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Abstract
Analysis of neurodegenerative diseases on brain
connectomes is important in facilitating early di-
agnosis and predicting its onset. However, in-
vestigation of the progressive and irreversible dy-
namics of these diseases remains underexplored
in cross-sectional studies as its diagnostic groups
are considered independent. Also, as in many
real-world graphs, brain networks exhibit intricate
structures with both homophily and heterophily.
To address these challenges, we propose Adaptive
Graph diffusion network with Temporal regular-
ization (AGT). AGT introduces node-wise convo-
lution to adaptively capture low (i.e., homophily)
and high-frequency (i.e., heterophily) character-
istics within an optimally tailored range for each
node. Moreover, AGT captures sequential varia-
tions within progressive diagnostic groups with a
novel temporal regularization, considering the rel-
ative feature distance between the groups in the la-
tent space. As a result, our proposed model yields
interpretable results at both node-level and group-
level. The superiority of our method is validated
on two neurodegenerative disease benchmarks for
graph classification: Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) and Parkinson’s Pro-
gression Markers Initiative (PPMI) datasets.

1. Introduction
Consider a neurodegenerative brain connectome study
where each sample is represented as a graph, i.e., brain
regions of interest (ROIs) correspond to nodes and con-
nectomic features represent edges, and a subset of brain
networks progressively deteriorates over time due to a dis-
ease. Unlike typical classification tasks where the groups
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(i.e., labels) are nominally discriminated (Gao & Ji, 2019;
Zhang et al., 2018), the neurodegenerative diagnostic groups
demonstrate temporal dynamics. Accurately characterizing
the disease progression is essential for precise diagnosis;
however, most existing cross-sectional brain network clas-
sifiers do not adequately address the evolving nature of the
diseases (Wang et al., 2023; Qu et al., 2023).

Several issues, other than the temporal nature, make the
analysis even more challenging. As in many real-world
graphs such as social networks (Yanardag & Vishwanathan,
2015), molecule structures (Ramakrishnan et al., 2014; Ax-
elrod et al., 2022), and traffic flows (Chen et al., 2001),
brain networks are high-dimensional and sparse, i.e., only
a small fraction of edges are present comprising heteroge-
neous structures while the number of possible edges is at the
order of N2 with N nodes. Moreover, graph components
of different orders, i.e., nodes (0-simplex) and edges (1-
simplex), need to be analyzed interactively. Although nodes
and edges are interdependent under homophily condition, it
is not universally applicable to every brain connectivity. As
brain networks may exhibit heterophily, where dissimilar
regions physically attach, this interplay between homophily
and heterophily intertwines nodes and edges, and makes
their analysis difficult.

Therefore, capturing localized characteristics between node
and edge features becomes imperative in understanding the
intricacies of these diverse relationships. Traditional Graph
Neural Networks (GNNs) have shown successful results
in solving various tasks on graphs. However, they do not
effectively emphasize the nuances or variations between
connected nodes with different properties (Kipf & Welling,
2017; Wu et al., 2019). This is because the convolution
layers aggregate information from direct neighbor nodes
uniformly across the entire nodes. By repeatedly stacking
graph convolution layers, the notorious oversmoothing is-
sue arises in which the information is excessively averaged
around each node.

To handle the aforementioned issues, we propose Adaptive
Graph diffusion network with Temporal regularization
(AGT) for neurodegenerative brain network classification.
Overall, AGT has two key ideas: 1) Node-variant convolu-
tion that adjusts the amount of smoothing or coarsening the
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information around each node within different node-wise
ranges. 2) Group-level temporal regularization that captures
the sequential variations along the progressive degeneration
from a healthy control group to the most deteriorated group.

With the node-variant convolution, both low-frequency (i.e.,
homophily) and high-frequency (i.e., heterophily) charac-
teristics are adaptively captured within an optimal range of
neighbor nodes for each node. This is realized by using a dif-
fusion kernel (Hammond et al., 2011; Kim et al., 2012) with
trainable node-wise scaling parameters. While a typical dif-
fusion kernel identically smooths out features for every node
using a pre-defined bandwidth (Xu et al., 2019a;b; Wang
et al., 2021a), we design an adaptive diffusion kernel with
node-wise scales that finds optimal frequency bandwidth
for each node. Therefore, our method can flexibly control
the amount of smoothing or highlighting node-individual
features for each node by connecting indirect nodes. By per-
forming graph convolution with the diffusion kernel, unified
graph embeddings incorporating joint relationships between
nodes and edges are obtained (Cho et al., 2023). Our tempo-
ral regularization controls the embedding distances between
diagnostic groups in the latent space, such that the temporal
dynamics along the groups are effectively captured.

In a nutshell, the main contributions of our work are sum-
marized as follows:

• Our method addresses the challenges of analyzing in-
tricate brain networks by introducing a node-variant
convolution that adaptively captures both localized ho-
mophily and heterophily characteristics.

• Our method captures sequential variations in the pro-
gressive degeneration of brain networks, characterizing
temporal features of a disease that change over time.

• Consequently, AGT yields neuroscientifically inter-
pretable results in both brain regional analysis and
inter-group analysis.

Extensive validation was performed on two independent
public benchmarks: Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and Parkinson’s Progression Markers Ini-
tiative (PPMI) datasets to evaluate the generalizability and
efficiency of our model.

2. Related Work
2.1. Brain Network Analysis

Recent works on cross-sectional brain network analysis lie
in two-fold: predicting node values (Mao et al., 2018) and
graph-level labels (Liu et al., 2023). While most of these
works adopt single-modal data (Relión et al., 2019), studies
on integrating multi-modal data have recently been con-
ducted to enhance prediction (Wang et al., 2017; Zhu et al.,
2018). Apart from these graph studies that use both node

and edge features, graph classification methods focusing
solely on edge data (Park et al., 2023) have been introduced
to avoid expensive costs of acquiring medical data.

2.2. Spectral Graph Neural Networks

Spectral GNNs refer to GNNs that use spectral graph fil-
ters to analyze graph data. Conventional spectral GNNs
use filters with fixed frequency bandwidths. For example,
GraphWave (Donnat et al., 2018) determines the bandwidth
via an analysis of variance on a wavelet basis. ChebNet (Def-
ferrard et al., 2016) uses a Chebyshev polynomial filter, and
GCN (Kipf & Welling, 2017) simplifies the Chebyshev filter
with first-order approximation.

In contrast to these filters that can only capture spectral fea-
tures within a predefined bandwidth, recent spectral GNNs
have introduced learnable filters. These filters come with
trainable scaling parameters that enable the adjustment of
bandwidth magnitudes. For example, GPR-GNN (Chien
et al., 2021) updates layer-wise polynomial filters via gra-
dient descent, and AdaGNN (Dong et al., 2021) learns
channel-wise parameters that capture significant frequen-
cies in the channel level. GAT (Veličković et al., 2018)
adapts how (and how much) information they get from dif-
ferent nodes with attention score, but it only aggregates from
direct neighboring nodes. Wave-GD (Cho et al., 2023) ag-
gregates information from both direct and indirect nodes on
multi-resolution graph representations with multiple train-
able scales. In this work, the number of multi-resolution
graphs linearly increases as the number of used scales in-
creases.

Without requiring many graphs at multi-resolution, Ex-
act (Choi et al., 2022) and LSAP (Sim et al., 2024) adopt
a node-wise scale learning scheme that learns node-wise
bandwidths. These methods only extract low-frequency
graph characteristics for the entire graphs, and thus the
distinctions between two neighboring nodes with different
properties may not be effectively emphasized. Unlike these
approaches, our framework considers both low and high-
frequency features, and these features are further used to
capture spectral cross-characteristics between graph struc-
tures and node features.

3. Preliminary
3.1. Spectral Graph Wavelet Transform

An undirected graph G = {V,E, ω} with N nodes is
comprised a node set V, edges E and corresponding edge
weights ω. The E and ω define a symmetric adjacency ma-
trix A ∈ RN×N , whose individual element is a strength
between two nodes given by the ω. Given a diagonal degree
matrix D, a graph Laplacian is defined as L = D−A and
its normalized case is defined as L̃ = D−1/2LD−1/2. As
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Figure 1. Overview of AGT architecture for neurodegenerative brain network classification. From a normalized graph Laplacian L̃,
adaptive wavelet basis ψsc is constructed to capture localized spectral characteristics around each node. By performing graph convolution
with the scale-filtered features Xs and the connectivity A, the underlying cross-characteristics between the graph structure and node
features are integrated as graph embedding. The temporal regularization Rtemp captures the sequential dynamics along neurodegeneration
from these graph embeddings in a mini-batch.

the L̃ is real and positive semi-definite, it has non-negative
eigenvalues Λ = diag(λ1, ..., λN ) and orthonormal eigen-
vectors U = [u1, u2, ..., uN ].

Spectral Graph Wavelet Transform (SGWT) (Hammond
et al., 2011) extends the theory of wavelet transform (Mallat,
1999) to graphs via spectral graph theory. By SGWT, the
graph signal x is decomposed into varying levels of granu-
larity in the spectral space so that multiresolution graph anal-
ysis becomes available. To project the signals into the spec-
tral space, SGWT utilizes wavelet basis ψs = Uk(sΛ)UT ,
where k(·) is a kernel function with a scaling parameter
s. The ψs is a realization of a kernel function k(·) in
the spectral domain localized with δn on the n-th node
in the graph space, which captures graph characteristics at a
fixed resolution. A graph signal x (i.e., either node features
or edge weights) is projected onto the spectral domain as
Wx(s) = ψs · x, which yields a wavelet coefficient Wx(s).
Under the admissibility condition (Mallat, 1999), the origi-
nal x is perfectly reconstructed via Inverse Graph Wavelet
Transform (IGWT) as follows

x =
1

Ck

∫ ∞

0

ψs ·Wx(s)
ds

s
, (1)

with an admissibility constant Ck =
∫∞
0

k(λ)2

λ dλ <∞.

The Eq. (1) is a superposition of multi-resolution represen-
tation of x over scales s ∈ [0,∞). Therefore, a signal xs in
the graph space filtered at the scale s is defined as

xs = ψs ·Wx(s) = Uk2(sΛ)UTx. (2)

While the raw graph data x may contain unnecessary reso-
lutions for solving a given task, Eq. (2) allows us to extract

task-relevant graph information at specific resolution(s) in
the spatial domain.

3.2. Spectral Coherence between Nodes and Edges

Given a graph jointly constructed with multivariate node
features X ∈ RN×F and graph structures A ∈ RN×N ,
these two components should have coherent properties to
explain the whole graph system. For example, given a ho-
mophily assumption that similar nodes are likely to attach,
edge signals should exhibit coherence with node signals as
the edges should properly explain the relationships between
the nodes. Authors in (Cho et al., 2023) showed that these
underlying coherence between nodes and edges, i.e., spec-
tral coherence, can be captured in the spectral space by a dot
product of wavelet coefficients as WA(s) ·WX(s). Also,
they showed that this spectral coherence at scale s can be
identically obtained in the graph space as a graph convo-
lution by performing the scale-specific IGWT (Eq. (2)) to
either of the graph components as follows

WA(s) ·WX(s) = AsX = AXs. (3)

By Eq. (3), the spectral cross-characteristics of the node
and edge features at a specific resolution (i.e., scale s) are
captured in the spatial domain with graph convolutions.

4. Method
4.1. Graph Classification for Degenerative Disorder

A brain network is represented as a graph by considering
brain regions (i.e., ROIs) as nodes and the connections be-
tween them as edges. Given a population of graphs with
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(a) Low-pass global filter (s2 > s1 > 0) (b) High-pass global filter (s2 < s1 < 0) (c) Adaptive local filter

Figure 2. Comparison between global filters and an adaptive local filter. The global filter refers to the conventional filters whose range of
feature aggregation is identical across the whole nodes. (a) A low-pass global filter smooths out features among neighboring nodes, (b)
while a high-pass global filter accentuates the difference between a target node (e.g., n1) and its neighboring nodes (e.g., n2). (c) Unlike
these global filters, the adaptive local filter captures optimal bandwidths for each node with trainable node-wise scaling parameters.

C number of diagnostic labels, each graph is assigned to
one of these labels yc (c = 1, ..., C). These labels are pre-
sented chronologically, i.e., neurodegeneration progresses
from a healthy control group (y1) to the most deteriorated
state (yC). The goal of AGT is to classify these neurode-
generative brain networks by characterizing their temporal
changes.

4.2. Overview of AGT

As shown in Fig. 1, AGT contains two major components
for neurodegenerative brain network classification: 1) node-
level scale adaptation and 2) group-level temporal regu-
larization. With trainable node-wise scale parameters, the
node-level scale adaptation performs a node-variant con-
volution such that each node aggregates features from its
optimal range of neighborhood at optimal graph resolutions.
Such an approach redefines connectivity with an adaptive
wavelet basis that connects nodes even though they are not
directly connected. As this basis selectively uses both low
and high-frequency spectral characteristics with learnable
node-wise scales, the magnitude of smoothing or coarsening
the neighbor information is optimally controlled per node.
Also, by using C sets of node-level scales for different di-
agnostic labels, the inter-group differences in each brain
region can be investigated.

In a downstream graph convolutional network (i.e., GCN in
Fig. 1), these adaptively aggregated node features are further
used to extract localized node-edge spectral coherence. In
other words, the underlying cross-characteristics of the node
and edge features are unified as a refined representation of
the whole graph embedding via GCN. Using a set of graph
embeddings in a mini-batch, we apply a temporal regulariza-
tion that captures the sequential dynamics of the diagnostic
groups along the degeneration. Finally, a downstream read-
out function (i.e., f(·) in Fig. 1) takes all embeddings and
predicts their labels.

4.3. Node-level Scale Adaptation

Effect of Low and High Pass Filters. In SGWT, the choice
of the kernel k(·) determines the graph characteristics to be
captured. For example, low-pass filters smooth out local
details and capture information from a wide range of neigh-
bor nodes, while high-pass filters highlight local details and
abrupt alterations within a graph. The differences between
the low and high-pass filters are visualized in Fig. 2a and
Fig. 2b. Given a diffusion kernel k(sλ) = e−sλ, Fig. 2a
shows the effect of the low-pass filter with s > 0. On the
other hand, Fig. 2b shows the effect of the high-pass filter
with s < 0, which is equal to using a filter k′(sλ) = esλ

with s > 0. As shown in these figures, the low-pass filters
focus on smaller eigenvalues that carry slow varying signals,
while high-pass filters pass high-frequency components cor-
responding to large eigenvalues.

The scale parameter s controls the bandwidth of the locality
in the graph space and determines the magnitude of high-
lighting or smoothing local details. If the scale gets larger
for the low-pass filter, features are aggregated from a wider
range of neighbor nodes and the neighbor nodes (e.g., n1
and n2 in Fig. 2a) become more similar. On the other hand,
a smaller negative scale for the high-pass filter emphasizes
the difference between the nodes at a fine range such that
the importance of individual nodes is highlighted.

Adaptive Wavelet Basis. Conventional graph convolutions
aggregate information from a direct neighborhood uniformly
across the entire nodes, which may lead to oversmoothed or
undersmoothed graph representations (Wang et al., 2021b).
In contrast, SGWT with a diffusion kernel allows to ag-
gregate information from indirect nodes (Xu et al., 2019b).
However, the global filters with a graph-level scale (i.e.,
Fig. 2a and 2b) are still not able to consider node-by-node
differences in the range of feature aggregation. Therefore,
we propose adaptive wavelet basis with an adaptive local
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filter that considers node-wise optimal bandwidths. Given
a set of trainable scales s = {si}Ni=1 paired with nodes
{ni}Ni=1, a node-wise adaptive wavelet basis ψsi localized
at ni on nj is defined as

ψsi,i(j) =

N∑
l=1

e−siλlu∗l (i)ul(j), (4)

where ∗ denotes complex conjugate, ul (l=1, ..., N ) is
an eigenvector, and the adaptive local filter is defined as
k(siλ) = e−siλ. That is, each scale si flexibly controls
the bandwidth of the node ni considering the local graph
structure of ni. Fig. 2c shows an exemplary result of this
node-variant convolution with the adaptive local filter. For
example, scales of n1 and n2 are converged to negative val-
ues and the scales of n3 and n4 are positive. In this case,
the difference between n1 and n2 is magnified, while the
n3 and n4 collect cluster-related information around them-
selves. Note that, each node is a registered region of interest
(ROI) in the brain and the whole N nodes comprise the
whole brain regions. In other words, AGT can figure out
the optimal range of smoothing or coarsening local graph
features at each brain region.

Class-wise Scale Adaptation. To observe class-wise dif-
ferences in feature aggregation, we further constructed C
number of scale sets {sc}Cc=1, where each set has ROI-wise
scales sc = {sci}Ni=1. This class- and node-wise adaptive
wavelet basis ψsci

localized at ni on nj is defined as

ψsci ,i
(j) =

N∑
l=1

e−sciλlu∗l (i)ul(j). (5)

Analyzing ψsc enables investigating the variations in the
regional range of feature aggregation among different labels.

4.4. Spectral Coherence with Node-variant Convolution

With the adaptive wavelet basis ψsc , spectral coherence
between the graph structure and node features can be cap-
tured in a localized and adaptive way. This is done by
projecting the node features X into the spectral space as
WX(s) = ψsc · X and applying the scale-specific inverse
transform on the wavelet coefficient WX(s). As in Eq. (2),
a scale-filtered node feature Xs = ψsc ·WX(s) ∈ RN×F is
obtained via IGWT, where each element is the result of the
node-variant convolution in the spatial space. According to
Eq. (3), the locally adjusted spectral coherence is derived in
a graph convolutional form as

WA(s) ·WX(s) = AXs, (6)

which contains cross-characteristics of graph structure and
node features at optimal node-wise resolution (i.e., scale).

While the node-variant convolution allows feature aggre-
gation from indirect nodes with different amounts for each

node, conventional graph convolution is a node-invariant
convolution, where all nodal features are aggregated from
the equal range of their direct neighbor nodes. To take full
advantage of both direct and indirect neighbor information,
we fuse the given node feature X and the scale-filtered node
feature Xs together with conventional graph convolutions us-
ing A. Given a stacked node feature X̃ = [X,Xs] ∈ RN×2F ,
a 2-layer graph convolution yields a graph embedding e as

e = σ(A σ(AX̃W (1))W (2)), (7)

where W (1) and W (2) are trainable weights and σ(·) is
ReLU activation. As a result, the graph embedding e com-
prehensively contains both the scale-filtered spectral charac-
teristics AXs and the spatial graph features AX aggregated
from both indirect and direct edges.

4.5. Training Objective with Temporal Regularization

Group-wise Temporal Regularization. In contrast to most
classification tasks where the relationship between labels
is absent, neurodegenerative diseases progress sequentially,
resulting in temporal dynamics between labels. Consider-
ing this degenerative characteristic of brain networks, we
devised a group-level temporal regularization that extracts
temporal relations between the diagnostic groups.

In a mini-batch training with B data, a set of graph embed-
dings {eb}Bb=1 is obtained with Eq. (7). These embeddings
are categorized into C groups based on each of their la-
bels yb ∈ {y1, ..., yC}. From C groups of embeddings, the
averaged graph representation is derived for each class as

ēc =

∑B
b=1 eb · I(yb = yc)∑B

b=1 I(yb = yc)
, (8)

where the I(yb = yc) is an indicator function that outputs 1
if the label of the eb is yc and 0 otherwise.

Using l2-norm, the distance between the adjacent classes
(i.e., c-th class and (c+ 1)-th class) is quantified as

dc,c+1 = ||ēc − ēc+1||l2, (9)

for c = 1, ..., C − 1. To enforce the sequential relations
between classes, triangular distances between three adjacent
classes (i.e., dc,c+1, dc+1,c+2, and dc,c+2) should be aligned
in the latent feature space as

dc,c+1 + dc+1,c+2 = dc,c+2. (10)

Therefore, the temporal regularization Rtemp is defined as

Rtemp =
1

C − 2

C−2∑
c=1

(
dc,c+1 + dc+1,c+2 − dc,c+2

)
. (11)

Without this temporal regularization, the sets of graph em-
beddings {ēc}Cc=1 are highly likely to be arbitrarily aligned
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in the feature space, posing a challenge for the model to
consider their temporal relationships between classes.

Training Objective. To obtain a graph label prediction ŷ,
the graph embeddings are inputted into the downstream
readout function f(·) (i.e., MLP with ReLU). Given a true
label y, a classical cross-entropy loss with ℓ2-regularization
is used as

Lce = − 1

B

B∑
b=1

C∑
c=1

ybc · log(ŷbc) +
γ

2B
||W||2ℓ2 , (12)

where W is a set of trainable parameters and γ controls
the strength of ℓ2-regularization. With a hyperparameter
α, the whole training loss L = Lce + αRtemp is minimized
via backpropagation to optimize the network parameters for
graph classification.

5. Experiment
In this section, we report the quantitative superiority of
AGT and discuss clinical interpretations, the effect of model
components, and ablation studies.

5.1. Datasets

We used two independent neurodegenerative brain net-
work datasets: Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) and Parkinson’s Progression Markers Initiative
(PPMI), whose demographics are given in Table 1 and 2.

ADNI Dataset. ADNI study (Mueller et al., 2005) provides
the largest public Alzheimer’s Disease (AD) data with di-
verse biomarkers from multi-modal imaging. Structural
brain networks were measured by a probabilistic tractog-
raphy from Diffusion Weighted Images (DWIs) on the De-
strieux atlas (Destrieux et al., 2010) with 160 regions of
interest (ROIs). As node features, cortical thickness (CT)
from Magnetic Resonance Imaging (MRI) and Standardized
Uptake Value Ratio (SUVR) of fluorodeoxyglucose (FDG)
from Positron Emission Tomography (PET) at all ROIs were
measured. We performed two separate experiments on these
two representative AD biomarkers. Five diagnostic labels
were given: Cognitively Normal (CN), Significant Memory
Concern (SMC), Early Mild Cognitive Impairment (EMCI),
Late MCI (LMCI), and AD. The disease progressively dete-
riorates from CN to AD.

PPMI Dataset. PPMI study (Marek et al., 2011) provides
public biomarkers for Parkinson’s Disease (PD) progres-
sion. For a total of 195 subjects, functional MRI from in-
dividuals were parcellated by co-registration with the AAL
atlas (Tzourio-Mazoyer et al., 2002) comprising 116 re-
gions. As node features, ROI-wise Blood-Oxygen-Level-
Dependent (BOLD) signals were obtained from the images.
The correlations between different regions were calculated

Table 1. Demographics of the ADNI dataset.
Biomarker Category CN SMC EMCI LMCI AD

Cortical
Thickness

# of subjects 359 181 437 180 166
Gender (M / F) 178 / 181 69 / 112 249 / 188 119 / 61 102 / 64

Age (Mean±Std) 72.8±1.4 72.0±5.2 71.0±7.9 70.9±6.1 74.8±8.7

FDG
# of subjects 345 186 461 231 162

Gender (M / F) 173 / 172 66 / 120 262 / 199 152 / 79 102 / 60
Age (Mean±Std) 73.0±1.3 71.7±5.2 71.7±7.8 71.1±7.0 74.9±8.8

Table 2. Demographics of the PPMI dataset.
Biomarker Category CN Prodromal PD

BOLD
# of subjects 15 67 113

Gender (M / F) 12 / 3 38 / 29 77 / 36
Age (Mean±Std) 64.0±9.5 64.3±8.7 62.0±10.0

and used as connectivities. Both node and edge features
were preprocessed by authors in (Xu et al., 2023). PPMI
contains three labels: CN, Prodromal, and PD. Similar to the
ADNI, the subjects’ condition in these labels progressively
deteriorates from CN to PD.

5.2. Experimental Setup

All experiments were performed with 5-fold cross-
validation and the resultant accuracy, precision, recall, and
specificity from all folds were averaged to avoid any biases.
As the ground truth labels should not be inputted to a model
during inference, we used pseudo-labels from a pretrained
Exact (Choi et al., 2022) 1) to select class-wise trained scales
and 2) to assign graph embeddings to diagnostic groups to
calculate a validation loss. We used 5 pretrained Exact
models, each trained on the same training set of individual
folds used in the AGT training. We further provide im-
plementation details of AGT in Appendix A. As baselines,
we used eleven methods as follows: Linear Support Vec-
tor Machine (SVM), Multi-Layer Perceptron (MLP) with
2 layers, GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018) GDC (Gasteiger et al., 2019), GraphHeat (Xu
et al., 2019b), ADC (Zhao et al., 2021), Exact (Choi et al.,
2022), LSAP (Sim et al., 2024), BrainGNN (Li et al., 2021),
and Brain Network Transformer (BrainNetTF) (Kan et al.,
2022).

5.3. Quantitative Results

For the ADNI and PPMI datasets, the quantitative perfor-
mance of AGT and baselines are compared in Table. 3. In
all experiments and across all metrics, AGT consistently
outperformed all baseline methods. Specifically, on the
ADNI dataset with 5 labels, AGT showed an accuracy of
90.3% for the ADNI with cortical thickness (ADNI-CT) and
94.8% for the ADNI with FDG (ADNI-FDG) experiments.
Compared to the second-best results, AGT gained 2.5%p
and 4.4%p accuracy margins on the ADNI-CT and ADNI-
FDG data, respectively. For the PPMI dataset, AGT showed
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Table 3. Classification performance on the ADNI and PPMI datasets with 5-fold cross-validation. The best results are marked in bold and
the second-best results are indicated by an underline.

Model ADNI-CT ADNI-FDG PPMI
Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%) Specificity (%)

SVM (Linear) 82.4 ± 2.7 82.2 ± 3.3 85.2 ± 2.5 85.3 ± 2.1 85.7 ± 2.7 86.9 ± 2.1 60.5 ± 10.1 30.2 ± 6.6 28.0 ± 8.2 67.5 ± 2.4
MLP (2-layers) 78.8 ± 2.2 79.2 ± 3.6 79.9 ± 2.6 87.5 ± 1.6 88.2 ± 2.4 88.2 ± 1.4 68.9 ± 3.5 36.3 ± 4.4 39.0 ± 8.6 70.0 ± 3.8
GCN 61.4 ± 3.1 59.8 ± 2.5 62.6 ± 4.4 68.8 ± 2.0 67.7 ± 2.8 69.7 ± 2.5 78.8 ± 2.1 48.1 ± 5.2 70.3 ± 4.3 82.5 ± 2.8
GAT 64.2 ± 5.5 62.7 ± 6.7 66.8 ± 4.6 69.2 ± 7.1 67.0 ± 10.6 73.6 ± 3.7 81.2 ± 2.4 51.4 ± 6.9 77.2 ± 5.5 87.0 ± 2.4
GDC 77.1 ± 4.3 76.9 ± 5.0 78.5 ± 4.4 86.2 ± 3.2 86.7 ± 3.3 87.0 ± 2.9 73.0 ± 0.7 36.5 ± 3.1 61.8 ± 9.4 79.1 ± 4.4
GraphHeat 70.9 ± 3.2 70.3 ± 3.0 71.8 ± 2.6 77.0 ± 2.4 77.5 ± 3.5 77.3 ± 1.0 79.1 ± 2.0 48.4 ± 4.7 84.5 ± 3.0 68.8 ± 6.3
ADC 82.1 ± 2.4 77.6 ± 1.9 72.8 ± 6.7 88.6 ± 2.8 70.8 ± 6.2 75.3 ± 5.3 78.8 ± 2.3 50.7 ± 8.0 66.9 ± 5.5 80.5 ± 2.5
Exact 86.2 ± 2.0 86.6 ± 1.7 86.7 ± 2.3 90.2 ± 2.7 90.7 ± 2.8 90.7 ± 2.8 79.5 ± 2.4 48.1 ± 5.4 76.6 ± 9.0 87.3 ± 1.5
LSAP 87.0 ± 2.2 86.8 ± 2.7 88.5 ± 2.7 90.4 ± 1.4 90.9 ± 1.8 91.4 ± 1.5 79.1 ± 2.0 47.5 ± 4.8 83.2 ± 3.7 72.9 ± 4.4
BrainGNN 69.3 ± 2.8 20.1 ± 0.5 23.4 ± 3.8 68.9 ± 2.4 20.3 ± 0.4 31.9 ± 13.3 69.6 ± 5.1 38.5 ± 7.9 70.5 ± 5.0 39.9 ± 10.2
BrainNetTF 87.8 ± 3.9 65.9 ± 16.7 70.6 ± 9.0 87.1 ± 5.3 66.5 ± 16.5 66.3 ± 15.6 71.3 ± 4.1 42.6 ± 10.5 76.1 ± 6.3 53.3 ± 16.9

90.3 ± 1.8 91.3 ± 2.4 89.9 ± 2.5 94.8 ± 1.1 94.3 ± 1.5 95.3 ± 1.4 83.6 ± 3.8 62.4 ± 4.4 87.6 ± 3.5 92.3 ± 2.2
AGT (Ours) (+2.5) (+4.5) (+1.4) (+4.4) (+3.4) (+3.9) (+2.4) (+11.0) (+3.1) (+5.0)

Table 4. Five brain regions with the smallest trained scales for the AD group in the ADNI dataset and the PD group in the PPMI dataset.
The regional scales were averaged across 5 trained models from 5 folds.

ADNI-CT ADNI-FDG PPMI
idx

ROI CN SMC EMCI LMCI AD ROI CN SMC EMCI LMCI AD ROI CN Prodromal PD
1 l s.oc.temp.med.lingual -1.33 0.79 -0.72 0.03 -1.13 l g.oc.temp.med.lingual -0.53 -0.23 -0.09 0.06 -1.40 l temporal.sup -0.768 0.002 -1.410
2 r amygdala 0.01 -0.74 0.41 -0.05 -1.12 r s.precentral.sup.part -0.73 -1.18 0.33 0.24 -1.12 l frontal.inf.oper 1.137 -0.629 -1.166
3 l s.central 0.33 0.42 -0.92 -0.49 -1.07 r thalamus.proper 0.07 1.57 -0.19 0.90 -1.12 r calcarine -0.213 -0.115 -1.166
4 r s.front.inf -0.64 0.67 0.51 -0.52 -0.97 l g.occipital.sup -0.16 -0.25 0.12 -0.07 -1.04 r frontal.med.orb -0.394 1.152 -1.110
5 r g.oc.temp.med.parahip -0.06 0.2 -0.25 0.36 -0.93 l g.temp.sup.lateral -0.46 -0.83 1.03 -0.29 -0.98 r temporal.sup -0.267 -0.273 -1.077

83.6% accuracy with a 2.4%p margin over the second-best
result. Notably, AGT far surpassed the second-best results
by 11.0%p in precision and 5.0%p in specificity, demon-
strating its generalizability and superiority.

5.4. Discussions on Node-wise Significance for Brain
Connectome Classification

As AGT performs a graph classification with node-wise
and class-specific trainable scales, the trained model yields
node-wise optimized scale values for each diagnostic class.
Positive scales indicate that the graph wavelet is focusing
on low-frequency information smoothed from a wide range
around the corresponding ROIs, whereas negative scales in-
dicate that the graph wavelet is focusing on high-frequency
and node-individual features. In other words, the high-
frequency components with smaller and negative scales
focus on more node-specific details for solving the task
and thus potentially highlight the importance of individual
nodes. Therefore, we investigated the significance of the
brain regions with small scales by analyzing clinical rela-
tionships between these regions and the disease. Table 4
shows five brain regions with the smallest scales for the
most deteriorated groups (i.e., AD and PD) from the ADNI
and PPMI experiments, respectively.

ROI Analysis in AD. As shown in Table 4, the identi-
fied regions in the ADNI experiments are primarily dis-
tributed in temporal and occipital lobes. Notably, the
medial occipitotemporal gyrus exhibited the smallest scale
in the ADNI-CT experiment, a region known for its vital role

in encoding visual memories (Bogousslavsky et al., 1987).
Another noteworthy region is the parahippocampal gyrus,
widely recognized for its association with AD and its role
in the formation of new memories (Mu & Gage, 2011).
Additionally, it’s worth noting that amygdala is identified,
which plays a role in the regulation of long-term mem-
ory (McGaugh, 2004). In the ADNI-FDG experiment,
the medial occipito-temporal sulcus and the thalamus were
identified, both functionally connected to the hippocam-
pus (Aggleton & Brown, 1999; Huntgeburth & Petrides,
2012), and associated with spatial memory (Aggleton et al.,
2010).

ROI Analysis in PD. The identified regions for the PPMI
experiment were distributed across the temporal and frontal
lobes. Both the left and right superior temporal gyrus were
identified, where neural correlations between these regions
and PD have been observed in many studies (Martin et al.,
2009; Péron et al., 2010; Gu et al., 2022). These regions are
associated with social cognition and language comprehen-
sion (Bigler et al., 2007). Also, the superior frontal gyrus
is implicated in the sensory system and facial expres-
sions (Goldberg et al., 2006; Fried et al., 1998), and the
inferior frontal gyrus plays a crucial role in language pro-
cessing and motor control (Swick et al., 2008). Given that
PD patients experience challenges in both motor and non-
motor functions, including cognitive impairments such as
deficits in attention and memory, these ROIs related to so-
cial cognitive and language processing may contribute to
understanding the cognitive aspects of PD.
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(a) ADNI with cortical thickness (b) ADNI with FDG (c) PPMI with BOLD

Figure 3. Comparison of distributions of the graph embedding ēc between diagnostic classes. Each box plot represents the graph
embedding distribution of one diagnostic group, where the distribution is obtained from the trained AGT models from 5 folds and averaged
across the folds. Temporal variations between the groups appear along with the disease progression.

Table 5. Comparison of mean accuracy with and without Rtemp.

Lce Rtemp ADNI-CT ADNI-FDG PPMI
✓ 89.2 ± 2.1 94.4 ± 1.3 82.6 ± 2.1
✓ ✓ 90.3 ± 1.8 (+0.9) 94.8 ± 1.1 (+0.4) 83.6 ± 3.8 (+1.0)

5.5. Temporal Analysis

The result of the ablation study on Rtemp is reported in
Table 5. With Rtemp, the averaged accuracy consistently
increased ∼1%p for all experiments. Additional precision
and recall results are reported in Appendix B, where the
performance improvement with Rtemp on these metrics are
∼2.5%p and ∼1.2%p, respectively.

Temporal dynamics across degenerative classes are visual-
ized in Fig. 3 and 4. As Rtemp imposes sequential regularity
on graph embeddings (i.e., ēc in Eq. (8)), we observed class-
wise embedding distributions from a trained model. Fig. 3
shows a comparison of the embedding distributions with
different diagnostic classes, revealing sequential variations
along the stages of degeneration in both ADNI and PPMI
datasets. In Fig. 4, regional changes in scales are observ-
able across classes, especially for marked regions within
circles. Specifically, scales of the precuneus gyrus and
the medial occipitotemporal gyrus decrease at later stages
in the top and bottom panels, respectively. These results
indicate that the significance of high-frequency (i.e., node-
individual) information is increased in these ROIs as the
disease progresses. Also, these results are consistent with
existing studies, as they are known to be regions where early-
onset AD symptoms appear (Karas et al., 2007; Convit et al.,
2000).

5.6. Effect of Node-variant Convolution

In contrast to typical graph convolution, our node-variant
convolution with adaptive wavelet basis ψsc aggregates fea-

Figure 4. Visualization of the trained scales on the ADNI-FDG
experiment. Top: Trained scales of right cortex ROIs. Bottom:
Trained scales of left cortex ROIs. All node-wise scales are aver-
aged across 5 folds.

tures within an optimally tailored range for each node. Also,
as ψsc considers both high and low-frequency characteris-
tics, it can capture both heterophily and homophily, that
may coexist within a single graph. To assess the impact of
node-variant convolution, we compare a sample input graph
from a PD patient in the PPMI dataset with the outcome
of the node-variant convolution on this graph. In the brain
network of subject #3130, both heterophily and homophily
coexist, which appear in Fig. 5a and 5c, respectively. The
cosine similarity of BOLD signals between the gyrus rectus
and the parahippocampal gyrus in Fig. 5a is −0.86, while
the cosine similarity between the paracentral lobule and
the insula in Fig. 5c is 0.50. Edges in Fig. 5b and 5d show
the ψsc calculated from a trained model, where the connec-
tivity magnitude weakens for heterophily and strengthens
for homophily. By applying node-variant convolution using
ψsc , the difference in two node pairs is amplified. Specifi-
cally, cosine similarity is decreased to −0.87 in Fig. 5b and
increased to 0.52 in Fig. 5d. These results demonstrate the
flexibility of node-variant convolution in capturing localized
and heterogeneous graph characteristics.
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(a) Nodes with dissimilar at-
tribute and their connection

(b) ψsc constructed from (a)
and scale-filtered nodes Xs

(c) Nodes with similar at-
tribute and their connection

(d) ψsc constructed from (c)
and scale-filtered nodes Xs

Figure 5. (a) and (c) are from a brain network (i.e., X and A) of
subject #3130. Edges in (b) and (d) are the adaptive wavelet basis
ψsc derived from a trained model. By using ψsc , the node features
in (b) become more discriminative from (a), while those in (d)
become more similar compared to the nodes in (c).

5.7. Ablation Study on the Adaptive Local Filter

We performed an ablation study on the adaptive local
filter by replacing it with a high-pass or low-pass filter.
As the scales of the adaptive filter were randomly ini-
tialized within a range [−2, 2] and converged within a
similar range (as shown in Table 12, 13, 14), we per-
formed six experiments by setting all scales to be fixed
as one of {−2,−1,−0.5, 0.5, 1, 2} to capture high and low-
frequency graph characteristics. As shown in Table 6, the
experiment with adaptive scales far outperforms the fixed
scale settings as each node-wise scale is flexibly trained to
aggregate information from different nodes with different
strengths.

Table 6. Ablation study on the adaptive local filter for the ANDI-
CT experiment. The adaptive local filter is replaced with a high-
pass or a low-pass filter with a fixed scale.

scale Accuracy (%) Precision (%) Recall (%)
-2 (high-pass) 72.3 ± 1.2 70.6 ± 1.9 74.7 ± 1.2
-1 (high-pass) 73.8 ± 1.7 73.1 ± 1.0 75.2 ± 2.1

-0.5 (high-pass) 74.5 ± 0.8 73.4 ± 1.6 76.6 ± 1.6
0.5 (low-pass) 74.5 ± 1.8 72.5 ± 2.4 76.0 ± 3.8
1 (low-pass) 74.5 ± 2.0 73.4 ± 2.0 75.3 ± 2.1
2 (low-pass) 74.0 ± 2.0 72.5 ± 1.9 76.4 ± 2.7

Adaptive scales 90.3 ± 1.8 91.3 ± 2.4 89.9 ± 2.5
(+15.8) (+17.9) (+13.3)

6. Conclusion
We presented a novel wavelet-based GNN addressing chal-
lenges in analyzing the evolving dynamics of neurodegen-
erative diseases on brain connectomes. Our method cap-
tures the sequential variations within diagnostic groups with
a group-wise temporal regularization. Also, it adaptively
captures both homophily and heterophily within a graph
by adjusting node-wise spectral bandwidth. As a result,
our method outperformed various GNNs for brain connec-
tome classification on two representative neurodegenerative
disease benchmarks. Our framework offers clinical inter-
pretability, showing significant potential to be applied in the
analysis of various neurodegenerative diseases.
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In the appendix, we present 1) detailed implementation setting, 2) ablation study on the weight for the Rtemp, 3) ablation
study on Rtemp with additional metrics, and 4) converged scale values for all datasets, which were not included in the main
manuscript due to the page limit.

A. Detailed Implementation Setting
To train AGT, we utilized PyTorch framework with a single NVIDIA RTX 6000 Ada Generation GPU. In Table 7, we provide
details of the implementation settings of AGT. We performed a grid search for all baselines and AGT to choose the best
number of hidden units in {8, 16, 32, 64}, and a learning rate in {0.1, 0.01, 0.001, 0.0001}. As the temporal regularization
Rtemp requires a sufficient amount of data for measuring accurate group distance, we used the maximum size of batch
comprising all training data. For the scale initialization, N number of scales were initialized randomly within a range
[−2, 2].

Table 7. Hyperparameters of AGT for all datasets.

Hyperparameter ADNI-CT ADNI-FDG PPMI

Optimizer Adam Adam Adam

Learning rate 1 × 10−2 2 × 10−2 1 × 10−3

Weight for Rtemp (i.e., α) 5 × 10−3 5 × 10−3 3 × 10−2

Weight decay (i.e., γ in Eq. 12) 5 × 10−4 5 × 10−4 5 × 10−4

Batch size 1058 1108 156

Number of epochs 5000 5000 5000

Initialization of scale range [-2, 2] [-2, 2] [-2, 2]

Hidden dimension of GCN 8 8 16

Number of GCN layers 2 2 2

Number of f(·) layers 2 2 2

B. Ablation Studies
B.1. Weight for Rtemp

In Table 8, we provide the results of the averaged accuracy with different trade-off weights (i.e., α) for Rtemp. We performed
a grid search to choose the best α, in {0.001, 0.001, 0.003, 0.005, 0.01, 0.015, 0.02, 0.03}. As demonstrated in Table 8,
AGT exhibits insensitivity to the intensity of the α, with approximately ∼1%p gap between the worst and best cases in the
ADNI-CT and ∼2.5%p for the ADNI-FDG and PPMI experiments.

Table 8. Averaged accuracy with different α configuration.

α ADNI-CT ADNI-FDG PPMI

0.0001 89.80 94.51 81.03
0.001 89.72 94.51 81.54
0.003 89.87 94.72 82.09
0.005 90.33 96.75 83.08
0.010 89.95 94.58 82.56
0.015 89.72 94.66 82.05
0.02 89.50 94.58 82.05
0.03 89.80 94.44 83.59
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B.2. Ablation study on Rtemp with more metrics

Here we present the results for the three experiments with different loss configurations. Along with the averaged accuracy
given in Table 5, additional precision and recall scores are reported in Table 9, 10, and 11 for the ADNI-CT, ADNI-FDG, and
PPMI experiments, respectively. For the recall on the ADNI-CT experiment, AGT with Rtemp showed a marginal decrease
(−0.4%p) compared to the AGT without Rtemp. However, except in this case, AGT with Rtemp consistently outperformed
AGT without Rtemp for all experiments, showing the efficiency of the temporal regularization in solving neurodegenerative
graph classification task.

Table 9. Ablation studies on Rtemp for the ADNI-CT experiment. All results are averaged across 5-folds.

Lce Rtemp Accuracy (%) Precision (%) Recall (%)
✓ 89.2 ± 2.1 88.8 ± 2.6 90.3 ± 2.7
✓ ✓ 90.3 ± 1.8 (+0.9) 91.3 ± 2.4 (+2.5) 89.9 ± 2.5 (-0.4)

Table 10. Ablation studies on Rtemp for the ADNI-FDG experiment. All results are averaged across 5-folds.

Lce Rtemp Accuracy (%) Precision (%) Recall (%)
✓ 94.4 ± 1.3 94.0 ± 1.2 94.8 ± 1.0
✓ ✓ 94.8 ± 1.1 (+0.4) 94.3 ± 1.5 (+0.3) 95.3 ± 1.4 (+0.5)

Table 11. Ablation studies on Rtemp for the PPMI experiment. All results are averaged across 5-folds.

Lce Rtemp Accuracy (%) Precision (%) Recall (%)
✓ 82.6 ± 2.1 60.6 ± 7.9 86.4 ± 3.6
✓ ✓ 83.6 ± 3.8 (+1.0) 62.4 ± 4.4 (+1.8) 87.6 ± 3.5 (+1.2)

C. Converged Scales
Along with Table 4 in the main manuscript, we report the exact value of all converged scales for all experiments in Table 12,
13, 14. Specifically, Table 12 and 13 contain scales derived from the ADNI dataset parcellated on the Destrieux atlas with
160 ROIs, and Table 14 contains results derived from the PPMI dataset using the AAL atlas comprising 116 ROIs. The
reported values are the average of the scales from 5 models trained with 5-fold cross-validation. Positive values indicate that
a low-pass heat kernel was used for smoothing information around the corresponding ROI, while negative values indicate
that a high-pass filter was used to emphasize variations at the corresponding ROI. As shown in the tables, the converged
scales exhibit variations across the diagnostic classes and brain regions. These results demonstrate that training AGT on
brain connectome datasets allows for both node-wise and group-wise analyses, suggesting a significant potential to be
deployed for other connectome analyses of various brain disorders.

13



Neurodegenerative Brain Network Classification via Adaptive Diffusion with Temporal Regularization

Table 12. All converged scales for the ADNI-CT experiment.
idx ROI CN SMC EMCI LMCI AD idx ROI CN SMC EMCI LMCI AD
1 Left-G and S frontomargin 0.53 0.20 -0.16 0.57 0.87 81 Right-G and S cingul-Mid-Ant 0.65 -0.06 0.56 -0.04 0.26
2 Left-G and S occipital inf 1.24 0.63 0.39 0.15 0.21 82 Right-G and S cingul-Mid-Post -0.68 0.06 -0.24 0.16 -0.17
3 Left-G and S paracentral -0.89 -0.15 -0.49 0.41 -0.33 83 Right-G cingul-Post-dorsal -0.17 0.21 0.54 -0.13 -0.70
4 Left-G and S subcentral 0.00 0.65 0.01 -0.04 -0.29 84 Right-G cingul-Post-ventral -0.40 0.01 -0.51 0.90 -0.10
5 Left-G and S transv frontopol 0.21 -0.03 -0.49 -0.15 0.16 85 Right-G cuneus -0.36 0.54 -0.85 0.32 -0.10
6 Left-G and S cingul-Ant -0.19 -0.40 0.34 0.08 0.29 86 Right-G front inf-Opercular -0.59 1.08 -0.19 -0.74 -0.05
7 Left-G and S cingul-Mid-Ant -0.99 0.38 0.21 0.38 0.05 87 Right-G front inf-Orbital 0.11 0.01 0.24 -0.29 0.39
8 Left-G and S cingul-Mid-Post 0.42 0.22 0.08 -0.01 -0.44 88 Right-G front inf-Triangul -0.34 0.01 -0.76 -0.78 0.12
9 Left-G cingul-Post-dorsal -0.14 -0.23 -1.08 -0.66 -0.28 89 Right-G front middle -1.06 -0.58 0.19 -0.30 -0.40
10 Left-G cingul-Post-ventral 0.08 -0.78 -0.43 -0.14 1.44 90 Right-G front sup 0.87 -0.42 0.03 -0.12 0.86
11 Left-G cuneus -0.43 0.64 0.85 -0.76 0.74 91 Right-G Ins lg and S cent ins -0.51 0.20 0.00 -0.18 0.33
12 Left-G front inf-Opercular 0.80 0.80 -0.65 -0.66 0.03 92 Right-G insular short -0.84 0.08 0.92 0.40 0.01
13 Left-G front inf-Orbital -0.35 0.96 -0.03 0.28 -0.03 93 Right-G occipital middle -0.07 -0.81 -0.31 0.95 0.31
14 Left-G front inf-Triangul -0.12 0.84 -0.51 -0.01 -0.12 94 Right-G occipital sup 0.26 -0.94 -0.11 0.45 0.17
15 Left-G front middle 0.57 0.01 -0.32 0.11 0.68 95 Right-G oc-temp lat-fusifor -0.83 -0.27 -0.23 -0.32 -0.48
16 Left-G front sup -0.38 0.10 -0.32 -0.35 0.87 96 Right-G oc-temp med-Lingual -0.51 -0.60 0.61 0.60 0.78
17 Left-G Ins lg and S cent ins 1.32 0.22 0.10 -0.25 0.59 97 Right-G oc-temp med-Parahip -0.06 0.20 -0.25 0.36 -0.93
18 Left-G insular short 0.30 -0.43 0.89 0.35 0.00 98 Right-G orbital -0.43 -0.32 0.26 0.26 -0.37
19 Left-G occipital middle -0.44 -0.09 -0.15 -0.21 0.18 99 Right-G pariet inf-Angular -0.26 0.27 -0.16 -0.47 0.20
20 Left-G occipital sup 1.43 0.14 -0.51 0.41 -0.26 100 Right-G pariet inf-Supramar 0.70 -0.61 0.35 0.37 -0.50
21 Left-G oc-temp lat-fusifor -0.68 0.98 0.06 1.26 0.20 101 Right-G parietal sup 0.00 0.81 0.12 -0.10 -0.05
22 Left-G oc-temp med-Lingual -0.80 -0.03 0.52 1.05 -0.50 102 Right-G postcentral -0.19 -1.03 0.25 -0.03 -0.28
23 Left-G oc-temp med-Parahip 0.26 -0.65 0.06 -1.17 -0.58 103 Right-G precentral 0.81 0.44 -0.38 -0.39 0.18
24 Left-G orbital -0.56 0.03 -0.05 0.17 -0.46 104 Right-G precuneus 0.15 -0.99 -0.70 -0.59 -0.10
25 Left-G pariet inf-Angular 0.94 -0.06 0.29 0.01 0.38 105 Right-G rectus -0.43 0.38 -0.12 -0.02 1.04
26 Left-G pariet inf-Supramar 0.39 0.09 -0.77 0.19 0.14 106 Right-G subcallosal 0.49 -0.50 0.13 0.07 1.22
27 Left-G parietal sup -0.44 -0.61 -1.02 -0.13 0.19 107 Right-G temp sup-G T transv 0.01 0.71 0.35 0.02 0.26
28 Left-G postcentral -0.72 0.10 0.21 -0.35 0.53 108 Right-G temp sup-Lateral 0.04 -0.47 -0.65 -0.26 0.66
29 Left-G precentral 0.19 0.45 0.06 -0.60 0.90 109 Right-G temp sup-Plan polar -0.15 -0.41 -0.50 0.28 -0.37
30 Left-G precuneus 0.81 -0.18 0.35 0.13 -0.35 110 Right-G temp sup-Plan tempo -0.49 0.29 0.63 0.06 0.28
31 Left-G rectus 0.33 0.26 -0.33 -0.24 0.35 111 Right-G temporal inf -0.59 0.75 -0.21 0.34 0.19
32 Left-G subcallosal -0.62 0.05 -0.08 -0.15 0.50 112 Right-G temporal middle 0.08 -0.70 -0.29 0.69 -0.36
33 Left-G temp sup-G T transv 0.53 0.19 -0.10 0.76 -0.41 113 Right-Lat Fis-ant-Horizont 0.33 -0.17 0.21 -0.11 -0.84
34 Left-G temp sup-Lateral -0.04 0.81 0.20 -0.25 -0.26 114 Right-Lat Fis-ant-Vertical -0.41 -0.66 -0.16 -0.13 -0.67
35 Left-G temp sup-Plan polar -0.43 0.06 0.55 0.55 0.11 115 Right-Lat Fis-post -0.20 0.36 -0.57 -0.41 -0.40
36 Left-G temp sup-Plan tempo -0.17 -0.22 0.30 -0.26 -0.06 116 Right-Pole occipital -0.50 0.28 0.18 -0.58 -0.45
37 Left-G temporal inf 0.07 -0.48 0.60 0.03 -0.43 117 Right-Pole temporal -1.36 -1.01 0.75 -0.28 1.00
38 Left-G temporal middle -0.81 0.12 0.18 0.42 0.38 118 Right-S calcarine 0.57 0.82 0.29 0.39 -0.42
39 Left-Lat Fis-ant-Horizont -0.61 -0.33 -0.39 0.28 -0.64 119 Right-S central 0.32 0.41 -0.92 -0.49 -1.06
40 Left-Lat Fis-ant-Vertical 0.84 -0.97 -0.08 -0.40 -0.06 120 Right-S cingul-Marginalis 0.67 -0.10 -1.35 -0.49 -0.40
41 Left-Lat Fis-post -0.35 0.22 -0.19 -0.16 -0.20 121 Right-S circular insula ant -0.38 -0.04 0.13 -0.54 0.10
42 Left-Pole occipital 0.24 0.24 0.37 0.15 0.28 122 Right-S circular insula inf -0.46 0.16 0.54 -0.63 -0.50
43 Left-Pole temporal -0.86 0.54 -0.21 0.17 0.03 123 Right-S circular insula sup -0.49 0.09 0.19 -0.02 -0.34
44 Left-S calcarine 0.50 -0.77 0.39 -0.33 0.67 124 Right-S collat transv ant -0.07 -0.78 0.28 -0.02 0.28
45 Left-S central -0.16 -0.93 0.22 -1.25 0.25 125 Right-S collat transv post 0.88 0.92 0.11 0.37 -0.25
46 Left-S cingul-Marginalis -0.37 0.03 0.51 0.55 0.61 126 Right-S front inf -0.64 0.67 0.51 -0.52 -0.97
47 Left-S circular insula ant 0.03 0.75 -0.09 -0.35 0.49 127 Right-S front middle 0.04 -0.55 0.69 -0.24 -0.87
48 Left-S circular insula inf 0.32 0.34 1.00 -0.50 0.01 128 Right-S front sup -0.27 -0.14 1.28 0.82 -0.77
49 Left-S circular insula sup 0.02 -0.58 0.39 -0.27 0.17 129 Right-S interm prim-Jensen -0.94 1.17 -0.15 -0.53 -0.14
50 Left-S collat transv ant 0.30 -0.64 -0.30 0.67 -0.04 130 Right-S intrapariet and P trans -1.03 -0.44 -0.41 -0.38 0.79
51 Left-S collat transv post 0.12 0.30 0.08 -0.52 -0.12 131 Right-S oc middle and Lunatus 0.51 -0.42 0.37 0.21 0.36
52 Left-S front inf -0.26 0.21 0.34 0.62 -0.86 132 Right-S oc sup and transversal -0.05 -0.49 0.38 0.53 -0.04
53 Left-S front middle -0.49 -0.09 -0.40 -1.24 0.29 133 Right-S occipital ant -0.26 0.08 -0.60 0.03 -0.14
54 Left-S front sup 0.33 0.10 -0.44 -0.15 0.40 134 Right-S oc-temp lat 0.28 0.17 0.03 -0.49 -0.51
55 Left-S interm prim-Jensen 0.32 0.17 0.28 1.27 0.34 135 Right-S oc-temp med and Lingual 0.84 0.11 -0.33 -0.92 0.57
56 Left-S intrapariet and P trans 1.15 0.49 -0.11 0.11 -0.31 136 Right-S orbital lateral -0.29 -0.40 1.17 -0.75 -0.43
57 Left-S oc middle and Lunatus 0.13 -0.21 -0.11 0.08 -0.35 137 Right-S orbital med-olfact -0.09 -0.63 0.01 -0.48 0.51
58 Left-S oc sup and transversal 0.39 -0.30 0.41 -0.17 -0.19 138 Right-S orbital-H Shaped -0.24 0.27 0.45 -1.20 -0.17
59 Left-S occipital ant -0.82 -0.47 -0.52 0.62 0.33 139 Right-S parieto occipital -0.12 0.38 -0.98 0.12 0.03
60 Left-S oc-temp lat -0.47 -0.52 -0.05 -0.35 -0.64 140 Right-S pericallosal -0.60 -0.72 0.08 -0.12 0.85
61 Left-S oc-temp med and Lingual -1.33 0.79 -0.72 0.03 -1.13 141 Right-S postcentral -0.19 -0.08 -0.38 -0.44 0.24
62 Left-S orbital lateral -0.68 0.26 -0.48 0.86 0.11 142 Right-S precentral-inf-part -0.04 -0.02 0.97 -0.30 -0.04
63 Left-S orbital med-olfact -0.06 0.50 -0.17 0.03 -0.53 143 Right-S precentral-sup-part -0.29 -0.57 -0.64 0.48 0.63
64 Left-S orbital-H Shaped 0.20 0.07 0.13 0.56 0.13 144 Right-S suborbital -0.92 0.93 -0.15 0.59 0.20
65 Left-S parieto occipital 0.27 0.89 -0.28 -0.08 0.32 145 Right-S subparietal -0.41 -0.22 0.21 0.45 -0.30
66 Left-S pericallosal 0.04 -0.32 0.22 -0.65 0.40 146 Right-S temporal inf 0.24 -0.23 0.27 0.17 -0.25
67 Left-S postcentral 1.04 -0.25 -0.38 -0.59 -0.04 147 Right-S temporal sup 0.33 -0.45 -0.45 -0.25 0.35
68 Left-S precentral-inf-part -0.29 0.31 -0.39 -0.84 -0.36 148 Right-S temporal transverse -0.11 -0.96 0.42 0.70 0.46
69 Left-S precentral-sup-part -0.13 -0.24 0.06 -0.57 -0.24 149 Left-Amygdala 0.01 -0.74 0.41 -0.05 -1.11
70 Left-S suborbital -0.11 0.61 -1.36 -0.31 -0.40 150 Left-Caudate 1.27 0.10 -0.43 0.72 -0.15
71 Left-S subparietal 0.92 0.38 -0.46 0.16 -0.04 151 Left-Hippocampus 0.28 -0.36 -0.33 -0.49 0.34
72 Left-S temporal inf -0.08 -0.23 -0.66 -0.54 0.70 152 Left-Thalamus-Proper -0.24 0.24 1.38 -0.85 0.22
73 Left-S temporal sup 0.93 -0.67 0.49 -0.33 -0.64 153 Left-Putamen -0.31 0.33 -0.87 0.09 -0.74
74 Left-S temporal transverse 0.15 0.26 0.26 -0.01 0.97 154 Left-Pallidum 0.30 0.13 0.27 -0.55 -0.12
75 Right-G and S frontomargin -0.18 0.30 0.07 0.03 0.98 155 Right-Amygdala -0.88 -0.50 0.66 0.62 0.84
76 Right-G and S occipital inf 0.21 -0.33 0.60 -0.75 0.57 156 Right-Caudate 0.07 -0.62 -0.55 -0.11 0.45
77 Right-G and S paracentral 0.01 1.13 -0.07 -0.14 0.20 157 Right-Hippocampus 0.06 0.57 -0.08 -0.50 -0.18
78 Right-G and S subcentral 0.33 -0.11 0.04 0.72 0.54 158 Right-Thalamus-Proper -0.73 -0.02 -0.26 0.14 -0.57
79 Right-G and S transv frontopol -0.06 0.72 0.35 0.27 -0.20 159 Right-Putamen -0.12 -0.37 -0.28 0.55 0.49
80 Right-G and S cingul-Ant -1.12 -0.44 0.26 0.96 -0.67 160 Right-Pallidum 0.07 -0.20 0.52 0.38 0.30
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Table 13. All converged scales for the ADNI-FDG experiment.
idx ROI CN SMC EMCI LMCI AD idx ROI CN SMC EMCI LMCI AD
1 Left-G and S frontomargin 0.27 -0.18 0.37 0.45 0.24 81 Right-G and S cingul-Mid-Ant -0.19 0.50 -0.28 0.21 0.02
2 Left-G and S occipital inf 0.59 0.08 0.01 -0.10 -0.48 82 Right-G and S cingul-Mid-Post -0.50 -0.50 -0.87 -0.09 -0.87
3 Left-G and S paracentral 0.97 -0.65 0.21 -0.15 0.25 83 Right-G cingul-Post-dorsal 1.03 0.59 -0.54 0.05 -0.91
4 Left-G and S subcentral 0.26 -0.15 0.21 0.56 0.77 84 Right-G cingul-Post-ventral -0.56 -0.68 0.10 -0.60 -0.12
5 Left-G and S transv frontopol 1.25 1.27 -0.17 0.49 -0.62 85 Right-G cuneus 0.16 0.01 -0.41 0.31 -0.44
6 Left-G and S cingul-Ant -0.55 -0.24 0.17 -0.64 -0.11 86 Right-G front inf-Opercular 0.11 -0.12 0.22 -0.59 0.17
7 Left-G and S cingul-Mid-Ant -0.71 0.60 -0.25 -0.63 -0.19 87 Right-G front inf-Orbital -0.07 -0.79 0.14 -0.27 0.34
8 Left-G and S cingul-Mid-Post 0.24 0.25 0.10 -0.68 0.68 88 Right-G front inf-Triangul -0.02 -0.27 0.53 -0.93 0.26
9 Left-G cingul-Post-dorsal 0.36 -0.28 1.10 -0.64 0.34 89 Right-G front middle -0.55 0.57 -0.94 -0.01 -0.59
10 Left-G cingul-Post-ventral 0.54 0.65 -0.01 0.33 -0.18 90 Right-G front sup 0.27 0.87 -0.10 0.45 0.13
11 Left-G cuneus -1.17 0.29 0.24 0.02 -0.24 91 Right-G Ins lg and S cent ins -0.23 -0.11 -0.78 1.07 -0.43
12 Left-G front inf-Opercular 0.43 0.54 -0.23 -0.10 -0.18 92 Right-G insular short -0.52 -0.36 -0.10 0.29 -0.69
13 Left-G front inf-Orbital -0.06 -0.41 -0.11 0.19 1.22 93 Right-G occipital middle 0.16 -0.96 0.64 -0.36 -0.55
14 Left-G front inf-Triangul 0.34 0.75 -0.95 -0.64 0.02 94 Right-G occipital sup -0.18 -1.02 1.03 1.19 0.08
15 Left-G front middle 0.35 -0.76 -0.84 -0.08 0.30 95 Right-G oc-temp lat-fusifor -0.48 0.42 0.03 -0.75 -0.15
16 Left-G front sup -0.98 0.88 -0.21 0.00 0.01 96 Right-G oc-temp med-Lingual 0.22 0.03 0.45 1.23 0.57
17 Left-G Ins lg and S cent ins 0.44 0.60 -0.26 -0.33 -0.18 97 Right-G oc-temp med-Parahip 1.18 -0.18 -0.49 0.29 -0.21
18 Left-G insular short 0.82 0.12 -0.03 -0.80 1.08 98 Right-G orbital -0.07 -0.91 -0.47 -0.47 -0.15
19 Left-G occipital middle 0.50 -0.35 -0.24 0.72 0.40 99 Right-G pariet inf-Angular 0.23 0.09 -0.43 -0.84 0.73
20 Left-G occipital sup -0.16 -0.25 0.12 -0.07 -1.04 100 Right-G pariet inf-Supramar 0.61 0.24 0.29 0.37 -0.55
21 Left-G oc-temp lat-fusifor -0.58 0.44 -0.13 0.45 -0.56 101 Right-G parietal sup -0.54 -0.66 -0.54 0.04 -0.12
22 Left-G oc-temp med-Lingual -0.53 -0.23 -0.09 0.06 -1.40 102 Right-G postcentral -0.13 -0.44 -0.38 -0.16 -0.61
23 Left-G oc-temp med-Parahip 0.23 -0.62 0.54 -0.19 0.22 103 Right-G precentral -0.01 0.15 -0.61 -0.63 0.22
24 Left-G orbital 0.03 -0.26 0.28 0.23 0.13 104 Right-G precuneus 0.64 -0.01 0.06 0.04 -0.71
25 Left-G pariet inf-Angular -0.07 1.20 0.06 0.46 0.61 105 Right-G rectus -0.92 -0.45 0.30 -0.43 1.11
26 Left-G pariet inf-Supramar 0.50 1.01 -0.17 -0.69 -0.01 106 Right-G subcallosal -0.48 -0.76 0.67 -0.44 -0.71
27 Left-G parietal sup -0.24 0.00 -0.39 0.39 -0.03 107 Right-G temp sup-G T transv 0.63 0.32 -0.34 0.08 0.43
28 Left-G postcentral -0.40 0.20 0.04 -0.51 0.79 108 Right-G temp sup-Lateral -0.06 0.27 0.38 0.38 -0.04
29 Left-G precentral -0.90 0.52 -0.04 -0.27 0.91 109 Right-G temp sup-Plan polar 0.09 0.37 0.77 0.54 0.37
30 Left-G precuneus -0.17 -0.74 0.46 -0.63 -0.50 110 Right-G temp sup-Plan tempo -0.29 -0.68 0.79 -0.66 0.61
31 Left-G rectus 0.31 -0.31 1.44 0.76 0.45 111 Right-G temporal inf -0.15 1.14 -0.24 0.10 0.05
32 Left-G subcallosal 0.15 0.67 -0.53 0.42 0.79 112 Right-G temporal middle -0.82 0.86 0.46 0.72 -0.76
33 Left-G temp sup-G T transv -0.01 -0.73 0.39 0.07 -0.37 113 Right-Lat Fis-ant-Horizont 0.12 0.58 0.42 0.94 -0.24
34 Left-G temp sup-Lateral -0.46 -0.83 1.03 -0.29 -0.98 114 Right-Lat Fis-ant-Vertical -0.75 0.05 0.17 0.11 -0.14
35 Left-G temp sup-Plan polar -1.14 1.08 0.80 0.21 0.17 115 Right-Lat Fis-post -0.84 0.36 0.61 0.67 0.91
36 Left-G temp sup-Plan tempo -0.76 0.38 -0.46 0.24 0.31 116 Right-Pole occipital -1.29 0.68 0.40 0.23 0.06
37 Left-G temporal inf -0.43 0.24 -0.19 -0.20 -0.40 117 Right-Pole temporal -0.09 0.25 0.10 -0.09 -0.06
38 Left-G temporal middle -0.56 0.37 -0.52 0.26 -0.68 118 Right-S calcarine -0.65 0.27 -0.05 0.48 0.24
39 Left-Lat Fis-ant-Horizont -0.48 -1.07 -0.71 -0.15 -0.95 119 Right-S central -0.44 -0.71 0.34 -0.88 0.70
40 Left-Lat Fis-ant-Vertical 0.78 0.38 0.75 -0.43 0.26 120 Right-S cingul-Marginalis 0.40 -0.14 -1.07 -0.13 -0.59
41 Left-Lat Fis-post 0.23 -0.48 0.03 -0.02 1.09 121 Right-S circular insula ant 0.39 -0.83 -0.28 -0.48 0.03
42 Left-Pole occipital 0.59 0.66 -0.02 0.71 0.12 122 Right-S circular insula inf 0.11 0.26 -0.23 -0.25 -0.28
43 Left-Pole temporal -0.69 -0.25 0.34 -0.67 0.01 123 Right-S circular insula sup -0.19 0.02 -0.27 -0.03 -0.16
44 Left-S calcarine -0.47 0.13 0.16 -0.67 -0.34 124 Right-S collat transv ant 0.46 0.25 1.35 -0.75 0.80
45 Left-S central -0.48 -0.09 -0.04 0.05 0.36 125 Right-S collat transv post 0.34 0.22 -1.17 0.42 -0.07
46 Left-S cingul-Marginalis -0.82 -0.19 0.27 0.96 0.09 126 Right-S front inf -0.77 0.40 0.00 0.72 -0.76
47 Left-S circular insula ant 1.05 -0.98 -0.41 -0.74 0.57 127 Right-S front middle 0.04 0.16 -0.34 0.31 1.19
48 Left-S circular insula inf 1.10 0.23 0.18 -0.93 0.29 128 Right-S front sup -0.36 -0.08 0.44 -0.25 0.32
49 Left-S circular insula sup -0.28 -0.42 -0.79 -0.35 0.00 129 Right-S interm prim-Jensen 0.17 0.34 -0.32 0.62 0.06
50 Left-S collat transv ant -0.77 0.13 0.34 0.11 -0.10 130 Right-S intrapariet and P trans 0.04 -0.85 0.19 -0.69 0.50
51 Left-S collat transv post 0.05 -0.40 0.29 0.08 -0.74 131 Right-S oc middle and Lunatus 0.90 -0.41 0.37 -1.37 0.09
52 Left-S front inf -0.77 -0.34 0.12 -0.63 0.42 132 Right-S oc sup and transversal 1.13 0.63 -0.12 0.47 -0.82
53 Left-S front middle 0.05 0.45 -0.38 0.23 0.61 133 Right-S occipital ant -0.13 0.11 0.22 0.97 -0.72
54 Left-S front sup 0.06 -0.57 0.41 -0.30 0.04 134 Right-S oc-temp lat -0.24 -0.50 0.31 -0.84 -0.09
55 Left-S interm prim-Jensen 0.48 0.03 0.19 -0.46 -0.55 135 Right-S oc-temp med and Lingual -0.40 0.24 0.54 0.91 0.58
56 Left-S intrapariet and P trans 0.20 0.41 0.30 -0.86 -0.69 136 Right-S orbital lateral 0.81 -0.18 1.04 -0.51 -0.21
57 Left-S oc middle and Lunatus 0.23 0.69 0.53 -0.61 0.09 137 Right-S orbital med-olfact 0.23 -0.30 -0.40 -0.26 0.57
58 Left-S oc sup and transversal -0.93 -0.26 0.57 -0.19 0.36 138 Right-S orbital-H Shaped 0.65 0.24 0.15 -0.83 -0.73
59 Left-S occipital ant -0.23 0.04 -0.14 0.17 0.21 139 Right-S parieto occipital 0.22 -0.26 -0.66 1.06 -0.22
60 Left-S oc-temp lat 0.62 -0.20 0.33 0.16 -0.74 140 Right-S pericallosal 0.25 -0.58 -0.48 0.09 0.56
61 Left-S oc-temp med and Lingual -1.18 0.64 -0.01 -0.11 0.27 141 Right-S postcentral 0.19 0.90 -0.09 0.22 0.05
62 Left-S orbital lateral -0.23 0.01 -0.35 0.33 0.60 142 Right-S precentral-inf-part 0.24 -0.04 0.53 0.19 0.45
63 Left-S orbital med-olfact 0.30 0.34 -0.13 0.16 0.20 143 Right-S precentral-sup-part -0.73 -1.18 0.33 0.24 -1.12
64 Left-S orbital-H Shaped -0.59 0.17 -0.10 0.28 -0.69 144 Right-S suborbital -1.26 0.36 -0.04 0.62 0.24
65 Left-S parieto occipital 0.52 -0.77 -0.08 -0.36 0.30 145 Right-S subparietal 0.56 -0.63 0.57 -0.51 -0.48
66 Left-S pericallosal 0.59 -0.31 0.51 0.37 -0.56 146 Right-S temporal inf 0.45 0.18 -0.14 0.09 0.40
67 Left-S postcentral -0.48 0.27 -0.83 0.49 1.17 147 Right-S temporal sup 0.10 0.16 -0.21 0.29 0.53
68 Left-S precentral-inf-part -0.04 -0.51 -0.37 -0.60 -0.08 148 Right-S temporal transverse -0.23 -0.35 -0.39 -0.30 0.75
69 Left-S precentral-sup-part -0.20 -0.44 -0.05 0.69 -0.54 149 Left-Amygdala -0.16 -0.02 0.86 -0.19 -0.60
70 Left-S suborbital 0.71 -0.10 -0.21 -0.20 -0.30 150 Left-Caudate -0.11 -0.29 -0.63 0.36 -0.32
71 Left-S subparietal -0.51 0.00 -0.32 0.64 -0.64 151 Left-Hippocampus 0.02 -0.16 -0.53 0.08 -0.23
72 Left-S temporal inf 0.61 -0.30 0.32 0.60 -0.11 152 Left-Thalamus-Proper -0.24 0.26 -0.03 -0.58 0.78
73 Left-S temporal sup 0.07 -1.03 -0.10 0.34 0.43 153 Left-Putamen 0.34 1.27 -0.81 -0.38 -0.12
74 Left-S temporal transverse -0.39 0.12 -0.02 0.61 0.22 154 Left-Pallidum 0.06 0.62 -0.06 0.15 -0.14
75 Right-G and S frontomargin 0.08 0.54 0.12 0.32 0.20 155 Right-Amygdala -1.02 -0.56 0.01 0.10 0.52
76 Right-G and S occipital inf 0.12 0.28 0.36 -0.78 0.26 156 Right-Caudate -0.92 0.33 -0.84 0.35 -0.10
77 Right-G and S paracentral 0.21 0.47 0.87 -0.17 -0.78 157 Right-Hippocampus -0.13 -0.51 -0.23 1.05 -0.55
78 Right-G and S subcentral 0.14 1.16 0.36 -0.12 -0.74 158 Right-Thalamus-Proper 0.07 1.57 -0.19 0.90 -1.11
79 Right-G and S transv frontopol -0.34 -0.43 0.91 0.58 -0.33 159 Right-Putamen -0.65 -0.52 -0.18 0.63 0.46
80 Right-G and S cingul-Ant 0.24 0.28 -0.35 0.18 0.42 160 Right-Pallidum -0.44 0.00 0.95 -0.52 0.95

15



Neurodegenerative Brain Network Classification via Adaptive Diffusion with Temporal Regularization

Table 14. All converged scales for the PPMI experiment.
idx ROI CN Prodromal PD idx ROI CN Prodromal PD
1 Precentral L -0.26 -0.24 -0.39 59 Parietal Sup L -0.60 0.38 -0.05
2 Precentral R -0.64 -0.27 -0.20 60 Parietal Sup R -0.20 0.21 0.18
3 Frontal Sup L 0.65 -0.20 -0.26 61 Parietal Inf L -0.19 -0.13 -0.63
4 Frontal Sup R -0.15 0.09 -0.26 62 Parietal Inf R 0.02 0.26 -0.50
5 Frontal Sup Orb L 0.67 0.22 0.51 63 SupraMarginal L 0.08 -0.54 0.43
6 Frontal Sup Orb R 0.77 -0.16 -0.27 64 SupraMarginal R 1.01 0.65 -0.88
7 Frontal Mid L 0.29 -0.65 0.36 65 Angular L 0.11 -0.10 -0.48
8 Frontal Mid R 1.15 -1.02 0.40 66 Angular R -0.06 -0.91 -0.11
9 Frontal Mid Orb L -0.38 0.93 -0.29 67 Precuneus L 0.54 0.74 0.09
10 Frontal Mid Orb R -0.36 -0.47 0.39 68 Precuneus R 0.08 -0.41 -1.05
11 Frontal Inf Oper L 1.14 -0.63 -1.17 69 Paracentral Lobule L 0.47 0.78 -0.47
12 Frontal Inf Oper R 0.07 0.27 0.12 70 Paracentral Lobule R -0.90 -0.43 0.56
13 Frontal Inf Tri L 0.28 -0.18 -0.23 71 Caudate L -0.15 -0.21 1.53
14 Frontal Inf Tri R -0.93 -0.48 0.59 72 Caudate R 0.10 -0.68 -0.03
15 Frontal Inf Orb L 0.53 0.25 0.68 73 Putamen L -0.23 0.17 0.04
16 Frontal Inf Orb R 0.21 0.80 0.70 74 Putamen R 0.00 -0.73 0.60
17 Rolandic Oper L -0.30 0.62 -0.27 75 Pallidum L -0.51 0.19 0.20
18 Rolandic Oper R 0.22 1.15 -0.46 76 Pallidum R 0.59 0.28 0.02
19 Supp Motor Area L 0.83 0.12 0.02 77 Thalamus L -0.21 0.43 0.47
20 Supp Motor Area R 0.11 0.56 0.30 78 Thalamus R -0.98 -0.71 -0.39
21 Olfactory L -0.06 -0.73 0.05 79 Heschl L 0.41 0.47 0.25
22 Olfactory R -0.06 -0.40 0.14 80 Heschl R 0.02 0.68 1.49
23 Frontal Sup Medial L -0.25 -0.81 -0.84 81 Temporal Sup L -0.77 0.00 -1.41
24 Frontal Sup Medial R -0.14 -0.19 0.52 82 Temporal Sup R -0.27 -0.27 -1.08
25 Frontal Med Orb L -0.31 0.55 -0.01 83 Temporal Pole Sup L 0.85 0.16 0.11
26 Frontal Med Orb R -0.39 1.15 -1.11 84 Temporal Pole Sup R 0.01 0.80 1.16
27 Rectus L -0.38 0.37 0.56 85 Temporal Mid L 1.10 0.33 0.71
28 Rectus R -0.36 -0.04 -0.54 86 Temporal Mid R 0.85 -0.08 0.21
29 Insula L 0.23 -0.39 0.15 87 Temporal Pole Mid L -0.34 0.09 0.10
30 Insula R -0.69 -0.25 0.54 88 Temporal Pole Mid R -0.44 -0.52 0.00
31 Cingulum Ant L 0.48 0.14 -0.19 89 Temporal Inf L 0.36 -0.82 -0.46
32 Cingulum Ant R -0.63 -0.48 -0.65 90 Temporal Inf R -0.49 0.49 0.00
33 Cingulum Mid L -0.52 -0.07 -0.04 91 Cerebellum Crus1 L -0.33 -0.34 0.55
34 Cingulum Mid R 0.11 -0.25 0.04 92 Cerebellum Crus1 R -0.44 -0.04 -0.59
35 Cingulum Post L -0.28 -0.73 0.05 93 Cerebellum Crus2 L -0.26 0.16 -0.19
36 Cingulum Post R -0.79 0.30 0.00 94 Cerebellum Crus2 R 0.02 -0.80 0.42
37 Hippocampus L -0.14 -0.07 -0.15 95 Cerebellum 3 L 0.24 0.89 0.66
38 Hippocampus R -0.11 0.66 -0.92 96 Cerebellum 3 R -0.04 0.32 -0.08
39 ParaHippocampal L 1.25 0.72 0.07 97 Cerebellum 4 5 L 0.69 0.25 -0.63
40 ParaHippocampal R -0.36 -0.50 0.38 98 Cerebellum 4 5 R -0.44 -0.62 0.74
41 Amygdala L 1.11 -0.25 -0.09 99 Cerebellum 6 L 0.40 -0.68 -0.63
42 Amygdala R 0.44 0.32 0.45 100 Cerebellum 6 R 0.29 0.30 -0.54
43 Calcarine L 1.11 -0.88 -0.56 101 Cerebellum 7b L -0.25 0.98 0.43
44 Calcarine R -0.21 -0.12 -1.17 102 Cerebellum 7b R 0.19 -0.33 -0.10
45 Cuneus L -0.10 -0.59 0.19 103 Cerebellum 8 L -0.21 -0.97 -1.03
46 Cuneus R 0.56 0.33 -0.47 104 Cerebellum 8 R 0.17 0.28 0.29
47 Lingual L -0.44 0.22 0.80 105 Cerebellum 9 L -0.53 -0.33 0.04
48 Lingual R 0.01 0.60 0.11 106 Cerebellum 9 R -0.09 0.37 0.55
49 Occipital Sup L 0.48 -0.06 0.48 107 Cerebellum 10 L -0.27 0.51 -0.17
50 Occipital Sup R 0.78 -0.59 -0.60 108 Cerebellum 10 R 0.53 -0.41 0.24
51 Occipital Mid L -0.08 -0.98 0.61 109 Vermis 1 2 -0.99 0.45 -0.15
52 Occipital Mid R 0.43 -0.36 -0.23 110 Vermis 3 -0.95 0.78 -0.12
53 Occipital Inf L 0.18 0.22 0.41 111 Vermis 4 5 0.06 -0.81 -0.38
54 Occipital Inf R 0.27 0.56 0.04 112 Vermis 6 0.40 0.45 0.54
55 Fusiform L -0.60 0.51 0.24 113 Vermis 7 0.42 -0.73 0.43
56 Fusiform R 0.14 -0.15 0.10 114 Vermis 8 0.62 0.07 -0.63
57 Postcentral L -0.22 0.15 0.12 115 Vermis 9 -0.29 -0.46 0.44
58 Postcentral R 0.30 0.22 0.48 116 Vermis 10 -0.31 -0.14 0.09
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