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ABSTRACT

Diffusion models have recently been shown to be relevant for high-quality speech
generation. Most work has been focused on generating spectrograms, and as such,
they further require a subsequent model to convert the spectrogram to a wave-
form (i.e., a vocoder). This work proposes a diffusion probabilistic end-to-end
model for directly generating the raw speech waveform. The proposed model is
autoregressive, generating overlapping frames sequentially, where each frame is
conditioned on a portion of the previously generated one. Hence, our model can
effectively synthesize an unlimited speech duration while preserving high-fidelity
synthesis and temporal coherence. We implemented the proposed model for un-
conditional and conditional speech generation, where the latter can be driven by
an input sequence of phonemes, amplitudes, and pitch values. Working directly
on the waveform has some empirical advantages. Specifically, it allows the cre-
ation of local acoustic behaviors, like vocal fry, which makes the overall waveform
sounds more natural. Furthermore, the proposed diffusion model is stochastic and
not deterministic; therefore, each inference generates a slightly different wave-
form variation, enabling abundance of valid realizations. Experiments show that
the proposed model generates speech with superior quality compared with other
state-of-the-art neural speech generation systems. 1 2

1 INTRODUCTION

In the last two decades, impressive progress has been made in speech-based research and technolo-
gies. With these advancements, speech applications have become highly significant in communi-
cation and human-machine interactions. One aspect of this is generating high-quality, naturally-
sounding synthetic speech, namely text-to-speech (TTS). In recent years, substantial research has
been made to design a deep-learning-based generative audio model. Such an effective model can be
used for speech generation, enhancement, denoising, and manipulation of audio signals.

Many neural-based generative models segment the synthesis process into two distinct components:
a decoder and a vocoder (Zhang et al., 2023). The decoder takes a reference signal, like the in-
tended text for synthetic production, and transforms it into acoustic features using intermediate
representations, such as mel-spectrograms. The specific function of the decoder varies based on the
application, which can be text-to-speech, image-to-speech, or speech-to-speech. The vocoder, on
the other hand, receives these acoustic features and generates the associated waveform (Kong et al.,
2020a). Although this two-step approach is widely adopted (Ren et al., 2020; Chen et al., 2020;
Kim et al., 2020; Shen et al., 2018), one potential drawback is that focusing solely on the magnitude
information (the spectrogram) might neglect certain natural and human perceptual qualities that can
be derived from the phase (Oppenheim & Lim, 1981).

By contrast, end-to-end frameworks generate the waveform using a single model without explicitly
producing acoustic features. The models EATS (Donahue et al., 2020), Wave-Tacotron (Weiss et al.,

1Code is available at https://github.com/RBenita/DIFFAR
2Audio samples are available at https://rbenita.github.io/DIFFAR/
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2021), and FastSpeech 2s (Ren et al., 2020) pioneered efficient end-to-end training methods, but their
synthesis quality lags behind two-stage systems. VITS (Kim et al., 2021) combines normalizing
flow Rezende & Mohamed (2015) with VAE Kingma & Welling (2013) and adversarial training,
achieving high-quality speech. YourTTS (Casanova et al., 2022) adopts an architecture similar to
VITS and addresses zero-shot multi-speaker and multilingual tasks.

Recently, diffusion models have demonstrated impressive generative capabilities in synthesizing im-
ages, videos, and speech. In the context of speech synthesis, Numerous studies have suggested us-
ing diffusion models as decoders to generate the Mel-Spectrogram representation from a given text.
DiffTTS (Jeong et al., 2021) leveraged the stochastic nature of diffusion models to capture a natu-
ral one-to-many relationship, allowing a given text input to be spoken in diverse ways. Grad-TTS
(Popov et al., 2021), ProDiff (Huang et al., 2022b), PriorGrad (Lee et al., 2021), and DiffGAN-TTS
(Liu et al., 2022) aimed to accelerate the synthesis process. However, it occasionally comes at the
cost of audio quality, synthesis stochasticity, or model simplicity. Guided-TTS (Kim et al., 2022),
functioning as a decoder, doesn’t require a transcript of the target speaker, utilizing classifier guid-
ance instead. In contrast, DiffWave (Kong et al., 2020b), WaveGrad (Chen et al., 2020) and FastDiff
(Huang et al., 2022a) are vocoders that generate waveforms by conditioning the diffusion process
on corresponding Mel-spectrograms. DiffWave (Kong et al., 2020b) can also learn the manifold of a
limited, fixed-length vocabulary (the ten digits), producing consistent word-level pronunciations. It
operates on the waveform directly but generates speech with a fixed duration of 1 second, meaning
it cannot produce an entire sentence. Last, WaveGrad 2 (Chen et al., 2021) is an end-to-end model
consisting of (i) Tacotron 2 (Elias et al., 2021) as an encoder for extracting an abstract hidden rep-
resentation from a given phoneme sequence; and (ii) a decoder, which predicts the raw signal by
refining the noisy waveform iteratively.

Large-scale generative models, such as Voicebox (Le et al., 2023) and VALL-E (Wang et al., 2023),
achieve state-of-the-art results by leveraging extensive audio datasets. Voicebox, functioning as an
acoustic infilling model, and VALL-E as an end-to-end model which utilizing Codec representation
(Défossez et al., 2022), excel in simulating natural phenomena and enabling in-context learning.
These models demonstrate robustness to noise and the ability to generalize when trained on thou-
sands hours of speech. However, replicating this success on smaller datasets presents a significant
challenge.

Parallel to that, the generation of long waveforms can be effectively achieved using an autoregressive
(AR) approach. This involves the sequential generation of waveform samples during the inference
phase (e.g., Oord et al., 2016; Wang et al., 2023). While autoregressive models work well for TTS,
their inference is slow due to their sequential nature. On the other hand, non-autoregressive models
such as (Ren et al., 2020; Chen et al., 2021) struggle to generate extremely long audio clips that
correspond to a long text sequence due to the limited GPU memory.

This work proposes a novel autoregressive diffusion model for generating raw audio waveforms by
sequentially producing short overlapping frames. Our model is called DiffAR – Denoising Diffusion
Autoregressive Model. It can operate in an unconditional mode, where no text is provided, or in a
conditional mode, where text and other linguistic parameters are used as input. Because our model
is autoregressive, it can generate signals of an arbitrary duration, unlike DiffWave. This allows the
model to preserve coherent temporal dependencies and maintain critical characteristics. DiffAR is an
end-to-end model that directly works on the raw waveform without any intermediate representation
such as the Mel-spectrogram. By considering both the amplitude and phase components, it can
generate a reliable and human-like voice that contains everyday speech phenomena including vocal
fry, which refers to a voice quality characterized by irregular glottal opening and low pitch, and
often used in American English to mark phrase finality, sociolinguistic factors and affect.

We are not the first to introduce autoregressive diffusion models. Ho et al. (2022) proposed a method
for video synthesis, and Hoogeboom et al. (2021) extended diffusion models to handle ordered
structures while aiming to enhance efficiency in the process. Our model focuses on one-dimensional
time-sequential data, particularly unlimited-duration high-quality speech generation.

The contributions of the paper are as follows: (i) An autoregressive denoising diffusion model for
high-quality speech synthesis; (ii) This model can generate unlimited waveform durations while
preserving the computational resources; and (iii) This model generates human-like voice, including
vocal fry, with a high speech quality and variability compared to other state-of-the-art models.
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This paper is organized as follows. In Section 2, we formulate the problem and present our autore-
gressive approach to the diffusion process for speech synthesis. Our model, DiffAR, can be condi-
tioned on input text, described in Section 3. In Section 4 we detail DiffAR’s architecture. Next, in
Section 5, we present the empirical results, including a comparison to other methods and an ablation
study. We conclude the paper in Section 6.

2 PROPOSED MODEL

Our goal is to generate a speech waveform that mimics the human voice and sounds natural. We
denote the waveform by x = (x1, . . . , xT ) where each sample xt ∈ [−1, 1]. The number of sam-
ples, T , is not fixed and varies between waveforms. To do so, we consider the joint probability
distribution of the speech p(x) from a training set of speech examples, {xi}Ni=1. Each sample from
this distribution would generate a new valid waveform. This is the unconditional case.

Our ultimate objective is to generate the speech from a specified text. To convert text into speech,
we specify the text using its linguistic and phonetic representation y = (y1, . . . , yT ), where we can
consider yt to be the phoneme at time t, and may also include the energy, pitch or other temporal
linguistic data. In the conditional case we estimate the conditional distribution p(x|y) from the
transcribed training set {xi,yi}Ni=1. Sampling from this distribution generates a speech of the input
text given by y.

To generate a waveform of an arbitrary length T , our model operates in frames, each contain-
ing a fixed L samples, where L ≪ T . Let xl denote a vector of samples representing the
l-th frame. To ensure a seamless transition between consecutive frames, we overlap them by

Figure 1: The autoregressive model uses
part of the previous frame to generate the
current frame.

shifting the starting position by Lo samples. We pro-
pose an autoregressive model wherein the generation
of the current frame l is conditioned on the last Lo

samples of the previous frame l−1. See Figure 1.

Following these definitions, we assume Markovian
conditional independence and denote the probability
distribution of the l-th speech frame by p(xl|xl−1), in-
dicating that it is dependent on the preceding frame,
l− 1, but not conditioned on the frames before that
or on any input text (unconditional case). Similarly,
let p(xl|xl−1,yl) be the probability distribution con-
ditioned also on a specified input text. The sequence
yl stands for the linguistic-phonetic representation of
the l-th frame, which will be discussed in the following
section.

Our approach is based on denoising diffusion probabilistic models (DDPM; Ho et al., 2020). A
diffusion model is a generative procedure involving latent variables constructed from two stochastic
processes: the forward and the reverse processes. Each process is defined as a fixed Markovian
chain composed of S latent instances of the l-th speech frame xl

1, ...,x
l
S . We denote the source

speech frame as the 0-th process element, xl
0 = xl.

During the forward process, a small Gaussian noise is gradually mixed with the original speech
frame xl

0 through S diffusion steps. The step sizes are predefined by a variance schedule {βt ∈
(0, 1)}Ss=1, which gradually transforms the original frame xl

0 into the last latent variable xl
S that

follows an isotropic Gaussian distribution xl
S ∼ N (0, IL). Denote by q the distribution of the

forward process, and taking into account its Markovian nature, we have:

q
(
xl
1:S |xl

0

)
=

S∏
s=1

q(xl
s|xl

s−1) . (1)

Following Ho et al. (2020), the conditional process distribution q is parameterized as Gaussian
distribution as follows:

q(xl
s|xl

s−1) = N
(
xl
s;
√

1− βsx
l
s−1, βsIL

)
. (2)
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Note that the distribution q is not directly influenced by the previous frame xl−1, nor by the input
text yl in the conditional case.

The reverse process aims to recover the original speech frame xl
0 from the corrupted frame xl

S by
progressively denoises it. The probability distribution of the reverse process takes into account the
autoregressive property of our overall model, conditioned on the previous frame xl−1 and the input
text if given. The reverse process, also under the Markovian assumption, is defined as the conditional
distribution:

pθ
(
xl
0:S | xl−1,yl

)
= p(xl

S)

S∏
s=1

pθ(x
l
s−1 | xl

s,x
l−1,yl), (3)

where pθ is a learned model with parameters θ, and yl is either given in the conditional case or
omitted in the unconditional case. To be precise, the learned model uses the overlap portion of the
previous frame, namely Lo samples. We use the notation Hxl−1 to specify the overlapped segment
of the previous frame (Figure 1), where H ∈ RL×L is an inpainting and reordering matrix, which
is defined as follows:

H =

[
0 ILo

0 0

]
. (4)

Beyond the Markovain factorization, as shown above, we further assume that each transition for a
time step s is represented as drawn from a Gaussian distribution:

pθ(x
l
s−1 | xl

s,x
l−1,yl) = N

(
xl
s−1; µθ

(
xl
s,Hxl−1,yl, s

)
,Σθ

(
xl
s,Hxl−1,yl, s

) )
. (5)

Training is performed by minimizing the variational bound on the negative log-likelihood while
using the property that relates xl

s directly with xl
0 (Ho et al., 2020):

xl
s =

√
ᾱsx

l
0 +

√
1− ᾱsϵs ϵs ∼ N (0, I) , (6)

where αs = 1− βs, ᾱs =
∏s

i=1 αi. The loss is reduced as follows:

Ls = Exl
0,ϵs

[∥∥∥ϵθ (√ᾱsx
l
0 +

√
1− ᾱsϵs,Hxl−1,yl, s

)
− ϵs

∥∥∥2] , (7)

where ϵθ is an approximation of ϵs from xs with parameters θ and s is uniformly taken from the
entire set of diffusion time-steps. In summary, our model aims to learn the function ϵθ, which acts
as a conditional denoiser. This function can be used along with a noisy speech frame to estimate a
clean version of it.

The inference procedure is sequential and carried out autoregressively for each frame. Assume we
would like to generate the l-th frame, given the already generated previous frame x̂l−1. For the new
frame generation we apply the following equation iteratively from s=S:

xl
s−1 =

1
√
αs

(
xl
s −

1− αs√
1− ᾱs

ϵθ
(
xl
s,Hx̂l−1,yl, s

))
+ σszs , (8)

where ϵθ is the learned model, zs ∼ N (0, I) and σs =
√

1−ᾱs−1

1−ᾱs
βs. To initiate the generation, we

designate the initial frame (l=0) as a silence one. In the last iteration, when s=1, we use z1 = 0.

3 TEXT REPRESENTATION AS LINGUISTIC AND PHONOLOGICAL UNITS

Recall that our ultimate goal is to synthesize speech given an input text. Following Ren et al.
(2020); Kim et al. (2020); Chen et al. (2021), we use the phonetic representation of the desirable
text as a conditioned embedding, as it accurately describes how the speech should be produced. Let
Y represent the set of phonemes, |Y| = 72. Recall that in our setup, we are required to supply the
phonetic content for each frame, denoted as yl. This entails a vector comprising L values, where
each value represents a phoneme from the set Y for each respective sample. Note that while the
phoneme change rate is much slower than the sampling frequency, we found this notation clearer for
our discussion.
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Figure 2: (a) A general overview of the structure of the residual layers and their interconnections.
(b) A detailed overview of a single residual layer.

Since the actual text is given as a sequence of words, during training, we transform the text sequence
into phonemes and their corresponding timed phoneme sequence using a phoneme alignment proce-
dure. This process identifies the time span of each phoneme within the waveform (McAuliffe et al.,
2017). During inference, we do not have a waveform as our goal is to generate one, and we use a
grapheme-to-phoneme (G2P) component to convert the words into phonemes (Park & Kim, 2019)
and a duration predictor to estimate the time of each phoneme.

Duration Predictor. The duration prediction is a small neural network that gets as input a phoneme
and outputs its typical duration. The implementation details are given in Appendix (C.1). During
inference, the generated frame duration is allowed to deviate from the exact value L, since we restrict
the vector yl to encompass entire phoneme time-spans, which is easier to manage.

The speech corresponding to each text can be expressed in various ways, particularly when the
transition is executed directly on the waveform. Utilizing a diffusion process to implement the model
further amplifies this variability, owing to the stochastic nature of the process. On the one hand, we
aim to retain the diversity generated by the model to facilitate more reliable and nuanced speech.
On the other hand, we aspire to steer and regulate the process to achieve natural-sounding speech.
Consequently, following the approach outlined in Ren et al. (2020), we allow the incorporation of
elements such as energy and pitch predictors into the process. Namely we enhance the vector yl to
include other linguistic information rather than just phonemes.

Energy Predictor. We gain significant flexibility and control over the resulting waveform by directly
conditioning our model on the energy signal. Instead of relying on the estimated output of the
energy predictor, we have the autonomy to determine the perceived loudness of each phoneme. Our
approach offers guidance to the synthesis process while still governed by the inherent stochasticity
of the diffusion model. Much like the duration predictor, our energy predictor was trained to predict
the relative energy associated with each phoneme. Detailed information about the implementation
of the energy predictor can be found in Appendix C.2.

Pitch. Pitch, or fundamental frequency, is another critical element in the structure of the waveform.
To assess its impact on the synthesis process while conditioned on a given pitch contour, we also
decided to incorporate it into our model. In this case, we did not build a pitch predictor and used a
given sequence of pitch values, estimated using state-of-the-art method (Segal et al., 2021).
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4 MODEL ARCHITECTURE

The architecture of DiffAR is shown in the Figure 2. The model’s backbone is based on the Dif-
fWave architecture (Kong et al., 2020b). Figure 2(a) illustrates the general structure of the network.
The network consists of N = 36 residual layers, each containing C = 256 residual channels. The
output from each layer is integrated with the accumulated outputs from previous ones. These com-
bined outputs are fed into a network of two fully connected layers, which leverage ReLU activation
functions to generate the final output. The layer dimensions are described in the Appendix C.

Figure 2(b) schematically depicts a single channel of the residual layer. This layer employs the
bidirectional dilated convolution architecture (Oord et al., 2016), which facilitates parallel inference
for each frame through a dilation cycle of [1, 2, . . . , 2048]. To foster an autoregressive progression,
the layer is conditioned on H·xl−1, incorporating essential information from the previous frame. The
indication of the diffusion step s is accomplished by employing a 128-dimensional encoding vector
for each s (Vaswani et al., 2017) as input to the model, similar to the approach used in (Kong et al.,
2020b). Additionally, DiffAR can be conditioned on optional data, including the targeted phonemes,
the desired energy, and the desired pitch.

Each conditioned signal passes through a Multi-scaled Residual Block (MRB) and is then summed
to the output of the bidirectional convolutional component. The MRBs comprise three convolutional
layers with kernels [3, 5, 7] and use the identical dilation pattern as the residual layer. These MRBs
are trained concurrently with the model.

5 EXPERIMENTS

In this section, we comprehensively evaluate our model through empirical analysis. Initially, we
explore unconditional speech generation, wherein a specific text does not constrain the synthesis.
Subsequently, we discuss our conditional model, employed when there is a designated text to syn-
thesize. We compare our model with two TTS models: WaveGrad 2 (Chen et al., 2021) and Fast-
Speech 2 (Ren et al., 2020). We then turn to a short ablation study, comparing different parts of
our model. Furthermore, in Appendix A we present our model stochasticity and controllability,
while in Appendix B we present the synthesis of vocal fry, which is unique to our model. Lastly, a
comprehensive comparison with various acoustic and end-to-end models is provided in Appendix D

All models were trained and evaluated on the LJ-Speech (Ito & Johnson, 2017) dataset, which
consists of 13,100 short audio clips (about 24 hours) of a female speaker. The dataset was divided
into three subsets: 12,838 samples for the training set, 131 samples for the test set, and an additional
131 samples for the validation set. Throughout the experiments, we maintained the original LJ-
Speech data partitioning.

In all the experiments, we used relatively long frame durations (e.g., L = 500 and Lo = 250 mil-
liseconds). We would like to point out that a conventional frame length of 20-30 milliseconds and
a shift of 10 milliseconds, often used in speech processing, are established based on the stationary
properties of speech. However, this is not a concern in diffusion models, thereby permitting us to
employ substantially larger frame sizes. This aids the diffusion process in seamlessly modeling the
waveform encompassing three-four consecutive phonemes in the newly generated segment.

5.1 UNCONDITIONAL SPEECH GENERATION

First, we created a model entirely unconditioned by external factors, relying solely on information
from the previous frame. The main goal is to assess whether generating a sequence of frames, as
outlined in the autoregressive approach in Section 2, results in a continuous signal with seamless
transitions.

During the training phase, we fixed the frame length settings to (L,Lo) = (1000, 500),
utilizing S = 200 diffusion steps. We utilize a noise schedule parameterized by βt ∈[
1× 10−4, 0.02

]
to control the diffusion process. However, in the synthesis phase, we assessed

the model’s ability to generalize across different frame lengths, specifically considering (L,Lo) =
{(1000, 500) , (500, 250) , (400, 200)}. Examples can be found in our model’s GitHub repository.
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Table 1: Comparison to WaveGrad 2 (Chen et al., 2021)

Method ↑MOS ↑MOS scaled ↑MUSHRA ↓CER(%) ↓WER(%)

Ground truth 3.98± 0.08 4.70± 0.09 71.2± 2.0 0.89 2.13
WaveGrad 2 3.61± 0.09 4.26± 0.10 63.8± 2.3 3.47 5.75
DiffAR (200 steps) 3.75± 0.08 4.43± 0.10 65.7± 2.2 2.67 6.16
DiffAR (1000 steps) 3.77± 0.08 4.45 ± 0.09 66.7 ± 2.2 1.95 4.65

The generated signals exhibit smooth transitions and connectivity, indicating that the DiffAR archi-
tecture has effectively learned local dependencies. However, the model generated non-existent but
human language-like words (similar to Oord et al., 2016; Weiss et al., 2021). Additionally, we
observed that global dependencies are improved as the frame length increases, utilizing the entire
learned receptive field. This result is not unexpected, considering the model does not condition on
textual information. Modeling a manifold that generates a large vocabulary and meaningful words
without textual guidance is still challenging. On the other hand, a simple manifold for only ten digits
can be successfully generated (Kong et al., 2020b).

5.2 CONDITIONAL SPEECH GENERATION

We conducted a comparative study of our conditional model against other TTS models. Al-
though there is a plethora of TTS systems available, our objective was to benchmark against high-
performing and relevant models WaveGrad 2 and FastSpeech 2.3

We evaluated the synthesized speech using two subjective and two objective metrics. For subjective
measurement, we used the mean opinion scores (MOS), where 45 samples from the test set are
evaluated for each system, and 10 ratings are collected for each sample. Raters were recruited using
the Amazon Mechanical Turk platform, and they were asked to evaluate the quality of the speech
on a scale of 1 to 5. Despite their advantages, MOS tests can be challenging to compare between
different papers (Kirkland et al., 2023), and they may even exhibit bias within the same study, due
to the influence of samples from other systems in the same trial.

To mitigate these challenges and provide a more robust evaluation framework, we used another
subjective evaluation – the Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) test.
We followed the MUSHRA protocol (Series, 2014), using both a hidden reference and a low anchor.
For the overall quality test, raters were asked to rate the perceptual quality of the provided samples
from 1 to 100. We report average ratings along with a 95% confidence interval for both metrics.

We randomly selected 60 recordings from the test set for an objective assessment and used their text
to re-synthesize waveforms. We evaluated the generated waveforms using state-of-the-art automatic
speech recognition (Whisper medium model; Radford et al., 2023) and reported the character error
rate (CER) and the word error rate (WER) relative to the original text.

During the training phase, we fixed the frame length settings to (L,Lo) = (500, 250). We utilize
a noise schedule βt ∈

[
1× 10−4, 0.02

]
. We trained two models – one with S=200 steps and one

with 1000 steps. During inference, the models were conditioned on phonemes (obtained from G2P
unit (Park & Kim, 2019)), the predicted durations, and the predicted energy.

WaveGrad 2. We start by describing a comparison of our model to WaveGrad 2 (Chen et al., 2021),
which is an encoder-decoder end-to-end waveform generation system that is based on diffusion
models. We used an unofficial implementation4 of it as the original one is unavailable. Results for
WaveGrad 2 are presented in Table 1. Each row represents a different model, where the first row,
denoted Ground truth, represents the performance with the original waveforms from the database,
and it is given as a reference. For each model we show the results of MOS, MUSHRA, CER and
WER. The column labeled MOS scaled indicates the adjusted MOS results, which have been scaled
proportionately to align with the MOS values of ground truth and WaveGrad 2 (Chen et al., 2021).

3A comprehensive comparison with various publicly available acoustic and end-to-end models, is provided
in Appendix D

4https://github.com/maum-ai/wavegrad2
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Table 2: Comparison to FastSpeech 2 (Ren et al., 2020)

Method ↑MOS ↑MOS scaled ↑MUSHRA ↓CER(%) ↓WER(%)

Ground truth 3.98± 0.05 4.22± 0.05 68.9± 1.4 0.89 2.13
FastSpeech 2 3.54± 0.09 3.75± 0.09 63.4± 2.2 2.15 4.82
FastSpeech 2 improved 3.75± 0.08 3.98± 0.09 64.2± 2.5 1.73 4.31
DiffAR (200 steps) 3.76± 0.05 3.99± 0.06 66.0± 1.5 2.67 6.16
DiffAR (1000 steps) 3.82± 0.05 4.05 ± 0.06 66.2 ± 1.5 1.95 4.65

The table illustrates that our model surpasses WaveGrad 2 across all evaluated metrics. This can be
attributable to the fact that WaveGrad 2 uses an architecture that generates the entire utterance in a
single instance instead of operating in an autoregressive manner like DiffAR.

FastSpeech 2. We turn now to compare DiffAR with FastSpeech 2 (Ren et al., 2020), as non-
diffusion acoustic model, implementing the two-state decoder-vocoder approach. We used an un-
official implementation5 as the original one associated with the paper was not made available. We
evaluated two versions of this model: the original FastSpeech 2, as described in Ren et al. (2020),
and an improved version, which uses additional Tacotron-2 Shen et al. (2018) style post-net after
the decoder, gradient clipping during the training, phoneme-level pitch and energy prediction in-
stead of frame-level prediction, and normalizing the pitch and energy features.6 Both versions were
trained on the LJ-speech dataset, with a pre-trained HiFi-GAN (Chu et al., 2017) as a vocoder. The
results are given in Table 2. Like the previous table, the rows represent different models, and the
columns are the evaluation metrics. It is important to note that the subjective evaluation (MOS and
MUSHRA tests) were carried out independently for WaveGrad 2 and FastSpeech 2 to ensure the
results were not influenced by each other. Also note that the column MOS scaled in this table was
scaled proportionally to the ground-truth and FastSpeech 2 MOS values, as reported in Ren et al.
(2020).

Based on the MOS and MUSHRA values, it is evident that our model generates speech charac-
terized by higher quality and a more natural sound, compared to FastSpeech 2, and in the same
ballpark compared to FastSpeech 2-improved. By analyzing the CER and WER values, it is evident
that our model achieves slightly greater intelligibility than FastSpeech 2, yet still falls short of the
performance of FastSpeech 2-improved.

A comprehensive comparison with various acoustic and end-to-end models, including both
diffusion-based and non-diffusion-based approaches, is provided in Appendix D. We provide a
comparison of DiffAR to these models in terms of audio quality, the one-to-many diverse speech
realizations for a given text, and the simplicity of its architecture. Additionally, the synthesis time
factor is addressed in Appendix E.

5.3 ABLATION STUDY

In this section, we introduce an ablation study designed to evaluate the impact of integrating addi-
tional components into the model and assess these components’ contribution to the observed error
rates. We carried out evaluations based on CER and WER metrics to accomplish this.

The results are presented in Table 3. The table is structured to present the ablation results initially
when the conditioning is based on the ground truth values for linguistic and phonetic content. Sub-
sequently, we showcase the ablation results obtained with predicted values. The DiffAR-E model
denotes a variant conditioned on phonemes and their respective durations but not on the energy.
In contrast, the DiffAR model is conditioned on phonemes, their durations, and their energy levels.
Lastly, the DiffAR+P model represents a version that additionally incorporates pitch conditioning.
The number in parentheses indicates the number of diffusion steps each model was trained and

5https://github.com/ming024/FastSpeech2.
6Ideally, we should have also compared our model to FastSpeech 2s (Ren et al., 2020), which an is end-

to-end text-to-waveform system, and to Wave-Tacotron (Weiss et al., 2021), but no implementations have been
found for these models.

8

https://github.com/ming024/FastSpeech2


Published as a conference paper at ICLR 2024

Table 3: Intelligibility of different configurations of DiffAR, where different phonetic and linguistic
values are either true or predicted.

Method Phonemes Durations Energy Pitch ↓CER(%) ↓WER(%)

Ground truth – – – – 0.89 2.13
DiffAR-E (200) true true – – 2.90 5.98
DiffAR (200) true true true – 1.18 3.96
DiffAR (1000) true true true – 1.70 4.25
DiffAR+P (200) true true true true 1.12 3.47
DiffAR-E (200) true pred – – 2.68 6.09
DiffAR-E (200) pred pred – – 3.35 7.41
DiffAR (200) true pred pred – 1.05 3.09
DiffAR (1000) true pred pred – 2.03 4.34
DiffAR (200) pred pred pred – 2.67 6.16
DiffAR (1000) pred pred pred – 1.95 4.65

tested. The first set of columns indicates whether the model was conditioned on true or predicted
values. The final two columns provide the CER and WER values.

It can be seen from the results that as we incorporate more supplementary information into the pro-
cess, the quality of the results improves. In addition, as the task approaches a more realistic scenario,
where the only source of original information is the text itself, we observe an increase in values, and
inaccuracies appear to be linked to the prediction components. Nevertheless, it is noteworthy that by
increasing the number of diffusion steps in the process, the model seems capable of autonomously
learning crucial relationships, resulting in lower error values in the realistic scenario compared to a
shorter process. Another notable finding is that when we have access to the original energy and pitch
information, we achieve results that closely approximate ground truth. This outcome is expected, as
this information plays a significant role in modeling the characteristics of a natural waveform signal.

Another noteworthy aspect highlighted in these results is the balance between the inherent stochas-
ticity of the diffusion process and the degree of controllability achieved through conditioning the
model with supplementary information. A more detailed demonstration is provided in Appendix A.

6 CONCLUSION

In this work, we proposed DiffAR, an end-to-end denoising diffusion autoregressive model designed
to address audio synthesis tasks, specifically focusing on TTS applications. Our model incorporates
a carefully selected set of characteristics, each contributing significantly to its overall performance.
The diffusive process enriches synthesis quality and introduces stochasticity, while the autoregres-
sive nature enables the handling of temporal signals without temporal constraints and facilitates
effective integration with the diffusive process. Synthesizing the waveform directly, without using
any intermediate representations enhanced the variability and simplified the training procedure. By
estimating both the phase and amplitude, DiffAR enables the modeling of phenomena such as vocal
fry phonation, resulting in more natural-sounding signals. Furthermore, The architecture of DiffAR
offers simplicity and versatility, providing explicit control over the output signal. These character-
istics are interconnected, and their synergy contributes to the model’s ability to outperform leading
models in terms of both intelligibility and audio quality.

Like other autoregressive models, DiffAR model faces the challenge of long synthesis times. Fu-
ture work can focus on reducing synthesis time by using fewer diffusion steps (Song et al., 2020)
or by exploring methods to expedite the process (Hoogeboom et al., 2021). Another avenue for
improvement is conditioning the model with elements like speaker identity and emotions and in-
corporating classifier-free guidance (Ho & Salimans, 2021) to handle such various conditions effec-
tively.7 Lastly, ablation studies suggest that enhancing the force aligner, grapheme-to-phoneme, and
prediction components could significantly improve the results.

7A more detailed discussion is provided in Appendix F.
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7 REPRODUCIBILITY

To ensure the work is as reproducible as possible and comparable with future models, we have
provided comprehensive descriptions of both the training and the sampling procedures. The main
ideas of the method are presented in section 2. The model architecture is provided in Section 4
and is also presented in a more detailed format in Appendix C. In addition, our complete code for
training and inference, along with hyperparameter settings to run experiments, can be found under
the project’s GitHub repository https://github.com/RBenita/DIFFAR. Audio samples
are available at https://rbenita.github.io/DIFFAR/.
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APPENDIX

A STOCHASTICITY AND CONTROLLABILITY THROUGH THE GENERATIVE
PROCESS

The inherent stochasticity within the diffusion process, particularly when it models the raw wave-
form itself, enables creative synthesis with a substantial degree of freedom in terms of energy, pitch,
and timing. This variability is a crucial element within synthesis models as it contributes uniqueness
and distinctiveness to the generated signal. One valuable application of such a model is its potential
utility for augmenting speech signals.

Conditioning the synthesis process with supplementary information, such as pitch, energy, or
phonemes, enables extensive control over the generated output. Using that information steers the
synthesis procedure towards more precise regions within the manifold. This, in turn, leads to the
generation of signals that exhibit a higher degree of desired and shared characteristics.

One notable advantage of the DiffAR model is its capability to effectively balance the trade-off
between stochasticity and controllability within the synthesis process. On one hand, it operates as
an end-to-end model based on diffusion principles, amplifying the process’s inherent variability.
On the other hand, it offers a versatile architecture that enables explicit conditioning of desirable
information. By doing that, it provides the model with more context and specific guidance.

Figure 3 illustrates the trade-off between controllability and stochasticity, as demonstrated in five
different models. For each model, we compared the energy and pitch among five syntheses of the
same text. Figure 3a illustrates the outcomes of DiffAR-E. As this model is exclusively conditioned
on the phonemes and their durations, its signals demonstrate significant pitch and energy variation.
Figure 3b illustrates the conditioning of the process on a desired energy level. When utilizing the
DiffAR (200) model, the generated signals tend to have energy values that are quite similar, showing
slight variation around the desired values (indicated by the red line). However, there is still a sig-
nificant variability in the pitch values across the generated signals. Figure 3c illustrates five signals
generated by the DiffAR+P model, which also conditions the synthesis process on the desired pitch
values. In this case, this conditioning significantly diminishes the variability among the generated
signals. The pitch and energy values of all signals become remarkably similar and closely resemble
the values of the conditioned inputs. It is important to note that due to the use of diffusion and
the high variability in the raw waveform itself, the variation still exists, and the audio clips are not
completely identical.

In contrast to our model, which provides extensive control over the signal properties and variability,
Figure 3d illustrates that FastSpeech 2 lacks any variability. When given a specific text input, all
corresponding syntheses exhibit uniform pitch and energy characteristics, resulting in identical sig-
nals. On the other hand, the WaveGrad 2 model does introduce variability, as depicted in Figure 3e,
and this variability can be adjusted by reducing the number of diffusion steps. However, it’s worth
noting that both WaveGrad 2 and FastSpeech 2 lack the capability to explicitly manipulate the signal
towards predefined energy or pitch target values.

Vocal fry, also known as creaky-voice, is a vocal phenomenon characterized by a low and scratchy
sound that occupies the vocal range below modal voice. Recently, vocal fry has gained popularity
in various areas, including the United States, and is observed in both women and men. This type of
production can signal the end of an utterance but even as a sociolinguistic marker for distinguishing
a speech group from another within the same language.

The LJ-Speech dataset contains numerous segments featuring vocal fry. These portions are typically
distinguished by their low and irregular fundamental frequency (F0), reduced energy, and damped
pulses (Keating et al., 2015). An example can be found in Figure 4a.

B VOCAL FRY

Modeling vocal fry behavior in synthesis applications presents a non-trivial challenge that re-
searchers have previously attempted to address (Narendra & Rao, 2017). The complexity arises
because a significant portion of the relevant information is embedded in the phase component of the
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(a) DiffAR-E

(b) DiffAR (200)

(c) DiffAR+P

(d) FastSpeech 2

(e) WaveGrad 2

Figure 3: Comparing the energy and pitch of five samples that describe the same text, with the
desired energy and pitch values marked in red.
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(a) Groundtruth (b) DiffAR

(c) WaveGrad 2 (d) FastSpeech 2

Figure 4: Displaying the vocal fry phenomenon across various models

signal. Since many models focus on estimating the signal’s amplitude, often by deriving its spectro-
gram, this complexity poses an even greater obstacle, maybe preventing such models from faithfully
reproducing the vocal fry phenomenon.

Figure 4d and Figure 4c shows generation of the same utterance with FastSpeech 2 (former) and
WaveGrad 2 (latter). None of them generate vocal fry.

DiffAR, as an end-to-end model that generates the raw waveform, could capture the vocal fry phe-
nomenon by integrating both the phase and amplitude components throughout the synthesis pro-
cess. The result is a synthesis incorporating sound elements more closely resembling human speech,
which likely contributes to the positive subjective results observed in our evaluations. An example
can be found in Figure 4b, where the creaky area is highlighted in blue.
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Figure 5: A detailed overview of a single residual layer

C DETAILED ARCHITECTURE

A detailed overview of a single residual layer is depicted in Figure 5, where P represents the number
of phonemes in the current frame, L corresponds to the frame length, B indicates the batch size,
which is set to 1 during inference, and C represents the number of residual channels, set to 256.

In our model, the duration and energy predictors are small neural networks trained and validated
using the original LJ-Speech data partitioning. In both cases, the training objective was to minimize
the Mean Squared Error (MSE) loss.

C.1 DURATION PREDICTOR

The duration predictor takes a series of phonemes as input and predicts their expected durations.
The network architecture consists of a phoneme-embedding layer (|Y| = 73, 128), followed by a
1-D convolutional layer (128 input channels, 256 output channels, kernel size 5, stride 1, padding
2), a ReLU activation function, a normalization layer, a dropout layer with p = 0.5 dropout rate, and
finally, a linear layer (256 input features, 1 output feature). During training, the timing was obtained
using a phoneme alignment procedure (McAuliffe et al., 2017).

C.2 ENERGY PREDICTOR

The energy predictor is a network that takes a series of phonemes as input and predicts their energy
levels. The network architecture consists of a phoneme-embedding layer (|Y| = 73, 128), followed
by a sequence of two identical layers. Each of these layers consists of a 1-D convolutional layer
(128 input channels, 256 output channels, kernel size 7, stride 1, padding 2), followed by another
1-D convolutional layer (128 input channels, 256 output channels, kernel size 5, stride 1, padding
2), a ReLU activation function, a normalization layer, and a dropout layer with p = 0.5 dropout rate.
Finally, the second layer is followed by a linear layer (256 input features, 1 output feature). During
training, the energy values for each phoneme were calculated as the square root of the average energy
within each phoneme’s duration.
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D COMPREHENSIVE COMPARISON TO OTHER METHODS

In addition to comparing DiffAR to WaveGrad 2 and FastSpeech 2, we conducted a comprehensive
comparison that includes both acoustic models (i.e., decoders) and end-to-end models. The models
considered are VITS (Kim et al., 2021) , Grad-TTS (Popov et al., 2021), Pro-DIFF (Huang et al.,
2022b), and DiffGAN-TTS (Liu et al., 2022). We conducted a MUSHRA test to evaluate audio
quality8 and examined factors such as the stochasticity of synthesis as all are one-to-many models,
the architectural complexity of the models, and their ability to control stylistic features.

VITS is an end-to-end model that incorporates VAE (Kingma & Welling, 2013), Normalizing Flow
(Rezende & Mohamed, 2015), MAS algorithm (Kim et al., 2020), and adversarial training for the
TTS task. During training, it learns latent variables from linear spectrograms obtained from STFT,
indicating that the synthesis doesn’t directly operate on the waveform. Moreover, it includes a
reconstruction loss involving the Mel-spectrogram representation and an adversarial loss on the
output, which may be unstable during training.

In terms of qualitative metrics, we performed a MUSHRA test following the methodology described
in Section 3. The results are presented in Table 4.

To assess the level of stochasticity in the model, we utilized the method outlined in Appendix A. The
results in Figure 6a indicate a degree of stochasticity in the model, albeit to a limited extent. Notably,
the pitch values in different draws exhibit a very similar pattern with slight shifts in the timeline, a
behavior also observed in the energy values. A plausible explanation for this phenomenon is that
the stochasticity in VITS primarily stems from the use of a stochastic time predictor, synthesizing
speech at varying rates. However, it appears that it does not result in unique phenomena or prosody
in the speech.

Each table is based on a different set of listeners hence the groud truth (GT) is not the same

Table 4: VITS (Kim et al., 2021)

Method ↑MUSHRA

Ground truth 74.9± 2.2
DiffAR (200 steps) 69.1± 2.2
DiffAR (1000 steps) 71.5 ± 2.2
VITS 69.0± 2.3

Table 5: Grad-TTS (Popov et al., 2021)

Method ↑MUSHRA

Ground truth 73.7± 2.4
DiffAR (200 steps) 69.4 ± 2.5
DiffAR (1000 steps) 67.7± 2.6
Grad-TTS 68.5± 2.5

Table 6: ProDiff (Huang et al., 2022b)

Method ↑MUSHRA

Ground truth 70.0± 2.1
DiffAR (200 steps) 66.6± 2.4
DiffAR (1000 steps) 67.5 ± 2.3
ProDiff 64.6± 2.4

Table 7: DiffGAN-TTS (Liu et al., 2022)

Method ↑MUSHRA

Ground truth 71.2± 2.0
DiffAR (200 steps) 69.5 ± 2.1
DiffAR (1000 steps) 68.4± 2.2
DiffGAN-TTS 68.0± 2.2

We turn now to the models Grad-TTS, Pro-DIFF, and DiffGAN-TTS, all fall into the category of
diffusion-based acoustic models. These models, given text input, generate a spectrogram (and not
work on the waveform directly, as we do), and subsequently, a vocoder is employed to produce the
waveform. A common characteristic among these models is the desire to accelerate the diffusion
process, often impacting audio quality, the stochasticity of synthesis, or the model’s complexity.

Grad-TTS explicitly manages the trade-off between sound quality and inference speed. A signifi-
cant modification involves initiating the diffusion process from noised acoustic information N (µ, σ)
rather than white noise N (0, I). This modification enables synthesis with a very limited number of

8Due to limited resources we chose MUSHRA over MOS as it is more robust and less subjective.
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steps. ProDiff adopts the generator-based method and also incorporates knowledge distillation and
the DDIM method to enable synthesis with only 2 diffusion steps. DiffGAN-TTS achieves a sig-
nificant reduction in synthesis time by decreasing the number of diffusion steps, sometimes even
to a single step. This is achieved through adversarial training of a GAN, which can occasionally
introduce instability in the training process.

We conducted a MUSHRA test to assess the quality of Grad-TTS , Pro-DIFF, and DiffGAN-TTS
compared to DiffAR. The models evaluated were Grad-TTS with T = 1000 diffusion steps, Pro-
DIFF, and DiffGAN-TTS with T = 4 steps. The results are presented in Tables 5, 6 and 7. Based on
the MUSHRA values, it is evident that our model produces speech characterized by higher quality
compared to the evaluated models.

We explored the stochasticity of the models using the methodology outlined in Appendix A. Figures
6b 6d 6c depict the results. In all cases, the energy and pitch values were either identical or very
similar across different samples. This suggests that, despite utilizing diffusion models, these models
exhibit reduced or negligible stochasticity. While the smaller manifold of the spectrogram compared
to that of the waveform might contribute to the decreased stochasticity, it may not be the sole factor
influencing this phenomenon.

Regarding DiffGAN-TTS and ProDiff, both models significantly decrease the synthesis time by min-
imizing the number of diffusion steps, leading to an outcome that closely resembles a deterministic
model. For GradTTS, initiating the diffusion process not with white noise and shortening the dif-
fusion process diminishes the model’s stochasticity. Figure 6b illustrates that using T = 1000
diffusion steps produces almost identical draws. Hence, despite the presence of numerous diffusion
steps, the guidance is highly explicit, leaving minimal room for stochasticity.

In Figure 7 we see no real generation of vocal fry by any of these methods as seen by our model (cf.
Figure B).

Despite the advantage of faster synthesis, changing and accelerating the diffusion process in all
models decreased their stochasticity and creativity as one-to-many models. It appears that making
the mapping between input (text) and output (speech) more deterministic also aims to reduce under-
fitting. Grad-TTS mentioned the possibility of an end-to-end model, but the results are not of high
quality for a meaningful comparison.

Regarding VALL-E (Wang et al., 2023) and Voicebox (Le et al., 2023), both represent state-of-the-art
models trained on large-scale datasets (more than ten thousand hours), hence will not be comapred
here. While Voicebox as a decoder and VALL-E as an end-to-end model excels on large-scale
datasets, replicating their success on LJspeech and VCTK proved challenging.

18



Published as a conference paper at ICLR 2024

(a) VITS

(b) Grad-TTS

(c) ProDiff

(d) DiffGAN-TTS

Figure 6: Comparing the energy and pitch of five samples that describe the same text, with the
original energy and pitch values marked in red.
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(a) VITS (b) ProDiff

(c) Grad-TTS (d) DiffGAN-TTS

Figure 7: Displaying the vocal fry phenomenon across various models

E COMPUTATIONAL LIMITATIONS AND SYNTHESIS TIME

Existing models face a notable challenge in training and synthesizing extremely long texts due to
GPU computational constraints (Ren et al., 2020). However, with its autoregressive architecture,
our model might handle this while preserving a consistent signal structure.

Figure 8 presents the analysis of the synthesis process of three models: DiffAR (200), WaveGrad 2,

Figure 8: Used memory versus text length.

and FastSpeech 2, where each time we doubled
the number of words in the text and tested the
maximum GPU consumption throughout the pro-
cess. Each point on this graph was created by exe-
cuting the corresponding model on GPU NVIDIA
A40 with a memory of 48GB.

For the last two models, the GPU consumption
escalates with an increase in text length up to a
certain threshold where it hits a limit and trig-
gers an out-of-memory error. For the WaveGrad
2 model, this occurs post-processing 512 words;
in the case of FastSpeech 2, it happens after 1024
words. Contrarily, our model maintains a consis-
tent memory consumption level, an order of mag-
nitude lower than the other models, offering controlled efficiency.
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Table 8: Real-time Factor (RTF)

Method ↑RTF

Fastspeech2 2.79
Wavegrad2 5.14
VITS 0.09
ProDiff 0.25
GradTTS 3.24
DiffGAN 0.06
DiffAR 31.06

A significant characteristic of the TTS task is the synthesis time. Recent efforts have aimed at
achieving low RTF values, enabling fast synthesis for real-time and everyday applications. Huang
et al. (2022b); Liu et al. (2022) Numerous models, particularly diffusion models, acknowledge the
trade-off between audio quality and inference duration. By controlling the synthesis duration, they
imply a decline in performance when the synthesis time is significantly reduced. (Popov et al., 2021;
Jeong et al., 2021)

While achieving high-quality synthesis, a notable limitation of DiffAR is the extended synthesis
time associated with the use of diffusion models and the inherent limitation in the autoregressive
approach, which is sequential by definition. In Table 8, it is noticeable that DiffAR reaches lower
RTF performance compared to the other models, and is not performed in real-time.

Another trade-off worth noting is between the RTF and the level of stochasticity in the generated
signal. It can be seen in Figures 6 that all the models except WaveGrad 2 generate almost the very
same signal for every inference, while DiffAR generates a slightly new version at each inference
call. Accelerating the diffusion process, providing an explicit guidance (i.e., Initializing the signal
not with white noise (Popov et al., 2021)), and incorporating deterministic components - all harm the
model’s ability to generate a new version of the waveform and be utilized as a one-to-many model.
This, in turn, also influences the generation of the prosodical features of the signal (such as vocal
fry).

There are numerous strategies to expedite the synthesis process while still maintaining the autore-
gressive nature: Reducing the number of steps in the diffusion process (e.g., using DDIM Song et al.
(2020), which involves trade-offs as previously discussed) or even by developing a parallelized al-
gorithm (Oord et al., 2018). The focus of our work was to generate a realistic signal with prosodical
features and with natural variability. Hence, addressing this issue will be deferred to future work.

F EXTENSION TO MULTIPLE SPEAKERS

While the traditional TTS task typically involves a single-speaker dataset, other research directions
include using multiple speakers or languages and incorporating emotional characteristics or back-
ground noises guided by text. Additionally, combining multiple speakers in a single text is another
potential avenue.

Various methods exist for performing these tasks, particularly in the context of diffusion models. The
main approaches include explicit conditioning (Ho & Salimans, 2022) or utilizing external guidance
during the update of the diffusion procedure (Dhariwal & Nichol, 2021). For DiffAR, we decided
to investigate working in the multi-speaker scenario. Our approach involves leveraging the model’s
versatility by incorporating the speaker’s embedding into the synthesis process. We explored this
option using Titanet embedding (Koluguri et al., 2022) and VCTK dataset (Veaux et al., 2017).

Figure 9 illustrates the architectural modification we implemented, where vembedding represents the
speaker embedding obtained from the Titanet network output.

Examples of multi-speaker generation can be found in our model’s GitHub repository9.

9https://github.com/RBenita/DIFFAR
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Figure 9: (a) A general overview of the structure of the residual layers and their interconnections.
(b) A detailed overview of a single residual layer within the multi-speaker scenario.

Another potential approach would involve utilizing the autoregressive manner for in-context learn-
ing. Given an initial frame in a specific voice and a desired text, the model would continue the
speech in the same given style without relying on additional information. However, addressing this
issue goes beyond the scope of this paper.
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