Towards Multi-Fidelity Scaling Laws
of Neural Surrogates in CFD

Paul Setinek !  Gianluca Galletti!  Johannes Brandstetter!:2

LELLIS Unit, LIT AI Lab, Institute for Machine Learning, JKU Linz, Austria
2 Emmi Al, Linz, Austria
setinek@ml. jku.at

Abstract

Scaling laws describe how model performance grows with data, parameters and
compute. While large datasets can usually be collected at relatively low cost in
domains such as language or vision, scientific machine learning is often limited
by the high expense of generating training data through numerical simulations.
However, by adjusting modeling assumptions and approximations, simulation
fidelity can be traded for computational cost, an aspect absent in other domains. We
investigate this trade-off between data fidelity and cost in neural surrogates using
low- and high-fidelity Reynolds-Averaged Navier-Stokes (RANS) simulations.
Reformulating classical scaling laws, we decompose the dataset axis into compute
budget and dataset composition. Our experiments reveal compute-performance
scaling behavior and exhibit budget-dependent optimal fidelity mixes for the given
dataset configuration. These findings provide the first study of empirical scaling
laws for multi-fidelity neural surrogate datasets and offer practical considerations
for compute-efficient dataset generation in scientific machine learning.

1 Introduction

Machine learning has seen immense progress in recent years, which was not only driven by architec-
tural or methodological innovations but also by the increasing availability of computational resources.
This has enabled the scaling up of models, and as a result many SOTA models now contain hundreds
of billions of parameters [38| [2]]. Scaling laws, which originated in the domain of Large Language
Models (LLMs) [20), 18], have expanded into various other areas like Computer Vision (CV) [46] or
time series [35) 44]. These empirical studies describe how models improve as a function of three
axes: (i) parameter count (IV), (ii) dataset size (D), and (iii) compute (C').

In the meantime, scientific machine learning has similarly achieved remarkable success in modeling
complex systems with neural surrogates. Notable examples include breakthroughs in weather and
climate forecasting [21} 31} 29} 132! 8], material design [27} 45, 41]] or protein folding [[19, [1]]. These
advances have partly been enabled by large curated public datasets, such as ERAS in weather
modeling [[17] or the Protein Data Bank (PDB) [6]. More recently, first large scale datasets have also
been released in areas such as automotive aerodynamics [4} [14].

However, in many areas of science and engineering, such datasets are either not public or do not exist
and therefore researchers are required to generate their own problem specific dataset prior to model
training. Since the systems of interest are usually governed by Partial Differential Equations (PDEs)
[15]], generating training data requires solving these equations numerically, which is often coupled
with significant computational costs [43]]. This means that unlike other domains, where data can
be sourced with little to no computation (e.g. text, real-world images and videos), the dataset size
D in scientific machine learning is often no longer “free” to scale. While prior works study how
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performance scales with dataset size, they do not take the computational cost associated with scaling
the dataset axis into account 37, |16} 3| [30]. Moreover, many neural surrogates exist with the goal of
“amortizing” the training and dataset cost with repeated, cheap evaluations down the line; if dataset
generation becomes prohibitively expensive, it fundamentally defeats the purpose of such models.

The numerical solution of PDEs is a long-running research topic, which can be very nuanced:
when designing numerical simulations, modeling assumptions and simplifications of the underlying
physics need to be made, which trade fidelity for compute. Ordered by computational complexity,
common approaches include Direct Numerical Simulation (DNS) which resolves all turbulent scales
at prohibitive cost; Large Eddy Simulation (LES), which resolves only large scales while modeling
subgrid-scale dynamics; and Reynolds-Averaged Navier-Stokes (RANS), where turbulence is entirely
modeled through statistical averaging, making RANS the cheapest but also least accurate of the three.
For example, a 3D LES over an airfoil can take several orders of magnitude longer than simulating
the respective RANS equations. Even on simple scenarios, LES take an order of magnitude longer
than RANS simulations [23]], a factor which grows substantially for more chaotic systems.

This introduces a fundamental trade-off, which motivates our research question:

Under a fixed budget constraint, what is the optimal training set composition of
low- and high-fidelity samples in order to maximize model performance?

We move towards an answer to this essential question by proposing a reformulation of classical
scaling laws, devised to account for this phenomenon. We argue for splitting the dataset size axis D
into two components, namely dataset compute budget Dy, (core hours allocated for data generation)
and dataset composition D, (controls the fidelity distribution of the training data).

Since training data generation is typically the primary bottleneck in scientific machine learning, we
focus on these two axes while assuming model size and compute for model training are non-limiting.
Although restrictive, this assumption allows us to directly address our research question that has not
been studied in prior work. Our contributions can be summarized as follows:

* We introduce a formulation of multi-fidelity scaling laws, extending classical scaling law
analysis to settings where training data can be simulated at different fidelities.

* We design a multi-fidelity dataset of external aerodynamics around airfoils, incorporating
different modeling assumptions across fidelity levels.

» We present the first empirical investigation of multi-fidelity scaling laws along the data axis
on a Computational Fluid Dynamics (CFD) dataset, evaluating how model performance
scales under varying dataset compositions and generation budgets.

2 Related work

Learning from multi-fidelity data. Multi-fidelity data exists in different fields, and can come in
different shapes and forms (e.g., varying realism, accuracy or resolution). In CV, “resolution transfer”
[7,134] or “super-resolution” |13, 28] are well researched directions, where models learn to predict
fine-scale details from coarse observations. Similar ideas appear in scientific machine learning under
“discretization convergence” in neural operators [22], where models are trained to generalize across
mesh resolutions. While these methods may be invariant to changes in resolution (even though most
of them have no theoretical guarantee [3]), they do not capture underlying physics and fidelity shifts.

Transfer learning for multi-fidelity data in scientific machine learning. Recent studies have
explored transfer learning from low- to high-fidelity data [12} 36, 25]. However, in these works
the distinction between fidelities is limited to changes in mesh resolution, while the underlying
physical modeling assumptions remain the same. In contrast, a more recent study takes this further
by transferring knowledge from low-fidelity RANS to high-fidelity LES simulations in the context of
wind farm modeling, thereby altering the underlying modeling assumptions [47]. While these studies
address an important aspect of scientific machine learning, our investigation pursues a complementary
goal: we focus on identifying patterns suggesting the existence of optimal strategies for generating
training data to maximize the performance of neural surrogates.
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(a) Velocity field around the airfoil (left) and boundary layer detail (right).
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(b) Pressure Distribution along the chord. (c) Skin friction coefficient.

Figure 1: Visual comparison of a low- and high-fidelity simulation of a NACA4 airfoil with parameters
(M=2.408, P=5.987, XX=11.876), at an Angle of Attack (AoA) of 7.57° with an inlet velocity
of 81.645ms!. Figure (left) shows the z-velocity of the high-fidelity simulation, and (right)
zooms on the corresponding boundary layer profile at mid-chord (0.5c¢), highlighting the difference
in modeling resolution between low- and high-fidelity. Bottom plots display the evolution of the
pressure coefficient C, (Figure@) and skin friction coefficient C (Figure , along the chord line
x/e.

3 Dataset

The numerical solution of PDEs depends on assumptions and choices made while designing the
simulation pipeline, aimed at balancing accuracy with computational feasibility. In CFD for external
aerodynamics the goal is to solve the Navier-Stokes equations for the flow around rigid bodies. Given
this problem setting, the following design choices can be made when simulating the system:

1. Problem definition: Define the high-level description of the system. For example, is the
flow laminar or turbulent, compressible or incompressible, subsonic, transonic or supersonic.
This also includes whether the problem should be solved in two or three dimensions and
whether transient solutions are required or steady-state averages are sufficient.

2. Physics modeling assumptions: Choose the appropriate technique (e.g., LES, RANS, or
hybrid methods). If turbulence is present, select a closure (e.g., one-equation models, two-
equation models, etc.) and pick boundary layer treatment (fully resolved, wall functions).

3. Initial and boundary conditions: Set inflow, outlet and surface boundary conditions, as
well as initial conditions of the system.

4. Meshing: Generate a mesh fine enough to support the modeling assumptions and simplifica-
tions defined in previous steps.

5. Solver settings: Select discretization schemes, time-stepping methods, relaxation factors
and convergence criteria.



Table 1: Low- and high-fidelity modeling assumptions and resulting dataset characteristics.

Modeling Assumptions Dataset Specifications
Fidelit Viscous First cell Firstcell ~ Avgsimtime Avgnumber Total size
1deltty sublayer  height (um) center (yT) (core hrs) of nodes (GB)
High Resolving 2 <1 13.4 180K 18
Low Modeling 1,200 30-300 4.8 96K 7.8

To study scaling, we select a dataset with the following criteria: (i) the problem setup should be
realistic and not purely academic, (ii) the low- and high-fidelity datasets should differ in their
physical modeling assumptions, not simply in mesh resolution, and (iii) the computational cost of the
high-fidelity simulations should be noticeably larger than the low-fidelity simulations.

We identify aerodynamic airfoil simulations as an ideal testbed, since they are industrially relevant,
well studied, and allow for different fidelity levels based on physical modeling assumptions. Due to
the prohibitive cost of DNS or LES simulations for large dataset creation [10, 42|, we base our study
on simulating RANS equations.

In CFD and especially external aerodynamics, the boundary layer, i.e. the thin region of fluid
close to the solid’s surface, is of utmost importance. It is common to use a dimensionless wall
distance yT (pronounced “y-plus”) to describe the distance to the surface. The region where y+ < 5
corresponds to the viscous sublayer. This layer is characterized by strong velocity gradients, and
its accurate prediction is critical since key aerodynamic quantities, such as drag and lift, depend on
these gradients. To create two distinct fidelity levels, we vary the boundary layer treatment. Our
high-fidelity simulations fully resolve this region by ensuring that the first computational mesh cell
center has y* < 1, leading to accurate but costly predictions. On the other hand, the low-fidelity
setup uses a coarser mesh near the wall such that yT lies between 30 and 300. This allows for a
wall function approach, in which the region close to the wall is not resolved directly but modeled
analytically using the empirical law-of-the-wall derived from experimental data [33]]. This modeling
choice is widely used in RANS and wall-modeled LES (WMLES) applications.

We base our high-fidelity simulation setup on the AirfRANS dataset configuration [9]. AirfRANS
models airfoils from the NASA’s 4- and 5-digit series [[11]] in an incompressible regime (Mach number
< 0.3), covering Reynolds numbers from 2 x 108 to 6 x 10°, and AoAs between —5° and 15°. We
run all simulations in OpenFOAM [39], using the simpleF0AM solver, with the k—w SST turbulence
model [26] as equation closure (a standard approach in airfoil aerodynamics). To highlight the
important aspects of the resulting datasets, Table [[| summarizes the differences between high- and
low-fidelity. All numerical simulations were run on an AMD EPYC9655P 96-Core CPU (192 threads,
4.5GHz and 2.2 TiB of RAM). We use OpenFOAMv2506 and Open MPI 4.1.1 for parallel execution.

The final datasets consist of 611 matched pairs of low- and high-fidelity simulations (491 train/val,
120 test). The difference in dataset size compared to the original AirfRANS dataset is caused by the
simplifications needed for the low-fidelity simulations, which can sometimes lead to poor convergence.
Figure[T]illustrates the difference between the two fidelities in terms of boundary layer profile and the
distribution of key physical quantities along the chord for a chosen dataset sample.

4 Experiments

Our experiments are designed to investigate compute-optimal model training in the setting where
the available budget D, for data generation is the primary constraint. Model size is fixed across all
experiments, and our analysis focuses on the optimal composition of low- and high-fidelity data. For
fixed Dys (in core hours) we vary the ratio of low- to high-fidelity samples D, in the training set. This
is done by first estimating the number of datapoints based on the average cost and the desired fidelity
distribution, then sampling random low-/high-fidelity simulations until Dj, is matched, and finally
applying an optional greedy repair step to ensure the final selection satisfies the budget constraint.



The task at hand is to predict the solution of the RANS simulation given the initial conditions and
mesh node positions. For all nodes, we predict five quantities: velocity v in z- and y-direction,
pressure p, and wall shear stress 7 in x- and y-direction. We use Transolver [40], a SOTA transformer-
based neural operator, with ~4M parameters. Detailed model and training hyperparameters are
provided in Appendix [A]

The same architecture is trained on different datasets, generated at different budgets D; and with
varying ratios of low- and high-fidelity simulations D.. Performance is evaluated on 120 unseen
high-fidelity samples. Figure 2] and Figure 3|show the results of how model performance behaves
with increasing dataset generation budgets and varying dataset compositions. We discuss our main
findings below.

101 \
w \ w \ —
=
10- I 10-2
7777777777777777777777777777777777777777777777777777 1073
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
D. (high-fidelity ratio) D, (high-fidelity ratio)
(a) Volumetric pressure D;, (budget) (b) Surface pressure
—e— 1000 1500 —e— 2000 —e— 2500
3500 4500 5500 ---- 6600 (HF only)
8. &
* L3 4 g\q
107 P — 0] =t
‘\i\ B 4
§§¥_’_ —
w w
192] w
= =
1072
1072
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
D. (high-fidelity ratio) D, (high-fidelity ratio)
(c) Volumetric x-velocity (d) Volumetric y-velocity

Figure 2: Scaling behavior for fields with positive transfer. We show the Mean Squared Error (MSE)
of normalized fields averaged over four seeds with error bars indicating standard deviation. Lines of
different colors show different dataset generation budgets in compute hours Dy, at growing percentage
of high-fidelity ratio D.. The dashed line indicates model performance when trained on the full
high-fidelity dataset.

Compute Budget Scaling Law. Across all dataset compositions, we observe a clear trend that
model error decreases with an increasing compute budget for dataset generation (Figures [2]and [3).
This confirms that the used budget for training data simulations directly links to surrogate accuracy,
analogous to scaling laws observed in model, data and compute size in other domains [20, [18]].

Knowledge Transfer from Low- to High-Fidelity. For lower compute budgets, certain fields show
signs of positive transfer from low- to high-fidelity samples. This behavior is visible for the pressure
field in the volume (Figure [2a) and on the surface (Figure 2b) as well as the volumetric velocity
field (Figures 2c] and 2d). When the available dataset generation budget is limited, allocating all
resources to high-fidelity samples does not lead to optimal test performance. Instead, models trained
on a mixture of low- and high-fidelity data achieve better accuracy. This suggests that, under tight
compute constraints, the broader coverage of the data manifold offered by many low-fidelity samples



outweighs the higher accuracy of a few high-fidelity ones. In general, the smaller the available
budget, the more the optimal dataset composition shifts towards allocating more budget to lower
fidelity samples. Above certain budgets, model performance continuously improves with more budget
allocated towards high-fidelity samples, showing that beyond a certain budget threshold, model
accuracy becomes primarily limited by the fidelity of the data rather than its quantity.
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Figure 3: Scaling behavior for fields without positive transfer. We show the MSE of normalized fields
averaged over four seeds with error bars indicating standard deviation. Lines of different colors show
different training budgets in compute hours Dy, at growing percentage of high-fidelity composition
D,. The dashed line indicates model performance when trained on the full high-fidelity dataset.

Contrary to these trends, we cannot observe any positive transfer from low- to high-fidelity samples for
the wall shear stress. Figures[3aland [3b|show that for these quantities model performance consistently
improves across all budgets when more dataset generation budget is allocated towards high-fidelity
samples.

Physical Explanation. We hypothesize that the ob- Table 2: nMAE (|) per field between low-

served results can be linked to the discrepancies be- and high-fidelity simulations.

tween the low- and high-fidelity simulations. The

primary distinction lies in the treatment of the viscous Field Surface Volume
sublayer at the airfoil surface: the low-fidelity setup

models this region using relatively coarse meshing, (z-)Velocity - 0.118
whereas the high-fidelity simulation fully resolves it (y-)Velocity - 0.303
with a fine mesh. As a result, velocity and pressure Pressure 0.043 0.040
fields remain largely consistent across fidelities, while (z-)WSS 0.405 _
the wall shear stress, which is highly sensitive to the (y-)WSS 0.796 -
boundary layer resolution, shows substantial devia-

tions.

This explains why no positive transfer can be observed for this quantity even at small dataset
generation budgets: the difference between the two simulations is simply too large. Table [2] quantifies
these discrepancies per field by reporting the normalized Mean Absolute Error (hnMAE) (Appendix
of low-fidelity fields interpolated onto the corresponding high-fidelity mesh relative to their high-
fidelity counterparts. It clearly shows a difference in nMAE for the pressure field compared to the two
components of wall shear stress, aligning with the different multi-fidelity scaling behaviors shown
in Figures [2a] and [2b] compared to Figures [3a]and [3b] This also aligns with the visual comparison
of the difference in pressure coefficients C), and skin friction coefficients C; along the chord (see

Figures[Tb|and [Ic).



5 Conclusion and Future Work

Our work serves as an initial step towards understanding scaling laws for neural surrogates trained
on multi-fidelity data, highlighting both the potential of optimal dataset budget allocation and the
limitations arising when the fidelity gap between simulations becomes too large. Given our findings,
we identify several promising directions.

Different simulation methods. Our experiments are currently limited to RANS simulations where
fidelity is varied via boundary layer treatment. Exploring additional simulation methods as fidelities,
such as time-averaged LES or hybrid RANS-LES approaches, could provide deeper insights into
realistic multi-fidelity dataset design, albeit at increased computational cost.

Continuous fidelities. Our results support the development of continuous fidelity formulations
rather than discrete fidelity levels. This is both more realistic, since every simulation inherently
allows continuous mesh scaling, and potentially more effective, as it can mitigate situations where
fidelity levels are too far apart for meaningful knowledge transfer.

Generalization of the framework. Extending our multi-fidelity scaling analysis to other scientific
domains, such as thermomechanics, electromagnetics, or molecular dynamics, could reveal whether
the identified scaling behaviors generalize across different physical systems. Additionally, while our
study focuses on dataset generation cost and composition, future work should also explore scaling
the remaining axes, namely model size and training compute in order to eventually establish a more
complete formulation of multi-fidelity scientific scaling laws.
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Appendix

A Training details

We train our Transolver [40] models using AdamW [24] with a weight decay of 1 x 1074, 51 = 0.9
and 32 = 0.999 for 500 epochs, applying early stopping if there is no improvement in validation
loss for 250 consecutive epochs. We employ a cosine decay learning rate scheduler with a 10 epoch
linear warmup to an initial learning rate of 5 x 10~*. We use gradient clipping and train in single
precision float-32. We list the exact hyperparameter choices contributing to the total model size of
~4M params in Table

Table 3: Transolver hyperparameters used.

Hyperparameter Value
Base dimension 256
# Attention heads 4
# Transformer layers 8
Slice base 128
MLP expansion ratio 2
Dropout (MLPs/projections) 0.1
Dropout (Attention) 0.1

B Normalized Mean Absolute Error

We define the nMAE as N
~LF HF
AMAE — dim|V Y |
N b
D1 |1‘/LHF|

where _@%F are the fields from the low-fidelity simulation interpolated onto the corresponding high-
fidelity mesh (nearest neighbor) and IV is the number of mesh points of the high-fidelity sample. In
our comparison, we report the average nMAE over all test samples.
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