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Abstract
Learning accurate predictive models of real-world
dynamic phenomena (e.g., climate, biological)
remains a challenging task. One key issue is
that the data generated by both natural and ar-
tificial processes often comprise time series that
are irregularly sampled and/or contain missing
observations. In this work, we propose the
Neural Continuous-Discrete State Space Model
(NCDSSM) for continuous-time modeling of
time series through discrete-time observations.
NCDSSM employs auxiliary variables to disen-
tangle recognition from dynamics, thus requiring
amortized inference only for the auxiliary vari-
ables. Leveraging techniques from continuous-
discrete filtering theory, we demonstrate how to
perform accurate Bayesian inference for the dy-
namic states. We propose three flexible parame-
terizations of the latent dynamics and an efficient
training objective that marginalizes the dynamic
states during inference. Empirical results on mul-
tiple benchmark datasets across various domains
show improved imputation and forecasting perfor-
mance of NCDSSM over existing models.

1. Introduction
State space models (SSMs) provide an elegant framework
for modeling time series data. Combinations of SSMs with
neural networks have proven effective for various time series
tasks such as segmentation, imputation, and forecasting (Kr-
ishnan et al., 2015; Fraccaro et al., 2017; Rangapuram et al.,
2018; Kurle et al., 2020; Ansari et al., 2021). However, most
existing models are limited to the discrete time (i.e., uni-
formly sampled) setting, whereas data from various physi-
cal (Menne et al., 2010), biological (Goldberger et al., 2000),
and business (Turkmen et al., 2019) systems in the real

†Work done while at National University of Singapore, prior to
joining Amazon. 1AWS AI Labs 2School of Computing, National
University of Singapore (NUS) 3Smart Systems Institute, NUS.
Correspondence to: Abdul Fatir Ansari <abdulfatir@u.nus.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. (Top) Generative model of Neural Continuous-Discrete
State Space Model. The bold red arrows indicate that the state,
zt, evolves continuously in time. The auxiliary variables, ak,
and observations, yk, are emitted at arbitrary discrete timesteps
tk ∈ {t0, t1, . . . , tT }. (Bottom) Amortized inference for auxiliary
variables and continuous-discrete Bayesian inference for states.
Samples from the amortized variational distribution over auxiliary
variables are used as pseudo-observations to condition and perform
inference in the continuous-discrete SSM at the bottom.

world are sometimes only available at irregular intervals.
Such systems are best modeled as continuous-time latent
processes with irregularly-sampled discrete-time observa-
tions. Desirable features of such a time series model include
modeling of stochasticity (uncertainty) in the system, and
efficient and accurate inference of the system state from po-
tentially high-dimensional observations (e.g., video frames).

Recently, latent variable models based on neural differential
equations have gained popularity for continuous-time mod-
eling of time series (Chen et al., 2018; Rubanova et al., 2019;
Yildiz et al., 2019; Li et al., 2020; Liu et al., 2020; Solin
et al., 2021). However, these models suffer from limitations.
The ordinary differential equation (ODE)-based models em-
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ploy deterministic latent dynamics and/or encode the entire
context window into an initial state, creating a restrictive
bottleneck. Stochastic differential equation (SDE)-based
models use stochastic latent dynamics, but typically per-
form a variational approximation of the latent trajectories
via posterior SDEs. The posterior SDEs incorporate new
observations in an ad-hoc manner, potentially resulting in
a disparity between the posterior and generative transition
dynamics, and a non-Markovian state space.

To address these issues, we propose the Neural Continuous-
Discrete State Space Model (NCDSSM) that uses discrete-
time observations to model continuous-time stochastic
Markovian dynamics (Fig. 1). By using auxiliary variables,
NCDSSM disentangles recognition of high-dimensional ob-
servations from dynamics (encoded by the state) (Fraccaro
et al., 2017; Kurle et al., 2020). We leverage the rich lit-
erature on continuous-discrete filtering theory (Jazwinski,
1970), which has remained relatively underexplored in the
modern deep learning context (Schirmer et al., 2022). Our
proposed inference algorithm only performs amortized vari-
ational inference for the auxiliary variables since they enable
classic continuous-discrete Bayesian inference (Jazwinski,
1970) for the states, using only the generative model. This
obviates the need for posterior SDEs and allows incorpora-
tion of new observations via a principled Bayesian update,
resulting in accurate state estimation. As a result, NCDSSM
enables online prediction and naturally provides state un-
certainty estimates. We propose three dynamics parame-
terizations for NCDSSM (linear time-invariant, non-linear
and locally-linear) and a training objective that can be easily
computed during inference.

We evaluated NCDSSM on imputation and forecasting tasks
on multiple benchmark datasets. Our experiments demon-
strate that NCDSSM accurately captures the underlying
dynamics of the time series and extrapolates it consistently
beyond the training context, significantly outperforming
baseline models. From a practical perspective, we found
that NCDSSM is less sensitive to random initializations and
requires fewer parameters than the baselines.

In summary, the key contributions of this work are:
• NCDSSM, a continuous-discrete SSM with auxiliary

variables for continuous-time modeling of irregularly-
sampled (high dimensional) time series;

• An accurate inference algorithm that performs amor-
tized inference for auxiliary variables and classic
Bayesian inference for the dynamic states;

• An efficient learning algorithm and its stable imple-
mentation using square root factors;

• Experiments on multiple benchmark datasets, demon-
strating that NCDSSM learns accurate models of the
underlying dynamics and extrapolates it consistently
into the future.

2. Approximate Continuous-Discrete Inference
We begin with a review of approximate continuous-discrete
Bayesian filtering and smoothing, inference techniques em-
ployed by our proposed model. Consider the following Itô
SDE,

dzt = f(zt, t)dt+G(zt, t)dBt, (1)

where zt ∈ Rm is the state, Bt ∈ Rm denotes a Brownian
motion with diffusion matrix Q, f(·, t) : Rm → Rm is the
drift function and G(·, t) : Rm → Rm×m is the diffusion
function at time t. The initial density of the state, p(z0),
is assumed to be known and independent of the Brownian
motion, Bt. The evolution of the marginal density of the
state, pt(zt), is governed by the Fokker-Plank-Kolmogorov
(FPK) equation (Jazwinski, 1970, Ch. 4),

∂pt(zt)

∂t
= L ∗pt, (2)

where L ∗ is the forward diffusion operator given by

L ∗φ = −
d∑

i=1

∂

∂xi
[φfi] +

1

2

d∑
i=1

d∑
j=1

[
φ(GQG⊤)ij

]
.

In practice, we only have access to noisy transformations
(called measurements or observations), atk ∈ Rd, of the
state, ztk , at discrete timesteps tk ∈ {t0, . . . , tT }. In the
following, we employ the notation xt to represent the value
of a variable x at an arbitrary continuous time t, and xtk (or
xk for short) to represent its value at the time tk associated
with the k-th discrete timestep. The continuous-discrete
state space model (Jazwinski, 1970, Ch. 6) is an elegant
framework for modeling such time series.
Definition 2.1 (Continuous-Discrete State Space Model). A
continuous-discrete state space model is one where the latent
state, zt, follows the continuous-time dynamics governed
by Eq. (1) and the measurement, ak, at time tk is obtained
from the measurement model p(ak|ztk).

In this work, we consider linear Gaussian measurement mod-
els, ak ∼ N (ak;Hztk ,R), where H ∈ Rd×m is the mea-
surement matrix and R ⪰ 0 ∈ Rd×d is the measurement co-
variance matrix. Given observations Aτ = {ak : tk ≤ τ},
we are interested in answering two types of inference
queries: the posterior distribution of the state, zt, condi-
tioned on observations up to time t, pt(zt|At), and the
posterior distribution of the state, zt, conditioned on all
available observations, pt(zt|AT ). These are known as the
filtering and smoothing problems, respectively.

The filtering density, pt(zt|At), satisfies the FPK equation
(Eq. 2) for t ∈ [tk, tk+1) between observations, with the
initial condition pt(zt|Atk) at time tk. Observations can be
incorporated via a Bayesian update,

pt(ztk |Atk) =
p(atk |ztk)p(ztk |Atk−1

)

p(ak|Atk−1
)

. (3)
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The smoothing density satisfies a backward partial differen-
tial equation related to the FPK equation. We refer the reader
to Anderson (1972) and Särkkä & Solin (2019, Ch. 10) for
details and discuss a practical approximate filtering proce-
dure in the following (cf. Appendix B.1 for smoothing).

2.1. Continuous-Discrete Bayesian Filtering

Solving Eq. (2) for arbitrary f and G is intractable; hence,
several approximations have been considered in the litera-
ture (Särkkä & Solin, 2019, Ch. 9). The Gaussian assumed
density approximation uses a Gaussian approximation,

pt(zt) ≈ N (zt;mt,Pt), (4)

for the solution to the FPK equation, characterized by the
time-varying mean, mt, and covariance matrix, Pt. Further,
linearization of the drift f via Taylor expansion results in
the following ODEs that govern the evolution of the mean
and covariance matrix,

dmt

dt
= f(mt, t), (5a)

dPt

dt
= Fz(mt, t)Pt +PtF

⊤
z (mt, t) +D(mt, t), (5b)

where Fz(mt, t) is the Jacobian of f(z, t) with respect
to z at mt and D(·, t) = G(·, t)QG⊤(·, t). Thus, for
t ∈ [tk, tk+1) between observations, the filter distribution
pt(zt|At) can be approximated as a Gaussian with mean
and covariance matrix given by solving Eq. (5), with initial
conditions mtk and Ptk at time tk. This is known as the
prediction step.

The Gaussian assumed density approximation of
p(ztk |Atk−1

) described above makes the Bayesian update
in Eq. (3) analytically tractable as p(atk |ztk) is also a
Gaussian distribution with mean Hzk and covariance
matrix R. The parameters, mk and Pk, of the Gaussian
approximation of pt(ztk |Atk) are then given by,

Sk = HP−
k H

⊤ +R, (6a)

Kk = P−
k H

⊤S−1
k , (6b)

mk = m−
k +Kk

(
ak −Hm−

k

)
, (6c)

Pk = P−
k −KkSkK

⊤
k , (6d)

where m−
k and P−

k are the parameters of pt(ztk |Atk−1
)

given by the prediction step. Eq. (6) constitutes the up-
date step which is exactly the same as the update step
in the Kalman filter for discrete-time linear Gaussian
SSMs. The continuous-time prediction step together with
the discrete-time update step is sometimes also referred
to as the hybrid Kalman filter. As a byproduct, the up-
date step also provides the conditional likelihood terms,
p(ak|Atk−1

) = N (ak;Hm−
k ,Sk), which can be com-

bined to give the likelihood of the observed sequence,
p(AtT ) = p(y0)

∏T
k=1 p(ak|Atk−1

).

3. Neural Continuous-Discrete State Space
Models

In this section, we describe our proposed model: Neural
Continuous-Discrete State Space Model (NCDSSM). We
begin by formulating NCDSSM as a continuous-discrete
SSM with auxiliary variables that serve as succinct represen-
tations of high-dimensional observations. We then discuss
how to perform efficient inference along with parameter
learning and a stable implementation for NCDSSM.

3.1. Model Formulation

NCDSSM is a continuous-discrete SSM in which the la-
tent state, zt ∈ Rm, evolves in continuous time, emitting
linear-Gaussian auxiliary variables, at ∈ Rh, which in turn
emit observations, yt ∈ Rd. Thus, NCDSSM possesses two
types of latent variables: (a) the states that encode the hidden
dynamics, and (b) the auxiliary variables that can be viewed
as succinct representations of the observations and are equiv-
alent to observations in the continuous-discrete state space
models considered in Section 2. The inclusion of auxil-
iary variables offers two benefits; (i) it allows disentangling
representation learning (or recognition) from dynamics (en-
coded by zt) and (ii) it enables the use of arbitrary decoders
to model the conditional distribution p(yt|at). We discuss
this further in Section 3.2.

Consider the case when we have observations available
at discrete timesteps t0, . . . , tT . Following the graphical
model in Fig. 1, the joint distribution over the states z0:T ,
the auxiliary variables a0:T , and the observations y0:T fac-
torises as

pθ(z0:T ,a0:T ,y0:T ) =

T∏
k=0

p(yk|ak)p(ak|zk)p(zk|zk−1),

where x0:T denotes the set {xt0 , . . . ,xtT } and p(z0|z−1) =
p(z0). We model the initial (prior) distribution of the states
as a multivariate Gaussian distribution,

p(z0) = N (z0;µ0,Σ0), (7)

where µ0 ∈ Rm and Σ0 ⪰ 0 ∈ Rm×m are the mean and
covariance matrix, respectively. The transition distribution
of the states, p(zk|zk−1), follows the dynamics governed by
the SDE in Eq. (1). The conditional emission distributions
of the auxiliary variables and observations are modeled as
multivariate Gaussian distributions given by,

p(ak|zk) = N (ak;Hzk,R), (8)

p(yk|ak) = N (yk; f
µ(ak), f

Σ(ak)), (9)

where H ∈ Rh×m is the auxiliary measurement matrix,
R ⪰ 0 ∈ Rh×h is the auxiliary covariance matrix,
and fµ and fΣ are functions parameterized by neural net-
works that output the mean and the covariance matrix of
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the distribution, respectively. We use θ to denote the param-
eters of the generative model, including SSM parameters
{µ0,Σ0, f ,Q,G,H,R} and observation emission distri-
bution parameters {fµ, fΣ}.

We propose three variants of NCDSSM, depending on the
parameterization of f and G functions in Eq. (1) that govern
the dynamics of the state:

Linear time-invariant dynamics is obtained by parameter-
izing f and G as

f(zt, t) = Fzt and G(z, t) = I, (10)

respectively, where F ∈ Rm×m is a Markov transition ma-
trix and I is the m-dimensional identity matrix. In this case,
Eqs. (4) and (5) become exact and the ODEs in Eq. (5) can
be solved analytically using matrix exponentials (cf. Ap-
pendix B.2). Unfortunately, the restriction of linear dynam-
ics is limiting for practical applications. We denote this
linear time-invariant variant as NCDSSM-LTI.

Non-linear dynamics is obtained by parameterizing f and
G using neural networks. With sufficiently powerful neural
networks, this parameterization is flexible enough to model
arbitrary non-linear dynamics. However, the neural net-
works need to be carefully regularized (cf. Appendix B.3)
to ensure optimization and inference stability. Inference
in this variant also requires computation of the Jacobian
of a neural network for solving Eq. (5). We denote this
non-linear variant as NCDSSM-NL.

Locally-linear dynamics is obtained by parameterizing f
and G as

f(zt, t) = F(zt)zt and G(z, t) = I, (11)

respectively, where the matrix F(zt) ∈ Rm×m is given by
a convex combination of K base matrices {F(j)}Kj=1,

F(zt) =

K∑
j=1

α(j)(zt)F
(j), (12)

and the combination weights, α(zt), are given by

α(zt) = softmax(g(zt)), (13)

where g is a neural network. Such parameterizations
smoothly interpolate between linear SSMs and can be
viewed as “soft” switching SSMs. Locally-linear dynam-
ics has previously been used for discrete-time SSMs (Karl
et al., 2016; Klushyn et al., 2021); we extend it to the con-
tinuous time setting by evaluating Eq. (12) continuously in
time. Unlike non-linear dynamics, this parameterization
does not require careful regularization and its flexibility can
be controlled by choosing the number of base matrices, K.
Furthermore, the Jacobian of f in Eq. (5) can be approxi-
mated as F(mt), avoiding the expensive computation of the
Jacobian of a neural network (Klushyn et al., 2021). We
denote this locally-linear variant as NCDSSM-LL.

3.2. Inference

Exact inference in the model described above is intractable
when the dynamics is non-linear and/or the observation
emission distribution, p(yk|ak), is modeled by arbitrary
non-linear functions. In the modern deep learning con-
text, a straightforward approach would be to approximate
the posterior distribution over the states and auxiliary vari-
ables, q(z0:T ,a0:T |y0:T ), using recurrent neural networks
(e.g., using ODE-RNNs when modeling in continuous time).
However, such parameterizations have been shown to lead
to poor optimization of the transition model in discrete-time
SSMs, leading to inaccurate learning of system dynam-
ics (Klushyn et al., 2021). Alternatively, directly applying
continuous-discrete inference techniques to non-linear emis-
sion models requires computation of Jacobian matrices and
inverses of d× d matrices (cf. Eq. 6) which scales poorly
with the data dimensionality.

The introduction of linear-Gaussian auxiliary variables of-
fers a middle ground between the two options above. It
allows efficient use of continuous-discrete Bayesian infer-
ence techniques for the inference of states, avoiding fully
amortized inference for auxiliary variables and states. Con-
cretely, we split our inference procedure into two inference
steps: (i) for auxiliary variables and (ii) for states.

Inference for auxiliary variables. We perform amortized
inference for the auxiliary variables, factorizing the varia-
tional distribution as,

qϕ(a0:T |y0:T ) =

T∏
k=0

q(ak|yk), (14)

where q(ak|yk) = N (ak; f
µ
ϕ (yk), f

Σ
ϕ (yk)) and fµ

ϕ , fΣ
ϕ are

neural networks. This can be viewed as the recognition
network in a variational autoencoder, per timestep. This
flexible factorization permits use of arbitrary recognition
networks, thereby allowing arbitrary non-linear emission
distributions, p(yk|ak).

Inference for states. Given the variational distribu-
tion qϕ(a0:T |y0:T ) in Eq. (14), we can draw samples,
ã0:T ∼ qϕ(a0:T |y0:T ), from it. Viewing ã0:T as pseudo-
observations, we treat the remaining SSM (i.e., the states
and auxiliary variables) separately. Specifically, conditioned
on the auxiliary variables, Ãτ = {ãk : tk ≤ τ}, we can
answer inference queries over the states zt in continuous
time. This does not require additional inference networks
and can be performed only using the generative model via
classic continuous-discrete Bayesian inference techniques
in Section 2. To infer the filtered density, pt(zt|Ãt), we can
use Eq. (5) for the prediction step and Eq. (6) for the update
step, replacing yk by ãk. Similarly, we can use Eq. (23)
(Appendix) to infer the smoothed density, pt(zt|ÃT ).
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As the inference of states is now conditioned on auxiliary
variables, only the inversion of h× h matrices is required
which is computationally feasible as ak generally has lower
dimensionality than yk. Notably, this inference scheme
does not require posterior SDEs for inference (as in other
SDE-based models; cf. Section 4) and does not suffer from
poor optimization of the transition model as we employ the
(generative) transition model for the inference of states.

3.3. Learning

The parameters of the generative model {θ} and the infer-
ence network {ϕ} can be jointly optimized by maximizing
the following evidence lower bound (ELBO) of the log-
likelihood, log pθ(y0:T ),

log pθ(y0:T )

≥ Eqϕ(a0:T |y0:T )

[
log

∏T
k=0 pθ(yk|ak)pθ(a0:T )∏T

k=0 qϕ(ak|yk)

]
=: LELBO(θ, ϕ). (15)

The distributions pθ(yk|ak) and qϕ(ak|yk) in LELBO are
immediately available via the emission and recognition
networks, respectively. What remains is the computation
of pθ(a0:T ). Fortunately, pθ(a0:T ) can be computed as a
byproduct of the inference (filtering) procedure described
in Section 3.2. The distribution factorizes as

p(a0:T ) = p(a0)

T∏
k=1

p(ak|Atk−1
),

where p(ak|Atk−1
) = N (ak;Hm−

k ,Sk), and m−
k and Sk

are computed during the prediction and update steps, respec-
tively. The pθ(a0:T ) term can be viewed as a “prior” over
the auxiliary variables. However, unlike the fixed standard
Gaussian prior in a vanilla variational autoencoder, pθ(a0:T )
is a learned prior given by the marginalization of the states,
zt, from the underlying SSM. Algorithm 1 summarizes the
learning algorithm for a single time series; in practice, mini-
batches of time series are sampled from the dataset.

3.4. Stable Implementation

A naive implementation of the numerical integration of
ODEs (Eqs. 5 and 23) and other operations (Eq. 6) re-
sults in unstable training and crashing due to violation
of the positive definite constraint for the covariance ma-
trices. Commonly employed tricks such as symmetrization,
P = (P+P⊤)/2, and addition of a small positive number
(ϵ) to the diagonal elements, P = P + ϵI, did not solve
these training issues. Therefore, we implemented our al-
gorithms in terms of square root (Cholesky) factors, which
proved critical to the stable training of NCDSSM. Several
square root factors’ based inference algorithms have been

Algorithm 1 Learning in Neural Continuous-Discrete State
Space Models

Require: Observations {(yk, tk)}Tk=0 and model parame-
ters {θ, ϕ}.

1: repeat
2: Compute qϕ(a0:T |y0:T ) using Eq. (14).
3: Sample ã0:T ∼ qϕ(a0:T |y0:T ).
4: , log pθ(ã0:T )← FILTER(ã0:T , t0:T ; θ)

▷ cf. Algorithm 3 (Appendix) for FILTER.
5: Compute

∏T
k=0 pθ(yk|ãk) using Eq. (9).

6: Optimize LELBO(θ, ϕ).
7: until end of training.

previously proposed (Zonov, 2019; Jorgensen et al., 2007;
Kailath et al., 2000, Ch. 12). In the following, we discuss our
implementation which is based on Zonov (2019). Further
discussion on implementation stability, particularly in the
case of non-linear dynamics, can be found in Appendix B.3.

We begin with a lemma that shows that the square root factor
of the sum of two matrices with square root factors can be
computed using QR decomposition.

Lemma 3.1. Let A and B be two n × n matrices with
square root factors A1/2 and B1/2, respectively. The matrix
C = A+B also has a square root factor, C1/2, given by

Θ,
[
C1/2 0n×n

]⊤
= QR

([
A1/2 B1/2

]⊤)
,

where Θ is the orthogonal Q matrix given by QR decompo-
sition and 0n×n is an n× n matrix of zeros.

Prediction step. The solution of matrix differential equa-
tions of the form in Eq. (5b) — called Lyapunov differential
equations — over [t0, t1] is given by (Abou-Kandil et al.,
2012, Corollary 1.1.6)

Pt1 = Φt1Pt0Φ
⊤
t1 +

∫ t1

t0

ΦtDtΦ
⊤
t dt, (16)

where Φt, called the fundamental matrix, is defined by

dΦt

dt
= Fz(mt, t)Φt and Φt0 = I. (17)

This initial value problem can be solved using an off-the-
shelf ODE solver. Let {Φ̃1 = I, Φ̃2, . . . , Φ̃n} be intermedi-
ate solutions of Eq. (17) given by an ODE solver with step
size η, Eq. (16) can be approximated as

Pt1 ≈ Φ̃nPt0Φ̃
⊤
n

+
η

2

(
Φ̃1D1Φ̃

⊤
1 + 2Φ̃2D2Φ̃

⊤
2 + · · ·+ Φ̃nDnΦ̃

⊤
n

)
.

(18)

The additions in Eq. (18) are performed using Lemma 3.1
with square root factors Φ̃nP

1/2
t0 and {Φ̃jD

1/2
j }nj=1.
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Update step. Using similar arguments as in the proof of
Lemma 3.1 (cf. Appendix B.3 for details), the update step
(Eq. 6) can be performed by the QR decomposition of the
square root factor[

R1/2 H(P−
k )

1/2

0m×d (P−
k )

1/2

]⊤
. (19)

Let
[
X 0
Y Z

]⊤
be the upper triangular R matrix obtained

from the QR decomposition of (19). The square root factor
of the updated covariance matrix, P1/2

k , and the Kalman
gain matrix, Kk, are then given by P

1/2
k = Z and Kk =

YX−1, respectively.

4. Related Work
ODE-based models. Since the introduction of the Neu-
ralODE (Chen et al., 2018), various models based on neural
ODEs have been proposed for continuous-time modeling of
time series. LatentODE (Rubanova et al., 2019) encodes the
entire context window into an initial state using an encoder
(e.g., ODE-RNN) and uses a NeuralODE to model the la-
tent dynamics. ODE2VAE (Yildiz et al., 2019) decomposes
the latent state into position and velocity components to
explicitly model the acceleration and parameterize the ODE
dynamics with Bayesian neural networks, thus accommo-
dating uncertainty. Nevertheless, both models lack a mecha-
nism to update the latent state based on new observations.
To address this limitation, NeuralCDE (Kidger et al., 2020)
incorporates techniques from rough path theory to control
the latent state using observations. Conversely, GRU-ODE-
B (De Brouwer et al., 2019) and NJ-ODE (Herrera et al.,
2020) combine neural ODEs with a Bayesian-inspired up-
date step, enabling the incorporation of new observations.
Unlike prior models, NCDSSM incorporates observations
via a principled Bayesian update and disentangles recogni-
tion from dynamics using auxiliary variables.
SDE-based models. LatentSDE (Li et al., 2020) uses a
posterior SDE in the latent space to infer the latent dynamics
together with a prior (generative) SDE in a variational setup.
Solin et al. (2021) proposed a variant of LatentSDE trained
by exploiting the Gaussian assumed density approximation
of the non-linear SDE. VSDN (Liu et al., 2020) uses ODE-
RNNs to provide historical information about the time series
to the SDE drift and diffusion functions. These models rely
on posterior SDEs to infer the dynamics, and new observa-
tions are incorporated in an ad-hoc manner. This approach
can potentially lead to discrepancies between the posterior
and generative dynamics, as well as non-Markovian state
spaces. In contrast, NCDSSM employs stochastic Marko-
vian dynamics, incorporates observations through princi-
pled Bayesian updates, and performs continuous-discrete
Bayesian inference for the state variables (dynamics), elimi-

nating the need for posterior SDEs.
State space models. Several prior works (Chung et al.,
2015; Krishnan et al., 2015; Karl et al., 2016; Krishnan
et al., 2017; Doerr et al., 2018) have proposed SSM-like
models for discrete-time sequential data, trained via amor-
tized variational inference. Unlike NCDSSM, these models
approximate sequential Bayesian inference (i.e., filtering
and smoothing) via deterministic RNNs and are limited to
the discrete time setting. More recently, deterministic linear
SSMs (Gu et al., 2021; Zhang et al., 2023), featuring specific
transition matrices (Gu et al., 2020), have been introduced
as components for sequence modeling. In contrast, our work
proposes a general probabilistic continuous-discrete SSM
that supports locally-linear and non-linear dynamics.

The combination of Bayesian inference for a subset of la-
tent variables and amortized inference for others has been
previously explored in SSMs. SNLDS (Dong et al., 2020)
and REDSDS (Ansari et al., 2021) perform amortized infer-
ence for the states and exact inference for discrete random
variables (switches and duration counts) in switching SSMs.
KVAE (Fraccaro et al., 2017), EKVAE (Klushyn et al., 2021)
and ARSGLS (Kurle et al., 2020) introduce auxiliary vari-
ables and perform classic Bayesian filtering and smoothing
for the state variables, similar to NCDSSM. However, these
models utilize specific parameterizations of state dynamics
and operate on discrete-time sequential data. On the other
hand, our proposed framework presents a general approach
for continuous-time modeling of irregularly-sampled time
series, allowing for multiple possible parameterizations of
the dynamics.

The continuous recurrent unit (CRU) (Schirmer et al., 2022)
is the most closely related model to NCDSSM, as it also
employs continuous-discrete inference. However, there are
notable distinctions between CRU and our work: (i) we
propose a general framework offering multiple possible
parameterizations of dynamics, while CRU focuses on spe-
cific locally-linear dynamics that are time-invariant between
observed timesteps, unlike NCDSSM-LL, (ii) NCDSSM
serves as an unconditional generative model, which funda-
mentally differs from CRU’s conditional training for down-
stream tasks, and (iii) NCDSSM utilizes continuous-time
smoothing for imputation by incorporating future informa-
tion through the backward (smoothing) pass, whereas CRU
solely relies on the forward (filtering) pass.

5. Experiments
In this section, we present empirical results on time series
imputation and forecasting tasks. Our primary focus was
to investigate the models’ ability to capture the underly-
ing dynamics of the time series, gauged by the accuracy of
long-term forecasts beyond the training context. We exper-
imented with the three variants of our model described in
Section 3.1: NCDSSM-LTI, NCDSSM-NL, and NCDSSM-
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LatentODE

Observations Ground Truth Median Prediction

LatentSDE

NCDSSM-LTI

NCDSSM-NL

0 2 4 6 8 10 12 14
Time

NCDSSM-LL

Figure 2. Predictions from different models on the damped pen-
dulum dataset in the 80% missing data setting. The ground truth
is shown using dashed lines with observed points in the context
window (gray shaded region) shown as filled circles. The verti-
cal dashed gray line marks the beginning of the forecast horizon.
Solid lines indicate median predictions with 90% prediction inter-
vals shaded around them. The purple and orange colors indicate
observation dimensions. NCDSSM-NL and NCDSSM-LL are
significantly better at forecasting compared to the baselines.

LL. Our main baselines were LatentODE and LatentSDE,
two popular continuous-time latent variable models with
deterministic and stochastic dynamics, respectively. We also
compared NCDSSM against several other baselines for indi-
vidual experiments. We first discuss experiment results on
the low-dimensional bouncing ball and damped pendulum
datasets, then move to higher dimensional settings: walking
sequences from the CMU Motion Capture (MoCap) dataset,
the USHCN daily climate dataset, and two 32x32 dimen-
sional video datasets (Box and Pong). Our code is available
at https://github.com/clear-nus/NCDSSM.

5.1. Bouncing Ball and Damped Pendulum
The bouncing ball and damped pendulum datasets have
known ground truth dynamics, which facilitates quality as-
sessment of the dynamics learned by a given model. For
details on these datasets, please refer to Appendix C.1.
In brief, the univariate bouncing ball dataset exhibits
piecewise-linear dynamics, whilst bivariate damped pen-
dulum dataset (Karl et al., 2016; Kurle et al., 2020) exhibits
non-linear latent dynamics.

We trained all the models on 10s/5s sequences (with a dis-
cretization of 0.1s) for bouncing ball/damped pendulum
with 0%, 30%, 50% and 80% timesteps missing at ran-
dom to simulate irregularly-sampled data. The models were
evaluated on imputation of the missing timesteps and fore-
casts of 20s/10s beyond the training regime for bouncing
ball/damped pendulum.

Table 1 reports the imputation and forecast mean squared
error (MSE) for different missing data settings. In summary,
the NCDSSM models with non-linear and locally-linear
dynamics (NCDSSM-NL and NCDSSM-LL) perform well
across datasets, settings, and random initializations, signifi-
cantly outperforming the baselines. Furthermore, for these
low-dimensional datasets, learning latent representations in

the form of auxiliary variables is not required and we can
set the recognition and emission functions in Eq. (14) and
Eq. (9) to identity functions. This results in NCDSSM mod-
els requiring 2-5 times fewer parameters than LatentODE
and LatentSDE (cf. Table 5 in the Appendix).

Fig. 2 shows example predictions from the best performing
run of every model for 80% missing data for the pendu-
lum (cf. Appendix D for other settings). NCDSSM-NL
and NCDSSM-LL generates far better predictions both in-
side and outside the context window compared to the base-
lines. Ordinary least squares (OLS) goodness-of-fit results
in Table 6 (Appendix) suggest that this performance can
be attributed to our models having learnt the correct dy-
namics; latent states from NCDSSM-NL and NCDSSM-LL
are highly correlated with the ground truth angle and angu-
lar velocity for all missingness scenarios. In other words,
the models have learnt a Markovian state space which is
informative about the dynamics at a specific time.

5.2. CMU Motion Capture (Walking)
This dataset comprises walking sequences of subject 35
from the CMU MoCap database containing joint angles of
subjects performing everyday activities. We used a prepro-
cessed version of the dataset from Yildiz et al. (2019) that
has 23 50-dimensional sequences of length 300.

We tested the models under two setups. Setup 1 (Yildiz
et al., 2019; Li et al., 2020; Solin et al., 2021) involves train-
ing on complete 300 timestep sequences from the training
set and using only the first 3 timesteps as context to predict
the remaining 297 timesteps during test time. Although
challenging, this setup does not evaluate the model’s per-
formance beyond the training context. Thus, we propose
Setup 2 in which we train the model only using the first 200
timesteps. During test time, we give the first 100 timesteps
as context and predict the remaining 200 timesteps.

The forecast MSE results for both setups are reported in
Table 2. NCDSSM-NL performs better than all baselines
except LatentSDE on Setup 1 while NCDSSM models per-
form significantly better than baselines on Setup 2. This
showcases NCDSSM’s ability to correctly model the latent
dynamics, aiding accurate long-term predictions beyond the
training context.

5.3. USHCN Climate Indicators
We evaluated the models on the United States Historical Cli-
matology Network (USHCN) dataset that comprises mea-
surements of five climate indicators across the United States.
The preprocessed version of this dataset from De Brouwer
et al. (2019) contains sporadic time series (i.e., with mea-
surements missing both over the time and feature axes)
from 1,114 meteorological stations over 4 years. Follow-
ing De Brouwer et al. (2019), we trained the models on
sequences from the training stations and evaluated them on
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Table 1. Imputation and forecasting results for bouncing ball and damped pendulum datasets averaged over 50 sample trajectories. Mean
± standard deviation are computed over 5 independent runs.

Dataset Model Imputation MSE (↓) (% Missing) Forecast MSE (↓) (% Missing)

30% 50% 80% 0% 30% 50% 80%

B
ou

nc
in

g
B

al
l LatentODE (Rubanova et al., 2019) 0.007 ± 0.000 0.008 ± 0.001 0.011 ± 0.000 0.386 ± 0.025 0.489 ± 0.133 0.422 ± 0.053 0.412 ± 0.048

LatentSDE (Li et al., 2020) 0.006 ± 0.000 0.007 ± 0.000 0.011 ± 0.001 0.408 ± 0.043 1.209 ± 1.115 1.567 ± 2.263 0.352 ± 0.077
GRUODE-B (De Brouwer et al., 2019) 0.017 ± 0.001 0.026 ± 0.010 0.051 ± 0.003 0.868 ± 0.103 0.805 ± 0.315 0.856 ± 0.394 0.445 ± 0.182

NCDSSM-LTI 0.020 ± 0.001 0.026 ± 0.001 0.067 ± 0.002 0.592 ± 0.106 0.557 ± 0.014 0.556 ± 0.025 0.555 ± 0.022
NCDSSM-NL 0.006 ± 0.000 0.006 ± 0.000 0.007 ± 0.000 0.037 ± 0.018 0.036 ± 0.007 0.041 ± 0.007 0.115 ± 0.029
NCDSSM-LL 0.006 ± 0.000 0.006 ± 0.000 0.008 ± 0.001 0.037 ± 0.028 0.034 ± 0.016 0.049 ± 0.034 0.076 ± 0.017

D
am

pe
d

Pe
nd

ul
um

LatentODE (Rubanova et al., 2019) 0.151 ± 0.002 0.155 ± 0.002 0.206 ± 0.013 0.097 ± 0.042 0.117 ± 0.001 0.119 ± 0.001 0.148 ± 0.007
LatentSDE (Li et al., 2020) 0.092 ± 0.076 0.148 ± 0.001 0.229 ± 0.001 0.046 ± 0.046 0.084 ± 0.058 0.147 ± 0.020 0.357 ± 0.096
GRUODE-B (De Brouwer et al., 2019) 0.015 ± 0.001 0.023 ± 0.003 0.064 ± 0.003 0.244 ± 0.107 0.424 ± 0.617 0.124 ± 0.088 0.037 ± 0.036

NCDSSM-LTI 0.036 ± 0.001 0.057 ± 0.001 0.120 ± 0.002 0.282 ± 0.084 1.017 ± 1.363 1.527 ± 1.440 0.231 ± 0.050
NCDSSM-NL 0.008 ± 0.000 0.011 ± 0.000 0.033 ± 0.002 0.011 ± 0.004 0.011 ± 0.003 0.012 ± 0.003 0.034 ± 0.019
NCDSSM-LL 0.008 ± 0.000 0.011 ± 0.000 0.037 ± 0.003 0.025 ± 0.030 0.010 ± 0.001 0.020 ± 0.008 0.055 ± 0.007

Table 2. Forecasting results for the CMU MoCap walking dataset
averaged over 50 sample trajectories with 95% prediction interval
based on the t-statistic in parentheses. †Baseline results from Solin
et al. (2021).

Model MSE (↓)

†Setup 1 Setup 2

npODE (Heinonen et al., 2018) 22.96 –
NeuralODE (Chen et al., 2018) 22.49 (0.88) –
ODE2VAE-KL (Yildiz et al., 2019) 8.09 (1.95) –
LatentODE (Rubanova et al., 2019) 5.98 (0.28) 31.62 (0.05)
LatentSDE (Li et al., 2020) 4.03 (0.20) 9.52 (0.21)
LatentApproxSDE (Solin et al., 2021) 7.55 (0.05) –

NCDSSM-LTI 13.90 (0.02) 5.22 (0.02)
NCDSSM-NL 5.69 (0.01) 6.73 (0.02)
NCDSSM-LL 9.96 (0.01) 4.74 (0.01)

the task of predicting the next 3 measurements given the
first 3 years as context from the held-out test stations. The
results in Table 3 show that NCDSSM-NL outperforms all
the baselines with NCDSSM-LTI and NCDSSM-LL per-
forming better than most of the baselines.

5.4. Pymunk Physical Environments
Finally, we evaluated the models on two high-dimensional
(video) datasets of physical environments used in Frac-
caro et al. (2017), simulated using the Pymunk Physics
engine (Blomqvist, 2022): Box and Pong. The box dataset
consists of videos of a ball moving in a 2-dimensional box
and the pong dataset consists of videos of a Pong-like envi-
ronment where two paddles move to keep a ball in the frame
at all times. Each frame is a 32x32 binary image.

We trained the models on sequences of 20 frames with 20%
of these frames randomly dropped. At test time, the mod-
els were evaluated on forecasts of 40 frames beyond the
training context. For evaluation, we treat each image as
a probability distribution on the XY-plane and report the
earth mover’s distance (EMD) between the ground truth
and predicted images, averaged over the forecast horizon,
in Table 4. NCDSSM-NL and NCDSSM-LL significantly
outperform baseline models on both box and pong datasets.

Table 3. Forecasting results for the USHCN climate dataset. Mean
± standard deviation are computed over 5 folds as described in
De Brouwer et al. (2019). †Results from De Brouwer et al. (2019).
‡Results from Liu et al. (2020).

Model MSE (↓)

†NeuralODE-VAE (Chen et al., 2018) 0.83 ± 0.10
†SequentialVAE (Krishnan et al., 2015) 0.83 ± 0.07
†GRU-D (Che et al., 2018) 0.53 ± 0.06
†T-LSTM (Baytas et al., 2017) 0.59 ± 0.11
†GRUODE-B (De Brouwer et al., 2019) 0.43 ± 0.07
‡ODE-RNN (Rubanova et al., 2019) 0.39 ± 0.06
‡LatentODE (Rubanova et al., 2019) 0.77 ± 0.09
‡LatentSDE (Li et al., 2020) 0.74 ± 0.11
‡VSDN-F (IWAE) (Liu et al., 2020) 0.37 ± 0.06

NCDSSM-LTI 0.38 ± 0.07
NCDSSM-NL 0.34 ± 0.06
NCDSSM-LL 0.37 ± 0.06

Table 4. Forecasting results for the Box and Pong datasets averaged
over 16 sample trajectories.

Model EMD (↓)

Box Pong

LatentODE (Rubanova et al., 2019) 1.792 4.543
LatentSDE (Li et al., 2020) 1.925 3.505

NCDSSM-LTI 1.685 3.265
NCDSSM-NL 0.692 1.714
NCDSSM-LL 0.632 1.891

Fig. 6 (Appendix) shows the variation of EMD against time
for different models. In the context window (0-2s), all mod-
els have EMD close to 0; however, in the forecast horizon
(2-6s), the EMD rises rapidly and irregularly for LatentODE
and LatentSDE but does so gradually for NCDSSM-NL
and NCDSSM-LL. This indicates that the dynamics mod-
els learned by NCDSSM-NL and NCDSSM-LL are both
accurate and robust.

Qualitatively, both NCDSSM-LL and NCDSSM-NL cor-
rectly impute the missing frames and the forecasts generated
by them are similar to ground truth. Fig. 3 shows sample
predictions for the pong dataset generated by NCDSSM-NL.
In contrast, other models only impute the missing frames
correctly, failing to generate accurate forecasts (cf. Ap-
pendix D).
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Figure 3. Sample predictions from NCDSSM-NL on the Pong dataset. The top row is the ground truth with some missing observations in
the context window. The next two rows show trajectories sampled from NCDSSM-NL upto 20 forecast steps. NCDSSM-NL is able to
both impute and forecast accurately. Best viewed zoomed-in on a computer. More examples in Appendix D.

6. Discussion
Choice of dynamics. The selection of latent dynamics
heavily relies on the dataset and the specific problem at hand.
Nevertheless, we offer some general guidelines based on
our experiments and observations. The linear time-invariant
(LTI) dynamics are well-suited when the time series exhibit
approximate linearity or when fast inference is crucial (as
the predict step can be analytically computed using matrix
exponentials). The locally-linear (LL) dynamics performs
exceptionally well out of the box and is highly desirable for
achieving quick, high-quality results. It requires minimal
tuning and regularization since the drift parameterization is
straightforward through the K base matrices, which control
the dynamics’ flexibility. On the other hand, the non-linear
model demonstrates superior performance in most scenarios
but necessitates careful parameterization, specifically in
selecting the drift network, and rigorous regularization. We
delve into the parameterization and regularization of non-
linear dynamics in Appendix B.3 and anticipate that our
findings will prove valuable for non-linear models beyond
NCDSSM-NL.

Time complexity. The time complexities of the predict
and update steps primarily depend on drift function evalua-
tion/matrix multiplication and matrix inversion, respectively.
As a result, the overall complexity of the filtering process
is O(NintCint(Ndfe) + Tobsh

3), where Nint represents the
number of integration steps, Cint denotes the cost of a single
integration step (which is influenced by the number of drift
function evaluations, Ndfe), Tobs corresponds to the number
of observed timesteps, and h represents the dimensional-
ity of the auxiliary variable. The first term aligns with the
cost incurred by ODE-based models. The NCDSSM incurs
an additional overhead of O(Tobsh

3) due to the Bayesian
update. It is worth noting that although the complexity h3

(or approximately h2.4, depending on the chosen matrix
inversion algorithm) exhibits poor scaling with respect to h,
the assumption is made that the auxiliary variables are of
low dimensionality.

Limitations. As discussed above, the update step in
NCDSSM incurs an additional computational cost of
O(Tobsh

3) compared to ODE-based models, resulting in
slower training and inference. In this study, our primary fo-
cus was on ensuring model stability and accurate predictions.
Nonetheless, we acknowledge that several optimizations can
be explored to enhance the computational efficiency of in-
ference, e.g., by side-stepping explicit matrix inversion in

the update step and by choosing adaptive solvers that allow
for larger step sizes. We defer these investigations to future
research.

Furthermore, the linearization of the drift function within
our Gaussian assumed density approximation may impose
limitations on the expressiveness of the non-linear dynamics.
Although this approximation outperforms alternative types
of dynamics in our experimental evaluations, we believe that
further improvements are attainable. For instance, employ-
ing sigma point approximations through Gauss–Hermite
integration or Unscented transformation (Särkkä & Solin,
2019, Ch. 9) could enhance the modeling accuracy and
flexibility.

7. Conclusion
In this work, we proposed a model for continuous-time
modeling of irregularly-sampled time series. NCDSSM
improves continuous-discrete SSMs with neural network-
based parameterizations of dynamics, and modern inference
and learning techniques. Through the introduction of auxil-
iary variables, NCDSSM enables efficient modeling of high-
dimensional time series while allowing accurate continuous-
discrete Bayesian inference of the dynamic states. Experi-
ments on a variety of low- and high-dimensional datasets
show that NCDSSM outperforms existing models on time
series imputation and forecasting tasks.
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A. Proofs
A.1. Proof of Lemma 3.1

Lemma A.1. Let A and B be two n × n matrices with square root factors A1/2 and B1/2, respectively. The matrix
C = A+B also has a square root factor, C1/2, given by

Θ,
[
C1/2 0n×n

]⊤
= QR

([
A1/2 B1/2

]⊤)
,

where Θ is the orthogonal Q matrix given by QR decomposition and 0n×n is an n× n matrix of zeros.

Proof. Our proof is based on Zonov (2019, Thm. 3.2). Consider the square root factor

Y =
[
A1/2 B1/2

]
.

Clearly, C = YY⊤; however, we also have C = YΘΘ⊤Y⊤, for any orthogonal matrix Θ. Thus, YΘ is also a square root
factor of C. Let Θ be an orthogonal matrix such that

YΘ =
[
X 0n×n

]
, (20)

where X is an n× n lower triangular matrix. This implies that X is a square root factor of C.

From Eq. (20), we further have the following,

Y =
[
X 0n×n

]
Θ⊤, (21)

Y⊤ = Θ

[
X⊤

0n×n

]
, (22)

where we post-multiply by Θ⊤ in the first step and use the fact that ΘΘ⊤ = I, and transpose both sides in the second step.
We have thus expressed Y⊤ as the product of an orthogonal matrix, Θ, and an upper triangular matrix,

[
X 0n×n

]⊤
. Such

a factorization can be performed by QR decomposition. Thus, we can compute the square root factor C1/2 = X via the QR

decomposition of
[
A1/2 B1/2

]⊤
.

Algorithm 2 Sum of Square Root Factors

1: function SUMMATRIXSQRTS(A1/2, B1/2)
2: ,

[
C1/2 0n×n

]⊤
= QR

([
A1/2 B1/2

]⊤)
3: return C1/2

4: end function

B. Technical Details
B.1. Continuous-Discrete Bayesian Smoothing

Several approximate smoothing procedures based on Gaussian assumed density approximation have been proposed in the
literature. We refer the reader to Särkkä & Sarmavuori (2013) for an excellent review of continuous-discrete smoothers. In
the following, we discuss the Type II extended RTS smoother which is linear in the smoothing solution. According to this
smoother, the mean, ms

t , and covariance matrix, Ps
t , of the Gaussian approximation to the smoothing density, pt(zt|YT ),

follow the backward ODEs,

dms
t

dt
= f(mt, t) +C(mt, t)(m

s
t −mt), (23a)

dPs
t

dt
= C(mt, t)P

s
t +Ps

tC
⊤(mt, t)−D(mt, t), (23b)

where (mt, Pt) is the filtering solution given by Eq. (5), C(mt, t) = Fz(mt, t) +D(mt, t)P
−1
t and backward means that

the ODEs are solved backwards in time from the filtering solution (ms
T = mT , Ps

T = PT ).

12
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B.2. Algorithms

In this section, we discuss the stable filtering and smoothing algorithms used in NCDSSM. We refer the reader to the
accompanying code for specific implementation details.

Algorithm 2 provides a utility function — SUMMATRIXSQRTS — that uses Lemma 3.1 to compute the square root
factor of the sum of two matrices with square root factors. The square root factor version of the continuous-discrete
Bayesian filtering algorithm is given in Algorithm 3. Note that the PREDICT step for linear time-invariant dynamics can be
performed analytically using matrix exponentials (Särkkä & Solin, 2019, Ch. 6). We used the analytic solver for some of our
experiments. The Type II RTS smoothing algorithm (Algorithm 4) takes the filtered distributions as input and computes

Algorithm 3 Continuous-Discrete Bayesian Filtering

1: function UPDATE(ak, m−
k , (P−

k )
1/2; H,R)

2: R1/2 ← cholesky(R)

3: A←
[
R1/2 H(P−

k )
1/2

0m×d (P−
k )

1/2

]
4: ,

[
X 0
Y Z

]⊤
← QR(A⊤)

5: Kk ← YX−1

6: âk ← Hm−
k

7: mk ←m−
k +Kk(ak − âk)

8: P
1/2
k ← Z

9: S
1/2
k ← X

10: return mk, P1/2
k , âk, S1/2

k

11: end function

12: function PREDICT(mk, P1/2
k , tk, tk+1; f ,Q,G)

13: Φ1 ← I
14: {m̃j}nj=1 ← odeint

(
dmt

dt = f(mt, t),mk, [τ1 = tk, . . . , τn = tk+1]
)

15: {Φ̃j}nj=1 ← odeint
(
dΦt

dt = Fz(mt, t)Φt,Φ1, [τ1 = tk, . . . , τn = tk+1]
)

▷ the two coupled ODEs above are solved together.
16: m−

k+1 ← m̃n

17: (P−
k+1)

1/2 ← REDUCESUMMATRIXSQRTS(
[
Φ̃nP

1/2
k ,

√
η
2 Φ̃1D

1/2
τ1 ,
√
ηΦ̃2Dτ

1/2
2

, . . . ,
√

η
2 Φ̃nD

1/2
τn

]
)

▷ REDUCESUMMATRIXSQRTS uses the SUMMATRIXSQRTS function in Algorithm 2, reducing it over the list.
18: return m−

k+1, (P−
k+1)

1/2

19: end function

20: function FILTER(a0:T , t0:T ; θ)
21: µ0,Σ0, f ,Q,G,H,R← θ
22: m−

0 , (P
−
0 )

1/2 ← µ0, cholesky(Σ0)
23: ℓ← 0
24: for i← 0, T do
25: mi,P

1/2
i , âi,S

1/2
i ← UPDATE(ai, m−

i , (P−
i )

1/2; H,R)
26: ℓ← ℓ+ logN (ai; âi,Si)
27: if i = T then
28: break
29: end if
30: m−

i+1, (P
−
i+1)

1/2 ← PREDICT(mi, P
1/2
i , ti, ti+1; f ,Q,G)

31: end for
32: return {mi,P

1/2
i }Ti=0, ℓ

33: end function

13
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the smoothed distribution at every filtered timestep. To compute the smoothed distribution between observed timesteps,
we cache the filtered distributions at these timesteps and provide them to the SMOOTH function together with the filtered
distributions at observed timesteps.

Algorithm 4 Continuous-Discrete Type II Extended RTS Smoothing

1: function SMOOTHSTEP(ms
k, (Ps

k)
1/2, mk, P1/2

k , tk, tk−1; f ,Q,G)
2: Φs

1 ← I

3: {m̃s
j}nj=1 ← odeint

(
dms

t

dt = f(mk, t) +C(mk, t)(m
s
t −mk),m

s
k, [τ1 = tk, . . . , τn = tk−1]

)
4: {Φ̃s

j}nj=1 ← odeint
(

dΦs
t

dt = C(mk, t)Φ
s
t ,Φ

s
1, [τ1 = tk, . . . , τn = tk−1]

)
▷ the two coupled ODEs above are solved together.

5: ms
k−1 ← m̃s

n

6: (Ps
k−1)

1/2 ← REDUCESUMMATRIXSQRTS(
[
Φ̃s

nP
1/2
k ,

√
η
2 Φ̃

s
1D

1/2
τ1 ,
√
ηΦ̃s

2Dτ
1/2
2

, . . . ,
√

η
2 Φ̃

s
nD

1/2
τn

]
)

▷ REDUCESUMMATRIXSQRTS uses the SUMMATRIXSQRTS function in Algorithm 2, reducing it over the list.
7: return ms

k−1, (Ps
k−1)

1/2

8: end function

9: function SMOOTH({mi,P
1/2
i }Ti=0, t0:T ; θ)

10: µ0,Σ0, f ,Q,G,H,R← θ

11: ms
T , (P

s
T )

1/2 ←mT ,P
1/2
T

12: for i← T, 1 do ▷ note the time reversal.
13: ms

i−1, (P
s
i−1)

1/2 ← SMOOTHSTEP(ms
i , (Ps

i )
1/2, mi−1, P1/2

i−1, ti, ti−1; f ,Q,G)
14: end for
15: return {ms

i , (P
s
i )

1/2}Ti=0

16: end function

B.3. Stable Implementation (Contd.)

Square Root Factor Measurement Update. In Section 3.4, we discussed a square root factor version of the measurement
update step via the QR decomposition of A⊤, where,

A =

[
R1/2 H(P−

k )
1/2

0m×d (P−
k )

1/2

]
. (24)

Let Θ,U = QR(A⊤), where

U =

[
X 0
Y Z

]⊤
. (25)

In the following, we show how P
1/2
k = Z. Our proof is based on Zonov (2019) and we refer the reader to Zonov (2019,

Appendix A) for the proof of Kk = YX−1.

Proof. Note that A is a square root factor of [
R+HP−

k H
⊤ HP−

k

(P−
k )

⊤H⊤ P−
k

]
. (26)

Matching the terms in (26) with the terms in

UU⊤ =

[
XX⊤ XY⊤

YX⊤ YY⊤ + ZZ⊤

]
, (27)

14
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we get the following equations,

XX⊤ = R+HP−
k H

⊤, (28a)

XY⊤ = HP−
k , (28b)

YX⊤ = (P−
k )

⊤H⊤, (28c)

YY⊤ + ZZ⊤ = P−
k . (28d)

From Eq. (28d), we have the following,

YY⊤ + ZZ⊤ = P−
k , (29a)

ZZ⊤ = P−
k −YY⊤, (29b)

ZZ⊤ = P−
k −Y(X⊤X−⊤)(X−1X)Y⊤, (29c)

ZZ⊤ = P−
k −YX⊤(XX⊤)−1XY⊤, (29d)

where we introduce I = (X⊤X−⊤)(X−1X) in the third step and use the property (XX⊤)−1 = X−⊤X−1 in the last step.
Substituting values from Eq. (28), we get,

ZZ⊤ = P−
k − (P−

k )
⊤H⊤S−1

k HP−
k (30a)

ZZ⊤ = P−
k − (P−

k )
⊤H⊤S−1

k (SkS
−1
k )HP−

k (30b)

ZZ⊤ = P−
k −P−

k H
⊤S−1

k SkS
−⊤
k H(P−

k )
⊤ (30c)

ZZ⊤ = P−
k −KkSkK

⊤
k (30d)

where we introduce I = SkS
−1
k in the second step, use the fact that Sk is symmetric in the third step and substitute the

value of Kk from Eq. (6b) in last step. Note that ZZ⊤ = P−
k −KkSkK

⊤
k = Pk; therefore, Z = P

1/2
k .

Regularizing Non-Linear Dynamics. We now discuss the techniques we employed to regularize the latent dynamics
in NCDSSM. Particularly in the case of non-linear dynamics (NCDSSM-NL), regularization is critical for stable training.
The drift function, f , was parameterized by an MLP in all our experiments. We experimented with the tanh and softplus
non-linearities. We found that applying the non-linearity after the last layer was important when using tanh. Furthermore,
we also initialized the parameters of the last layer to 0 when using tanh. In the case of experiments with a large time interval
(e.g., MoCap and USHCN), application of spectral normalization (Miyato et al., 2018) along with the softplus non-linearity
proved critical for stable training. In the following, we present our hypothesis on why spectral normalization stabilizes
training.

According to Øksendal (2003, Section 5.2), one of the conditions for the existence of a unique solution of an SDE is the
Lipschitz continuity of the drift function, f . Applying spectral normalization regularizes the neural network to be 1-Lipschitz,
aiding its solvability using numerical methods. However, spectral normalization is even more important in the case of
NCDSSM from a practical perspective — it prevents the numerical explosion of the elements of Φt in the prediction step
(Eq. 17), as discussed below.

Consider the case of a fixed Jacobian matrix Fz in an interval [t1, t2]. In this case, the solution of Eq. (17) is given by

Φt2 = exp (Fz(t2 − t1))Φt1 , (31)

where exp (Fz(t2 − t1)) denotes the matrix exponential. For unregularized drifts, the elements of exp (Fz(t2 − t1)) can
become arbitrarily large. However, in the case of 1-Lipschitz drift functions (as provided by spectral normalization), the
spectral norm of exp (Fz) is bounded by exp(1), as shown in Lemma B.1. This controls the growth rate of the elements of
fundamental matrix, Φt.

Lemma B.1. Let g : Rm → Rm be a 1-Lipschitz function and Jg : Rm → Rm×m be its Jacobian function. Then,
∥ exp(Jg(z))∥2 ≤ exp(1) ∀ z ∈ Rm where ∥ · ∥2 denotes the spectral norm of a matrix.

Proof. The spectral norm of the Jacobian of a K-Lipschitz function is bounded by K. Thus, we have,

∥Jg(z)∥2 ≤ 1 ∀ z ∈ Rm. (32)
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Using the power series representation of the matrix exponential,

exp(A) =

∞∑
k=0

Ak

k!
,

we get the following bound on ∥ exp(Jg(z))∥2,

∥ exp(Jg(z))∥2 ≤
∞∑
k=0

∥∥∥∥Jg(z)
k

k!

∥∥∥∥
2

≤
∞∑
k=0

∥Jg(z)∥k2
k!

= exp(∥Jg(z)∥2). (33)

Combining Eq. (33) with Eq. (32), we get,

∥ exp(Jg(z))∥2 ≤ exp(∥Jg(z)∥2) ≤ exp(1), (34)

which completes the proof.

For the same reasons as discussed above, we initialized the transition matrices in our linear models to be random orthogonal
matrices as orthogonal matrices have spectral norm equal to 1. However, in the case of NCDSSM-LTI on the USHCN
dataset, this initialization was not sufficient during the initial phase of training and we used a random skew-symmetric
matrix instead. The matrix exponential of a skew-symmetric matrix is an orthogonal matrix. We generated a random
skew-symmetric matrix as follows,

F ∼ [N (0, 1)]
m×m

,

F =

(
F− F⊤

2

)
.

Fixed Measurement Matrix. We used a fixed rectangular identity matrix as the auxiliary measurement matrix (H in
Eq. 8) in our bouncing ball, damped pendulum and CMU MoCap (walking) experiments as it lead to improved learning of
dynamics. This parameterization forces the model to learn the static (e.g., position) and dynamic (e.g., velocity) components
in separate elements of the latent state, thereby disentangling them (Klushyn et al., 2021).

B.4. Imputation and Forecasting

In this section, we describe how to perform imputation and forecasting using a trained NCDSSM.

For imputation, the timesteps at which imputation is to be performed are provided to the FILTER function during filtering.
The filtered distributions are then passed to the SMOOTH function and (imputed) samples are drawn from the smoothed
distributions.

For forecasting, filtering is first performed over the context time series. The PREDICT function is then used up to end of the
forecast horizon, starting from the last filtered distribution. Sample forecast trajectories are then drawn from these predicted
distributions.

C. Experiment Details
C.1. Datasets

Bouncing Ball and Damped Pendulum. The bouncing ball dataset comprises univariate time series of the position of a
ball bouncing between two fixed walls, in the absence of dissipative forces. The initial position, x0, and velocity, v0, of the
ball are chosen at random, as follows,

x0 ∼ U(−1, 1), (35)
v0 ∼ U(0.05, 0.5)× U{−1, 1}, (36)

where U(a, b) denotes a uniform distribution on (a, b) and U{c1, . . . , ck} denotes a uniform categorical distribution on
{c1, . . . , ck}. The observed position, yk, is a corrupted version of the true position, xk,

yk ∼ N (xk, 0.05
2). (37)
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Collisions with the walls, located at −1 and +1, are assumed to be perfectly elastic, i.e., the sign of the velocity gets flipped
when the ball hits either of the walls. Thus, the ball exhibits piecewise-linear dynamics. We used the Euler integrator with a
step size of 0.1s to simulate the dynamics. The training, validation, and test datasets consist of 5000, 500, and 500 sequences
of length 30s each, respectively.

The damped pendulum dataset (Karl et al., 2016; Kurle et al., 2020) comprises bivariate time series of the XY-coordinates of
a pendulum oscillating in the presence of a damping force. The non-linear latent dynamics of this dataset is given by,

dθt
dt

= ωt, (38)

dωt

dt
= −g

l
sin(θt)−

γ

m
ωt, (39)

where θt and ωt are the angle and angular velocity, respectively, and g = 9.81, l = 1, m = 1, and γ = 0.25 are the
acceleration due to gravity, the length of the massless cord of the pendulum, the mass of the pendulum bob, and the damping
coefficient, respectively. The initial angle, θ0, and angular velocity, ω0, of the pendulum are chosen at random, as follows,

θ0 = π + clip (ϵ,−2, 2) , (40)
ω0 = 4× clip (ϵ,−2, 2) , (41)

where ϵ ∼ N (0, 1) and clip(x, a, b) denotes clipping the value of x between a and b. The observations are Cartesian
coordinates of the pendulum’s bob with additive Gaussian noise, N (0, 0.052). We used the RK4 integrator to simulate
the latent dynamics with a step size of 0.1s. The training, validation, and test datasets consist of 5000, 1000, and 1000
sequences of length 15s each, respectively.

CMU Motion Capture (Walking). The CMU Motion Capture database1 comprises time series of joint angles of human
subjects performing everyday activities, e.g., walking, running, and dancing. We used walking sequences of subject 35
from this database for our experiments. A preprocessed version of this dataset from Yildiz et al. (2019) consists of 23
50-dimensional sequences of 300 timesteps each, split into 16 training, 3 validation and 4 test sequences.

USHCN Climate Indicators. The USHCN Climate dataset2 consists of measurements of five climate indicators —
precipitation, snowfall, snow depth, minimum temperature, and maximum temperature — across the United States. The
preprocessed version of this dataset from De Brouwer et al. (2019) contains sporadic time series from 1,114 meteorological
stations with a total of 386,068 unique observations over 4 years, between 1996 and 2000. The timestamps are scaled to lie
in [0, 200]. The 1,114 stations are split into 5 folds of 70% training, 20% validation, and 10% test stations, respectively.

Pymunk Physical Environments. The Pymunk physical environments datasets are video datasets of physical environments
simulated using the Pymunk Physics engine. We used two environments proposed in Fraccaro et al. (2017): Box and
Pong. Each frame of these videos is a 32 × 32 binary image. The Box dataset consists of videos of a ball moving inside
a 2-dimensional box with perfectly elastic collisions with the walls of the box. The Pong dataset consists of videos of a
Pong-like environment with a ball and two paddles that move to keep the ball inside the frame. Both datasets consist of
5000 training, 100 validation, and 1000 test videos with 60 frames each. We refer the reader to Fraccaro et al. (2017) for
further details on how these datasets are generated3.

C.2. Training and Evaluation Setups

Bouncing Ball and Damped Pendulum. We trained all the models on the first 10s/5s of the sequences (i.e., 100/50 steps)
from the training dataset for the bouncing ball/damped pendulum datasets. We randomly dropped 30%, 50%, and 80% of
the training steps for the missing-data experiments. For evaluation, we report the MSE over the missing (for imputation) and
the next 200/100 timesteps (for forecast) for the bouncing ball/damped pendulum test datasets. The MSE was averaged over
5 independent runs for 50 sample trajectories.

1The original CMU MoCap database is available at: http://mocap.cs.cmu.edu.
2The original USHCN Climate dataset is available at: https://cdiac.ess-dive.lbl.gov/ftp/ushcn daily/.
3The scripts for generating Pymunk datasets are available at: https://github.com/simonkamronn/kvae.

17

http://mocap.cs.cmu.edu
https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/
https://github.com/simonkamronn/kvae


Neural Continuous-Discrete State Space Models

CMU Motion Capture (Walking). For Setup 1, we trained NCDSSM models on complete 300-timestep sequences from
the training set. During test time, we evaluated the predictive performance on the next 297 steps with a context of the
first 3 steps from the test set. For Setup 2, we trained the models on the first 200 timesteps from sequences in the training
set. During test time, we provided the models with a context of the first 100 timesteps from sequences in the test set and
evaluated their performance on the next 200 timesteps. We report the MSE averaged over 50 sample trajectories together
with 95% prediction interval based on the t-statistic for a single run, as reported in prior works.

USHCN Climate Indicators. We trained NCDSSM models under the same setup as De Brouwer et al. (2019) using
4 years of observations from the training stations. During test time, we provided the models with the first 3 years of
observations from the test set as context and evaluated their performance on the accuracy of the next 3 measurements. The
MSE was computed between the mean of 50 sample forecast trajectories (simulating a point forecast) and the ground truth,
averaged over the 5 folds.

Pymunk Physical Environments. We trained the models on the first 20 frames of the videos from the training dataset
with 20% of the frames randomly dropped. During test time, we provided the models with a context of 20 frames and
evaluated the forecast performance on the next 40 frames. We report the EMD between the predicted and the ground truth
frames, averaged over 16 sample trajectories. The EMD was computed using the ot.emd2 function from the Python Optimal
Transport (POT) library (Flamary et al., 2021) with the euclidean metric as the cost function.

C.3. Experiment Configurations

We ran all our experiments on 2 machines with 1 Tesla T4 GPU, 16 CPUs, and 64 GB of memory each. In this section, we
report training and hyperparameter configurations used in our experiments. We refer the reader to the accompanying code
for specific details.

We optimized all models using the Adam optimizer with a learning rate of 0.01 for all the datasets except Pymunk physical
environments where we used 0.002. We reduced the learning rate exponentially with a decay rate of 0.9 every 500 steps for
the bouncing ball, damped pendulum, and CMU MoCap (walking) datasets, every 100 steps for the USHCN climate dataset,
and every 3000 steps for the Pymunk physical environments datasets. We trained the models for 5K, 2K, 2.5K, 150, and
100K steps with a batch size of 50, 64, 16, 100, and 32 for the bouncing ball, damped pendulum, CMU MoCap (walking),
USHCN climate indicators, and Pymunk physical environments, respectively.

For NCDSSM models, we used the following auxiliary inference and emission networks for each dataset:

• Bouncing Ball, Damped Pendulum, and USHCN Climate Indicators
– Auxiliary inference network: Identity()
– Emission network: Identity()

• CMU Motion Capture (Walking)
– Auxiliary inference network: Input(d) → Linear(64) → Softplus() → Linear (2×h)
– Emission network: Input(h) → 2×[Linear(30) → Softplus()] → Linear (d)

• Pymunk Physical Environments
– Auxiliary inference network: Input(1, 32, 32) → ZeroPad2d(padding=[0, 1, 0, 1]) → Conv2d(1,

32, kernel size=3, stride=2) → ReLU() → 2×[ZeroPad2d(padding=[0, 1, 0, 1]) → Conv2d(32,
32, kernel size=3, stride=2) → ReLU()] → Flatten → Linear(64) → Linear(2×h)

– Emission network: Input(h) → Linear(512) → 3×[Conv2d(32, 128, kernel size=3, stride=1,
padding=1) → ReLU() → PixelShuffle(upscale factor=2)] → Conv2d(32, 1, kernel size=1,
stride=1)

To ensure good initial estimation of auxiliary variables, we did not update the underlying SSM parameters for the first 100
and 1000 training steps for the CMU MoCap (walking) and Pymunk physical environments datasets, respectively. In the
following, we list specific experiment configurations for individual experiments.

C.3.1. LATENTODE

We used the RK4 ODE solver to integrate the encoder and drift ODEs with a step size of 0.05 for all datasets.

• Bouncing Ball
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– Dimension of latent state: 6
– Dimension of observations: 1
– Encoder network: ODEGRU with a GRUCell(hidden units=10) and ODE drift function Input(10) →

Linear(30) → Tanh() → Linear(10)
– Decoder network: Input(6) → Linear(10) → Softplus() → Linear(1)
– ODE drift function: Input(6) → Linear(64) → Softplus() → Linear(6)

• Damped Pendulum
– Dimension of latent state: 6
– Dimension of observations: 2
– Encoder network: ODEGRU with a GRUCell(hidden units=10) and ODE drift function Input(10) →

Linear(64) → Tanh() → Linear(10)
– Decoder network: Input(6) → Linear(64) → Tanh() → Linear(2)
– ODE drift function: Input(6) → Linear(64) → Tanh() → Linear(6)

• CMU Motion Capture (Walking)
– Dimension of latent state: 10
– Dimension of observations: 50
– Encoder network: ODEGRU with a GRUCell(hidden units=30) and ODE drift function Input(30) →

Linear(64) → Tanh() → Linear(30)
– Decoder network: Input(10) → 2×[Linear(30) → Softplus()] → Linear(50)
– ODE drift function: Input(10) → Linear(30) → Softplus() → Linear(10)

• Pymunk Physical Environments
– Dimension of latent state: 10
– Dimension of observations: 1024
– Encoder network: Same CNN encoder base as in the auxiliary inference network in NCDSSM models and

ODEGRU with a GRUCell(hidden units=64) and ODE drift function Input(64) → Linear(64) → Tanh()
→ Linear(64)

– Decoder network: Same CNN decoder as in the emission network in NCDSSM models
– ODE drift function: Input(10) → Linear(64) → Tanh() → Linear(10)

C.3.2. LATENTSDE

For LatentSDE experiments, we additionally annealed the KL term in the objective function with a linear annealing schedule
from 0 to 1 over 500 steps for all datasets except Pymunk physical environments for which we annealed over 1000 steps.
As proposed in Li et al. (2020), we also provided the posterior SDEs with an additional context vector from the encoder
to incorporate information from later observations. We used the RK4 ODE solver to integrate the encoder ODEs and the
Euler-Maruyama SDE solver to integrate the prior/posterior SDEs with a step size of 0.05 for all datasets.

• Bouncing Ball
– Dimension of latent state: 6
– Dimension of context vector: 3
– Dimension of observations: 1
– Encoder network: ODEGRU with a GRUCell(hidden units=10) and ODE drift function Input(10) →

Linear(64) → Tanh() → Linear(10)
– Decoder network: Input(6) → Linear(64) → Softplus() → Linear(1)
– Posterior SDE drift function: Input(6+3) → Linear(64) → Softplus() → Linear(6)
– Prior SDE drift function: Input(6) → Linear(64) → Softplus() → Linear(6)
– Posterior/Prior SDE diffusion function: 6×[Input(1) → Linear(64) → Softplus() → Linear(1)]

• Damped Pendulum
– Dimension of latent state: 6
– Dimension of context vector: 3
– Dimension of observations: 2
– Encoder network: ODEGRU with a GRUCell(hidden units=10) and ODE drift function Input(10) →
Linear(64) → Tanh() → Linear(10)

– Decoder network: Input(6) → Linear(64) → Tanh() → Linear(2)
– Posterior SDE drift function: Input(6+3) → Linear(64) → Softplus() → Linear(6)

19



Neural Continuous-Discrete State Space Models

– Prior SDE drift function: Input(6) → Linear(64) → Softplus() → Linear(6)
– Posterior/Prior SDE diffusion function: 6×[Input(1) → Linear(64) → Softplus() → Linear(1)]

• CMU Motion Capture (Walking)
– Dimension of latent state: 10
– Dimension of context vector: 3
– Dimension of observations: 50
– Encoder network: ODEGRU with a GRUCell(hidden units=30) and ODE drift function Input(30) →
Linear(64) → Tanh() → Linear(30)

– Decoder network: Input(10) → 2×[Linear(30) → Softplus()] → Linear(50)
– Posterior SDE drift function: Input(10+3) → Linear(30) → Softplus() → Linear(10)
– Prior SDE drift function: Input(10) → Linear(30) → Softplus() → Linear(10)
– Posterior/Prior SDE diffusion function: 10×[Input(1) → Linear(30) → Softplus() → Linear(1)]

• Pymunk Physical Environments
– Dimension of latent state: 10
– Dimension of context vector: 4
– Dimension of observations: 1024
– Encoder network: Same CNN encoder base as in the auxiliary inference network in NCDSSM models and

ODEGRU with a GRUCell(hidden units=64) and ODE drift function Input(64) → Linear(64) → Tanh()
→ Linear(64)

– Decoder network: Same CNN decoder as in the emission network in NCDSSM models
– Posterior SDE drift function: Input(10+4) → Linear(64) → Tanh() → Linear(10) → Tanh()
– Prior SDE drift function: Input(10) → Linear(64) → Tanh() → Linear(10) → Tanh()
– Posterior/Prior SDE diffusion function: 10×[Input(1) → Linear(64) → Softplus() → Linear(1)]

C.3.3. NCDSSM-LTI

• Bouncing Ball
– Dimension of state (m): 6
– Dimension of auxiliary variables (h): 1
– Dimension of observations (d): 1
– Integrator: Analytic

• Damped Pendulum
– Dimension of state (m): 6
– Dimension of auxiliary variables (h): 2
– Dimension of observations (d): 2
– Integrator: Analytic

• CMU Motion Capture (Walking)
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 6
– Dimension of observations (d): 50
– Integrator: Analytic

• USHCN Climate Indicators
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 5
– Dimension of observations (d): 5
– Integrator: Euler with step size 0.1

• Pymunk Physical Environments
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 4
– Dimension of observations (d): 1024
– Integrator: RK4 with step size 0.05

C.3.4. NCDSSM-NL

We set the diffusion function to G(·, t) = I for all datasets.
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• Bouncing Ball
– Dimension of state (m): 6
– Dimension of auxiliary variables (h): 1
– Dimension of observations (d): 1
– Drift function (f ): Input(m) → Linear(64) → Softplus() → Linear(m)
– Integrator: RK4 with step size 0.05

• Damped Pendulum
– Dimension of state (m): 6
– Dimension of auxiliary variables (h): 2
– Dimension of observations (d): 2
– Drift function (f ): Input(m) → Linear(64) → Softplus() → Linear(m)
– Integrator: RK4 with step size 0.05

• CMU Motion Capture (Walking)
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 6
– Dimension of observations (d): 50
– Drift function (f ): Input(m) -> SN(Linear(30)) -> Softplus() -> SN(Linear(m))
– Integrator: RK4 with step size 0.05

• USHCN Climate Indicators
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 5
– Dimension of observations (d): 5
– Drift function (f ): Input(m) → SN(Linear(64)) → Softplus() → SN(Linear(m))
– Integrator: Euler with step size 0.1

• Pymunk Physical Environments
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 4
– Dimension of observations (d): 1024
– Drift function (f ): Input(m) → Linear(64) → Tanh() → Linear(m) → Tanh()
– Integrator: RK4 with step size 0.05

C.3.5. NCDSSM-LL

We set the α-network to Input(m) → Linear(64) → Softplus() → Linear(K) for all datasets.

• Bouncing Ball
– Dimension of state (m): 6
– Dimension of auxiliary variables (h): 1
– Dimension of observations (d): 1
– Number of base matrices (K): 5
– Integrator: RK4 with step size 0.05

• Damped Pendulum
– Dimension of state (m): 6
– Dimension of auxiliary variables (h): 2
– Dimension of observations (d): 2
– Number of base matrices (K): 5
– Integrator: RK4 with step size 0.05

• CMU Motion Capture (Walking)
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 6
– Dimension of observations (d): 50
– Integrator: RK4 with step size 0.05

• USHCN Climate Indicators
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 5
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– Dimension of observations (d): 5
– Number of base matrices (K): 10
– Integrator: Euler with step size 0.1

• Pymunk Physical Environments
– Dimension of state (m): 10
– Dimension of auxiliary variables (h): 4
– Dimension of observations (d): 1024
– Number of base matrices (K): 10
– Integrator: RK4 with step size 0.05

D. Additional Results
Table 5 shows the number of trainable parameters in each model for different experiments. NCDSSM models obtain better
performance on every dataset with significantly fewer parameters. Table 6 shows the goodness-of-fit coefficient (R2) for
ordinary least squares regression with the latent states as features, and the ground truth angle and angular velocity as targets.
NCDSSM-NL and NCDSSM-LL models obtain a high R2 coefficient showing that the latent states learned by these models
are informative about the true latent state (angle and angular velocity).

Figs. 4 and 5 show sample predictions from the best run of each model for different missing data settings on the bouncing
ball and the damped pendulum datasets, respectively. For the bouncing ball experiment, both LatentODE and LatentSDE
learn that the dataset exhibits a zig-zag pattern but are unable to accurately extrapolate it beyond the training context.
In the case of damped pendulum, LatentODE and LatentSDE perform well on the low missing data settings (0% and
30%) but completely fail on the more challenging settings of 50% and 80% missing data. In contrast, NCDSSM-NL and
NCDSSM-LL generate accurate predictions across datasets and missing data settings. Furthermore, while the predictions
shown in Figs. 4 and 5 are from the best performing runs of each model, they represent a typical run for NCDSSM-NL and
NCDSSM-LL. On the other hand, the prediction quality from LatentODE and LatentSDE models varies significantly across
random initializations.

Fig. 6 shows the variation of the EMD with time for different models on the box and pong datasets. All models have
EMD close to 0 in the context window from 0-2s; however, in the forecast horizon from 2-6s, the EMD rises gradually
for NCDSSM-NL and NCDSSM-LL but rapidly and irregularly for other models. Figs. 7 and 8 show sample predictions
from different models on the box and the pong datasets, respectively. NCDSSM-NL and NCDSSM-LL generate accurate
predictions whereas LatentODE and LatentSDE perform significantly worse.

Table 5. The number of trainable parameters in every model for different experiments.

Model Number of Parameters

Bouncing Ball Damped Pendulum MoCap Walking (Setup 2) USHCN Pymunk Environments

LatentODE 2094 3336 15454 – 204243
LatentSDE 5461 5557 17187 – 208043
GRUODE-B 32207 39884 – – –

NCDSSM-LTI 63 72 11080 185 165911
NCDSSM-NL 859 862 11620 1439 167165
NCDSSM-LL 974 977 12509 2439 168165
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Table 6. Goodness-of-fit coefficient (R2) of ordinary least squares (OLS) regression for the best run of each model on the Pendulum
dataset. The latent states are treated as features and ground truth angle — transformed into polar coordinates: sin(angle)/ cos(angle) —
and angular velocity as targets.

Model sin(angle)/ cos(angle) R2 (↑) (% Missing) Angular Velocity R2 (↑) (% Missing)

0% 30% 50% 80% 0% 30% 50% 80%

LatentODE 0.000 / 0.802 0.000 / 0.735 0.000 / 0.744 0.000 / 0.626 0.001 0.000 0.000 0.000
LatentSDE 0.953 / 0.960 0.918 / 0.957 0.000 / 0.817 0.000 / 0.513 0.970 0.962 0.001 0.000

NCDSSM-LTI 0.593 / 0.537 0.604 / 0.468 0.477 / 0.796 0.481 / 0.705 0.349 0.388 0.162 0.305
NCDSSM-NL 0.984 / 0.990 0.982 / 0.985 0.973 / 0.976 0.905 / 0.920 0.986 0.969 0.935 0.859
NCDSSM-LL 0.986 / 0.989 0.983 / 0.989 0.972 / 0.980 0.875 / 0.888 0.972 0.978 0.955 0.827
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(b) 30% Missing
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Figure 4. Predictions from different models on the bouncing ball dataset for the 0%, 30%, 50%, and 80% missing data settings. The
ground truth is shown using dashed lines with observed points in the context window (gray shaded region) shown as filled circles. The
vertical dashed gray line marks the beginning of the forecast horizon. Solid lines indicate median predictions with 90% prediction intervals
shaded around them.
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LatentODE

Observations Ground Truth Median Prediction

LatentSDE

NCDSSM-LTI

NCDSSM-NL

0 2 4 6 8 10 12 14
Time

NCDSSM-LL

(a) 0% Missing

LatentODE

Observations Ground Truth Median Prediction

LatentSDE

NCDSSM-LTI

NCDSSM-NL

0 2 4 6 8 10 12 14
Time

NCDSSM-LL

(b) 30% Missing

LatentODE

Observations Ground Truth Median Prediction

LatentSDE

NCDSSM-LTI

NCDSSM-NL

0 2 4 6 8 10 12 14
Time

NCDSSM-LL

(c) 50% Missing

LatentODE

Observations Ground Truth Median Prediction

LatentSDE

NCDSSM-LTI

NCDSSM-NL

0 2 4 6 8 10 12 14
Time

NCDSSM-LL

(d) 80% Missing

Figure 5. Predictions from different models on the damped pendulum dataset for the 0%, 30%, 50%, and 80% missing data settings.
The ground truth is shown using dashed lines with observed points in the context window (gray shaded region) shown as filled circles.
The vertical dashed gray line marks the beginning of the forecast horizon. Solid lines indicate median predictions with 90% prediction
intervals shaded around them. The purple and orange colors indicate observation dimensions.
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Figure 6. Variation of EMD over time for the Box (left) and Pong (right) datasets. The EMD rises gradually with time for NCDSSM-LL
and NCDSSM-NL but rapidly and irregularly for other models.
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(a) Box LatentODE

(b) Box LatentSDE

(c) Box NCDSSM-LTI

(d) Box NCDSSM-NL

(e) Box NCDSSM-LL

Figure 7. Sample predictions from different models on the Box dataset. The top row in each figure is the ground truth with some missing
observations in the context window (before the dashed grey line). The next five rows show trajectories sampled from each model. Best
viewed zoomed-in on a computer.
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(a) Pong LatentODE

(b) Pong LatentSDE

(c) Pong NCDSSM-LTI

(d) Pong NCDSSM-NL

(e) Pong NCDSSM-LL

Figure 8. Sample predictions from different models on the Pong dataset. The top row in each figure is the ground truth with some missing
observations in the context window (before the dashed grey line). The next five rows show trajectories sampled from each model. Best
viewed zoomed-in on a computer.
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