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Among Region , Region , Region , Region 
, which pillow is closest to the refrigerator?

Multi-view Global-level ReasoningCMulti-view Region-level ReasoningB

Region  is the closest.

If you are standing right next to Region  and facing 
Region , where will the mirror be? To your right, 
your left, or behind you?

Behind.

Please compare the vertical dimensions of Region  
and Region ; which is taller?

With more height is Region .

What is the distance between Region  and Region ?

Region  and Region  are 16.12 feet apart.

Measuring from the closest point of the objects, which 
of these objects (fireplace, blue pillow, orange pillow, 
white pillow, cabinet) is closest to the colorful 
painting hanging on the wall?

The blue pillow.

If you are standing next to the cabinet and looking at 
the pillow beside you, in which direction will the 
refrigerator be? Front left, front right, back left, or back 
right?

Front left.

Based on the spatial dimension of Region , Region 
, Region , Region , can you try to estimate the 

area of the living room in square meters?

The living room seems to be approximately 10-12 feet 
wide and 15-20 feet deep, which would give it a total 
area of around 150-240 square feet. This is equivalent 
to about 14-22 square meters.

I'm planning to buy some bonsais to decorate my 
space in  Region . Do you have any advice on 
species based on the size of the area?

The area in Region  is 1.2 meters wide, so you can 
consider bonsai trees that are smaller in size. Some 
popular species for bonsai include the Japanese 
Maple, Chinese Elm, and Dwarf hinoki Cypress. These 
trees are known for their compact growth habit and 
can be easily shaped into small, artistic forms.

Single-view Region-level ReasoningA

Measuring from the closest point of the objects, what 
is the distance between the cabinet and the 
refrigerator in meters?
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Figure 1: From precise region-based distance estimation (left), to intricate multi-view region query (middle),
and global cross-frame reasoning (right), SR-3D delivers flexible and accurate spatial understanding to foun-
dational Vision-Language Models. Notably, this video is obtained in the wild, without sensory 3D inputs,
showcasing the remarkable generalization capability of our model.

https://sr3d-iclr.github.io/

ABSTRACT

We present Spatial Region 3D (SR-3D) aware vision–language model that con-
nects single-view 2D images and multi-view 3D data through a shared visual to-
ken space. SR-3D supports flexible region prompting, allowing users to annotate
regions with bounding boxes, segmentation masks on any frame, or directly in
3D, without the need for exhaustive multi-frame labeling. We achieve this by en-
riching 2D visual features with 3D positional embeddings, which allows the 3D
model to draw upon strong 2D priors for more accurate spatial reasoning across
frames, even when objects of interest do not co-occur within the same view. Ex-
tensive experiments on both general 2D vision language and specialized 3D spatial
benchmarks demonstrate that SR-3D achieves state-of-the-art performance, un-
derscoring its effectiveness for unifying 2D and 3D representation space on scene
understanding. Moreover, we observe applicability to in-the-wild videos without
sensory 3D inputs or ground-truth 3D annotations, where SR-3D accurately infers
spatial relationships and metric measurements.

1 INTRODUCTION

The rapid advancement of Vision Language Models (VLMs) (OpenAI, 2024; Liu et al., 2023; Anil
et al., 2023; Wang et al., 2024b; Bai et al., 2025; Liu et al., 2025b) has demonstrated strong capa-
bilities in visual understanding (Pratt et al., 2023; Huang et al., 2024a) and language grounding (Lv
et al., 2023). However, extending these strengths to 3D-aware spatial reasoning remains challeng-
ing. Foundational 2D VLMs excel at interpreting planar images, but generally lack mechanisms to
capture complex 3D structural relationships. In contrast, most 3D VLMs (Hong et al., 2023; Huang
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et al., 2024c;b; Xu et al., 2024; Chen et al., 2024b) operate in a fundamentally different representa-
tion space, making it difficult to leverage the prior knowledge from foundational 2D VLMs. Their
performance is often hindered by limited 3D training data. Moreover, specifying spatial relation-
ships solely through language can be cumbersome in cluttered scenes, e.g., multiple objects of the
same category can coexist. A more direct way of specifying object instances is highly desirable.

To mitigate these challenges, recent efforts adopt multi-view images as a 3D representation that
aligns seamlessly with the input space of foundational 2D VLMs (Zhu et al., 2024; Zheng et al.,
2025). Unlike point clouds (Huang et al., 2024c;b; Xu et al., 2024) which require extensive data
collection and model alignment, a multi-view approach leverages strong 2D priors for 3D scene
understanding. To specify object instances during reasoning, region prompts have proven effective
in single-view VLMs (Guo et al., 2024; Cheng et al., 2024; Yuan et al., 2024b; Rasheed et al., 2024).
However, extending region prompting to multi-view settings remains challenging. Specifically, an
object may appear across different views with varying visibility, making comprehensive multi-frame
or 3D bounding box annotation tedious and text-based queries imprecise. Ideally, a practical VLM
should allow straightforward region annotations, such as marking a bounding box on a single frame,
while still accurately reasoning about spatial relationships across the entire multi-view scene.

Thus, we introduce SR-3D, a unified visual representation for 3D spatial understanding that lever-
ages robust 2D foundational priors and supports flexible region prompting. In contrast to previous
approaches that incorporate positional information only at 3D finetune stages (Zheng et al., 2025),
or in different pathways (Zhu et al., 2024), we directly integrate positional embeddings within the
foundational VLM. Specifically, we estimate each input image’s depth using an off-the-shelf depth
estimator (Yang et al., 2024) and transform this depth map into normalized 3D positional embed-
dings. For multi-view inputs representing a coherent scene, we further unify these positional em-
beddings into a common 3D coordinate space using either provided ground-truth camera poses or
a point cloud estimator (Wang et al., 2024c; Leroy et al., 2024; Wang et al., 2025c) when only
video inputs are available. Additionally, we incorporate region tokens directly into user prompts
and train these region embeddings consistently at both the foundational single-view stages and the
multi-view fine-tuning stage. Since the foundational VLM employs a dynamic tiling-based visual
encoder (Chen et al., 2024d; Liu et al., 2025b), we design a novel branch specifically compatible
with this architecture to produce robust region embeddings.

SR-3D naturally supports flexible region annotation on any frame. This stems from two design
choices: (1) consistent 3D positional embeddings in a canonical space, enabling coherent cross-
frame correspondences, and (2) an aligned embedding space from single-view pretraining that un-
leashes the full potential of region embeddings to generalize in multi-frame contexts. As evidence,
our 2D-VLM trained only on single-view data demonstrates strong zero-shot spatial reasoning in
3D scenes, with and without region prompts, despite never seeing multi-view data.

We extensively evaluate across single-view and 3D multi-view settings, covering both region-level
and global QA on general and spatial tasks. Our foundational 2D-VLM delivers large gains on
region-level performance, surpassing prior state-of-the-art in both recognition and spatial under-
standing. These gains come without sacrificing general VQA accuracy and even improve tasks
requiring spatial knowledge. With 3D fine-tuning, our model sets new state-of-the-art results in
general 3D QA, video spatial reasoning, and region-level video tasks.

Our contributions are as follows:

• We introduce SR-3D, the first 3D-aware vision-language model that unifies representations
for both single-view and multi-view tasks.

• We propose a dynamic tiling-based region extractor that handles high-resolution images
and produces robust region embeddings. Our unified embedding space enables region rep-
resentations trained on 2D images to generalize towards multi-view context.

• SR-3D achieves state-of-the-art results in general 3D QA, video spatial reasoning, and
region-based video tasks, demonstrating strong generalization and scalability.

• We demonstrate real-world applications where our model effectively handles in-the-wild
captured videos without 3D annotations (Figure 1), and can be flexibly prompted with
region-level inputs.

2
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🔥Large Language Model
Approximately 5.3 meters.

Vision Encoder

What is the distance between 
Region        and Region        ?Global Projector Region Extractor & Projector 🔥🔥

Spatial PE 🔥

Image + Depth + Mask(s)

...

...

Dynamic Tiling

Video + Point Map + Mask(s) / 3D Box(es)

Frame Sampling

... + +

... ...

❄

Figure 2: The SR-3D architecture. Given an image or multi-view input with optional region prompts (e.g.,
bounding boxes or masks), we encode them along with depth-derived positional embeddings using a tiling
approach. Region tokens are extracted by stitching masked features, while 3D positional embeddings are
mapped to a shared canonical space in the multi-view setting, as shown on the bottom right.

2 METHODOLOGY

We propose a 3D-aware VLM architecture for single- and multi-view spatial understanding. Our
approach adapts strong 2D priors by directly integrating 3D positional embeddings into visual rep-
resentations, enabling accurate cross-frame reasoning. To further improve region-level grounding,
we introduce a Dynamic Tiling-based Region Extractor, which works efficiently across both single-
and multi-view inputs. As shown in Figure 2, the framework comprises a vision encoder, a 3D posi-
tion encoding module, a region extractor, and an LLM backbone. In this section, we describe three
main components: (1) canonical 3D positional representation (Sec. 2.1), (2) the region extractor
(Sec. 2.2), and (3) the training paradigm (Sec. 2.3), along with inference pipeline (Sec. 2.4).

2.1 CANONICAL 3D POSITIONAL REPRESENTATION

The key idea of SR-3D is a canonical positional feature shared across single- and multi-view in-
puts. This unified representation unleashes the full potential of large-scale single-view pretraining,
carrying its spatial priors into multi-view scenarios.

Single-View Representation. We begin by pretraining our foundational VLM on large-scale 2D
images to establish strong visual-language priors. Given a single-view image I , we estimate its
relative depth map D using DepthAnythingV2 (Yang et al., 2024). We then compute a pixel-wise
3D position map in the camera coordinate system via back-projection, which is further canonicalized
into a normalized world coordinate system. This canonicalization ensures that spatial information is
expressed in a consistent and unified space, independent of camera pose.

To inject spatial information into VLM, we encode the corresponding 3D position map into embed-
dings using a sinusoidal function followed by a learnable point-wise MLP. These embeddings are
resized to align with the token dimensions and then added to their respective vision tokens. This fu-
sion enriches visual representations with geometric awareness, enabling the model to better capture
object placement and spatial relationships within the scene.

Multi-View Representation. Building on the shared canonical space, we fine-tune the VLM with
multi-view inputs to extend spatial reasoning beyond single images. We uniformly sample 32 frames
from a video and resize the point maps to match the vision encoder’s resolution. For multi-view
training, we use ground-truth depth rather than estimated depth, performing back-projection and
camera transformation to align the frames. The transformed point maps are normalized into the same
canonical space as in the single-view setup, ensuring consistency in spatial representation. These
processed frames and point maps act as the multi-view analog of the single-view tiles, enabling
seamless integration of spatial and visual information across both training stages.

3
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Spatial Math

Methods BLINKS SAT EmbSpat RealWorldQA MathVista

NVILA-Lite-8B 79.7 62.6 68.9 65.6 64.5
SR-3D-8B 83.9+4.2 64.0+1.4 72.5+3.6 68.1+2.5 65.4

General Knowledge OCR-Related

Methods GQA AI2D MMMUp SEEDI POPE TextVQA ChartQA DocVQA

NVILA-Lite-8B 65.3 91.0 25.1 76.3 88.1 78.1 84.8 91.7
SR-3D-8B 64.2 90.7 24.6 77.8 87.6 77.3 83.9 91.0

Table 1: Comparison of SR-3D and base model NVILA-Lite (Liu et al., 2025b)’s performance on general
VQA benchmarks. SR-3D achieves stronger results on spatial-related benchmarks without compromising per-
formance on general and OCR benchmarks, suggesting that 3D-aware pre-training enhances spatial reasoning
while preserving the base model’s broader knowledge.

NVILA-Lite

Where is the chair relative to 
the table?

NVILA-Lite
The chair is centered underneath
the table.

No.

Yes.

Is the sedan closer to us than the 
minivan?

The chair is underneath the table 
to the right.

Figure 3: RealWorldQA (xAI, 2024) results. SR-3D shows stronger spatial understanding of physical environ-
ments compared to the base model. We omit the answer choices for clarity in visualization.

2.2 DYNAMIC TILING-BASED REGION EXTRACTOR

Tiling-based Encoder. The visual backbone produces a low-resolution feature map, limiting its
ability to represent small-scale regions and objects. To address this, we adopt the dynamic tiling
mechanism employed in (Liu et al., 2025b) that enables high-resolution processing while maintain-
ing spatial consistency. Instead of resizing entire images, we first determine the optimal aspect ratio
by selecting the closest match from a predefined set (e.g., 1:1, 1:2, 2:1, 3:1, . . . , 2:6), minimizing
distortions. We then resize both the image and any corresponding point map accordingly and di-
vide them into tiles of 448 × 448, matching the vision encoder’s resolution. Each tile is encoded
separately before being stitched back together, preserving local details without exceeding memory
constraints. This tiling process is applied similarly to point maps and region masks, forming the
basis for both our 3D positional embedding and region feature extraction strategies.

Dynamic Region Extractor. Prior architectures without dynamic tiling use feature refinement with
deconvolution layers to upsample visual tokens (Cheng et al., 2024; Guo et al., 2024), aiming to
recover lost details. But since this occurs after the vision encoder, where features are already resized
and potentially distorted, the recovery of fine details is limited.

To address this, we introduce a tile-then-stitch approach to extract region embeddings from high-
resolution features. For single-view input, given a region of interest (RoI) represented by a binary
mask, we apply the same dynamic tiling process used in the image pipeline to generate tiles of
both the image and the mask. The tiled visual tokens and masks are then stitched back together at
a higher resolution, followed by a mask-pooling operation to obtain the final mask feature. This
method offers two key advantages: (1) the extracted mask feature is derived from high-resolution
features directly, reducing distortion and eliminating the need for post-refinement, and (2) our tile-
then-stitch approach extends naturally to multi-view video inputs. In the multi-view setting, each
frame is treated as a tile, allowing us to handle one or multiple masks per frame while maintaining
spatial consistency across frames for the same RoI.

2.3 TRAINING PARADIGM

For the single-view VLM, we initialize the weights from a pre-trained 2D VLM (NVILA-Lite-
8B (Liu et al., 2025b)), keeping the vision encoder frozen while fine-tuning the 3D positional en-
coding module, projectors, and the LLM. We reuse the instruction fine-tuning dataset from the
pre-trained VLM and blend it with region-prompted datasets (Guo et al., 2024; Cheng et al., 2024)
in this stage, resulting in a total data blend of approximately 7 million samples. Full dataset details
are provided in the Supplementary Materials.

For the multi-view model, we fine-tune the single-view model using datasets such as
ScanQA (Azuma et al., 2022), SQA3D (Ma et al., 2023), and Scan2Cap (Chen et al., 2021), as

4
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Methods Acc. (%)

Human 98.3

Proprietary Models (API)
Gemini Pro (Anil et al., 2023) 50.0
Claude 3 OPUS (Anthropic, 2024) 57.3
GPT-4V-Turbo (OpenAI, 2024) 66.9
GPT-4o (OpenAI, 2024) 64.5

Open-source Models
Yi-VL-34B (Young et al., 2024) 53.2
LLaVA-v1.5-13B-xtuner (Contributors, 2023) 54.0
LLaVA-v1.6-34B (Zhang et al., 2024b) 64.5
InstructBLIP-7B (Dai et al., 2023) 50.8
LLaVA-v1.5-7B-xtuner (Contributors, 2023) 50.8
LLaVA-v1.5-7B (Liu et al., 2024a) 51.6
LLaVA-InternLM2-7B (Cai et al., 2024) 52.4
SpatialRGPT-8B (Cheng et al., 2024) 87.9
SR-3D-8B 90.3

Table 2: Results on BLINKDepth. We follow Cheng
et al. (2024)’s protocol to test whether a VLM effec-
tively leverages auxiliary 3D information.

Methods mAP (↑) Acc. (%)

CLIP (Radford et al., 2021) 58.9 -
RegionCLIP (Zhong et al., 2022) 58.3 -

LLaVA-7B (Liu et al., 2023) - 40.0
Shikra-7B (Chen et al., 2023c) - 53.9
GPT4RoI-7B (Zhang et al., 2023) - 64.0
PVIT-7B (Chen et al., 2023a) - 64.5
ASM-7B (Wang et al., 2024g) 69.3 -
RegionGPT-7B (Guo et al., 2024) 70.0 80.6
DynRefer (Zhao et al., 2025) - 81.2
SpatialRGPT-8B (Cheng et al., 2024) 72.9 82.9
SR-3D-8B 78.0 88.6

Table 3: Region-level classification results on
COCO-2017 val set with ground-truth boxes, fol-
lowing RegionCLIP (Zhong et al., 2022) and Re-
gionGPT (Guo et al., 2024).

well as a newly curated EmbodiedScan (Wang et al., 2024d) dataset with region- and spatial-focused
question-answer pairs. To enhance robustness and generalization, we apply various mask augmenta-
tions during multi-view training, including converting segmentation masks into bounding boxes and
randomly dropping frames to simulate single-frame annotations. These strategies help the model
learn to associate regions across frames while preserving spatial consistency.

We note that, unlike prior work (Zhu et al., 2024) that employs separate pathways for single- and
multi-view data, we adopt a unified pipeline where all data flows through the same model architec-
ture. This ensures consistent processing of both single- and multi-view inputs without distinction
between spatial region prompts and global queries.

2.4 INFERENCE

Our tile-and-stitch design enables flexible region-based inference. For single-view inputs, the model
accepts bounding boxes or segmentation masks as region annotations. In multi-view scenarios, it
supports a range of mask specifications: 3D bounding boxes that project into multi-frame masks,
sparse-frame masks, or even a single-frame mask. This reflects SR-3D ’s ability to handle varying
annotation densities while preserving spatial alignment. For 3D multi-view input, although ground-
truth depth maps were used during multi-view training, our approach remains highly adaptable due
to the canonicalization of 3D positions into a normalized space. This allows us to replace ground-
truth depth with point maps estimated from off-the-shelf models such as MAST3R (Leroy et al.,
2024) or CUT3R (Wang et al., 2025c). Our model offers a highly flexible and generalizable solu-
tion for spatial reasoning across diverse input modalities by maintaining a unified architecture that
normalizes spatial information across different 3D sources.

3 EXPERIMENTS

We first evaluate SR-3D on 2D benchmarks (Section 3.1) to verify whether the introduced positional
features improve performance while preserving the generalization of the base single-view model.
We then evaluate the multi-view model on 3D benchmarks in Section 3.2. Finally, we show ablation
studies in Section 3.4 to analyze the role of pretraining and 3D positional encoding.

3.1 EVALUATION ON 2D BENCHMARKS

Region-level Question Answering. We evaluate our model’s object classification performance on
the COCO-2017 (Lin et al., 2014) dataset using mean Average Precision (mAP) and classification
accuracy as metrics. Following prior work on region-level recognition (Zhong et al., 2022; Guo et al.,
2024; Cheng et al., 2024), we rely on ground-truth boxes for positional information and augment
the general prompt with task-specific instructions. As reported in Table 3, SR-3D attains an mAP
of 78.0 and an accuracy of 88.6%, demonstrating strong region-level recognition and validating the
effectiveness of our region extractor. Compared with SpatialRGPT (Cheng et al., 2024), which is
trained on the same region-level data, our model achieves significant gains, largely attributable to the
dynamic tiling extractor that provides higher-fidelity regional masks. For reference, we also include
DynRefer’s RoIAlign (448 variant) (Zhao et al., 2025) as a baseline at the same resolution. Their
proposed strategies are also complementary to our approach.
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Scan2Cap ScanQA SQA3D

Methods B-4 ↑ Rouge ↑ Cider ↑ Meteor ↑ B-4 ↑ Rouge ↑ Cider ↑ Meteor ↑ EM ↑ EM ↑

Task-specific Specialist
VoteNet+MCAN (Yu et al., 2019) - - - - 6.2 29.8 54.7 11.4 17.3 -
ScanRefer+MCAN (Yu et al., 2019) - - - - 7.9 30.0 55.4 11.5 18.6 -
ScanQA (Azuma et al., 2022) - - - - 10.1 33.3 64.9 13.1 21.0 -
3D-VisTA (Zhu et al., 2023) 34.0 54.3 66.9 27.1 10.4 35.7 69.6 13.9 22.4 -

2D Large Multi-modal Models
Oryx-34B (Liu et al., 2024b) - - - - - 37.3 72.3 15.0 - -
NaviLLM (Zheng et al., 2024) - - - - 12.0 38.4 75.9 15.4 23.0 -
LLaVA-Video-7B† (Zhang et al., 2024c) - - - - 3.1 44.6 88.7 17.7 - -
NaVILA (Cheng et al., 2025) - - - - 16.9 49.3 102.7 20.1 28.6 -

3D Large Multi-modal Models
3D-LLM(flamingo) (Hong et al., 2023) - - - - 7.2 32.3 59.2 12.2 20.4 -
3D-LLM(BLIP2−flant5) (Hong et al., 2023) - - - - 12.0 35.7 69.4 14.5 20.5 -
LL3DA (Chen et al., 2024b) 36.8 55.1 65.2 26.0 13.5 37.3 76.8 15.9 - -
Chat-3Dv2 (Wang et al., 2023b) - - - - 14.0 - 87.6 - - 54.7
LEO (Huang et al., 2024c) 36.9 57.8 68.4 27.7 13.2 49.2 101.4 20.0 24.5 50.0
Scene-LLM (Fu et al., 2024a) - - - - 12.0 40.0 80.0 16.6 27.2 54.2
ChatScene (Huang et al., 2024b) 36.3 58.1 77.2 28.0 14.3 41.6 87.7 18.0 21.6 54.6
LLaVA-3D (Zhu et al., 2024) 41.1 63.4 79.2 30.2 14.5 50.1 91.7 20.7 27.0 55.6
Video-3D LLM (Zheng et al., 2025) 42.4 62.3 83.8 28.9 16.2 49.0 102.1 19.8 30.1 58.6
SR-3D-8B 44.7 67.3 97.9 31.5 18.1 51.2 109.3 21.2 30.4 62.2

Table 4: Evaluation of spatial scene understanding on the Scan2Cap, ScanQA, and SQA3D benchmarks.
† indicates methods evaluated in a zero-shot setting. SR-3D achieves state-of-the-art results across all metrics.

We further evaluate SR-3D on the BLINKDepth benchmark (Fu et al., 2024b) using the region-
prompts as in SpatialRGPT (Cheng et al., 2024), which tests point-level depth understanding in
VLMs. BLINKDepth is a challenging task that requires both spatial and regional awareness. We re-
port results in Table 2 showing that SR-3D outperforms current state-of-the-art SpatialRGPT (Cheng
et al., 2024), achieving 90% accuracy. These results highlight that our approach excels in region ex-
traction and effectively utilizes the provided 3D-aware input.

General Question Answering. We investigate two key questions: (1) Does incorporating 3D
positional information affect general vision-language understanding capabilities? (2) Can it im-
prove performance on spatial-related tasks? To answer these, we evaluate our model on general
VLM benchmarks covering Spatial (xAI, 2024; Ray et al., 2025; Du et al., 2024; Fu et al., 2024b),
Math (Lu et al., 2024), General Understanding (Hudson & Manning, 2019; Kembhavi et al., 2016;
Yue et al., 2024; Li et al., 2024; 2023), and OCR-related (Singh et al., 2019; Masry et al., 2022;
Mathew et al., 2021) tasks. As shown in Table 1, compared to the base model NVILA-Lite-8B (Liu
et al., 2025b), our model maintains comparable performance in math, general understanding, and
OCR-related tasks, confirming that integrating 3D positional information does not degrade overall
vision-language capabilities. Additionally, our method improves performance on the spatial under-
standing benchmark RealWorldQA (xAI, 2024). We also provide qualitative examples from Re-
alWorldQA in Figure 3, showcasing cases where NVILA-Lite fails while SR-3D succeeds. These
results demonstrate that SR-3D enhances spatial reasoning while preserving general capabilities.

3.2 EVALUATION ON 3D BENCHMARKS

General 3D Question Answering. We report results on three classic 3D vision-language under-
standing tasks: 3D dense captioning on Scan2Cap (Chen et al., 2021), ScanQA (Azuma et al.,
2022), and SQA3D (Ma et al., 2023) in Table 4. Our evaluation metrics include conventional scores
(e.g., CIDEr, BLEU, METEOR, ROUGE) as well as exact-match (EM) accuracy. Following prior
work, we assume that input scenes may lack 3D object mask annotations during inference and use
off-the-shelf models to generate proposals. However, unlike previous approaches, we leverage 2D
segmentation models to generate 2D object proposals instead. We compare SR-3D against strong
baselines, including task-specific specialist models for each benchmark and leading methods from
both 2D and 3D large multimodal models (LMMs). SR-3D significantly outperforms state-of-the-
art single-task and task-specific fine-tuned models on 3D dense captioning and 3D QA tasks. Our
design operates in a canonicalized 3D space, making it naturally compatible with geometric foun-
dation models and well-suited for extending to casual in-the-wild videos. Motivated by this, we
further evaluate robustness under reconstructed inputs using Cut3R (Wang et al., 2025c), comparing
results against ground-truth point clouds. As shown in Table 9, SR-3D maintains performance close
to ground truth, highlighting its resilience to reconstruction artifacts, while Video3dLLM (Zheng
et al., 2025) exhibits a clear performance drop.
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Methods Qualitative Quantitative

Blind LLMs w/ Language Referral
GPT-4o (OpenAI, 2024) 64.8 64.5 64.0 47.8 41.4 56.5 70.5 70.6 50.4 63.8

VLMs w/ Language Referral
GPT-4o (OpenAI, 2024) 52.1 54.1 57.5 62.4 42.4 53.7 72.4 72.8 55.8 67.0
NVILA-Video-8B (Liu et al., 2025b) 48.8 38.9 53.7 52.1 36.0 45.9 59.2 54.3 6.6 40.0

Region VLMs
GPT-4o (OpenAI, 2024)+SoM 46.1 39.9 39.3 52.1 43.2 44.1 52.4 47.8 40.0 46.7
NVILA-Video-8B (Liu et al., 2025b)+SoM 49.3 40.0 53.7 52.1 40.4 47.1 59.3 54.1 6.6 40.0
SR-3D-8B 76.3 83.1 81.8 80.3 76.0 79.5 87.7 87.3 74.8 83.3

Table 5: Evaluation of region-level spatial scene understanding on the SR-3D-Bench. SR-3D outperforms all
baselines, highlighting the importance of strong region understanding and spatial awareness. Notably, SoM
struggles with multi-frame inputs, reflecting the inherent difficulty of multi-frame visual grounding.

3322 4411

11 22

Among                           , which pillow is 
closest to the black suitcase on the ground?

The pillow is located in       .

1 2 3 4

4

Among                           , which pillow is 
furthest from the black suitcase on the ground?

The pillow is located in       .

1 2 3 4

1

Among                            , which pillow is 
closest to the phone?

The pillow is located in       .

1 2 3 4

2

Among                            , which pillow is 
furthest from the phone?

The pillow is located in       .

1 2 3 4

4

If you are standing right next to        and 
facing        , where will the desk be? To 
your right or left?

Right.

1
2

If you are standing right next to        and 
facing        , where will the laptop be? To 
your right or left?

Left.

1
2

If you are standing right next to        and 
facing        , where will the armchair be? 
To your right or left?

Left.

1
2

If you are standing right next to        and 
facing        , where will the coffee maker 
be? To your right or left?

Right.

1
2

Figure 4: SR-3D results on region-level multi-view spatial understanding. We show extreme cases where the
same region prompts are used across samples but with different target objects. SR-3D answers all queries
correctly, showing strong evidence that it truly understands 3D spatial relationships. Note that the overlayed
region ID tags are only for visualization in the paper to improve readability and are not used during inference.

3.3 VIDEO SPATIAL INTELLIGENCE.

Region-level Spatial QA. Currently, no video benchmarks specifically focus on region-level spatial
understanding. Without explicit region information, spatial understanding can become ambigu-
ous, especially when multiple identical objects are present or when referring to a specific area in
a scene that is difficult to describe precisely using language alone. To address this, we propose
SR-3D-Bench, a region-level spatial benchmark curated from ScanNet (Dai et al., 2017), ARK-
itScenes (Baruch et al., 2021), and Matterport (Chang et al., 2017) video scan datasets with 3D
ground truth. Specifically, we utilize preprocessed oriented bounding box annotations from Em-
bodiedScan (Wang et al., 2024d), where each object is axis-aligned within a canonicalized geodetic
coordinate system. This alignment ensures that the bounding box dimensions accurately represent
the true width, length, and height. Using these bounding boxes, we construct a conversational
benchmark that includes both qualitative and quantitative question-answering tasks. The qualitative
QA consists of choice-based, predicate-based, and multiple-choice questions, while the quantitative
QA focuses on measuring object width, height, and distance. We generate these QA pairs using
template-based conversation generation and allow the VLM to generate free-form language. For
qualitative QA evaluation, we use GPT-4o (OpenAI, 2024) as an evaluator and report the accuracy,
while for quantitative QA, we measure the success rate by thresholding the maximum ratio between
estimation and the ground truth value.

We report three types of baseline models: (1) Blind LLMs, which answer questions using only the
provided text without visual input. To improve this, we replace the mask prompt with the object class
for each question. This serves as a baseline to measure how much video spatial reasoning can come
from general world knowledge alone. We use GPT-4o (OpenAI, 2024) as the representative, as it is

7
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Methods Quantitative Qualitative Avg.

Random - - - - 25.0 36.1 28.3 25.0 -
Human Level† 94.3 47.0 60.4 45.9 94.7 95.8 95.8 100 79.2

Proprietary Models (API)
GPT-4o (OpenAI, 2024) 46.2 5.3 43.8 38.2 37.0 41.3 31.5 28.5 34.0
Gemini-1.5 Flash (Georgiev et al., 2024) 49.8 30.8 53.5 54.4 37.7 41.0 31.5 37.8 42.1
Gemini-1.5 Pro (Georgiev et al., 2024) 56.2 30.9 64.1 43.6 51.3 46.3 36.0 34.6 45.3

Open-source Models
InternVL2-8B (Chen et al., 2024e) 31.3 29.0 48.9 44.2 38.0 33.4 28.9 46.4 37.5
InternVL2-40B (Chen et al., 2024e) 41.3 26.2 48.2 27.5 47.6 32.7 27.8 44.7 37.0
LongVILA-8B (Xue et al., 2025) 29.1 9.1 16.7 0.0 29.6 30.7 32.5 25.5 21.6
VILA-1.5-8B Lin et al. (2024) 17.4 21.8 50.3 18.8 32.1 34.8 31.0 24.8 28.9
VILA-1.5-40B Lin et al. (2024) 22.4 24.8 48.7 22.7 40.5 25.7 31.5 32.9 31.2
LongVA-7B (Zhang et al., 2024a) 38.0 16.6 38.9 22.2 33.1 43.3 25.4 15.7 29.2
LLaVA-Video-7B (Zhang et al., 2024b) 48.5 14.0 47.8 24.2 43.5 42.4 34.0 30.6 35.6
LLaVA-Video-72B (Zhang et al., 2024b) 48.9 22.8 57.4 35.3 42.4 36.7 35.0 48.6 40.9
LLaVA-OneVision-7B (Li et al., 2025) 47.7 20.2 47.4 12.3 42.5 35.2 29.4 24.4 32.4
LLaVA-OneVision-72B (Li et al., 2025) 43.5 23.9 57.6 37.5 42.5 39.9 32.5 44.6 40.2
SR-3D-8B 54.9 53.8 74.5 65.1 63.5 81.8 33.5 75.9 62.9

Table 6: Results on multi-view global spatial scene understanding evaluated on VSI-Bench (Yang et al., 2025b).
† indicates methods tested on the Tiny subset. SR-3D achieves strong performance, especially on the relative
direction task, providing clear evidence that the model effectively leverages the 3D positional encoding.

If I am standing by the door and facing the laptop, is the 
whiteboard to my front-left, front-right, back-left, or back-right?

Front-right

What is the size of this room (in square meters)? If multiple 
rooms are shown, estimate the size of the combined space.

21.3   (GT: 18.1)

Measuring from the closest point of each object, what is the 
distance between the whiteboard and the door (in meters)?

1.9   (GT: 2.0)

If I am standing by the microwave and facing the 
door, is the kettle to my left, right, or back?

Left

If I am standing by the door and facing the microwave, is the 
kettle to my front-left, front-right, back-left, or back-right?

Front-right

What is the length of the longest dimension (length, width, or 
height) of the ceiling light, measured in centimeters?

119   (GT: 127)

Figure 5: VSI-Bench (Yang et al., 2025b) results. SR-3D answers spatial questions correctly even with-
out region prompts, handles fine-grained directional queries such as distinguishing front-left from
front-right, and accurately answers metric-scale spatial questions like distance queries.

one of the most advanced models for general knowledge. (2) VLMs with Language Referral, which
have access to visual content, allowing them to potentially perform better than blind LLMs. We use
state-of-the-art vision-language models GPT-4o and NVILA-Video (Liu et al., 2025b) as baselines
in this category. (3) Region-aware Video VLMs. These models process specific image regions
without relying on text descriptions or object class information. We equip GPT-4o and NVILA-
Video with Set of Marks (SoM) for region-based reasoning. Note that while Qiu et al. (2024) and
Wang et al. (2024a) are also region-level video VLMs, they are excluded from comparisons as they
cannot handle multi-object input or lack support for multi-frame prompts.

We present results in Table 5. The findings suggest that both Blind LLMs and VLMs with Language
Referral perform reasonably well on quantitative tasks, such as estimating object width, due to
their general world knowledge. However, region-level VLMs equipped with SoM struggle, likely
because the models find it challenging to track the set of marks across frames. Overall, our method
outperforms all baselines across all categories.

Global Spatial QA. We also report results on global spatial understanding using VSI-Bench (Yang
et al., 2025b), a recently proposed benchmark that quantitatively evaluates the visual-spatial intel-
ligence of VLMs based on egocentric videos. To avoid potential effects from noisy or inconsistent
labels, training samples from the ScanQA series are excluded. We follow the original setting and
use accuracy as the evaluation metric for qualitative questions and Mean Relative Accuracy (MRA)
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2D Pre-train 3D Tall/Short 3D Big/Small 3D Height 3D Distance

Zero-shot 2D Models
Base Model 40.0-31.4 53.7-26.0 54.1-14.4 6.6-61.9
SR-3D-2D ✓ 71.4 79.7 68.5 68.5

Finetuned 3D Models
SR-3D 83.1-0.0 80.5-1.3 85.7-1.6 60.3-14.5
SR-3D ✓ 83.1 81.8 87.3 74.8

Table 7: Zero-shot evaluation of our 2D-trained VLM on SR-3D-Bench, testing whether the model’s represen-
tations are truly aligned. SR-3D-2D achieves reasonable accuracy without explicit 3D supervision.

3D PE PT Scan2Cap ScanQA SQA3D 3D Region 3D Global

92.9 101.3 58.6 74.0 51.1
✔ 94.3 108.2 59.5 78.1 52.9

✔ 92.7 102.9 59.1 75.3 51.2
✔ ✔ 97.9 109.3 62.2 80.9 62.0

Table 8: Ablation study on the impact of incor-
porating 3D positional embeddings (3D PE) and
single-view pre-training (PT). The results indicate
that both 3D positional embeddings and single-view
pre-training are crucial, and further scaling up pre-
training is likely to yield additional gains.

3D Source C ↑ B-1 ↑ B-4 ↑ M ↑ R ↑ EM ↑

Video-3D LLM GT 102.1 47.1 16.2 19.8 49.0 30.1
Video-3D LLM Cut3R 100.7 46.6 15.8 19.6 48.6 29.9

SR-3D GT 109.3 50.9 18.1 21.2 51.2 30.4
SR-3D Cut3R 109.3 50.9 18.1 21.2 51.2 30.2

Table 9: ScanQA results on ground-truth and Cut3R-
reconstructed point clouds, compared with Video-3D
LLM (Zheng et al., 2025). SR-3D exhibits a smaller
performance drop than the baseline when shifting
from ground-truth to reconstructed inputs.

for quantitative questions. As shown in Table 6, SR-3D outperforms all open-source models and
performs comparably, if not better, than API-based models.

3.4 ANALYSIS AND ABLATION STUDY

Zero-shot Generalization. In this analysis, we ask: Can a foundational 2D VLM trained only on
single-view images perform zero-shot spatial reasoning on multi-view 3D scenes? To test this, we
evaluate its zero shot performance on SR-3D-Bench across the Tall/Short, Big/Small, Height, and
Distance categories. We exclude width because it is defined differently in single-view and multi-
view settings: in single-view images, it refers to the horizontal extent in the image plane (Cheng
et al., 2024), while in multi-view scenes, it denotes the maximum object dimension. Table 7 presents
the results, showing that the single-view model performs strongly. This indicates that our unified
representation transfers knowledge from single-view images effectively, even though the model has
not seen multi-view data, scene-level position embeddings, or ground truth spatial annotations.

3D Position Embedding and Single-view Pre-training. We conduct an ablation study to evaluate
the impact of single-view pre-training and 3D positional embeddings. Four model variants are com-
pared, with/without pre-training and with/without 3D positional embeddings. As shown in Table 8,
single-view pre-training provides substantial gains by allowing the model to transfer spatial knowl-
edge, while 3D embeddings offer limited improvements at the current scale. These findings highlight
the need for larger-scale settings to fully exploit positional representations for spatial reasoning.

4 RELATED WORK

Our work builds upon recent advancements in region-level understanding (Yuan et al., 2024b; Guo
et al., 2024), spatial reasoning (Chen et al., 2024a; Yang et al., 2025b), and 3D large multimodal
models (Hong et al., 2023; Chen et al., 2024b). The most closely related methods are LLaVA-
3D (Zhu et al., 2024) and Video-3D LLM (Zheng et al., 2025), which also integrate 3D position-
aware features into 2D VLMs. However, these approaches often rely on separate processing path-
ways for 2D/3D data or require fine-tuning on specialized 3D video data, which risks overfitting
position encodings to specific tasks. In contrast, we propose a unified architecture and a shared 3D
representation space for both images and videos, fostering better alignment and improving general-
ization across spatial understanding tasks. A comprehensive literature review is in Appendix B.

5 CONCLUSION

We introduce SR-3D, a foundational vision language model for 3D-aware spatial reasoning. By
unifying single- and multi-view data, our approach adapts strong 2D priors from pretrained VLMs
into a 3D-aware representation for complex spatial tasks. Additionally, our tile-and-stitch method
extracts high-resolution region features, enabling flexible region prompts. Experiments on 2D and
3D benchmarks show state-of-the-art performance, validating SR-3D’s ability to unify and enhance
spatial reasoning, unlocking the potential of 3D-aware VLMs.
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ETHICS STATEMENT

SR-3D is developed as a general-purpose visual assistant, similar to other vision language mod-
els (OpenAI, 2024; xAI, 2024; Georgiev et al., 2024). While it offers potential benefits for tasks
in robotics, AR/VR, and other domains, it also shares common concerns associated with large lan-
guage and multimodal models. These include the risk of output hallucinations, inherited biases from
pretrained models, and the environmental impact of scaling to larger architectures. Evaluating spa-
tial reasoning performance remains challenging (Cheng et al., 2024), and further research is needed
to ensure robustness and reliability, particularly in safety-critical domains such as robotics. In po-
tential applications to VR/AR smart glasses, future work should also address privacy and security
concerns. Our work serves as a research prototype, and we do not claim deployment readiness. No
human subjects were involved in this study, and no personally identifiable information was collected.
The supplementary demonstration video on the website uses publicly available YouTube footage and
is provided solely for academic research purposes, not for commercial use.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. SR-3D builds upon an
open-sourced vision language model (Liu et al., 2025b) as the base, and all datasets used in our
experiments are publicly available, with no in-house or proprietary data involved. In the main paper
and appendix, we provide detailed descriptions of the data curation pipeline, model architecture, and
training hyperparameters. To further support reproducibility, we will release our curated datasets,
benchmark, source code, and pretrained model weights as open-sourced software.
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A APPLICATIONS

Our method is flexible in two key ways. First, since SR-3D is trained in a normalized 3D space,
it naturally integrates with existing 3D foundation models (Wang et al., 2025c; Leroy et al., 2024;
Wang et al., 2025d;b) for pointmap estimation. This design allows the input to extend beyond 3D
scans, and SR-3D can also process in the wild videos such as YouTube footage. Second, SR-3D
removes the need for costly 3D annotations or dense per-frame labeling. Instead, users can provide
lightweight region inputs by drawing on a single frame, which the model then propagates across the
video for spatial reasoning.

Combining these two aspects, SR-3D demonstrates robust spatial understanding from unconstrained
video inputs without reliance on 3D scans or exhaustive annotations (Figure 1). These flexibilities
open the door to a wide range of real-world applications, such as assisting robots in unstructured
environments, analyzing large video collections, and supporting interactive spatial reasoning tasks.

B COMPREHENSIVE LITERATURE REVIEW

Region-level Vision-Language Models. Region-level VLMs enhance fine-grained visual under-
standing by focusing on specific regions in images and videos. Early methods (Peng et al., 2024;
Chen et al., 2023c;b; Wang et al., 2024e) represent regions as text using bounding box coordinates,
making integration easy but relying on the language decoder for spatial reasoning. Others use visual
markers like SoM (Yang et al., 2023), which overlay numbers and masks but alter image appearance
and require rule-based placement. Another approach maps region features into LLM tokens using
RoI-aligned features (Wang et al., 2024h;f; 2023a; Zhou et al., 2023; Zhang et al., 2023; Rasheed
et al., 2024; Zhao et al., 2025), with RegionGPT (Guo et al., 2024) and Osprey (Yuan et al., 2024b)
refining this by pooling pixel-level mask features for flexible region shapes. However, they struggle
with resolution and aspect ratio constraints. In the video domain, various representations (Wang
et al., 2024a; Yu et al., 2024; Fei et al., 2024; Ye et al., 2024; Heo et al., 2025) have been explored,
but they mainly focus on tracking rather than multi-view spatial reasoning.

Spatial Reasoning in Vision-Language Models. Vision-language models have a strong visual un-
derstanding because they integrate the reasoning abilities of LLMs with powerful vision foundation
models. Recently, there has been growing interest in equipping VLMs with spatial reasoning capa-
bilities (Chen et al., 2024a; Ma et al., 2024a; Cai et al., 2025; Yuan et al., 2024a; Ma et al., 2024b;
Tang et al., 2024; Song et al., 2024; Xu et al., 2025; Marsili et al., 2025; Liu et al., 2025a; Yang
et al., 2025a; Liao et al., 2024). While most previous work has focused on spatial understanding
from 2D images, multi-view spatial reasoning remains less explored. Recently, VSI-Bench (Yang
et al., 2025b) was introduced as a testbed for evaluating models’ 3D video-based spatial understand-
ing. Our work extends this direction by proposing a unified 3D-aware architecture and representation
that seamlessly supports both images and videos.

3D Large Multimodal Models. Our work also relates to recent advancements in 3D LMMs (Wang
et al., 2023b; Man et al., 2024; Linghu et al., 2024; Hong et al., 2023; Fu et al., 2024a; Chen et al.,
2024b; Huang et al., 2024c; Wang et al., 2025a; Huang et al., 2025; Wu et al., 2025). Various 3D rep-
resentations have been explored to integrate position information into LLMs. 3D-LLM (Hong et al.,
2023) and Scene-LLM (Fu et al., 2024a) use multi-view images with object segmentation masks to
construct pixel-aligned point representations, while LL3DA (Chen et al., 2024b) directly employs
a point cloud encoder to extract 3D scene features. LEO (Huang et al., 2024c) and Chat3D (Wang
et al., 2023b) segment objects from the scene’s point cloud and extract object features to represent the
environment. These methods typically transform 3D scenes into voxel or point representations, but
such approaches often limit the effectiveness of LLMs. Aligning these representations with LLMs
requires vast amounts of data, which is challenging due to the scarcity of large-scale 3D datasets.
Moreover, many of these methods rely on off-the-shelf 3d detection or segmentation models, which
inherently constrain performance.

The most closely related works to ours are LLaVA-3D (Zhu et al., 2024) and Video-3D-LLM (Zheng
et al., 2025), which also incorporate 3D position-aware features into 2D vision-language models.
However, LLaVA-3D processes 3D and 2D data through separate pathways, while Video-3D-LLM
fine-tunes 3D video data on a pre-trained video VLM. Both approaches risk overfitting 3D posi-
tion encodings to specific 3D tasks. In contrast, our method adopts a unified architecture and 3D
representation space for both image and video data, enabling better alignment and improving gener-
alization across spatial understanding tasks.
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C MORE QUANTITATIVE RESULTS ON 3D GENERAL BENCHMARKS

Following prior work, we report results using additional metrics for a more comprehensive evalua-
tion. Table 10 presents results on Scan2Cap, Table 11 on ScanQA, and Table 12 on SQA3D. Apart
from our method, all other results are from Video-3D-LLM (Zheng et al., 2025).

Cider ↑ Bleu-4 ↑ Meteor ↑ Rouge ↑

Scan2Cap (Chen et al., 2021) 39.1 23.3 22.0 44.5
3DJCG (Cai et al., 2022) 49.5 31.0 24.2 50.8
D3Net (Chen et al., 2022) 62.6 35.7 25.7 53.9
3D-VisTA (Zhu et al., 2023) 66.9 34.0 27.1 54.3
LL3DA (Chen et al., 2024b) 65.2 36.8 26.0 55.1
LEO (Huang et al., 2024c) 68.4 36.9 27.7 57.8
ChatScene (Huang et al., 2024b) 77.2 36.3 28.0 58.1
LLaVA-3D (Zhu et al., 2024) 79.2 41.1 30.2 63.4
Video-3D LLM (Zheng et al., 2025) 83.8 42.4 28.9 62.3
SR-3D 97.9 44.7 31.5 67.3

Table 10: Full results on Scan2Cap (Chen et al., 2021) validation set.

EM Bleu-1 ↑ Bleu-2 ↑ Bleu-3 ↑ Bleu-4 ↑ Rouge ↑ Meteor ↑ Cider ↑

ScanQA (Azuma et al., 2022) 21.1 30.2 20.4 15.1 10.1 33.3 13.1 64.9
3D-VisTA (Zhu et al., 2023) 22.4 – – – 10.4 35.7 13.9 69.6
Oryx-34B (Liu et al., 2024b) – 38.0 24.6 – – 37.3 15.0 72.3
LLaVA-Video-7B (Zhang et al., 2024c) – 39.7 26.6 9.3 3.2 44.6 17.7 88.7
3D-LLM (Flamingo) (Hong et al., 2023) 20.4 30.3 17.8 12.0 7.2 32.3 12.2 59.2
3D-LLM (BLIP2-flant5) (Hong et al., 2023) 20.5 39.3 25.2 18.4 12.0 35.7 14.5 69.4
Chat-3D (Wang et al., 2023b) – 29.1 – – 6.4 28.5 11.9 53.2
NaviLLM (Zheng et al., 2024) 23.0 – – – 12.5 38.4 15.4 75.9
LL3DA (Chen et al., 2024b) – – – – 13.5 37.3 15.9 76.8
Scene-LLM (Fu et al., 2024a) 27.2 43.6 26.8 19.1 12.0 40.0 16.6 80.0
LEO (Huang et al., 2024c) – – – – 11.5 39.3 16.2 80.0
Grounded 3D-LLM (Chen et al., 2024c) – – – – 13.4 – – 72.7
ChatScene (Huang et al., 2024b) 21.6 43.2 29.1 20.6 14.3 41.6 18.0 87.7
LLaVA-3D (Zhu et al., 2024) 27.0 – – – 14.5 50.1 20.7 91.7
Video-3D LLM (Zhang et al., 2024c) 30.1 47.1 31.7 22.8 16.2 49.0 19.8 102.1
SR-3D 30.4 50.9 34.3 25.1 18.1 51.2 21.1 109.3

Table 11: Full results on ScanQA (Azuma et al., 2022) validation set.

What Is How Can Which Others Avg.

SQA3D (Ma et al., 2023) 31.6 63.8 46.0 69.5 43.9 45.3 46.6
3D-VisTA (Zhu et al., 2023) 34.8 63.3 45.4 69.8 47.2 48.1 48.5
LLaVA-Video(Zhang et al., 2024c) 42.7 56.3 47.5 55.3 50.1 47.2 48.5
Scene-LLM (Fu et al., 2024a) 40.9 69.1 45.0 70.8 47.2 52.3 54.2
LEO (Huang et al., 2024c) – – – – – – 50.0
ChatScene (Huang et al., 2024b) 45.4 67.0 52.0 69.5 49.9 55.0 54.6
LLaVA-3D (Zhu et al., 2024) – – – – – – 55.6
Video-3D LLM (Zheng et al., 2025) 51.1 72.4 55.5 69.8 51.3 56.0 58.6
SR-3D 55.0 76.4 59.8 71.6 54.7 61.1 62.2

Table 12: Full results on SQA3D (Ma et al., 2023) testing set.

D MORE QUALITATIVE RESULTS ON VSI-BENCH

We report additional visual results on VSI-Bench, primarily using scenes from ScanNet++.
ScanNet++ is not included in EmbodiedScan’s annotations, making it a distinct and challenging
dataset for evaluation. Compared to ScanNet, ScanNet++ offers higher fidelity and greater diversity
in indoor environments. Moreover, its 3D annotations are only coarsely aligned to match walls and
floors to the axis. Despite these challenges, as shown in Figure 6, our method demonstrates superior
capabilities in determining relative direction, highlighting its robustness in real-world tasks.
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What is the length of the longest dimension (length, width, 
or height) of the whiteboard, measured in centimeters?

124   (GT: 128)

Measuring from the closest point of each object, which of these objects 
(plant, ceiling light, keyboard, monitor) is the closest to the telephone?

plant

Measuring from the closest point of each object, what is 
the distance between the shoes and the door (in meters)?

4.4   (GT: 4.3)

What is the length of the longest dimension (length, width, 
or height) of the refrigerator, measured in centimeters?

159

Measuring from the closest point of each object, what is the 
distance between the refrigerator and the suitcase (in meters)?

1.6   (GT: 1.6)

What is the size of this room (in square meters)? If multiple 
rooms are shown, estimate the size of the combined space.

44.1  (GT: 169)   (GT: 54.4)

If I am standing by the tv and facing the chair, is the toilet 
to my front-left, front-right, back-left, or back-right?

Back-right

What is the size of this room (in square meters)? If multiple 
rooms are shown, estimate the size of the combined space.

26.0   (GT: 22.8)

Measuring from the closest point of each object, which of these 
objects (door, chair, pillow, table lamp) is the closest to the toilet?

Door

If I am standing by the chair and facing the pillow, 
is the ceiling light to my left, right, or back?

Right

If I am standing by the pillow and facing the chair, is 
the ceiling light to my left, right, or back?

Left

Measuring from the closest point of each object, which of these 
objects (shoes, plant, pillow, chair) is the closest to the heater?

Shoes

Figure 6: More results on VSI-Bench (Yang et al., 2025b). We highlight SR-3D ’s outputs and include ground-
truth values for numerical answers.

E MORE ABLATION STUDY

We present the complete ablation study results on 2D single-view pre-training and 3D positional
encoding without pre-training, evaluating their influence on model performance. The detailed results
are shown in Table 13 and Table 16, respectively.

Overall, the fully-trained model consistently outperforms baseline models on 3D general QA bench-
marks, demonstrating the benefits of leveraging both 2D and 3D spatial information. However, in
the 3D spatial-focused dataset, we observe a slight drop in the Wide and Big category, likely due to
differences in how width is defined in 2D versus 3D, as discussed in the main paper.

Additionally, we find that removing pre-training leads to a substantial drop in performance for more
complex reasoning tasks, particularly in the multi-choice complex category, where the model strug-
gles without prior exposure to large-scale 2D pre-training. These results highlight the importance
of both spatial-aware representation learning and strong pre-training strategies in enhancing 3D rea-
soning capabilities.

Scan2Cap ScanQA SQA3D

PE PT Bleu-4 ↑ Rouge↑ Cider↑ Meteor↑ Bleu-4 ↑ Rouge↑ Cider↑ Meteor↑ EM ↑ EM ↑

44.2 67.3 92.9 31.1 16.0 48.9 101.3 19.8 28.8 58.6
✔ 44.0 67.3 92.7 31.0 17.4 48.8 102.9 20.0 29.1 59.1
✔ ✔ 44.7 67.3 97.9 31.5 18.1 51.2 109.3 21.2 30.4 62.2

Table 13: Ablation study full results on Scan2Cap, ScanQA, and SQA3D benchmarks.
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Category Thin-Wide Tall-Short Big-Small Multi-Simple Multi-Complex Width Data Distance Data Height Data Total Length

Count 219 231 231 117 500 496 242 464 2500

Table 14: Statistical analysis of our SR-3D-Bench, showing the distribution of different spatial attributes.

2D Data

Hybrid ShareGPT4V-SFT, Molmo, The Cauldron, Cambrian, LLaVA-OneVision

Captioning MSR-VTT, Image Paragraph Captioning, ShareGPT4V-100K

Reasoning CLEVR, NLVR, VisualMRC

Document DocVQA, UniChart-SFT, ChartQA

OCR TextCaps, OCRVQA, ST-VQA, POIE, SORIE, SynthDoG-en, TextOCR-GPT4V, ArxivQA, LLaVAR

General VQA ScienceQA, VQAv2, ViQuAE, Visual Dialog, GQA, Geo170K, LRV-Instruction, RefCOCO, GeoQA, OK-
VQA, TabMVP, EstVQA

Diagram & Dialogue DVQA, AI2D, Shikra, UniMM-Chat

Instruction LRV-Instruction, SVIT, MMC-Instruction, MM-Instruction

Text-only FLAN-1M, MathInstruct, Dolly, GSM8K-ScRel-SFT

Knowledge WordART, WIT, STEM-QA

Medical PathVQA, Slake, MedVQA

Region RegionGPT

Spatial SpatialRGPT

3D Data

General ScanQA, SQA3D, Scan2Cap

Spatial EmbodiedScan

Table 15: Data recipe for training 2D foundational VLM and 3D fine-tuning.

3D Region 3D Global

PE PT Wide Tall Big M. Sim. M. Cpx. Avg. Width Height Dist. Avg.

77.6 80.5 82.6 71.7 55.8 73.6 85.8 84.4 53.7 74.4
✔ 77.6 83.1 80.5 70.9 59.0 74.2 85.5 85.7 60.3 77.2
✔ ✔ 76.3 83.1 81.8 80.3 76.0 79.5 87.7 87.3 74.8 83.3

Table 16: Ablation study full results on 3D region and 3D global tasks.

F STATISTICS OF SR-3D-BENCH

Our benchmark follows template designs from prior works on spatial reasoning in vision-language
models, including SpatialRGPT (Cheng et al., 2024) and SpatialVLM (Chen et al., 2024a). To
further increase the complexity and diversity of spatial reasoning tasks, we incorporate situated
annotations from the EmbodiedScan (Wang et al., 2024d) dataset, ensuring a more realistic and
challenging evaluation setting. Specifically, our dataset includes a range of spatial relationships,
from basic geometric comparisons such as thin-wide, tall-short, and big-small, to more complex
multi-object interactions categorized as multi-simple and multi-complex. Additionally, we introduce
explicit width, distance, and height annotations to facilitate fine-grained spatial understanding. With
a total of 2,500 samples, our benchmark provides a comprehensive evaluation for assessing the
region-level spatial reasoning capabilities of vision-language models in realistic scenarios.

G IMPLEMENTATION DETAILS OF SR-3D
We use PaliGemma (Beyer et al., 2024) as our visual backbone with an input size of 448 and a patch
size of 14, paired with a Qwen-2-7B (Bai et al., 2023) LLM backbone. For training the foundational
2D VLM, we follow prior work and set the maximum tiles per image to 12. For the multi-view
VLM, we use a frame size of 32 with a uniform sampling strategy to ensure a fair comparison with
previous methods. For training the 2D VLM, we adopt a learning rate of 5e-5 with cosine decay and
gradient clipping enabled. The same hyperparameters are used for fine-tuning the 3D VLM, except
for a reduced batch size due to the increased token length. The data recipe for both training stages is
detailed in Table 15. We train on a subset of 2D data, excluding spatial and region-related datasets,
to preserve the original vision-language capabilities while incorporating a diverse source.
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H LIMITATIONS

Orientations. Although our method shows promising results, it remains challenging for current
vision-language models to accurately perceive and interpret spatial questions related to object ori-
entation. This challenge arises due to the difficulty of scaling up data. We leave this as future work.

Dynamic Videos. Our method is designed for multi-view static data, whereas real-world scenarios
often involve dynamic environments. Incorporating positional embeddings to handle both static and
dynamic inputs is non-trivial. Future work should explore methods to address this limitation.

OCR Tasks. In the main paper of Table 1, we report the performance of our 2D foundation model
on general benchmarks. While our model maintains comparable performance to the base model,
demonstrating improved spatial understanding without significant trade-offs, we observe a consis-
tent slight drop in OCR-related tasks. A potential solution is to incorporate more OCR-related tasks
into the training data pipeline.

Unified Checkpoint. While our unified architecture and representation provide a foundation for
both single- and multi-view 3D-aware VLMs, we leave it to future work to investigate how to ef-
fectively combine the two models. This could be achieved either by introducing an agentic flow
between single- and multi-view models or by directly training a single model across both settings,
which may further improve generalization and efficiency.

I USE OF LLM
To improve the clarity and presentation of this manuscript, we used large language models for minor
editorial suggestions on grammar and sentence structure. The core scientific ideas, experimental
work, and original text were authored exclusively. We critically evaluated every change proposed
by the LLM to guarantee that the final manuscript is a faithful and accurate representation of our
research and findings.
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