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ABSTRACT

We study the training of regularized neural networks where the regularizer can
be non-smooth and non-convex. We propose a unified framework for stochastic
proximal gradient descent, which we term PROXGEN, that allows for arbitrary
positive preconditioners and lower semi-continuous regularizers. Our framework
naturally encompasses standard stochastic proximal gradient methods without
preconditioners as special cases. We present two important instances stemming
from our approach: (i) the first proximal version of ADAM, one of the most popular
adaptive SGD algorithm, and (ii) a revised version of PROXQUANT [Bai et al, 2019]
that improves upon the original approach for quantization-specific regularizers by
incorporating the effect of preconditioners when computing proximal mapping.
We analyze the convergence of PROXGEN and show that the whole framework
enjoys the same convergence rate as stochastic proximal gradient descent without
preconditioners. We also empirically show the superiority of proximal methods
compared to subgradient-based approaches via extensive experiments. Interestingly,
our results indicate that proximal methods with non-convex regularizers are more
effective than those with convex regularizers.

1 INTRODUCTION

We study the regularized training of neural networks, which can be formulated as the following
(stochastic) optimization problem

minimize
θ∈Ω

F (θ) :=

f(θ)︷ ︸︸ ︷
Eξ∼P

[
f(θ; ξ)

]
+R(θ) (1)

where θ ∈ Rp represents the network parameter, ξ is the random variable representing mini-batch
data samples, andR(·) is a regularizer encouraging low-dimensional structural constraints on θ.

For the unregularized case, i.e., when R(θ) = 0, stochastic gradient descent (SGD) has been a
prevalent approach to solve the optimization problem stated in Eq. (1). At each iteration, SGD
evaluates the gradient only on a randomly chosen subset of training samples (mini-batch). Vanilla
SGD employs a uniform learning rate for all coordinates, and several adaptive variants have been
proposed, which scale the learning rate for each coordinate by its gradient history. A prime example
of such approaches is ADAGRAD (Duchi et al., 2011), which adjusts the learning rate by the sum
of all the past squared gradients. However, the performance of ADAGRAD degrades in non-convex
dense settings as the learning rates vanish too rapidly. To resolve this issue, exponential moving
average (EMA) approaches such as RMSPROP (Tieleman & Hinton, 2012) and ADAM (Kingma &
Ba, 2015) have been proposed and become popular. These scale down the gradients by square roots of
exponential moving averages of squared past gradients to essentially limit the scope of the adaptation
to only a few recent gradients. In terms of theory, convergence analyses of these unregularized SGD,
whether adaptive or not, have been well studied both for convex (Kingma & Ba, 2015; Reddi et al.,
2018) and non-convex (Chen et al., 2019b; Lei et al., 2019) loss f cases.

The technique of regularization is ubiquitous in machine learning as it can effectively prevent
overfitting and yield better generalization. The `1-regularized training for Lasso estimators/sparse
Gaussian graphical model (GMRF) estimation (Tibshirani, 1996; Ravikumar et al., 2011) and `2
weight decay (Tychonoff, 1943) on parameters are prototypical examples. In the context of deep
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Table 1: Comparison among stochastic (or online) PGD for solving the problem in Eq. (1).

Algorithm
Non-convex

Loss
Non-convex
Regularizer

Preconditioner Momentum
Convergence

Guarantee

ADAGRAD (Duchi et al., 2011) ADAGRAD 3

Ghadimi et al. (2016) 3 3 3

Wang et al. (2018) 3 3 3

Pham et al. (2019) 3 3 3

Davis & Drusvyatskiy (2019) 3 3 3

Xu et al. (2019a) 3 3 3

Xu et al. (2019b) 3 3 ADAGRAD 3

Prox-SGD (Yang et al., 2020) 3 3 3

Davis et al. (2020) 3 3 3 3

PROXGEN (Ours) 3 3 3 3 3

learning, important instances include network pruning (Wen et al., 2016; Louizos et al., 2018), which
induces a sparse network structure, and network quantization (Yang et al., 2019; Courbariaux et al.,
2015; Bai et al., 2019), which gives hard constraints so that parameters have only discrete values.

In many cases, the regularizer is non-smooth around some region (Consider `1 norm at zero).
Therefore, instead of using the gradient, one employs the subgradient of the objective function F (θ)
in Eq. (1). Such a strategy, which is essentially adopted in modern machine learning libraries such
as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019), is problematic as it may slow
down convergence and result in oscillations. A simple idea to tackle this issue is to bypass the
non-smoothness of a regularizer via its proximal operator. This idea is the basis of proximal gradient
descent (PGD) methods, which first update the parameter using the gradient of the loss function f(θ)
and then perform a proximal mapping ofR(θ).

In the non-stochastic case, the PGD with both convex and non-convex regularizers has been ex-
tensively studied in the literature (Reddi et al., 2016; Allen-Zhu, 2017; Wang et al., 2018; Pham
et al., 2019; Chen et al., 2020). Another work, VMFB (Chouzenoux et al., 2014), analyzes the
preconditioned gradient descent on convex regularized problems with non-convex loss but does not
consider the first-order momentum. In contrast, PGD in the stochastic setting has been little explored.
Duchi et al. (2011); Ghadimi et al. (2016) consider PGD to solve the stochastic objectives with
convex regularizers. Recently, Xu et al. (2019b) studies non-convex and non-smooth regularized
problems for DC (difference of convex) functions and Xu et al. (2019a); Davis et al. (2020) present
non-asymptotic analysis for non-convex smooth loss and non-convex regularizers, which is the most
general setting, but do not consider the preconditioner in the update rule.

All the aforementioned studies of the stochastic case, however, focus either on limited settings (e.g.
Duchi et al. (2011) only covers the update rule of ADAGRAD) with convex regularizers only, or
on pure vanilla gradient descent for non-convex regularizers. Hence, they cannot accommodate all
advanced modern optimization algorithms with preconditioners, such as adaptive gradient methods.
The only exception is PROX-SGD (Yang et al., 2020), with the caveat that PROX-SGD update rule is
not an exact PGD. Moreover, the theory in Yang et al. (2020) only guarantees the convergence, not
how fast Prox-SGD converges, and furthermore this analysis is performed without considering the
preconditioners. Table 1 summarizes the previous studies and our work in terms of stochastic PGD.

In this paper, we propose an exact framework for stochastic proximal gradient methods with arbitrary
positive preconditioners and lower semi-continuous (possibly non-convex) regularizers. With our
framework, our goal is to provide theoretical and empirical understanding of stochastic proximal
gradient methods. Our main contributions are summarized as follows:

• We propose the first general family of stochastic proximal gradient methods, which we term
PROXGEN. We introduce two important instances stemming from our approach: (i) the first
proximal version of ADAM (Kingma & Ba, 2015) and (ii) a revised version of PROXQUANT (Bai
et al., 2019) that improves upon the original approach for quantization-specific regularizers by
incorporating the effect of preconditioners when computing proximal mappings.
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Algorithm 1 PROXGEN: A General Stochastic Proximal Gradient Method

1: Input: Stepsize αt, {ρt}t=Tt=1 ∈ [0, 1), regularization parameter λ, and small constant 0 < δ << 1.
2: Initialize: θ1 ∈ Rd, m0 = 0 ∈ Rd, and C0 = O ∈ Rd×d.
3: for t = 1, 2, . . . , T do
4: Draw a minibatch sample ξt from P
5: gt←∇f(θt; ξt) . Stochastic gradient at time t
6: mt← ρtmt−1 + (1− ρt)gt . First-order momentum estimate

7: Ct← Preconditioner construction

8: θt+1 ∈ argmin
θ∈Ω

{
〈mt, θ〉+ λR(θ) +

1

2αt
(θ − θt)T

(
Ct + δI)(θ − θt)

}
9: end for

10: Output: θT+1

• We analyze the convergence of the general PROXGEN family and identify essential conditions for
convergence. We show that PROXGEN enjoys the same convergence rate as vanilla SGD under
mild conditions, and highlight the challenges in our theory and improvements upon previous work.
Our convergence guarantee encompasses several existing approaches as special cases.

• In terms of practice, we demonstrate the superiority of proximal methods over subgradient-based
methods with various non-convex regularizers which have not yet been studied in deep learning.
Interestingly, our experiments indicate that proximal methods with non-convex regularizers are
more effective than with convex regularizers for learning sparse deep models.

2 A GENERAL FAMILY OF STOCHASTIC PROXIMAL GRADIENT METHODS

In this section, we present PROXGEN, a general family of stochastic proximal gradient methods, and
present both existing and novel instances as showcase examples in our family. Algorithm 1 describes
the details of PROXGEN. The update rule on line 8 of Algorithm 1 can be written more compactly:

θt+1 ∈ argmin
θ∈Ω

{
〈mt, θ〉+ λR(θ) +

1

2αt
(θ − θt)T

(
Ct + δI

)
(θ − θt)

}
= proxCt+δIαtλR(·)

(
θt − αt(Ct + δI)−1mt

)
(2)

where the proximal operator in Eq. (2) is defined as proxAh (z) = argminx{h(x) + 1
2‖x− z‖

2
A}. In

PROXGEN, we allow both the loss and the regularizer to be non-convex. Now, we introduce possible
examples according to the proper combinations of preconditioners Ct and regularizersR(·).

Existing Instances of PROXGEN. We briefly recover some known examples in PROXGEN family.

• ADAGRAD (Duchi et al., 2011) is the first key instance of adaptive gradient methods where
Ct = (

∑t
τ=1 gτg

T
τ )1/2 andR(θ) = ‖θ‖1. Any convex regularizerR(·) is allowed.

• The proximal Newton methods (Lee et al., 2012) employ the exact Hessian Ct = ∇2f(θt) and
R(θ) = ‖θ‖1. In addition, we can approximate the exact Hessian, which yield proximal Newton-
type methods such as quasi-Newton approximation (Becker et al., 2019), L-BFGS approximation
(Liu & Nocedal, 1989), and adding a multiple of the identity to the Hessian.

Although the above examples enjoy good theoretical properties in convex settings, many of the
modern practical optimization problems involve non-convex loss functions such as learning deep
models. Moreover, it is known that non-convex regularizers yield better performance (also in terms
of theory) than convex penalties in some applications (see Fu (1998); Park & Yoon (2011); Yang &
Lozano (2017); Yun et al. (2019b) and references therein). Considering this motivation and recent
advanced optimizers, we arrive at the following new examples.

Novel Instances of PROXGEN. Beyond the well-known methods above, PROXGEN naturally
introduces proximal versions of standard SGD techniques developed for solving unregularized
problems for deep learning. The following examples are just a few instances that have not been
explored so far, and PROXGEN can cover a broader range of new examples depending on the
combinations of preconditioners and regularizers.
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• The proximal version of ADAM (Kingma & Ba, 2015) with `q regularization is a possible example
where Ct =

√
βCt−1 + (1− β)g2

t with β ∈ [0, 1) andR(θ) = ‖θ‖q for 0 ≤ q ≤ 1. We mainly
validate the superiority of our novel proximal version of ADAM to the usual subgradient-based
counterpart empirically in Section 4.

• We can also consider the proximal version of KFAC (Martens & Grosse, 2015). For an L-layer
neural network, KFAC approximates the Fisher information matrix with layer-wise block diagonal
structure where l-th diagonal block Ct,[l] corresponds to Kronecker-factored approximation with
respect to the parameters at l-th layer. The proximal version of KFAC, which corresponds to
Ct,[l] = E[δlδ

T
l ] ⊗ E[al−1a

T
l−1] and R(θ) = ‖θ‖q where δl is the gradient with respect to the

outputs of l-th layer and al−1 is the activation of (l − 1)-th layer, could be another example.

Examples of Proximal Mappings for PROXGEN. We provide update rules for PROXGEN with `q
regularization (0 ≤ q ≤ 1) and diagonal preconditioners. Diagonal preconditioners are used by
popular adaptive gradient methods such as ADAM. Specifically, we consider regularizer R(θ) =
λ
∑p
j=1 |θj |q for θ ∈ Rp with diagonal preconditioner matrix Ct. Note that for Ct = I (i.e.

vanilla gradient descent), it is known that closed-form solutions exist for proximal mappings for
q ∈ {0, 1

2 ,
2
3 , 1} (Cao et al., 2013). We denote the i-th coordinate of the vector θt as θt,i and the

diagonal entry [Ct]ii as Ct,i
• `1 regularization. The proximal mappings for the case of `1 regularization with preconditioner
can be computed efficiently via soft-thresholding as

θ̂t,i = θt,i − αt
mt,i

Ct,i + δ
, θt+1,i = sign

(
θ̂t,i
)(∣∣θ̂t,i∣∣− αtλ

Ct,i + δ

)
(3)

• `0 regularization. In case of `0 regularization, we can compute the closed-form solutions via
hard-thresholding as

θ̂t,i = θt,i − αt
mt,i

Ct,i + δ
, θt+1,i =


θ̂t,i, |θ̂t,i| >

√
2αtλ
Ct,i+δ

,

0, |θ̂t,i| <
√

2αtλ
Ct,i+δ

{0, θ̂t,i}, |θ̂t,i| =
√

2αtλ
Ct,i+δ

(4)

The closed-form proximal mappings for `1/2 and `2/3 regularization are provided in the Appendix.

Table 2: PROXQUANT versus revised PROXQUANT

PROXQUANT proxαtλR(·)

(
θt − αt(Ct + δI)−1mt

)
Revised

PROXQUANT
proxCt+δIαtλR(·)

(
θt − αt(Ct + δI)−1mt

)
Revised PROXQUANT (Bai et al., 2019). The
recently proposed PROXQUANT proposes
novel regularizations for network quantiza-
tion. Especially for binary quantization, a W-
shaped regularizer is defined as Rbin(θ) =
‖θ − sign(θ)‖1 where sign(θ) is applied on
θ in an element-wise manner. Using this regularizer, the main difference between PROXQUANT

and our PROXGEN approach is shown in Table 2. Note that PROXQUANT (top in Table 2) does not
consider the effect of preconditioners when computing proximal mappings. Therefore, we revise
the proximal update in PROXQUANT by considering preconditioners in proximal mappings with
PROXGEN (bottom in Table 2). Moreover, we also propose generalized regularizers motivated
by `q regularization for 0 < q < 1: Rqbin(θ) = ‖θ − sign(θ)‖q. In terms of theory, Bai et al.
(2019) prove the convergence of PROXQUANT only for the full-batch gradient with differentiable
regularizers, which is also guaranteed only for vanilla gradient descent. In contrast, using our revised
PROXQUANT, we can completely bridge the gap in theory (via Theorem 1 in Section 3, which is
stated for stochastic optimization), and we provide the exact update rule for solving problem in
Eq. (1). We also investigate the empirical differences of PROXQUANT and our revised PROXQUANT

in Section 4.

3 CONVERGENCE ANALYSIS

In this section, we provide convergence guarantees for the PROXGEN family. Our goal is to find
an ε-stationary point for the problem in Eq. (1) where ε is the required precision. For notational
convenience, we assume that the regularization parameter λ is incorporated intoR(θ) in Eq. (1). To
guarantee the convergence under this setting, we should deal with the subdifferential defined as:
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Definition 1 (Fréchet Subdifferential). Let ϕ be a real-valued function. The Fréchet subdifferential
of ϕ at θ̄ with |ϕ(θ̄)| <∞ is defined by ∂̂ϕ(θ̄) := {θ∗ ∈ Ω

∣∣∣ lim inf
θ→θ̄

ϕ(θ)−ϕ(θ̄)−〈θ∗,θ−θ̄〉
‖θ−θ̄‖ ≥ 0}.

To derive the convergence bound, we make the following mild conditions:

(C-1) (L-smoothness) The loss function f is differentiable, L-smooth, and lower-bounded:
∀x, y, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ and f(x∗) > −∞ for the optimal solution x∗.

(C-2) (Bounded variance) The stochastic gradient gt = ∇f(θt; ξ) is unbiased and has the bounded
variance: Eξ

[
∇f(θt; ξ)

]
= ∇f(θt), Eξ

[
‖gt −∇f(θt)‖2

]
≤ σ2.

(C-3) (i) final step-vector is finite, (ii) the stochastic gradient is bounded, and (iii) the momentum
parameter should be exponentially decaying: (i) ‖θt+1 − θt‖ ≤ D, (ii) ‖gt‖ ≤ G, (iii) ρt =
ρ0µ

t−1 with D,G > 0 and ρ0, µ ∈ [0, 1).
(C-4) (Sufficiently positive-definite) The minimum eigenvalue of effective spectrums should be

uniformly lower bounded over all time t: ∀t, λmin

(
αt(Ct + δI)−1

)
≥ γ > 0.

(C-1) and (C-2) are standard in general non-convex optimization (Ghadimi & Lan, 2013; Ghadimi
et al., 2016; Zaheer et al., 2018; Xu et al., 2019a). In addition, (C-3) is extensively studied in previous
literature in the context of adaptive gradient methods (Kingma & Ba, 2015; Reddi et al., 2018; Chen
et al., 2019a). Lastly, a similar condition to (C-4) is also considered in Chen et al. (2019a); Yun et al.
(2019a), and it can be easily satisfied in practice. More discussion on (C-4) is provided later.

Since the loss function f is assumed to be differentiable as in (C-1), we have, at stationary points,
0 ∈ ∂̂F (θ) = ∇f(θ) + ∂̂R(θ), so the convergence criterion is slightly different from that of general
non-convex optimization. Hence, we use the following convergence criterion E[dist(0, ∂̂F (θ))] ≤ ε
for an ε-stationary point where dist(x,A) denotes the distance between a vector x and a set A. If no
regularizer is considered (R = 0), this criterion boils down to the one usually used in non-convex
optimization, E[‖∇f(θ)‖] ≤ ε. We are now ready to state our main theorem for general convergence.
Theorem 1. Let θa denote an iterate uniformly randomly chosen from {θ1, · · · , θT }. Under the
conditions (C-1), (C-2), (C-3), (C-4) with the initial stepsize α0 ≤ δ

3L and non-increasing stepsize αt,

PROXGEN, Algorithm 1, is guaranteed to yield Ea[dist(0, ∂̂F (θa))2] ≤ Q1σ
2

T

∑T−1
t=0

1
bt

+ Q2∆
T + Q3

T
where ∆ = f(θ)− f(θ∗) with optimal point θ∗, and bt is the minibatch size at time t. The constants
{Qi}3i=1 on the right-hand side depend on the constants {α0, δ, L,D,G, ρ0, µ, γ}, but not on T .

From Theorem 1, the appropriate minibatch size is important to ensure a good convergence. Various
settings for the minibatch size could be employed for convergence guarantee (for example, bt = t),
but considering practical cases, we provide the following important corollary for constant minibatch.
Corollary 1 (Constant Mini-batch). Under the same assumptions as in Theorem 1 with sample size
n and constant minibatch size bt = b = Θ(T ) = Θ(

√
n), we have E

[
dist(0, ∂̂F (θa))2

]
≤ O

(
1/T

)
and the total complexity is O(1/ε4) in order to have E

[
dist

(
0, ∂̂F (θa)

)]
≤ ε.

Here we make several remarks on our results and relationship with prior work.
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Iterations, t ×104
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m
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(
t(C

t+
I)

1 )

Condition (C-4)

= 10 3

= 10 5

= 10 8

Figure 1: Empirical re-
sults for condition (C-4).

• Improvements upon Prior Work. The most challenging parts in our
analysis compared to previous study (Xu et al., 2019a) (which is only for
vanilla SGD) is that we should handle the momentum mt and non-trivial
preconditioner Ct. Due to the existence of mt, it is highly non-trivial to
bound the term ‖mt −∇f(θt)‖2 without suitable assumptions whereas
‖gt − ∇f(θt)‖2 in Xu et al. (2019a) can be easily bounded using (C-
2). The second challenge is to deal with quadratic approximation term
(θ − θt)T(Ct + δI)(θ − θt) in Algorithm 1 which is not problematic in
Xu et al. (2019a) due to trivial Ct = I . We can successfully bypass those
difficulties using mild conditions (C-3) and (C-4) respectively and also allow non-increasing stepsize.
• On Condition (C-4). (C-4) is easily satisfied both theoretically and empirically. Most of the
popular optimization algorithms for deep learning such as ADAGRAD, ADAM, and KFAC satisfies
this condition (see Appendix D). In order to investigate whether this condition could be satisfied
in real problems, we train ResNet-34 on CIFAR-10 dataset. In Figure 1, we can see the minimum
eigenvalue of αt(Ct + δI)−1 tends to increase, so the condition (C-4) is also satisfied empirically.
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Figure 2: Comparison for sparse VGG-16 on CIFAR-10 dataset.
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Figure 3: Comparison for sparse ResNet-34 on CIFAR-10 dataset.

• Implications of Condition (C-4) on Theory. Our analysis relies on (C-4), the lower bound
for the minimum eigenvalue of Γt := αt(Ct + δI)−1. This means that Theorem 1 guarantees
Ea[dist(0, ∂̂F (θa)2] ≤ O(1/

√
T ) (in case of b = Θ(

√
n) as in Corollary 1) for any change of basis

of Γt, so in that sense, we provide a worst-case analysis and there is room for more optimistic bounds.
• Connections to Second-order Methods. Our analysis can provide guarantees for positive second-
order preconditioners as long as (C-4) is satisfied (The empirical Fisher information (Martens &
Grosse, 2015) is one example). Although second-order solvers generally enjoy very fast convergence
under strongly convex loss (Lee et al., 2012; Zhang et al., 2019), it can be understood that our theory
guarantees at least a sublinear rate for such second-order curvatures with less stringent conditions.

4 EXPERIMENTS

We consider two important tasks for regularized training in deep learning communities: (i) training
sparse neural networks and (ii) network quantization. Throughout our experiments, we consider
ADAM as a representative of PROXGEN where mt = ρtmt−1 + (1− ρt)gt with constant decaying
parameter ρt = 0.9 and Ct =

√
βCt−1 + (1− β)g2

t with β = 0.999 in Algorithm 1. The details on
other hyperparameter/experiment settings are provided in the Appendix.
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Table 3: Comparison for binary neural networks. The best performance in mean value is highlighted.
Test Error (%)

Baselines PROXGEN (Ours)

Model
Full

Precision
(32-bit)

BinaryConnect
Courbariaux et al. (2015)

PROXQUANT

Bai et al. (2019)

Revised
ProxQuant

`1

Revised
ProxQuant
`2/3

Revised
ProxQuant
`1/2

ResNet-20 8.06 9.54 ± 0.03 9.35 ± 0.13 9.50 ± 0.12 9.72 ± 0.06 9.78 ± 0.18
ResNet-32 7.25 8.61 ± 0.27 8.53 ± 0.15 8.29 ± 0.07 8.22 ± 0.05 8.43 ± 0.15
ResNet-44 6.96 8.23 ± 0.23 7.95 ± 0.05 7.68 ± 0.07 7.91 ± 0.08 7.90 ± 0.13
ResNet-56 6.54 7.97 ± 0.22 7.70 ± 0.06 7.52 ± 0.18 7.60 ± 0.09 7.61 ± 0.12

Training Sparse Neural Networks. Motivated by the lottery ticket hypothesis (Frankle & Carbin,
2019), we consider training VGG-16 (Simonyan & Zisserman, 2014) and ResNet-34 (He et al., 2016)
on CIFAR-10 dataset using sparsity encouraging regularizers. Toward this, we consider the following
objective function with `q regularization: F (θ) := Eξ∼P[f(θ; ξ)] + λ

∑p
j=1 |θj |q where 0 ≤ q ≤ 1.

We train the network parameters with the closed-form proximal mappings introduced in Section 2.

We compare PROXGEN with subgradient methods and also include PROX-SGD (Yang et al., 2020)
as a baseline especially for `1 regularization since PROX-SGD considers only convex regularizers. In
PROX-SGD, the hand-crafted fine-tuned scheduling on αt and ρt is essential for fast convergence
and good performance, but in our experiments we use standard settings ρt = 0.9 with step-decay
learning rate scheduling for fair comparisons. For `0 regularization, the problem in Eq. (1) cannot be
optimized in a subgradient manner, so we compare PROXGEN with another popular baseline, `0hc
(Louizos et al., 2018) which approximates the `0-norm via hard-concrete distributions.

Figures 2 and 3 illustrate the results for VGG-16 and ResNet-34 respectively. In terms of convergence,
PROXGEN shows faster convergence than PROX-SGD for `1 case, but there is no difference between
PROXGEN and subgradient methods. However, there are notable differences in convergence for non-
convex regularizers `1/2 and `2/3, which get bigger as q decreases. We believe this might be because
the `q-norm derivative, q/|θ|1−q , is very large for non-zero tiny θ for q ∈ (0, 1). Meanwhile, ∂|θ|/∂θ
is merely the sign value regardless of size of θ, so the large gradient of |θ|q may hinder convergence.
The learning curves in Figure 2-(b,c) and 3-(b,c) empirically corroborate this phenomenon.

In terms of performance, we can see that PROXGEN consistently achieves better performance than
baselines for both VGG-16 and ResNet-34 with similar or even better sparsity level. Importantly,
PROXGEN with `0 outperforms `0hc baseline by a great margin. This might be due to the design of
`0hc , which approximates ‖θ‖0 =

∑p
j=1 I{θj 6= 0} with binary mask zj parameterized by learnable

probability πj for each coordinate. Thus, the number of parameters to be optimized is doubled, which
might make optimization harder. In constrast, PROXGEN does not introduce additional parameters.

More results for MCP (Zhang et al., 2010) and SCAD (Fan & Li, 2001) regularizers are in Appendix.

Training Binary Neural Networks. In the second set of experiments, we consider the network
quantization constraining the parameters to some set of discrete values which is a key approach for
model compression. We evaluate our revised PROXQUANT in Table 2 with extended regularization
Rqbin in Section 2. We consider the following objective function with quantization-specific regular-
izers: F (θ) := Eξ∼P[f(θ; ξ)] + λ

∑p
j=1 |θj − sign(θj)|q where 0 ≤ q ≤ 1. For comparisons, we

quantize ResNet on CIFAR-10 dataset and follow the same experiment settings as in PROXQUANT.

Table 3 presents the results. For all q values, revised PROXQUANT consistently outperforms the
baselines except for ResNet-20, which implies PROXGEN may work better for larger networks.
As such, our generalized regularizers Rqbin contribute to one of the state-of-the-art optimization-
based methods in network quantization. Notably, revised PROXQUANT `1 greatly outperforms
PROXQUANT baseline while these two approaches differ only in update rules (see Table 2). Hence,
we can conclude that revised PROXQUANT based on PROXGEN provides an exact proximal update
and also yields more generalizable solutions. In our experience, revised PROXQUANT `0 shows little
degradation in performance, so we do not include this result. However, revised PROXQUANT `0
shows superiority to baselines for language modeling, whose preliminary results are in Appendix.
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Figure 4: Lasso simulations with different initialization schemes.

5 A CLOSER LOOK INTO PROX-SGD (YANG ET AL., 2020) VS. PROXGEN

Prox-SGD (Yang et al., 2020) is the approach closest to our PROXGEN method. However, PROX-
SGD is not an exact proximal approach and is significantly different from PROXGEN. PROXGEN’s
update rule involves directly solving the quadratic subproblem (Eq. (2)). In contrast, PROX-SGD’s
update rule consists of two stages: (i) solving the quadratic subproblem without learning rate, then (ii)
updating the parameters with the computed direction (i.e. θ̂t − θt) by the learning rate αt (Eq. (5)).

θ̂t = argmin
θ∈Ω

{
〈mt, θ〉+ λR(θ) +

1

2
(θ − θt)T

(
Ct + δI

)
(θ − θt)

}
, θt+1 = θt + αt(θ̂t − θt) (5)

To clearly see the differences between both approaches, we conduct two studies.

Study 1: Lasso Support Recovery. For this task, the two-stage update scheme of PROX-SGD
might have some potential issues. For example, for `1-regularized problems, the updated parameter
θt+1 (Eq. (5)) might not achieve exact zero (while θ̂t can) whereas θt+1 for PROXGEN (Eq. (2)) can
attain exact zero value according to the update rule (Eq. (3)) in Section 2. Another potential caveat is
that PROX-SGD might overestimate the sparsity level. In view of the above, we run Lasso simulations
with different two initialization schemes: (i) random initialization and (ii) zero initialization. For
random initialization, it can be seen in Figure 4-(a) that PROX-SGD could not achieve exact zero
value, which corroborates our first observation. More interestingly, for zero initialization, we can
see in Figure 4-(b) that the estimates using PROX-SGD are exactly zeros for all coordinates, which
supports our second observation. This might be because θ̂t (Eq. (5)) is always zero since the quadratic
subproblem does not consider the learning rate, which might overestimate the sparsity level. Hence,
the subsequent iterate θt+1 would be always zero since we initialize the parameters with zeros. On
the other hand, PROXGEN correctly recovers the support in both cases.

Figure 5: Learning curve.

Study 2: DenseNet-201 on CIFAR-100 Dataset. To validate the supe-
riority of PROXGEN upon PROX-SGD, we revisit the largest experiments
in Yang et al. (2020). We train DenseNet-201 architecture on CIFAR-100
dataset with `1 regularization since PROX-SGD only consider convex
regularizers. For both methods, we use the same hyperparameter settings
for fair comparison. Figure 5 illustrates the training learning curves, and
it can be seen that our PROXGEN achieves faster convergence as well as
lower objective values. For our experience, the learning curves show the
similar dynamics for different λ values.

Comparison of Theoretical Contributions. Yang et al. (2020) guarantees the convergence of PROX-
SGD, but not how fast it converges. Moreover, this is proved without considering preconditioners.
In contrast, our analysis for the PROXGEN framework appropriately incorporates the first-order
momentum and arbitrary positive preconditioner with detailed non-asymptotic convergence.

6 CONCLUSION

In this work, we proposed PROXGEN, the first general family of stochastic proximal gradient
methods. Within our framework, we presented novel examples of proximal versions of standard
SGD approaches, including a proximal version of ADAM. We analyzed the convergence of the
whole PROXGEN family and showed that PROXGEN can encompass the results of several previous
studies. We also demonstrated that PROXGEN empirically outperforms subgradient-based methods
for popular deep learning problems. As future work, we plan to study efficient approximations of
proximal mappings for structured regularizers such as `1/`q norms with preconditioners.
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APPENDIX

A ADDITIONAL EXPERIMENTS: SPARSE NEURAL NETWORKS WITH MCP
AND SCAD NON-CONVEX REGULARIZERS

We provide the additional experiments for sparse neural networks with MCP (Zhang et al., 2010) and SCAD
(Fan & Li, 2001) non-convex regularizers. Figure 6 and 7 illustrate the results for VGG-16 and ResNet-34
respectively. As shown in Section 4 and these figures, PROXGEN is very effective for solving the non-convex
regularized problems.

B DETAILS ON EXPERIMENTAL SETTINGS

Sparse Neural Networks. To reflect the most practical training settings, we first tune the weight-
decay parameter ζ without `q regularizers. For weight-decay coefficients, we consider the candidates
ζ ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5} for ζ and the best ζ value is 0.2 for both networks
VGG-16 and ResNet-34 in our experience. After tuning weight-decay coefficient ζ, we consider both decoupled
weight decay (Loshchilov & Hutter, 2019) and `q regularization whose detail update rule is described in Al-
gorithm 2. For all comparison methods except `0hc , the recommended stepsize αt = 0.001 is employed, but
we tune this stepsize for `0hc baseline. We consider a broad range of regularization parameters for all methods:
λ ∈ {0.001, 0.002, 0.005, 0.01, 0.02, · · · , 1.0, 2.0, 5.0}. With these hyperparameter settings, we consider the
total 300 epochs and divide the learning rate at 150-th and 250-th epoch by 10.

Binary Neural Networks. In this experiment, we follow the same experimental settings in baseline
PROXQUANT (Bai et al., 2019). We first pre-train ResNet-{20, 32, 44, 56} with full-precision and initialize the
network parameters with these pre-trained weights. Then, we consider the total 300 epochs and hard-quantize
the networks at 200-th epoch (i.e. quantizing the weight parameters to +1 or −1). We employ the homotopy
method introduced in Bai et al. (2019): annealing the regularization paramter λ as λepoch = λ × epoch. For
initial value of λ, we use λ = 10−8 or λ = 5 · 10−8 for all ResNet architecture. We use the constant stepsize
αt = 0.01 as recommended in Bai et al. (2019).

Lasso Support Recovery. We generate simple Lasso simulations with problem dimension p = 500 and
n = 100 data samples. The number of non-zero entries in true parameter vector θ∗ ∈ Rp is set to 10. The
design matrix X ∈ Rn×p is generated from standard Gaussian distribution N (0, 1) and we randomly assign
+1 or −1 for the non-zero value in true parameter at random 10 coordinates. The response variable y ∈ Rn is
generated with small noise by y = Xθ∗ + ε where ε ∼ N (0, 0.052). For both PROXGEN and PROX-SGD, we
employ ADAM for preconditioner matrix Ct construction.

Here, we introduce preliminary results of revised PROXQUANT `0 on language modeling. For this experiment,
we train one hidden layer LSTM with embedding dimension 300 and 300 hidden units according to Bai et al.
(2019). First, we pre-train the full-precision LSTM and initialize the network with pre-trained weights. We
consider the total 80 epochs and divide the learning rate by 1.2 if the validation loss does not decrease. Table 4
shows the preliminary results and revised PROXQUANT `0 is superior to the PROXQUANT baseline in this task.

Table 4: Preliminary results on revised PROXQUANT `0 for LSTM models.

Algorithm Test Perplexity

Full-precision (32-bit) 88.5

BinaryConnect Courbariaux et al. (2015) 372.2
PROXQUANT Bai et al. (2019) 288.5

revised PROXQUANT `0 (Ours) 223.4
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Figure 6: Comparison for sparse VGG-16 on CIFAR-10 dataset with other non-convex regularizers.
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Figure 7: Comparison for sparse ResNet-34 on CIFAR-10 dataset with other non-convex regularizers.

C DERIVATIONS FOR PROXIMAL MAPPINGS

Here, we derive the concrete update rule for `q regularization with diagonal preconditioners as introduced in
Section 2.

`1/2 regularization. First, we review the closed-form proximal mappings for `1/2 regularization of vanilla
SGD. First, we consider the following one-dimensional program:

x̂ = argmin
x
{(x− z)2 + λ|x|1/2} (6)

For the program Eq. (6), it is known that the closed-form solution exists Cao et al. (2013) as

x̂ =


2
3
|z|
(

1 + cos
(

2
3
π − 2

3
ϕλ(z)

))
if z > p(λ)

0 if |z| ≤ p(λ)

− 2
3
|z|
(

1 + cos
(

2
3
π − 2

3
ϕλ(z)

))
if z < −p(λ)

(7)

where ϕλ(z) = arccos
(
λ
8

( |z|
3

)−3/2
)

and p(λ) =
3√54
4

(λ)2/3. Based on this closed-form solution, we derive
PROXGEN for `1/2 regularization with diagonal preconditioners. By Eq. (2), we have

θ̂t = θt − αt(Ct + δI)−1mt (8)

θt+1 ∈ proxCt+δIαtλR(·)(θ̂t) (9)

= argmin
θ

{1

2
‖θ − θ̂t‖2Ct+δI + λ

p∑
j=1

|θj |1/2
}

(10)

Since the program Eq. (10) is coordinate-wise decomposable (since the preconditioner matrix Ct is diagonal),
we can split Eq. (10) into

θt+1,i = argmin
θi

{1

2
(Ct,i + δ)(θi − θ̂t,i)2 + αtλ|θi|1/2

}
= argmin

θi

{
(θi − θ̂t,i)2 +

2αtλ

Ct,i + δ
|θi|1/2

}
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for the i-th coordinate. From Eq. (6), we can derive

θt+1,i =


2
3
|θ̂t,i|

(
1 + cos

(
2
3
π − 2

3
ϕλ(θ̂t,i)

))
if θ̂t,i > p(λ)

0 if |θ̂t,i| ≤ p(λ)

− 2
3
|θ̂t,i|

(
1 + cos

(
2
3
π − 2

3
ϕλ(θ̂t,i)

))
if θ̂t,i < −p(λ)

where

ϕλ(θ̂t,i) = arccos
( αtλ

4(Ct,i + δ)

( |θ̂t,i|
3

)−3/2
)
, p(λ) =

3
√

54

4

( 2αtλ

Ct,i + δ

)2/3

.

`2/3 regularization. Now, we provide the closed-form solutions for proximal `2/3 mappings with diagonal
preconditioners. Similar to `1/2 regularization, we start from the closed-form solutions of the following program:

x̂ = argmin
x
{(x− z)2 + λ|x|2/3} (11)

The closed-form solution for the program Eq. (11) is known to be

x̂ =



(
|A|+

√
2|z|
|A| −|A|

2

2

)3

if z > 2
3

4
√

3λ3

0 if |z| ≤ 2
3

4
√

3λ3

−

(
|A|+

√
2|z|
|A| −|A|

2

2

)3

if z < − 2
3

4
√

3λ3

(12)

where

|A| = 2√
3
λ1/4

(
cosh

(φ
3

))1/2

, φ = arccosh
(27z2

16
λ−3/2

)
(13)

Based on this formulation, we derive the closed-form proximal mappings with diagonal preconditioner Ct. By
Eq. (2), we have

θ̂t = θt − αt(Ct + δI)−1mt (14)

θt+1 ∈ proxCt+δIαtλR(·)(θ̂t) (15)

= argmin
θ

{1

2
‖θ − θ̂t‖2Ct+δI + λ

p∑
j=1

|θj |2/3
}

(16)

As in `1/2 case, the program Eq. (16) is coordinate-wise separable, so it suffices to solve the sub-problems for
each coordinate as

θt+1,i = argmin
θi

{1

2
(Ct,i + δ)(θi − θ̂i)2 + αtλ|θi|2/3

}
= argmin

θi

{
(θi − θ̂t,i)2 +

2αtλ

Ct,i + δ
|θi|2/3

}
From Eq. (11), we can derive

θt+1,i =



(
|A|+

√
2|θ̂t,i|
|A| −|A|

2

2

)3

if θ̂t,i > 2
3

4
√

3λ3

0 if |θ̂t,i| ≤ 2
3

4
√

3λ3

−

(
|A|+

√
2|θ̂t,i|
|A| −|A|

2

2

)3

if θ̂t,i < − 2
3

4
√

3λ3

where

|A| = 2√
3

( 2αtλ

Ct,i + δ

)1/4(
cosh

(φ
3

))1/2

, φ = arccosh
(27θ̂2

t,i

16

( 2αtλ

Ct,i + δ

)−3/2)
In addition to `q regularization, we provide the closed-form proximal mappings for another regularizers with
non-trivial preconditioners.

14
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MCP regularization. Before introducing the closed-form of proximal m mappings for MCP regularized
problems with diagonal preconditioners, we first review the MCP regularizer. The MCP regularizer is defined as

ρλ(x; b) =

{
λ|x| − x2

2b
if |x| ≤ bλ

bλ2

2
if |x| > bλ

(17)

where b > 0 is called the MCP parameter and λ is a regularization parameter. Our goal is to derive the proximal
mapping of this regularizer with diagonal preconditioner.

Now, we start from the closed-form solutions of the following program:

x̂ = argmin
x
{1

2
(x− z)2 + ρλ(x; b)} (18)

For this program, the closed-form solution is known as

x̂ = sign(z) min
{ bmax{|z| − λ, 0}

b− 1
, |z|
}

(19)

Based on this closed-form solution, we derive the closed-form proximal mappings with diagonal preconditioner
Ct. By Eq. (2), we have

θ̂t = θt − αt(Ct + δI)−1mt (20)

θt+1 ∈ proxCt+δIαtρλ(·;b)(θ̂t) (21)

= argmin
θ

{1

2
‖θ − θ̂t‖2Ct+δI + αtρλ(θ; b)

}
(22)

Since this program is also coordinate-wise separable, we could have for each coordinate

θt+1,i = sign(θ̂t,i) min
{ bmax{|θ̂t,i| − αtλ

Ct,i+δ
, 0}

b− 1
, |θ̂t,i|

}
(23)

SCAD regularization. We first introduce SCAD regularizer defined as :

ρλ(x; a) =


λ|x| if |x| ≤ λ
−λ2−2aλ|x|+x2

2(a−1)
if λ < |x| ≤ aλ

(a+1)λ2

2
if |x| > aλ

(24)

where a > 2 is called the SCAD parameter and λ is a regularization parameter. As in MCP regularizer, we start
from the following program

x̂ = argmin
x

{1

2
‖x− z‖2 + ρλ(x; a)

}
The closed-form solution for this program is known as

x̂ =


sign(z) max{|z| − λ, 0} if |z| ≤ 2λ
(a−1)z−sign(z)aλ

a−2
if 2λ < |z| ≤ aλ

z if |z| > aλ

(25)

Based on this formulation, we could derive the closed-form solution for PROXGEN with diagonal preconditioner.
By Eq. (2), we have

θ̂t = θt − αt(Ct + δI)−1mt (26)

θt+1 ∈ proxCt+δIαtρλ(·;a)(θ̂t) (27)

= argmin
θ

{1

2
‖θ − θ̂t‖2Ct+δI + αtρλ(θ; a)

}
(28)

Since the program is coordinate-wise decomposable, we have for each coordinate

θt+1,i =


sign(θ̂t,i) max{|θ̂t,i − λ̂i|, 0} if |θ̂t,i| ≤ 2λ̂i
(a−1)θ̂t,i−sign(̂)θt,iaλ̂i

a−2
if 2λ̂i < |θ̂t,i| ≤ aλ̂i

θ̂t,i if |θ̂t,i| > aλ̂i

(29)

where λ̂i = αtλ
Ct,i+δ

.

Although the derivations look little complicated for both cases, we emphasize that both two closed-form solutions
can be efficiently implemented in a GPU-friendly manner.

15
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Algorithm 2 PROXGENW: A General Stochastic Proximal Gradient Method with Weight Decay

1: Input: Stepsize αt, {ρt}t=Tt=1 ∈ [0, 1), regularization parameter λ, small constant 0 < δ << 1,
and weight decay regularization parameter ζ.

2: Initialize: θ1 ∈ Rd, m0 = 0, and C0 = 0.
3: for t = 1, 2, . . . , T do
4: Draw a minibatch sample ξt from P
5: gt ←∇f(θt; ξt) . Stochastic gradient at time t
6: mt← ρtmt−1 + (1− ρt)gt . First-order momentum estimate
7: Ct← Preconditioner construction
8: θ̄t ← (1− αtζ)θt . Apply decoupled weight decay

9: θt+1 ∈ argmin
θ∈Ω

{
〈mt, θ〉+ λR(θ) +

1

2αt
(θ − θ̄t)T

(
Ct + δI)(θ − θ̄t)

}
10: end for
11: Output: θT

D EXAMPLES SATISFYING CONDITION (C-4)

Theorem 2 (Weyl). For any two n× n Hermitian matrices A and B, assume that the eigenvalues of A and B
are

µ1 ≥ · · · ≥ µn, and ν1 ≥ · · · ≥ νn

respectively. Let λ1 ≥ · · · ≥ λn be the eigenvalues of the matrix A+B, then the following holds

µj + νk ≤ λi ≤ µr + νs

for j + k − n ≥ i ≥ r + s− 1. Hence, we could derive

λ1 ≤ µ1 + ν1

We provide concrete examples and derivations satisfying Condition (C-4) in Section 3.

Vanilla SGD. The vanilla SGD corresponds to Ct = I . We assume the constant stepsize αt = α. Then, the
condition (C-4) can be computed as

λmin(αt(Ct + δI)−1) = λmin(α
1

δ + 1
I) =

α

δ + 1

Therefore, we conclude that γ = α
δ+1

.

ADAGRAD. In PROXGEN framework, ADAGRAD corresponds to Ct =
(

1
t

t∑
τ=1

gτg
T
τ

)1/2

. Under the

constant stepsizes αt = α, we have

λmax(Ct) =
1√
t
λmax

( t∑
τ=1

gτg
T
τ

)1/2

≤ 1√
t

( t∑
τ=1

λmax(gτg
T
τ )
)1/2

=
1√
t

( t∑
τ=1

‖gτ‖22
)1/2

≤ G

Hence, the Condition (C-4) can be satisfied as

λmin(αt(Ct + δI)−1) ≥ α

G+ δ
:= γ

16
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RMSPROP and ADAM. Exponential moving average (a.k.a. EMA) approaches correspond to Ct =(
βCt−1 + (1 − β)gtg

T
t

)1/2 where β ∈ [0, 1) and gt denotes the stochastic gradient at time t. The usual
RMSPROP and ADAM use diagonal approximations for gtgTt , but here we consider more general form (i.e.
including general full matrix gradient outer-product) as introduce in Yun et al. (2019a). First, we derive the
upper bound for maximum eigenvalue for the matrix Ct. The matrix Ct can be expressed by

Ct =
(
βCt−1 + (1− β)gtg

T
t

)1/2
=
(
β2Ct−2 + β(1− β)gt−1g

T
t−1 + (1− β)gtg

T
t

)1/2
= · · ·

=
(

(1− β)

t∑
i=1

βt−igig
T
i

)1/2

We can derive the upper bound for maximum eigenvalue of Ct using Weyl’s theorem (Theorem 2) by

λmax(Ct) = λmax

(
(1− β)

t∑
i=1

βt−igig
T
i

)1/2

≤
(

(1− β)
t∑
i=1

βt−iλmax(gig
T
i )
)1/2

≤
(

(1− β)G2
t∑
i=1

βt−i
)1/2

≤ G(1− βt)1/2 ≤ G
Hence, we have λmax(Ct + δI) ≤ G+ δ. Also, we have

λmax

(
Ct + δI

)
=

1

λmin

(
(Ct + δI)−1

) ≤ 1

G+ δ

Therefore, the condition (C-4) under the constant stepsize αt = α can be derived as

λmin

(
αt(Ct + δI)−1) ≥ α

G+ δ

which yields γ = α
G+δ

.

Natural Gradient Descent. In this case, we derive the condition (C-4) for the Fisher information matrix
when the loss function is defined as a negative log-likelihood, i.e., f = log p(x|θ). The natural gradient
descent aims at considering general geometry (not limited to Euclidean geometry), but we restrict our focus
on the distribution space where the Fisher information is employed for preconditioner matrix Ct. The Fisher
information matrix is defined as

F = EQ(x)P (y|x,θ)

[∂f(x|θ)
∂θ

∂f(x|θ)
∂θ

T]
where Q(x) is data distribution and P (y|x, θ) denotes the model’s predictive distribution (ex. neural networks).
However, in general, we do not have access to true data distribution, so we instead take an expectation with
respect to empirical (training) data distribution Q̂(x). This trick is also employed for K-FAC approximations to
the Fisher Martens & Grosse (2015). Let the training samples be S = {x1, · · · , xn} with sample size n. Then,
the empirical Fisher could be computed as

F̂ = EQ̂(x)P (y|x,θ)

[∂f(x|θ)
∂θ

∂f(x|θ)
∂θ

T]
=

1

n

n∑
i=1

∂f(xi|θ)
∂θ

∂f(xi|θ)
∂θ

T

Now, we bound the maximum eigenvalue of F̂ as

λmax(F̂ ) =
1

n

t∑
i=1

λmax

(∂f(xi|θ)
∂θ

∂f(xi|θ)
∂θ

T)
≤ 1

n

t∑
i=1

G2

= G2
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by our Condition (C-3). Hence, the Condition (C-4) can be derived as

λmin

(
αt(F̂ + δI)−1) ≥ α

G2 + δ

under the constant stepsize αt = α.

E PROOFS OF THEOREM 1

Lemma 1. The first-order momentum mt in Algorithm 1 satisfies

‖mt‖2 ≤ G

Proof. We use mathematical induction. For t = 1, the momentum is computed as m1 = ρ1m0 + (1− ρ1)gt =
(1− ρ0)g1. Therefore, we have ‖mt‖2 = ‖(1− ρ0)g1‖ ≤ (1− ρ0)G ≤ G.

Now, we assume that ‖mt−1‖2 ≤ G holds. The momentum at time t is constructed by mt = (1− ρt)mt−1 +
ρtgt. Then, we have

‖mt‖2 = ‖(1− ρt)mt−1 + ρtgt‖2
≤ (1− ρt)‖mt−1‖2 + ρt‖gt‖2
≤ (1− ρt)G+ ρtG = G

where the first inequality comes from the triangle inequality and the second one is derived from the induction
hypothesis.

We deal with the following update rule in Algorithm 1 as

θt+1 ∈ argmin
θ∈Ω

{〈
(1− ρt)gt + ρtmt−1, θ

〉
+R(θ) +

1

2αt
(θ − θt)T(Ct + δI)(θ − θt)

}
(30)

By the optimality condition, we have

0 ∈ (1− ρt)gt + ρtmt−1 + ∂̂R(θt+1) +
1

αt
(Ct + δI)(θt+1 − θt)

which means that

−(1− ρt)gt − ρtmt−1 −
1

αt
(Ct + δI)(θt+1 − θt) ∈ ∂̂R(θt+1)

By adding the gradient∇f(θt+1) on both sides, we have

∇f(θt+1)− (1− ρt)gt − ρtmt−1 −
1

αt
(Ct + δI)(θt+1 − θt) ∈ ∇f(θt+1) + ∂̂R(θt+1) = ∂̂F (θt+1)

By the definition of θt+1 in Eq. (30), we obtain〈
(1− ρt)gt + ρtmt−1, θt+1

〉
+R(θt+1) +

1

2αt
(θt+1 − θt)T(Ct + δI)(θt+1 − θt)

≤
〈
(1− ρt)gt + ρtmt−1, θt

〉
+R(θt)

which in result〈
(1− ρt)gt + ρtmt−1, θt+1 − θt

〉
+R(θt+1) +

1

2αt
(θt+1 − θt)T(Ct + δI)(θt+1 − θt) ≤ R(θt)

Since the function f is L-smooth by Condition (C-1), we have

f(θt+1) ≤ f(θt) + 〈∇f(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖22

Adding previous two inequalities yields

〈
(1− ρt)gt −∇f(θt) + ρtmt−1, θt+1 − θt

〉
+ (θt+1 − θt)T

(
1

2αt
(Ct + δI)− L

2
I

)
(θt+1 − θt)

≤ F (θt)− F (θt+1) (31)
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Then, we have

‖θt+1 − θt‖2 1
2αt

(Ct+δI)−L2 I

1©
≤ F (θt)− F (θt+1)−

〈
(1− ρt)gt −∇f(θt), θt+1 − θt

〉
−
〈
ρtmt−1, θt+1 − θt

〉
= F (θt)− F (θt+1)−

〈
gt −∇f(θt), θt+1 − θt

〉
+ 〈ρtgt, θt+1 − θt〉 − 〈ρtmt−1, θt+1 − θt〉

2©
≤ F (θt)− F (θt+1) +

1

2L
‖gt −∇f(θt)‖22 +

L

2
‖θt+1 − θt‖22 +

ρ2
t

2L
‖gt‖22 +

L

2
‖θt+1 − θt‖22

+ ‖ρtmt−1‖2‖θt+1 − θt‖2
3©
≤ F (θt)− F (θt+1) + ρ0µ

t−1DG+
ρ2

0µ
2(t−1)G2

2L
+ L‖θt+1 − θt‖22 +

1

2L
‖gt −∇f(θt)‖22

The derivations in inequalities (1-3) as follows:

1© We rearrange the inequality Eq. (31).

2© We use the fact that 〈a, b〉 ≤ 1
2
‖a‖22 + 1

2
‖b‖22 and 〈a, b〉 ≤ ‖a‖2‖b‖2. With this, we use modified

version such as 〈a, b〉 = 〈ca, 1
c
b〉 ≤ c2‖a‖22 + 1

c2
‖b‖22 for any positive constant c.

3© We apply our Lemma 1 and Condition (C-3).

By rearranging the above inequality, we require the following quantity be positive-semidefinite.

1

2αt
(Ct + δI)− 3

2
LI � 0

Note that in this inequality we can see that

1

2αt
(Ct + δI)− 3

2
LI � 1

2α0
δI − 3

2
LI

since Ct is positive (semi)definite and αt is non-increasing. Therefore, from this we can derive the stepsize
condition in our Theorem 1 as

α0 ≤
δ

3L

Therefore, we have

T−1∑
t=0

‖θt+1 − θt‖2 1
2αt

(Ct+δI)− 3
2
LI ≤ F (θ0)− F (θ∗)︸ ︷︷ ︸

∆

+
ρ0DG

1− µ +
ρ2

0G
2

2L(1− µ2)︸ ︷︷ ︸
C1

+
1

2L

T−1∑
t=0

‖gt −∇f(θt)‖22

≤ ∆ + C1 +
1

2L

T−1∑
t=0

‖gt −∇f(θt)‖22

Furthermore, we also have by stepsize condition

( δ

2α0
− 3

2
L
) T−1∑
t=0

‖θt+1 − θt‖22 ≤
T−1∑
t=0

‖θt+1 − θt‖2 1
2αt

(Ct+δI)− 3
2
LI ≤ ∆ + C1 +

1

2L

T−1∑
t=0

‖gt −∇f(θt)‖22

since δI � Ct + δI . From above inequality, we obtain

T−1∑
t=0

‖θt+1 − θt‖22 ≤ H1 +H2

T−1∑
t=0

‖gt −∇f(θt)‖22 (32)

where the constants H1 and H2 are defined as

H1 = ∆

/( δ

2α0
− 3

2
L
)

+ C1

/( δ

2α0
− 3

2
L
)

H2 =
1

2L( δ
2α0
− 3

2
L)
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Our goal is to bound the distance between the zero vector and subdifferential set of F , so we have

dist(0, ∂̂F (θt+1))2

=
∥∥∥(1− ρt)gt −∇f(θt+1) + ρtmt−1 +

1

αt
(Ct + δI)(θt+1 − θt)

∥∥∥2

2

=
∥∥∥(1− ρt)gt −∇f(θt+1) + ρtmt−1 + (θt+1 − θt) +

1

αt
(Ct + δI)(θt+1 − θt)− (θt+1 − θt)

∥∥∥2

2

≤ 3
∥∥∥(1− ρt)gt −∇f(θt+1) + ρtmt−1 + (θt+1 − θt)

∥∥∥2

2

+ 3
∥∥∥ 1

αt
(Ct + δI)(θt+1 − θt)

∥∥∥2

2
+ 3
∥∥∥(θt+1 − θt)

∥∥∥2

2

≤ 3
∥∥∥(1− ρt)gt −∇f(θt+1) + ρtmt−1 + (θt+1 − θt)

∥∥∥2

2︸ ︷︷ ︸
T1

+3
( 1

γ2
+ 1
)
‖θt+1 − θt‖22

Here, we assume that

λmax

( 1

αt
(Ct + δI)

)
≤ 1

γ

which yields our Condition (C-4)

λmin

(
αt(Ct + δI)−1) ≥ γ

From Eq. (31), we have〈
(1− ρt)gt −∇f(θt) + ρtmt−1, θt+1 − θt

〉
+
∥∥θt+1 − θt‖2 1

2αt
(Ct+δI)−L2 I

≤ F (θt)− F (θt+1)

which can be re-written as〈
(1− ρt)gt −∇f(θt+1) + ρtmt−1, θt+1 − θt

〉
≤ F (θt)− F (θt+1)−

〈
∇f(θt+1)−∇f(θt), θt+1 − θt

〉
−
∥∥θt+1 − θt‖2 1

2αt
(Ct+δI)−L2 I

≤ F (θt)− F (θt+1)−
〈
∇f(θt+1)−∇f(θt), θt+1 − θt

〉
+
( δ

2α0
− L

2

)
‖θt+1 − θt‖22

since we have the condition δ
2α0
≥ 3

2
L. Therefore, we obtain

T1 = ‖(1− ρt)gt −∇f(θt+1) + ρtmt−1‖22 + ‖θt+1 − θt‖22

+ 2
〈

(1− ρt)gt −∇f(θt+1) + ρtmt−1, θt+1 − θt
〉

≤ ‖(1− ρt)gt −∇f(θt) +∇f(θt)−∇f(θt+1) + ρtmt−1‖22 + ‖θt+1 − θt‖22

+ F (θt)− F (θt+1)−
〈
∇f(θt+1)−∇f(θt), θt+1 − θt

〉
+
( δ

2α0
− L

2

)
‖θt+1 − θt‖2

≤ 4‖gt −∇f(θt)‖22 + 4L2‖θt+1 − θt‖22 + 4‖ρtmt−1‖22 + 4‖ρtgt‖22 + ‖θt+1 − θt‖22

+ F (θt)− F (θt+1) + L‖θt+1 − θt‖22 +
( δ

2α0
− L

2

)∥∥θt+1 − θt‖22

≤ F (θt)− F (θt+1) + 4ρ2
0µ

2(t−1)G2 + 4ρ2
0µ

2(t−1)G2

+
( δ

2α0
+
L

2
+ 1 + 4L2

)
‖θt+1 − θt‖22 + 4‖gt −∇f(θt)‖22

Therefore, we have the distance as

dist
(
0, ∂̂F (θt+1)

)2
≤ 3

(
F (θt)− F (θt+1) + 8ρ2

0µ
2(t−1)G2 +

( δ

2α0
+
L

2
+ 2 + 4L2 +

1

γ2︸ ︷︷ ︸
C2

)
‖θt+1 − θt‖22 + 4‖gt −∇f(θt)‖22

)
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Therefore, we have

E[dist
(
0, ∂̂F (θa)

)2
] ≤ 1

T

T−1∑
t=0

E
[∥∥(1− ρt)gt −∇f(θt+1) + ρtmt−1 +

1

αt
(Ct + δI)(θt+1 − θt)

∥∥2

2

]
≤ 3

T

(
∆ +

8ρ2
0G

2

1− µ2
+ 4

T−1∑
t=0

‖gt −∇f(θt)‖22 + C2

T−1∑
t=0

‖θt+1 − θt‖22
)

≤ 3

T

(
∆ +

8ρ2
0G

2

1− µ2
+ 4

T−1∑
t=0

‖gt −∇f(θt)‖22 + C2(H1 +H2

T−1∑
t=0

‖gt −∇f(θt)‖22
)

≤ Q1

T

T−1∑
t=0

E
[
‖gt −∇f(θt)‖22

]
+
Q2∆

T
+
Q3

T

where

Q1 = 4 + C2H2, Q2 = 3 +
3C2

δ
2α0
− 3

2
L
, Q3 =

24ρ2
0G

2

1− µ2
+

3C1C2

δ
2α0
− 3

2
L

Note that the constants Q1, Q2, and Q3 depend on {α0, δ, L,D,G, ρ0, µ, γ}, but not on T . The third inequality
comes from Eq. (32). If we assume the stochastic gradient gt is evaluated on the minibatch St with |St| = bt,
then we can obtain using Condition (C-2)

‖gt −∇f(θt)‖22 = Eξ
[∥∥∥ 1

bt

bt∑
i=1

∇f(θt; ξit)−∇f(θt)
∥∥∥2

2

]

=
1

b2t
E
[∥∥ bt∑

i=1

{
∇f(θt; ξit)−∇f(θt)

}∥∥2

2

]

≤ 1

b2t

bt∑
it=1

E
[
‖∇f(θt; ξit)−∇f(θt)‖22

]
≤ 1

bt
σ2

where it represents the random variable for each datapoint in minibatch samples St. Finally, we arrive at our
Theorem 1 as

ER[dist
(
0, ∂̂F (θR)

)2
] ≤ Q1σ

2

T

T−1∑
t=0

1

bt
+
Q2∆

T
+
Q3

T
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