
An Empirical Study of Validating Synthetic Data for Formula Generation

Anonymous ACL submission

Abstract
Large language models (LLMs) can be lever-001
aged to help with writing formulas in spread-002
sheets, but resources on these formulas are003
scarce, impacting both the base performance004
of pre-trained models and limiting the ability005
to fine-tune them. Given a corpus of formu-006
las, we can use a(nother) model to generate007
synthetic natural language utterances for fine-008
tuning. However, it is important to validate009
whether the NL generated by the LLM is in-010
deed accurate to be beneficial for fine-tuning.011
In this paper, we provide empirical results on012
the impact of validating these synthetic training013
examples with surrogate objectives that evalu-014
ate the accuracy of the synthetic annotations.015
We demonstrate that validation improves per-016
formance over raw data across four models (2017
open and 2 closed weight). Interestingly, we018
show that although validation tends to prune019
more challenging examples, it increases the020
complexity of problems that models can solve021
after being fine-tuned on validated data.022

1 Introduction023

Derived-column formulas in spreadsheets generate024

a new column by transforming existing columns025

in a table, and they have been shown challenging026

to write (Gulwani et al., 2012). To aid users in027

writing such formulas, we can ask for a description028

in natural language (Zhao et al., 2024). Unfortu-029

nately, since such formulas are sparse, therefore030

pre-trained language models (especially smaller)031

struggle in generating them without fine-tuning032

(0.03 for phi-2 in pass@10).033

To construct a dataset for fine-tuning, public034

spreadsheet workbooks can be used but they con-035

tain only tables and formulas, whereas a fine-tuning036

dataset also requires paired natural language (NL)037

descriptions corresponding to each (Table, For-038

mula). Traditionally datasets for NL-to-code tasks039

have been manually annotated (Zhou et al., 2024;040

Austin et al., 2021). This is a time-consuming and041

expensive process. Leveraging LLMs, known for 042

their text generation capabilities, is a viable alter- 043

native (Tan et al., 2024) given that the synthetic 044

NL generated by LLMs is accurate, as recent 045

studies have shown that quality is more important 046

than quantity (Zhou et al., 2024; Li et al., 2023; 047

Lozhkov et al., 2024). 048

In this paper, we leverage LLMs to predict the ac- 049

curacy of synthetic NL using 3 surrogate objectives, 050

and show empirical results of fine-tuning models 051

on subsets of synthetic data that are accepted by 052

these objectives. Fine-tuning models on validated 053

subsets shows better performance in predicting for- 054

mulas compared to using raw data. For example, 055

GPT-4 fine-tuned on data validated by alternative 056

code generation objective saw up to a 25% im- 057

provement in evaluation scores along with a 23% 058

reduction in training time. Additionally, we ob- 059

serve that the models fine-tuned on validated data 060

perform better on more complex problems. Fur- 061

ther, we release the synthetic dataset to seed future 062

research in this area. 063

Our key contributions are as follows. 064

• We define three surrogate objectives (output 065

prediction, alternative code generation, and 066

classification) to predict accuracy of synthetic 067

natural language in the NL-to-Formula task. 068

• We empirically analyze the effect of validating 069

synthetic data using these objectives on fine- 070

tuning performance of different models. 071

2 Related work 072

Formula generation FlashFill (Gulwani, 2011; 073

Gulwani et al., 2012) generates derived-column 074

formulas by example, as users struggle with this 075

task. SpreadsheetCoder (Chen et al., 2021b) sug- 076

gests formulas from surrounding context in spread- 077

sheets. FLAME (Joshi et al., 2024) is a small lan- 078

guage model that understands formulas for tasks 079

like repair and retrieval, but does not handle natu- 080

1

ral language. The NL-to-Formula (NL2F) task is081

introduced with a dataset obtained by converting082

the TEXT2SQL dataset to spreadsheet formulas083

(Zhao et al., 2024). Unlike (Zhao et al., 2024), our084

work centres on empirically evaluating different085

NL validation strategies.086

LLMs for synthetic data Tan et al. (2024) dis-087

cusses the applications of LLMs in data annotation088

for classification tasks. Goel et al. (2023) demon-089

strates the use of LLMs in the medical domain,090

where they assist in labeling data with expert ver-091

ification. Wang et al. (2024), Kim et al. (2024),092

and Tang et al. (2024) explore human-LLM collab-093

orative approaches for annotation and verification.094

There has been no comparison of NL validation095

techniques on synthetic NL for NL2F.096

Data quality for LLM fine-tuning Chen and097

Mueller (2024) proposed an approach for auto-098

mated filtering and verification of datasets to en-099

sure high quality for LLM fine-tuning, leveraging100

the BSDetector (Chen and Mueller, 2023) to ob-101

tain confidence scores from LLM outputs. These102

techniques require existing ground truth labels (ut-103

terances) which are not available in our case. Zhou104

et al. (2024) and Li et al. (2023) manually curate105

data to demonstrate that instruction tuning with a106

small (< 1000) set of high-quality examples yields107

competitive results. While their work focuses on108

selecting examples based on alignment (already as-109

suming correctness), our work evaluates technique-110

based selection on accuracy of NL instructions.111

3 Validating synthetic data112

Let T = [Ci]
n
1 be a table with n columns uniquely113

identified by hi. A derived-column formula F is a114

formula where each leaf node is either a constant115

value or a column identifier hi. Let U be an ut-116

terance in natural language that describes how to117

derive a column from T . An derived-column task118

is specified by (U, T, F). Given U and T the goal119

is to find a formula F ′ such that F ′(T) ≡ F (T).120

To fine-tune a model, we therefore need exam-121

ples of the form (U, T, F). T and F can be mined122

from large spreadsheet corpora (Singh et al., 2023;123

Joshi et al., 2024) and we can use an LLM to gen-124

erate an utterance Û = LLM(T, F).125

A validator V (Û , T, F) → B is a function that126

predicts whether Û accurately describes the for-127

mula F operating on table T . These validators can128

be defined in any way—even using human anno-129

Insert two dashes
between the first

name and last name

Concatenate first
name and last name

CONCATENATE(@[First
Name],'--',
@[Last Name])

df['first_name']
.str.cat(
 df['last_name']
,sep='--')

df['first
name'] + ' '+
df['last name']

Figure 1: Overview of different validators implemented
on top of GPT-4 represented by (a) VO: This validator
directly computes F (T) from (Û , T); (b) VP : Validator
predicts python program P from (Û , T) to compare
P (T) with F (T); (c) VC : Validator directly classifies
Û based on input (Û , T, F).

tators. To reduce manual effort, we define three 130

validators using an LLM. An overview of these 131

three validators is shown in Figure 1. 132

Output prediction (VO) This validator asks the 133

LLM to directly predict the output values F (T) 134

from (Û , T) and uses an element-wise row com- 135

parison to evaluate correctness. For numbers, we 136

allow an absolute difference of 0.05. For strings, 137

we use a longest common sub-sequence ratio of 0.8 138

as passing criterion. This approach leverages nat- 139

ural language to emulate the computation directly. 140

It is inspired from the alternate task of output pre- 141

diction discussed in Khatry et al. (2023) 142

Alternate code generation (VP) This validator 143

asks the LLM to predict a program P in another 144

language (we use Python) from (Û , T) and com- 145

pares P (T) (execution of P on T) with F (T) using 146

element-wise comparison with the same relaxations 147

for strings and numbers. This leverages the abil- 148

ities of LLMs to generate popular programming 149

languages (Ni et al., 2023). 150

Classification (VC) This validator directly asks 151

the model to classify whether Û accurately de- 152

scribes F over T . It is based on the self-reflection 153

certainty objective from BSDetector (Chen and 154

Mueller, 2023). 155

4 Experimental setup 156

We describe training data and models, and the test- 157

ing benchmark. 158

Training data We mine (T, F) pairs that satisfy 159

our derived-column definition from publicly avail- 160

2

able Excel workbooks (Singh et al., 2023). We161

create a training set and validation set of size 7833162

and 422 respectively. Each (T, F) pair is annotated163

with an utterance Û using GPT-4.164

Models We use two open (phi-2 and165

mistral-7b-instruct) and two closed-weight166

(gpt-35-turbo and gpt-4) models. phi-2 (8 × V100)167

and mistral (1 × A100) were fine-tuned for 10168

and 15 epochs respectively. We selected the best169

checkpoint using validation loss. gpt-35 (16 ×170

A100) and gpt-4 (24 × A100) were fine-tuned171

using the Azure API. mistral, gpt-35, gpt-4 were172

fine-tuned using LoRA (Hu et al., 2021).173

Testing data The SOFSET dataset (Barke et al.,174

2024) consists of 201 spreadsheet formula tasks175

from StackOverflow. Of these, we filter the 139176

tasks that satisfy our derived-column definition.177

Metric We use the pass@k metric (Chen et al.,178

2021a) based on execution match of formula, were179

k represents the number of predictions considered180

out of the total number of predictions provided. In181

our evaluation system, we generate n = 10 pre-182

dictions at temperature 0.6 and consider pass@1,183

pass@3 and pass@10.184

5 Results and Discussion185

We perform experiments to empirically explore the186

following research questions.187

RQ1 How do different validators compare?188

RQ2 What is the impact of validating data on fine-189

tuning performance?190

RQ3 What are the differences in cases solved191

by models trained on validated NL and raw192

dataset?193

5.1 RQ1: Comparing validators194

We apply our three validation approaches to our195

initial set of 7833 points. This produces the data196

subsets described in Table 1. We shows properties197

of the formulas accepted by each validator. Since198

VO is bottle-necked on numerical operations, it199

succeeds for fewer unique functions and operators.200

Similarly, VP struggles with more functions than201

VC as there might not be an easy Python equivalent.202

203

Figure 2 shows overlap in examples accepted204

by different validators. Each validator uniquely205

accepts at least some examples. 1403 (18%) exam-206

ples does not pass any validator.207

Table 1: Summary of training data subsets with different
validation approaches. "# functions" refers to unique
functions, "# calls" to average function calls, "depth" to
function nesting level, and "# ops" to average arithmetic
operator count in formulas.

V Size # functions # calls depth # ops

∅ 7833 122 1.03 0.87 1.28
VO 2266 71 0.71 0.65 1.01
VP 4095 95 0.86 0.77 1.22
VC 5246 109 0.87 0.79 1.24

1.6% 24.8%
2.4%

8.0%

5.2% 19.6%
20.5%

VO

VC

VP

Figure 2: Summary of overlap of different data subsets
produced by different validation strategies.

5.2 RQ2: Effect on fine-tuning performance 208

We compare the impact of validated data versus 209

raw (unvalidated) data, as well as the impact of val- 210

idated data versus rejected cases by each validator, 211

on the downstream performance of the NL2F task. 212

Versus raw Table 2 shows base model (few-shot) 213

and fine-tuning performance on different subsets of 214

data. For the smaller models, phi-2 and mistral, the 215

performance increase with fine-tuning is more sig- 216

nificant. Except for mistral in pass@10 and gpt-35 217

in pass@3, a smaller, validated dataset yields better 218

performance than raw data. VP yields the best per- 219

formance on average with nearly half the size 220

of raw data. gpt-4 improves only when fine-tuned 221

on validated data. Surprisingly, gpt-35 without fine- 222

tuning outperforms the fine-tuned version, likely 223

due to differences in data distribution between train- 224

ing and testing benchmarks. Besides performance, 225

fine-tuning with validated data also reduces train- 226

ing time significantly, as shown in Table 4. 227

Versus invalidated Table 3 compares the perfor- 228

mance of fine-tuning on the accepted (& subsam- 229

pled) and rejected (¬) examples for each valida- 230

tor. We sub-sample the accepted sets to 2266—the 231

number of examples in the smallest set (VO). Re- 232

sults of pairs (⊂ V,¬V) are marked in green if 233

(⊂ V > ¬V), blue if (⊂ V = ¬V) and red if 234

(⊂ V < ¬V). We observe that, despite the smaller 235

size of the validated data subset (subsampled), it 236

3

Table 2: Performance comparison of the different models on SOFSET Benchmark using pass@1, pass@3 and
pass@10 metric. Three out of the four models give best performance when fine-tuned on data validated by VP .

phi-2 mistral gpt-35 gpt-4

FT on # ex P@1 P@3 P@10 P@1 P@3 P@10 P@1 P@3 P@10 P@1 P@3 P@10

Base 0 0.01 0.01 0.03 0.01 0.03 0.05 0.19 0.27 0.35 0.28 0.34 0.4
Raw 7833 0.05 0.07 0.10 0.09 0.14 0.20 0.22 0.28 0.32 0.25 0.30 0.36
VO 2266 0.03 0.05 0.07 0.11 0.15 0.19 0.21 0.27 0.29 0.27 0.32 0.37
VP 4095 0.06 0.08 0.12 0.08 0.12 0.16 0.23 0.28 0.33 0.31 0.38 0.45
VC 5246 0.06 0.08 0.10 0.09 0.13 0.16 0.23 0.28 0.33 0.31 0.37 0.44

Table 3: Pairwise comparison of performance of sub-sampled (⊂) data from validated (V) against rejected (¬V)
examples for different validation strategies on different models. The performance of VO is affected due to its poor
handling of functions with numerical values.

phi-2 mistral gpt-35 gpt-4

FT on # ex P@1 P@3 P@10 P@1 P@3 P@10 P@1 P@3 P@10 P@1 P@3 P@10

VO 2266 0.03 0.05 0.07 0.11 0.15 0.19 0.21 0.27 0.29 0.25 0.30 0.36
¬VO 5567 0.03 0.04 0.06 0.10 0.14 0.18 0.21 0.26 0.29 0.26 0.33 0.37

⊂ VC 2266 0.04 0.06 0.08 0.08 0.12 0.17 0.22 0.25 0.29 0.31 0.34 0.37
¬VC 2587 0.02 0.03 0.05 0.07 0.10 0.15 0.21 0.24 0.28 0.28 0.32 0.36

⊂ VP 2266 0.05 0.07 0.10 0.06 0.10 0.15 0.26 0.29 0.32 0.33 0.36 0.39
¬VP 3738 0.03 0.04 0.07 0.06 0.10 0.13 0.18 0.23 0.27 0.27 0.31 0.34

Table 4: Training time for different models on data sub-
sets. Models fine-tuned on VP and VC subsets require
less time than on raw data while delivering better down-
stream performance.

Data phi-2 mistral gpt-35 gpt-4

Raw 15h44m 8h51m 4h45m 14h00m
VO 4h17m 2h32m 1h54m 7h25m
VP 8h08m 4h50m 3h00m 10h50m
VC 10h3m 5h59m 3h50m 11h19m

outperforms its larger invalidated (rejected) coun-237

terpart in most (28/36) comparisons. The only de-238

crease in performance happens for VO on gpt-4,239

likely due to the many functions (51) that were240

eliminated from the training data.241

5.3 RQ3: Analysing solved cases242

Figure 3 shows properties of the solved cases243

(where pass@10 = 1) after fine-tuning different244

models on raw data and validated subsets. We see245

that fine-tuning on datasets with fewer unique func-246

tions still enables all models (except for mistral)247

to use more functions. The average function call248

count increases for validated subsets compared to249

the raw data, indicating more complex formulas250

are solved by models fine-tuned on validated data.251

For gpt-4 and gpt-35, average operator count also252

increases with fine-tuning on validated data.253

Raw VO VC VP

20

40

60

funcs

gpt-4 gpt-35 mistral phi-2

Raw VO VC VP

2.5

3.0

3.5
calls

Raw VO VC VP

0.5

1.0

ops

Figure 3: Comparison of correctly solved cases on mod-
els fine-tuned with different validation subsets based on
(a) Number of unique functions (b) Average number of
function calls (c) Average operator count of formulas

6 Conclusion 254

We empirically evaluate the effect of automated 255

validation of synthetic data using LLMs on the 256

fine-tuning performance of derived-column NL-to- 257

formula. We validate synthetic NL annotations 258

with three surrogate tasks (classification, code gen- 259

eration in Python, and output prediction) and fine- 260

tune different models on the examples accepted by 261

each of these methods. In general, fine-tuning on 262

smaller, validated datasets improves performance. 263

Despite validation resulting in datasets with sim- 264

pler formulas, that does not cause the fine-tuned 265

models to only solve simpler problems. Further, 266

we release our dataset to seed research in this area. 267

4

7 Limitations268

Although we have focused on validating the cor-269

rectness of natural language instructions, we have270

not addressed techniques for correcting them. Ex-271

ploring methods for correcting instructions could272

be beneficial, as it would prevent the loss of data273

points. While having a smaller set of high-quality274

data can be advantageous for efficient training,275

achieving the best results may require maintaining276

a larger dataset by correcting invalid instructions.277

In our study, the distribution of training data278

for fine-tuning is different than the testing data,279

which might not fully reflect the potential of fine-280

tuning. Additionally, our research has concentrated281

on formulas that expect a single, well-structured282

(formatted) input table. We aim to extend our work283

to include formulas that involve multiple tables and284

unstructured input. Furthermore, we have explored285

the potential of our technique in one language (En-286

glish). We believe it will be valuable to investigate287

multilingual systems for validation setups.288

References289

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten290
Bosma, Henryk Michalewski, David Dohan, Ellen291
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.292
Program synthesis with large language models. arXiv293
preprint arXiv:2108.07732.294

Shraddha Barke, Christian Poelitz, Carina Suzana Ne-295
greanu, Benjamin Zorn, José Cambronero, Andrew D296
Gordon, Vu Le, Elnaz Nouri, Nadia Polikarpova,297
Advait Sarkar, et al. 2024. Solving data-centric298
tasks using large language models. arXiv preprint299
arXiv:2402.11734.300

Jiuhai Chen and Jonas Mueller. 2023. Quantifying un-301
certainty in answers from any language model and302
enhancing their trustworthiness.303

Jiuhai Chen and Jonas Mueller. 2024. Automated304
data curation for robust language model fine-tuning.305
arXiv preprint arXiv:2403.12776.306

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,307
Henrique Ponde de Oliveira Pinto, Jared Kaplan,308
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg309
Brockman, et al. 2021a. Evaluating large lan-310
guage models trained on code. arXiv preprint311
arXiv:2107.03374.312

Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles313
Sutton, Hanjun Dai, Max Lin, and Denny Zhou.314
2021b. Spreadsheetcoder: Formula prediction from315
semi-structured context. In International Conference316
on Machine Learning, pages 1661–1672. PMLR.317

Akshay Goel, Almog Gueta, Omry Gilon, Chang Liu, 318
Sofia Erell, Lan Huong Nguyen, Xiaohong Hao, 319
Bolous Jaber, Shashir Reddy, Rupesh Kartha, et al. 320
2023. Llms accelerate annotation for medical infor- 321
mation extraction. In Machine Learning for Health 322
(ML4H), pages 82–100. PMLR. 323

Sumit Gulwani. 2011. Automating string processing 324
in spreadsheets using input-output examples. ACM 325
Sigplan Notices, 46(1):317–330. 326

Sumit Gulwani, William R Harris, and Rishabh Singh. 327
2012. Spreadsheet data manipulation using examples. 328
Communications of the ACM, 55(8):97–105. 329

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 330
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 331
and Weizhu Chen. 2021. Lora: Low-rank adap- 332
tation of large language models. arXiv preprint 333
arXiv:2106.09685. 334

Harshit Joshi, Abishai Ebenezer, José Cambronero 335
Sanchez, Sumit Gulwani, Aditya Kanade, Vu Le, 336
Ivan Radiček, and Gust Verbruggen. 2024. Flame: 337
A small language model for spreadsheet formulas. 338
In Proceedings of the AAAI Conference on Artificial 339
Intelligence, volume 38, pages 12995–13003. 340

Anirudh Khatry, Joyce Cahoon, Jordan Henkel, Shaleen 341
Deep, Venkatesh Emani, Avrilia Floratou, Sumit Gul- 342
wani, Vu Le, Mohammad Raza, Sherry Shi, Mukul 343
Singh, and Ashish Tiwari. 2023. From words to code: 344
Harnessing data for program synthesis from natural 345
language. Preprint, arXiv:2305.01598. 346

Hannah Kim, Kushan Mitra, Rafael Li Chen, Sajjadur 347
Rahman, and Dan Zhang. 2024. Meganno+: A 348
human-llm collaborative annotation system. arXiv 349
preprint arXiv:2402.18050. 350

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang 351
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and 352
Jing Xiao. 2023. From quantity to quality: Boosting 353
llm performance with self-guided data selection for 354
instruction tuning. arXiv preprint arXiv:2308.12032. 355

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, 356
and Thomas Wolf. 2024. Fineweb-edu. 357

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, 358
Wen-tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023. 359
Lever: learning to verify language-to-code generation 360
with execution. In Proceedings of the 40th Interna- 361
tional Conference on Machine Learning, ICML’23. 362
JMLR.org. 363

Mukul Singh, José Cambronero Sánchez, Sumit Gul- 364
wani, Vu Le, Carina Negreanu, Mohammad Raza, 365
and Gust Verbruggen. 2023. Cornet: Learning ta- 366
ble formatting rules by example. Proceedings of the 367
VLDB Endowment, 16(10):2632–2644. 368

Zhen Tan, Alimohammad Beigi, Song Wang, Ruocheng 369
Guo, Amrita Bhattacharjee, Bohan Jiang, Mansooreh 370
Karami, Jundong Li, Lu Cheng, and Huan Liu. 2024. 371
Large language models for data annotation: A survey. 372
arXiv preprint arXiv:2402.13446. 373

5

https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

Yi Tang, Chia-Ming Chang, and Xi Yang. 2024.374
Pdfchatannotator: A human-llm collaborative multi-375
modal data annotation tool for pdf-format catalogs.376
In Proceedings of the 29th International Conference377
on Intelligent User Interfaces, pages 419–430.378

Xinru Wang, Hannah Kim, Sajjadur Rahman, Kushan379
Mitra, and Zhengjie Miao. 2024. Human-llm collab-380
orative annotation through effective verification of381
llm labels. In Proceedings of the CHI Conference on382
Human Factors in Computing Systems, pages 1–21.383

Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones,384
Suriya Gunasekar, Ranjita Naik, Hamid Palangi, Ece385
Kamar, and Besmira Nushi. 2023. Attention satis-386
fies: A constraint-satisfaction lens on factual errors of387
language models. arXiv preprint arXiv:2309.15098.388

Wei Zhao, Zhitao Hou, Siyuan Wu, Yan Gao, Haoyu389
Dong, Yao Wan, Hongyu Zhang, Yulei Sui, and390
Haidong Zhang. 2024. Nl2formula: Generating391
spreadsheet formulas from natural language queries.392
arXiv preprint arXiv:2402.14853.393

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,394
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping395
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-396
ment. Advances in Neural Information Processing397
Systems, 36.398

6

8 Appendix399

8.1 Training Data Characteristics400

In this section, we summarise important formula401

properties for the training data extracted from ex-402

cel workbooks (see Table 5). From the original403

corpus, we remove any formulas that have depre-404

cated functions to produce a set of 10,389 (table,405

formula) pairs. We then remove any pairs where406

the formula results in a missing/empty value for all407

output rows or uses multiple tables. After the pro-408

cess of filtering, our final dataset consists of 7,833409

(table, formula) pairs. This dataset has formulas410

which use 122 distinct built-in functions. The most411

popular functions match those typically employed412

by Excel spreadsheet users: IF, SUM, IFERROR,413

CONCATENATE, AND. The other properties are sum-414

marised in Table 5). The function call count refers415

to the frequency of Excel function calls within a416

formula. The depth of formulas denotes the ex-417

tent of nested function calls within them. Operator418

count is the number of arithmetic operators (+, -, *,419

/) in a formula.

Table 5: Characteristics of formulas used in Training
Data obtained from Excel spreadsheets

Fxn. call count Formula depth Op. count

0 3554 3554 2887
1 2625 2682 2811
2 965 1030 1169
3 285 325 435
4 115 125 187

≥ 5 289 113 344

420

8.2 Attention weights comparison421

We understand the alignment of NL with formula422

using average attention weights of the formula to-423

kens originating from the NL tokens in the last424

layer of two open-source models (Phi-2, Mistral).425

Let αij denote the attention weight from the i-th426

NL token to the j-th formula token in the last layer.427

The average attention weight αj for the j-th for-428

mula token from all NL token is given by:429

αj =
1

NNL

NNL∑
i=1

αij (1)430

The overall average attention weight for the en-431

tire formula αtotal is given by:432

αtotal =
1

NFormula

NFormula∑
j=1

αj (2)433

V1 (
Reje

ct)

V2 (
Reje

ct)

V3 (
Reje

ct) Raw V3 V2 V1

All a
cce

pt

Data Subsets

0

1

2

3

A
tte

nt
io

n
w

ei
gh

t s
co

re
s

Phi-2
Mistral

Figure 4: Attention weight scores (normalised) for dif-
ferent data subsets. V1= Direct Computation, V2=Code
Generation & Execution and V3= Classification. The
average scores are higher for subsets with validated NL

By calculating αtotal, we gain a measure of the 434

interaction between NL tokens and formula tokens, 435

highlighting the overall influence of natural lan- 436

guage on the generation of formula tokens within 437

the base model (Yuksekgonul et al., 2023). We 438

compare αtotal across different data subsets. We 439

observe that the average αtotal is highest for subset 440

with NL validated across all techniques, followed 441

by subsets with validated NL from each technique„ 442

then the raw data, and finally, with data subsets 443

where NL is rejected by each technique (refer Fig- 444

ure 4). This analysis suggests that validated NL 445

provides a more relevant context for generating 446

formula tokens. 447

8.3 Model hyper-parameters used while 448

Fine-tuning 449

Phi-2 For the Phi-2 model, fine-tuning was per- 450

formed for 10 epochs with a batch size of 8. The 451

learning rate was set to 1e-6, and the Adam op- 452

timizer was used along with a cross-entropy loss 453

function. 454

Mistral The Mistral model was fine-tuned for 15 455

epochs using the LoRA technique (Hu et al., 2021). 456

The specific parameters for LoRA included a LoRA 457

rank (Lora_r) of 64, a LoRA alpha (Lora_alpha) 458

of 16, and a LoRA dropout (Lora_dropout) of 459

0.1. The target modules for LoRA adaptation were 460

"q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", 461

"up_proj", "down_proj", and "lm_head". No bias 462

configuration was used, and the task type was 463

Causal Language Modeling (CAUSAL_LM). The 464

learning rate for this model was set to 2e-4, and 465

the batch size was 8. Optimization was carried out 466

using the PagedAdamW 32-bit optimizer. 467

7

	Introduction
	Related work
	Validating synthetic data
	Experimental setup
	Results and Discussion
	RQ1: Comparing validators
	RQ2: Effect on fine-tuning performance
	RQ3: Analysing solved cases

	Conclusion
	Limitations
	Appendix
	Training Data Characteristics
	Attention weights comparison
	Model hyper-parameters used while Fine-tuning

