pixel feature maps within067
the class dictionary. Taking this concept further, CoCal068
introduces a hierarchical formulation of dictionary compo-069
nents, aligning with the semantic hierarchy, which naturally070
forms the logical paths within the structure (e.g., bird-head071
→ bird). CoCal advances the learning of the above for-072
mulation through two simple yet effective targets: learn-073
ing contrastive objectives for obtaining discriminative dic-074
tionary components and exploring logical relations for con-075
sistent predictions. Specifically, as depicted in Fig. 1, at076
each semantic level, CoCal employs a component-wise con-077
trastive algorithm to pull closer the dictionary components078
withing the same class while pushing away those from dif-079
ferent classes. Then to model the cross-level logical rela-080
tions, CoCal further contrasts the positive pair between dic-081
tionary component representing a particular part and its cor-082
responding object dictionary components against the nega-083
tive pairs involving the part component and all other object084
components. In addition, CoCal applies a post-processing085
step enforcing that any pixel predicted as a certain part must086
also be labeled under its corresponding object class. Specif-087
ically, CoCal calculates a path probability by multiplying088
part- and object-level similarities, then assigns pixels to the089
path with the highest score. This mechanism captures cross-090
level semantics and resolves inconsistencies at inference.091

2. Method092

In this section, we begin by introducing the core princi-093
ples behind mask transformer segmentation frameworks,094
focusing on cluster-based methods and showing how our095
proposed dictionary-based formulation evolves from these096
ideas. We then describe how CoCal leverages hierarchy,097
contrastive components, and logical constraints to achieve098
interpretable and consistent object parsing. Finally, we099
present the meta-architecture of our method, detailing all100
major components and their interactions.101

2.1. Dictionary-based Mask Transformers 102

Problem Statement Semantic segmentation aims to par- 103
tition an image I ∈ RH×W×3 into non-overlapping masks, 104
where each mask is associated with a semantic label. Con- 105
cretely, the ground-truth set of masks is: 106

{yi}Mi=1 = {(di, ci)}Mi=1, (1) 107

where di ∈ {0, 1}H×W is a binary mask denoting the pixels 108
of the i-th region, ci is its class label, and M represents 109
the number of ground-truth masks. A typical segmentation 110
model outputs a set of N predicted masks (N ≥ M ) and 111
their corresponding classes: 112

{ŷi}Ni=1 = {(m̂i, ĉi)}Ni=1. (2) 113

Recap of Cluster-based Mask Transformers Cluster- 114
based mask transformers [37, 71, 72] differ from standard 115
query-based transformers in their use of a one-hot argmax 116
assignment instead of a softmax for updating the query 117
features. Specifically, let O ∈ RN×D denote the N ob- 118
ject queries and Ô the updated queries. Similarly, let 119
Qo,Kp,Vp be the linearly projected features for queries, 120
keys, and values. Then, instead of the softmax cross- 121
attention, 122

Ô = O+ softmax
HW

(
Qo × (Kp)T

)
×Vp, (3) 123

the cluster-based mask transformer adopts a one-hot 124
argmax: 125

Ô = O+ argmax
N

(
Qo × (Kp)T

)
×Vp, (4) 126

so each pixel is clustered to the single query with which it 127
has the highest affinity. The prediction set {ŷi}Ni=1 is then 128
matched with {yi}Mi=1 through Hungarian Matching [30], 129
which guides mask and classification loss computation. 130
Dictionary-based Formulation While cluster-based 131
methods typically employ N object queries (often larger 132
than M ), our dictionary-based approach seeks a more 133
direct mapping between queries and classes. We replace 134
the learnable queries O with a dictionary C ∈ RP×D, 135
where each of the P dictionary components serves as 136
a cluster center for a specific class. Hence, there is a 137
one-to-one correspondence between each component Ci 138
and one of the P classes. 139

During training, the dictionary C updates in the same 140
spirit as Eqs. 2–4, except that we now have a fixed alignment 141
of dictionary elements to classes (so Hungarian Matching 142
is unnecessary). At inference time, the dictionary-based 143
mask transformer is fully parameter-free in its final assign- 144
ment step, as each pixel’s feature vector is classified by 145
whichever dictionary component is closest in feature space. 146
This streamlining removes the need for redundancies like 147
‘void’ labels and affords an inherently interpretable design: 148
each dictionary component explicitly encodes a particular 149
semantic class. 150
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Figure 2. Meta-architecture of the proposed CoCal. CoCal builds on top of an off-the-shelf clustering-based mask transformer, incorpo-
rating dictionary components that function as the cluster centers for each semantic class. Throughout training, the dictionary components
in CoCal are updated via both mask-wise objectives from the transformer and contrastive objectives from the dictionary. During testing,
CoCal adopts a straightforward inference approach by executing nearest neighbor search of the pixel features on the dictionary components.

2.2. CoCal: Interpretable and Consistent Object151
Parsing152

Although dictionary-based mask transformers already pro-153
vide a concise per-class representation, object parsing often154
requires hierarchical reasoning (e.g., relating part classes155
to an object-level class) and advanced regularization to en-156
sure consistent outputs. CoCal addresses these issues with157
three key ideas: (1) hierarchical dictionary components, (2)158
contrastive learning of dictionary elements, and (3) logical159
constraints at both training and inference time.160

2.2.1. Hierarchical Structure of Dictionaries Across Mul-161
tiple Levels162

Part labels naturally imply rich logical relationships (e.g.,163
dog-head is more semantically related to dog-torso than164
fish-tail). To exploit this hierarchy, CoCal extends the dic-165
tionary with an additional tier for object-level classes. Con-166
cretely, we have a part-level dictionary C ∈ RP×D for part167

segmentation and an object-level dictionary C̃ ∈ RP̃×D168
for object classes, where P̃ is the number of object classes.169
These two dictionaries are learned jointly to reflect the in-170
herent relationship between objects and their parts.171

2.2.2. Enhancing Dictionary Discrimination via Con-172
trastive Objectives173

To ensure discriminative power, CoCal applies contrastive174
learning on both part- and object-level dictionaries. Con-175
sider the part dictionary C. We maintain a part memory176
bank B ∈ RP×S×D, where S is the number of stored “sam-177
ples” per class. After retrieving the relevant components178
C(y) for classes present in a training sample, we compute179
the contrastive loss as:180

181

Lp con(C(y)) = 182∑
x∈M

−1
|B(x)|

∑
j∈B(x)

log

(
exp(C(y)i ·Bj / τ)∑

k∈B exp(C(y)i ·Bk / τ)

)
, (5) 183

where B(x) are the stored features in B belonging to the 184
same class x, Bj is one such feature, and τ is the tempera- 185
ture. Inspired by [41, 52], we employ hard negative mining 186
to focus on the most challenging negatives. An analogous 187

memory bank B̃ and contrastive loss Lo con are used for the 188

object-level dictionary C̃: 189
190

Lo con(C̃(y)) = 191∑
x∈M

−1
|B̃(x)|

∑
j∈B̃(x)

log

(
exp(C̃(y)i · B̃j/τ)∑

k∈B̃ exp(C̃(y)i · B̃k/τ)

)
, (6) 192

2.2.3. Logical Constraints for Consistent Predictions 193

Even with hierarchical dictionaries, inconsistent predictions 194
can arise—for example, labeling a pixel snake-head at the 195
part level but reptile at the object level. CoCal incorporates 196
two logical constraints to maintain cross-level consistency. 197
Cross-Level Contrastive Loss. First, parts belonging to 198
the same object should be closer to their object-level com- 199
ponent than to other objects. We encode this by an addi- 200
tional cross-level contrastive term: 201

202

Llogic(C(y)) = 203∑
x∈M

−1
|B̃(x)|

∑
j∈B̃(x)

log

(
exp(C(y)i · B̃j/τ)∑

k∈B̃ exp(C(y)i · B̃k/τ)

)
, (7) 204

which brings part-level and object-level dictionary compo- 205
nents closer when they belong to the same semantic object. 206
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Figure 3. Illustration of logical constraints at inference. Here, a
reptile-head and reptile-body are incorrectly predicted as snake-
head and snake-body. CoCal corrects the wrong prediction by
computing the logical path probability (multiplying part-level and
object-level probabilities) and reassigning labels along the path to
produce the correct part prediction.

Post-Processing at Inference. Second, we encode the207
fact that if a pixel belongs to a certain part, it must also208
belong to the corresponding object. CoCal thus multiplies209
part- and object-level probabilities and selects the top joint210
path ( Fig. 3). This ensures if a pixel is labeled dog-head, it211
cannot simultaneously be labeled fish at the object level.212

2.2.4. Meta-Architecture Overview213

Figure 2 shows the overall pipeline of CoCal. We start214
with a cluster-based mask transformer backbone, which ex-215
tracts pixel features. On top of these features, two dictio-216
naries are learned: a part dictionary C and an object dic-217
tionary C̃. Two memory banks (B and B̃) store histori-218
cal dictionary components, enabling within-level and cross-219
level contrastive training. Finally, inference proceeds via a220
parameter-free nearest neighbor search against both dictio-221
naries, augmented by a logical consistency check that re-222
assigns part labels according to the best object-part path.223
Therefore, CoCal delivers a highly interpretable and seman-224
tically coherent solution for object parsing.225

3. Experiments226

In this section, we first provide our main results on PartIm-227
ageNet [21] and Pascal-Part-108 [49], followed by quali-228
tative comparisons to highlight the effectiveness of CoCal.229
For extended ablation studies and additional implementa-230
tion details, we refer readers to the supplementary materi-231
als( including detailed experimental settings as well as ab-232
lation studies.).233

3.1. Main Results234

We summarize our core findings on PartImageNet [21] and235
Pascal-Part-108 [49] in Table 1a and Table 1b, respec-236
tively. Notably, with a ResNet-50 [23] backbone on PartIm-237
ageNet, CoCal surpasses kMaX-DeepLab [72] by 2.08%238
in part mIoU. When upgraded to the ConvNeXt-Tiny [42]239
backbone, CoCal continues to excel, reaching 70.31 part240
mIoU—an additional 1.79% gain over kMaX-DeepLab un-241
der the same backbone. Beyond improving part mIoU, Co-242

Table 1. PartImageNet val set and Pascal-Part-108 test set re-
sults. We report part-level and super-category/object-level mIoU
(or mAvg), averaged over 3 runs.

(a) PartImageNet val set

method backbone mIoU
Part Super-Category

DeepLabv3+ [6] ResNet-50 60.57 -
MaskFormer [12] ResNet-50 60.34 -
Compositor [22] ResNet-50 61.44 -
kMaX-DeepLab [72] ResNet-50 65.75 89.16
CoCal ResNet-50 67.83 90.41
SegFormer [69] MiT-B2 61.97 -
MaskFormer [12] Swin-T 63.96 -
Compositor [22] Swin-T 64.64 -
kMaX-DeepLab [72] ConvNeXt-T 68.52 91.34
CoCal ConvNeXt-T 70.31 92.65

(b) Pascal-Part-108 test set
method Part mIoU mAvg
SegNet [2] 18.6 20.8
FCN [44] 31.6 33.8
DeepLab [5] 31.6 40.8
DeepLabv3+ [6] 46.5 48.9
BSANet [74] 42.9 46.3
GMNet [49] 45.8 50.5
FLOAT [53] 48.0 53.0
HSSN [31] 48.3 -
DeepLabv3+ [6]+ LOGICSEG [32] 49.1 -
kMaX-DeepLab [72] 48.3 49.9
CoCal 49.8 52.0

Cal also enhances super-category segmentation by over 1%, 243
demonstrating robust performance at multiple semantic lev- 244
els. Turning to Pascal-Part-108, CoCal achieves 49.8 part 245
mIoU and 52.0 mAvg with a ResNet-101 backbone, thus 246
establishing new state-of-the-art results. Compared to LO- 247
GISEG [32] and kMaX-DeepLab, CoCal offers improve- 248
ments of 0.7% and 1.5% in part mIoU, respectively, along- 249
side a notable 2.1% boost for object-level segmentation. 250

3.2. Qualitative Results 251

Figure 4 shows three representative examples on PartIma- 252
geNet. Compared to kMaX-DeepLab [72], CoCal produces 253
more accurate boundaries (see the first row) and detects 254
parts that kMaX-DeepLab misses (rows 2 & 3), demonstrat- 255
ing its superior ability to capture fine structures. 256

4. Conclusion 257

In conclusion, this paper introduces CoCal, an innovative 258
model for object parsing that is rooted in a dictionary-based 259
framework. A key aspect of CoCal is its emphasis on eluci- 260
dating the intrinsic relationships between parts and objects, 261
which significantly enhances the interpretability and con- 262
sistency of parsing outcomes. This approach not only im- 263
proves the accuracy of the parsing but also provides a deeper 264
understanding of the complex interplay between part and 265
object entities in images. 266
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5. Related Work601

5.1. Object Parsing602

The extensive literature on object parsing can be divided603
into single-object multi-part parsing [4, 20, 39, 51, 65, 66]604
and multi-object multi-part parsing [22, 49, 53, 74]. Single-605
object multi-part parsing has primarily focused on specific606
classes, such as humans [38, 70, 75], animals [60], and ve-607
hicles [18, 46, 54]. While the methodologies addressing608
multi-object multi-part parsing mainly focus on employing609
top-down or coarse-to-fine strategies. Specifically, Singh610
et al. [53] proposed FLOAT, a factorized top-down pars-611
ing framework by first detecting the object followed with612
zooming in for obtaining higher quality part masks. On the613
contrary, He et al. [22] introduced Compositor, a bottom-up614
architecture designed to iteratively learn objects by cluster-615
ing pixels to derive parts. Recently, there are also explo-616
rations in the closely related area of panoptic part segmen-617
tation within the research community. Notable works such618
as [1, 15, 34, 35, 50, 56] have delved into the semantic pars-619
ing of objects while also distinguishing parts between dif-620
ferent instances. However, a common trend in these works,621
whether focused on semantic object parsing or panoptic622
part segmentation, involves extending standard segmenta-623
tion models, often overlooking the nuanced semantic levels624
of parts. In contrast, CoCal takes a novel approach by fo-625
cusing specifically on semantic object parsing. It redefines626
the paradigm of cluster-based mask transformers and intro-627
duces a novel dictionary-based framework meticulously tai-628
lored for object parsing.629

5.2. Cluster-based Mask Transformer630

With the recent progress in transformers [3], a new631
paradigm named mask classification [12, 13, 55, 58, 59, 73]632
has been proposed, where segmentation predictions are rep-633
resented by a set of binary masks with its class label, which634
is generated through the conversion of object queries to635
mask embedding vectors followed by multiplying with the636
image features. The predicted masks are trained by Hun-637
garian matching with ground truth masks. Thus the essen-638
tial component of mask transformers is the decoder which639
takes object queries as input and gradually transfers them640
into mask embedding vectors. Recently, cluster-based mask641
transformers are introduced in [37, 71, 72], which rethinks642
the design of the decoder by replacing the cross-attention643
with a k-means [43] attention. Building upon these ex-644
plorations, CoCal introduces a global class dictionary and645
replaces the Hungarian matching with a fixed one-to-one646
matching, thereby establishing an interpretable dictionary-647
based framework for part segmentation.648

5.3. Contrastive Learning in Segmentation 649

Contrastive learning [8, 9, 11, 24, 25, 28, 52] has emerged 650
as a prominent technique in computer vision as an effec- 651
tive method for learning feature representation for self- 652
supervised models. The core idea lies in contrasting sim- 653
ilar (positive) data pairs against dissimilar (negative) pairs. 654
Recently, Wang et al. [64] raise a pixel-to-pixel contrastive 655
learning method for semantic segmentation, which enforces 656
pixel embeddings belonging to the same semantic class to 657
be more similar than embeddings from different classes. 658
[7, 17, 33, 47, 57, 68] are built upon this concept, extend- 659
ing it to various segmentation domains. Motivated by these 660
advancements, we propose a component-wise contrastive 661
learning method tailored for modern cluster-based mask 662
transformers, which effectively learns discriminative dictio- 663
nary components within the clustering scheme. 664

5.4. Logical Constraints in Segmentation 665

Few segmentation models [27, 31, 32, 36, 40, 62, 63, 67] 666
consider the implicit logic rules inherent in structured la- 667
bels. While the majority of them are dedicated to human 668
parsing, a few recent works [31, 32] tackle the general seg- 669
mentation in a flexible function and avoid incorporating la- 670
bel taxonomies into the network topology. Concretely, Li 671
et al. [31] enhance the logical consistency by modeling the 672
segmentation as a pixel-wise multi-label classification. Li 673
et al. [32] exploit neuro-symbolic computing for grounding 674
logical formulae onto data. In contrast to these efforts, Co- 675
Cal introduces an object level on top of the part and models 676
logical rules as a contrastive objective during training. 677

6. Extended Experiments and Analyses 678

This section provides details on our experiments, including 679
ablation studies, dataset statistics, training parameters, and 680
an in-depth exploration of CoCal’s design components. 681

6.1. Experimental Setup and Datasets 682

Datasets We conduct experiments on two popular ob- 683
ject parsing benchmarks: PartImageNet [21] and PASCAL- 684
Part-108 [49]. We provide the detailed statistics of each 685
dataset and the class definitions below: 686
• PartImageNet [21] contains 24095 elaborately annotated 687

general images from ImageNet [16], which are split into 688
20481/1206/2408 for train/val/test. It is associated with 689
40 part classes, which are grouped into 11 object classes 690
following the official class definition. 691

• Pascal-Part-108 [49] expands upon the part definition in- 692
troduced in Pascal-Part-58 [10], providing a more intri- 693
cate benchmark with finer part-level details. This exten- 694
sion maintains the original split of VOC [19] and encom- 695
passes a dataset of 10,103 images across 20 object classes 696
and 108 part classes. Our experiments adhere to the orig- 697
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(a) Image (b) Ground Truth (c) kMax-DeepLab (d) CoCal

Figure 4. Qualitative comparison between CoCal and kMaX-DeepLab on PartImageNet. Our CoCal yields more precise part bound-
aries (row 1) and captures missed parts (rows 2 & 3).

inal split, utilizing 4,998 images for training and 5,105698
images for testing.699

Evaluation Metrics We evaluate the performance of Co-700
Cal on the PartImageNet dataset [21] using the mean Inter-701
section over Union (mIoU) on both part and super-category702
levels. It’s important to note that for PartImageNet, we703
choose to report performance on the super-category level704
because the parts in PartImageNet are defined within the705
context of super-category. The hierarchy of super-category706
is inherited for training CoCal on this dataset. In the case707
of Pascal-Part-108, our evaluation includes reporting part708
mIoU, and additionally, we calculate the mAvg on the ob-709
ject level. The mAvg metric, as defined in the literature [74],710
provides the average mIoU score of all parts belonging to an711
object. We refer the reader to FLOAT [53] for a detailed ex-712
planation of these metrics.713

Training details We implement CoCal based on the714
kMaX-DeepLab architecture [72], utilizing its official Py-715
Torch re-implementation codebase. To ensure a fair716
comparison, we adopt the training settings from kMaX-717
DeepLab. The backbone, pretrained on ImageNet [23, 42],718
followed a learning rate multiplier of 0.1. For regular-719
ization and augmentations, we incorporate drop path [26]720

and random color jittering [14]. The optimizer used is 721
AdamW [29, 45] with a weight decay of 0.05. Unless oth- 722
erwise specified, we train all models with a batch size of 723
64 on a single A100 GPU, performing 40,000 iterations 724
on PartImageNet [21] and 10,000 iterations on Pascal-Part- 725
108 [10]. The first 2,000 and 500 steps serve as the warm-up 726
stage, where the learning rate linearly increases from 0 to 727
5 × 10−4. The training objective for CoCal includes the 728
combination of kMaX-DeepLab’s original losses and the 729
proposed contrastive loss terms, as specified in Eq. 5, Eq. 6 730
and Eq. 7: 731

L =λkMaXLkMaX + λp conLp con+ 732

λo conLo con + λlogicLlogic. 733

Here, LkMaX represents the loss from kMaX-DeepLab [72], 734
and λkMaX follows the official setting. The weights for the 735
proposed loss terms are set to λp con = 2, λo con = 2, and 736
λlogic = 1. CoCal uses the exact same number of part and 737
object queries corresponding to the part and object classes 738
in the dataset. Specifically, we set P to 41 and 109, and P̃ to 739
12 and 21 (with one additional learnable component for rep- 740
resenting the background at both the part and object levels) 741
in PartImageNet and Pascal-Part-108, respectively. This de- 742
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sign enables a straightforward and highly interpretable in-743
ference process, using nearest neighbor search for parts and744
objects separately during inference. Afterward, we com-745
pute the top-scoring logical path and reassign the predicted746
classes based on that path.747

6.2. Ablation Studies748

Dictionary Components, Contrastive Objectives, and749
Logical Constraints Table 2 (reproduced from the main750
paper for convenience) shows an ablation on core design751
choices. Simply switching kMaX-DeepLab to a dictionary-752
based version slightly degrades performance (65.75 to753
64.31), but adding contrastive objectives and logical con-754
straints incrementally boosts part mIoU to 67.83, surpassing755
the original baseline.756

Table 2. Ablation of CoCal components on PartImageNet val with
ResNet-50.

method Dict Lp con Lo con Llogic Part mIoU
kMaX-DeepLab % % % % 65.75
Dictionary-based ✓ % % % 64.31
CoCal (ours) ✓ ✓ % % 65.87
CoCal (ours) ✓ ✓ ✓ % 66.53
CoCal (ours) ✓ ✓ ✓ ✓ 67.83

Memory Bank Size S In Table 3, we vary S and observe757
that excessively small or large values degrade performance758
due to insufficient or redundant samples.759

Table 3. Impact of memory bank size on PartImageNet val
(ResNet-50).

# memory bank S Part mIoU
50 66.50
100 67.83
150 67.16
200 67.02

Number of Negative Samples k Table 4 shows that using760
too few negatives (e.g., k = 50) reduces performance to761
66.28 part mIoU, while too many (e.g., k = 200 or “all”)762
also hurts accuracy.763

Table 4. Influence of negative samples on PartImageNet val
(ResNet-50).

# negative sample k Part mIoU
50 66.28
100 67.83
200 66.40
all 65.74

Generalizability of CoCal Finally, Table 5 demonstrates764
that CoCal also boosts other transformer-based frameworks765

such as MaskFormer [12] and Mask2Former [13], improv- 766
ing part mIoU by 3.18 and 2.77, respectively. 767

Table 5. Generalizability to other baselines on PartImageNet val
(ResNet-50).

method
mIoU

Part Super-Category
MaskFormer 60.34 -
CoCal (MaskFormer) 63.52 86.67
Mask2Former 63.62 87.20
CoCal (Mask2Former) 66.39 88.72
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