

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 3D AWARE REGION PROMPTED VISION LANGUAGE MODEL

Anonymous authors

Paper under double-blind review

A Single-view Region-level Reasoning

I'm planning to buy some bonsais to decorate my space in Region 7. Do you have any advice on species based on the size of the area?

The area in Region 7 is 1.2 meters wide, so you can consider bonsai trees that are smaller in size. Some popular species for bonsai include the Japanese Maple, Chinese Elm, and Dwarf hinoki Cypress. These trees are known for their compact growth habit and can be easily shaped into small, artistic forms.

Based on the spatial dimension of Region 4, Region 5, Region 7, Region 8, can you try to estimate the area of the living room in square meters?

The living room seems to be approximately 10-12 feet wide and 15-20 feet deep, which would give it a total area of around 150-240 square feet. This is equivalent to about 14-22 square meters.

B Multi-view Region-level Reasoning

Among Region 1, Region 5, Region 9, Region 10, which pillow is closest to the refrigerator?

Region 10 is the closest.

Please compare the vertical dimensions of Region 3 and Region 7, which is taller?

With more height is Region 3.

What is the distance between Region 6 and Region 2?

Region 6 and Region 2 are 16.12 feet apart.

If you are standing right next to Region 7 and facing Region 6, where will the mirror be? To your right, your left, or behind you?

Behind.

C Multi-view Global-level Reasoning

If you are standing next to the cabinet and looking at the pillow beside you, in which direction will the refrigerator be? Front left, front right, back left, or back right?

Front left.

Measuring from the closest point of the objects, which of these objects (fireplace, blue pillow, orange pillow, white pillow, cabinet) is closest to the colorful painting hanging on the wall?

The blue pillow.

Measuring from the closest point of the objects, what is the distance between the cabinet and the refrigerator in meters?

4.0

Figure 1: From precise region-based distance estimation (left), to intricate multi-view region query (middle), and global cross-frame reasoning (right), SR-3D delivers flexible and accurate spatial understanding to foundational Vision-Language Models. Notably, this video is obtained in the wild, **without sensory 3D inputs**, showcasing the remarkable generalization capability of our model.

<https://sr3d-iclr.github.io/>

ABSTRACT

We present **Spatial Region 3D (SR-3D)** aware vision–language model that connects single-view 2D images and multi-view 3D data through a shared visual token space. SR-3D supports flexible region prompting, allowing users to annotate regions with bounding boxes, segmentation masks on any frame, or directly in 3D, without the need for exhaustive multi-frame labeling. We achieve this by enriching 2D visual features with 3D positional embeddings, which allows the 3D model to draw upon strong 2D priors for more accurate spatial reasoning across frames, even when objects of interest do not co-occur within the same view. Extensive experiments on both general 2D vision language and specialized 3D spatial benchmarks demonstrate that SR-3D achieves state-of-the-art performance, underscoring its effectiveness for unifying 2D and 3D representation space on scene understanding. Moreover, we observe applicability to in-the-wild videos without sensory 3D inputs or ground-truth 3D annotations, where SR-3D accurately infers spatial relationships and metric measurements.

1 INTRODUCTION

The rapid advancement of Vision Language Models (VLMs) (OpenAI, 2024; Liu et al., 2023; Anil et al., 2023; Wang et al., 2024b; Bai et al., 2025; Liu et al., 2025b) has demonstrated strong capabilities in visual understanding (Pratt et al., 2023; Huang et al., 2024a) and language grounding (Lv et al., 2023). However, extending these strengths to 3D-aware spatial reasoning remains challenging. Foundational 2D VLMs excel at interpreting planar images, but generally lack mechanisms to capture complex 3D structural relationships. In contrast, most 3D VLMs (Hong et al., 2023; Huang

054 et al., 2024c;b; Xu et al., 2024; Chen et al., 2024b) operate in a fundamentally different representation
 055 space, making it difficult to leverage the prior knowledge from foundational 2D VLMs. Their
 056 performance is often hindered by limited 3D training data. Moreover, specifying spatial rela-
 057 tionships solely through language can be cumbersome in cluttered scenes, e.g., multiple objects of the
 058 same category can coexist. A more direct way of specifying object instances is highly desirable.

059 To mitigate these challenges, recent efforts adopt multi-view images as a 3D representation that
 060 aligns seamlessly with the input space of foundational 2D VLMs (Zhu et al., 2024; Zheng et al.,
 061 2025). Unlike point clouds (Huang et al., 2024c;b; Xu et al., 2024) which require extensive data
 062 collection and model alignment, a multi-view approach leverages strong 2D priors for 3D scene
 063 understanding. To specify object instances during reasoning, region prompts have proven effective
 064 in single-view VLMs (Guo et al., 2024; Cheng et al., 2024; Yuan et al., 2024b; Rasheed et al., 2024).
 065 However, extending region prompting to multi-view settings remains challenging. Specifically, an
 066 object may appear across different views with varying visibility, making comprehensive multi-frame
 067 or 3D bounding box annotation tedious and text-based queries imprecise. Ideally, a practical VLM
 068 should allow straightforward region annotations, such as marking a bounding box on a single frame,
 069 while still accurately reasoning about spatial relationships across the entire multi-view scene.

070 Thus, we introduce SR-3D, a unified visual representation for 3D spatial understanding that lever-
 071 ages robust 2D foundational priors and supports flexible region prompting. In contrast to previous
 072 approaches that incorporate positional information only at 3D finetune stages (Zheng et al., 2025),
 073 or in different pathways (Zhu et al., 2024), we directly integrate positional embeddings within the
 074 foundational VLM. Specifically, we estimate each input image’s depth using an off-the-shelf depth
 075 estimator (Yang et al., 2024) and transform this depth map into normalized 3D positional embed-
 076 dings. For multi-view inputs representing a coherent scene, we further unify these positional em-
 077 beddings into a common 3D coordinate space using either provided ground-truth camera poses or
 078 a point cloud estimator (Wang et al., 2024c; Leroy et al., 2024; Wang et al., 2025c) when only
 079 video inputs are available. Additionally, we incorporate region tokens directly into user prompts
 080 and train these region embeddings consistently at both the foundational single-view stages and the
 081 multi-view fine-tuning stage. Since the foundational VLM employs a dynamic tiling-based visual
 082 encoder (Chen et al., 2024d; Liu et al., 2025b), we design a novel branch specifically compatible
 083 with this architecture to produce robust region embeddings.

084 SR-3D naturally supports flexible region annotation on any frame. This stems from two design
 085 choices: (1) consistent 3D positional embeddings in a canonical space, enabling coherent cross-
 086 frame correspondences, and (2) an aligned embedding space from single-view pretraining that un-
 087 leashes the full potential of region embeddings to generalize in multi-frame contexts. As evidence,
 088 our 2D-VLM trained only on single-view data demonstrates strong zero-shot spatial reasoning in
 089 3D scenes, with and without region prompts, despite never seeing multi-view data.

090 We extensively evaluate across single-view and 3D multi-view settings, covering both region-level
 091 and global QA on general and spatial tasks. Our foundational 2D-VLM delivers large gains on
 092 region-level performance, surpassing prior state-of-the-art in both recognition and spatial under-
 093 standing. These gains come without sacrificing general VQA accuracy and even improve tasks
 094 requiring spatial knowledge. With 3D fine-tuning, our model sets new state-of-the-art results in
 095 general 3D QA, video spatial reasoning, and region-level video tasks.

096 Our contributions are as follows:

- 097 • We introduce SR-3D, the first 3D-aware vision-language model that unifies representations
 098 for both single-view and multi-view tasks.
- 099 • We propose a dynamic tiling-based region extractor that handles high-resolution images
 100 and produces robust region embeddings. Our unified embedding space enables region rep-
 101 resentations trained on 2D images to generalize towards multi-view context.
- 102 • SR-3D achieves state-of-the-art results in general 3D QA, video spatial reasoning, and
 103 region-based video tasks, demonstrating strong generalization and scalability.
- 104 • We demonstrate real-world applications where our model effectively handles in-the-wild
 105 captured videos without 3D annotations (Figure 1), and can be flexibly prompted with
 106 region-level inputs.

107

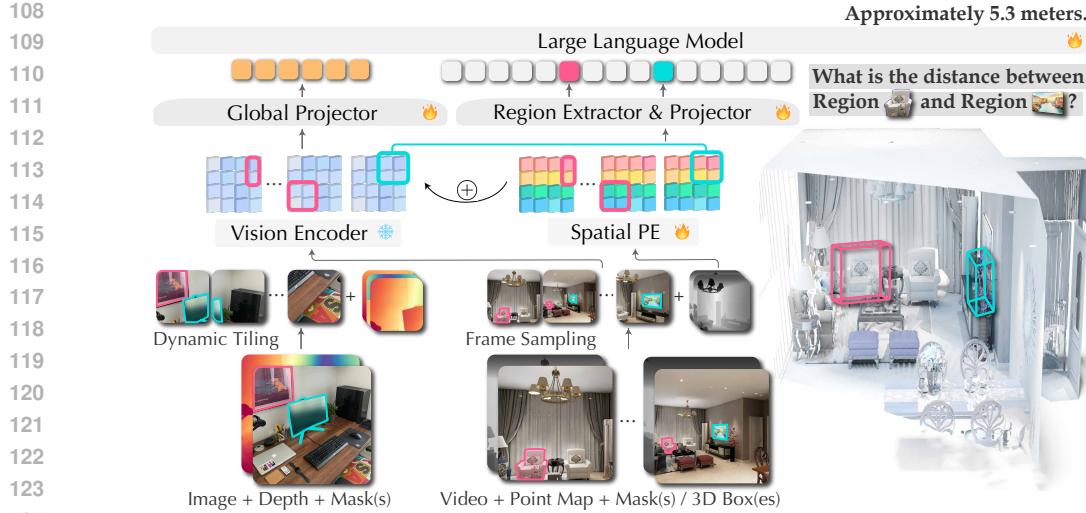


Figure 2: The SR-3D architecture. Given an image or multi-view input with optional region prompts (e.g., bounding boxes or masks), we encode them along with depth-derived positional embeddings using a tiling approach. Region tokens are extracted by stitching masked features, while 3D positional embeddings are mapped to a shared canonical space in the multi-view setting, as shown on the bottom right.

2 METHODOLOGY

We propose a 3D-aware VLM architecture for single- and multi-view spatial understanding. Our approach adapts strong 2D priors by directly integrating 3D positional embeddings into visual representations, enabling accurate cross-frame reasoning. To further improve region-level grounding, we introduce a Dynamic Tiling-based Region Extractor, which works efficiently across both single- and multi-view inputs. As shown in Figure 2, the framework comprises a vision encoder, a 3D position encoding module, a region extractor, and an LLM backbone. In this section, we describe three main components: (1) canonical 3D positional representation (Sec. 2.1), (2) the region extractor (Sec. 2.2), and (3) the training paradigm (Sec. 2.3), along with inference pipeline (Sec. 2.4).

2.1 CANONICAL 3D POSITIONAL REPRESENTATION

The key idea of SR-3D is a canonical positional feature shared across single- and multi-view inputs. This unified representation unleashes the full potential of large-scale single-view pretraining, carrying its spatial priors into multi-view scenarios.

Single-View Representation. We begin by pretraining our foundational VLM on large-scale 2D images to establish strong visual-language priors. Given a single-view image I , we estimate its relative depth map D using DepthAnythingV2 (Yang et al., 2024). We then compute a pixel-wise 3D position map in the camera coordinate system via back-projection, which is further canonicalized into a normalized world coordinate system. This canonicalization ensures that spatial information is expressed in a consistent and unified space, independent of camera pose.

To inject spatial information into VLM, we encode the corresponding 3D position map into embeddings using a sinusoidal function followed by a learnable point-wise MLP. These embeddings are resized to align with the token dimensions and then added to their respective vision tokens. This fusion enriches visual representations with geometric awareness, enabling the model to better capture object placement and spatial relationships within the scene.

Multi-View Representation. Building on the shared canonical space, we fine-tune the VLM with multi-view inputs to extend spatial reasoning beyond single images. We uniformly sample 32 frames from a video and resize the point maps to match the vision encoder’s resolution. For multi-view training, we use ground-truth depth rather than estimated depth, performing back-projection and camera transformation to align the frames. The transformed point maps are normalized into the same canonical space as in the single-view setup, ensuring consistency in spatial representation. These processed frames and point maps act as the multi-view analog of the single-view tiles, enabling seamless integration of spatial and visual information across both training stages.

Methods	Spatial					Math		
	BLINK _S	SAT	EmbSpat	RealWorldQA	MathVista			
NVILA-Lite-8B	79.7	62.6	68.9	65.6	64.5			
SR-3D-8B	83.9_{+4.2}	64.0_{+1.4}	72.5_{+3.6}	68.1_{+2.5}	65.4			
General Knowledge					OCR-Related			
Methods	GQA	AI2D	MMMU _P	SEED _I	POPE	TextVQA	ChartQA	DocVQA
	65.3	91.0	25.1	76.3	88.1	78.1	84.8	91.7
SR-3D-8B	64.2	90.7	24.6	77.8	87.6	77.3	83.9	91.0

Table 1: Comparison of SR-3D and base model NVILA-Lite (Liu et al., 2025b)’s performance on general VQA benchmarks. SR-3D achieves stronger results on spatial-related benchmarks without compromising performance on general and OCR benchmarks, suggesting that 3D-aware pre-training enhances spatial reasoning while preserving the base model’s broader knowledge.

Figure 3: RealWorldQA (xAI, 2024) results. SR-3D shows stronger spatial understanding of physical environments compared to the base model. We omit the answer choices for clarity in visualization.

2.2 DYNAMIC TILING-BASED REGION EXTRACTOR

Tiling-based Encoder. The visual backbone produces a low-resolution feature map, limiting its ability to represent small-scale regions and objects. To address this, we adopt the dynamic tiling mechanism employed in (Liu et al., 2025b) that enables high-resolution processing while maintaining spatial consistency. Instead of resizing entire images, we first determine the optimal aspect ratio by selecting the closest match from a predefined set (e.g., 1:1, 1:2, 2:1, 3:1, . . . , 2:6), minimizing distortions. We then resize both the image and any corresponding point map accordingly and divide them into tiles of 448×448 , matching the vision encoder’s resolution. Each tile is encoded separately before being stitched back together, preserving local details without exceeding memory constraints. This tiling process is applied similarly to point maps and region masks, forming the basis for both our 3D positional embedding and region feature extraction strategies.

Dynamic Region Extractor. Prior architectures without dynamic tiling use feature refinement with deconvolution layers to upsample visual tokens (Cheng et al., 2024; Guo et al., 2024), aiming to recover lost details. But since this occurs after the vision encoder, where features are already resized and potentially distorted, the recovery of fine details is limited.

To address this, we introduce a *tile-then-stitch* approach to extract region embeddings from high-resolution features. For single-view input, given a region of interest (RoI) represented by a binary mask, we apply the same dynamic tiling process used in the image pipeline to generate tiles of both the image and the mask. The tiled visual tokens and masks are then stitched back together at a higher resolution, followed by a mask-pooling operation to obtain the final mask feature. This method offers two key advantages: (1) the extracted mask feature is derived from high-resolution features directly, reducing distortion and eliminating the need for post-refinement, and (2) our tile-then-stitch approach extends naturally to multi-view video inputs. In the multi-view setting, each frame is treated as a tile, allowing us to handle one or multiple masks per frame while maintaining spatial consistency across frames for the same RoI.

2.3 TRAINING PARADIGM

For the single-view VLM, we initialize the weights from a pre-trained 2D VLM (NVILA-Lite-8B (Liu et al., 2025b)), keeping the vision encoder frozen while fine-tuning the 3D positional encoding module, projectors, and the LLM. We reuse the instruction fine-tuning dataset from the pre-trained VLM and blend it with region-prompted datasets (Guo et al., 2024; Cheng et al., 2024) in this stage, resulting in a total data blend of approximately 7 million samples. Full dataset details are provided in the Supplementary Materials.

For the multi-view model, we fine-tune the single-view model using datasets such as ScanQA (Azuma et al., 2022), SQA3D (Ma et al., 2023), and Scan2Cap (Chen et al., 2021), as

Methods	Acc. (%)
Human	98.3
Proprietary Models (API)	
Gemini Pro (Anil et al., 2023)	50.0
Claude 3 OPUS (Anthropic, 2024)	57.3
GPT-4V-Turbo (OpenAI, 2024)	66.9
GPT-4o (OpenAI, 2024)	64.5
Open-source Models	
Yi-VL-34B (Young et al., 2024)	53.2
LLaVA-v1.5-13B-xtuner (Contributors, 2023)	54.0
LLaVA-v1.6-34B (Zhang et al., 2024b)	64.5
InstructBLIP-7B (Dai et al., 2023)	50.8
LLaVA-v1.5-7B-xtuner (Contributors, 2023)	50.8
LLaVA-v1.5-7B (Liu et al., 2024a)	51.6
LLaVA-InternLM2-7B (Cai et al., 2024)	52.4
SpatialRGPT-8B (Cheng et al., 2024)	87.9
SR-3D-8B	90.3

Table 2: Results on BLINK_{Depth}. We follow Cheng et al. (2024)’s protocol to test whether a VLM effectively leverages auxiliary 3D information.

Methods	mAP (↑)	Acc. (%)
CLIP (Radford et al., 2021)	58.9	-
RegionCLIP (Zhong et al., 2022)	58.3	-
LLaVA-7B (Liu et al., 2023)	-	40.0
Shikra-7B (Chen et al., 2023c)	-	53.9
GPT4RoI-7B (Zhang et al., 2023)	-	64.0
PVIT-7B (Chen et al., 2023a)	-	64.5
ASM-7B (Wang et al., 2024g)	69.3	-
RegionGPT-7B (Guo et al., 2024)	70.0	80.6
DynRefer (Zhao et al., 2025)	-	81.2
SpatialRGPT-8B (Cheng et al., 2024)	72.9	82.9
SR-3D-8B	78.0	88.6

Table 3: Region-level classification results on COCO-2017 val set with ground-truth boxes, following RegionCLIP (Zhong et al., 2022) and RegionGPT (Guo et al., 2024).

well as a newly curated EmbodiedScan (Wang et al., 2024d) dataset with region- and spatial-focused question-answer pairs. To enhance robustness and generalization, we apply various mask augmentations during multi-view training, including converting segmentation masks into bounding boxes and randomly dropping frames to simulate single-frame annotations. These strategies help the model learn to associate regions across frames while preserving spatial consistency.

We note that, unlike prior work (Zhu et al., 2024) that employs separate pathways for single- and multi-view data, we adopt a unified pipeline where all data flows through the same model architecture. This ensures consistent processing of both single- and multi-view inputs without distinction between spatial region prompts and global queries.

2.4 INFERENCE

Our tile-and-stitch design enables flexible region-based inference. For single-view inputs, the model accepts bounding boxes or segmentation masks as region annotations. In multi-view scenarios, it supports a range of mask specifications: 3D bounding boxes that project into multi-frame masks, sparse-frame masks, or even a single-frame mask. This reflects SR-3D’s ability to handle varying annotation densities while preserving spatial alignment. For 3D multi-view input, although ground-truth depth maps were used during multi-view training, our approach remains highly adaptable due to the canonicalization of 3D positions into a normalized space. This allows us to replace ground-truth depth with point maps estimated from off-the-shelf models such as MAST3R (Leroy et al., 2024) or CUT3R (Wang et al., 2025c). Our model offers a highly flexible and generalizable solution for spatial reasoning across diverse input modalities by maintaining a unified architecture that normalizes spatial information across different 3D sources.

3 EXPERIMENTS

We first evaluate SR-3D on 2D benchmarks (Section 3.1) to verify whether the introduced positional features improve performance while preserving the generalization of the base single-view model. We then evaluate the multi-view model on 3D benchmarks in Section 3.2. Finally, we show ablation studies in Section 3.4 to analyze the role of pretraining and 3D positional encoding.

3.1 EVALUATION ON 2D BENCHMARKS

Region-level Question Answering. We evaluate our model’s object classification performance on the COCO-2017 (Lin et al., 2014) dataset using mean Average Precision (mAP) and classification accuracy as metrics. Following prior work on region-level recognition (Zhong et al., 2022; Guo et al., 2024; Cheng et al., 2024), we rely on ground-truth boxes for positional information and augment the general prompt with task-specific instructions. As reported in Table 3, SR-3D attains an mAP of 78.0 and an accuracy of 88.6%, demonstrating strong region-level recognition and validating the effectiveness of our region extractor. Compared with SpatialRGPT (Cheng et al., 2024), which is trained on the same region-level data, our model achieves significant gains, largely attributable to the dynamic tiling extractor that provides higher-fidelity regional masks. For reference, we also include DynRefer’s RoIAlign (448 variant) (Zhao et al., 2025) as a baseline at the same resolution. Their proposed strategies are also complementary to our approach.

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287	Methods	Scan2Cap				ScanQA				SQA3D	
		B-4 ↑	Rouge ↑	Cider ↑	Meteor ↑	B-4 ↑	Rouge ↑	Cider ↑	Meteor ↑	EM ↑	EM ↑
Task-specific Specialist											
VoteNet+MCAN (Yu et al., 2019)	-	-	-	-	-	6.2	29.8	54.7	11.4	17.3	-
ScanRefer+MCAN (Yu et al., 2019)	-	-	-	-	-	7.9	30.0	55.4	11.5	18.6	-
ScanQA (Azuma et al., 2022)	-	-	-	-	-	10.1	33.3	64.9	13.1	21.0	-
3D-VisTA (Zhu et al., 2023)	34.0	54.3	66.9	27.1	10.4	35.7	69.6	13.9	22.4	-	-
2D Large Multi-modal Models											
Oryx-34B (Liu et al., 2024b)	-	-	-	-	-	37.3	72.3	15.0	-	-	-
NavILM (Zheng et al., 2024)	-	-	-	-	-	12.0	38.4	75.9	15.4	23.0	-
LLaVA-Video-7B [†] (Zhang et al., 2024c)	-	-	-	-	-	3.1	44.6	88.7	17.7	-	-
NaViLA (Cheng et al., 2025)	-	-	-	-	-	16.9	49.3	102.7	20.1	28.6	-
3D Large Multi-modal Models											
3D-LLM(<i>flamingo</i>) (Hong et al., 2023)	-	-	-	-	-	7.2	32.3	59.2	12.2	20.4	-
3D-LLM(<i>BLIP2-flant5</i>) (Hong et al., 2023)	-	-	-	-	-	12.0	35.7	69.4	14.5	20.5	-
LL3DA (Chen et al., 2024b)	36.8	55.1	65.2	26.0	13.5	37.3	76.8	15.9	-	-	-
Chat-3Dv2 (Wang et al., 2023b)	-	-	-	-	-	14.0	-	87.6	-	-	54.7
LEO (Huang et al., 2024c)	36.9	57.8	68.4	27.7	13.2	49.2	101.4	20.0	24.5	50.0	-
Scene-LLM (Fu et al., 2024a)	-	-	-	-	-	12.0	40.0	80.0	16.6	27.2	54.2
ChatScene (Huang et al., 2024b)	36.3	58.1	77.2	28.0	14.3	41.6	87.7	18.0	21.6	54.6	-
LLaVA-3D (Zhu et al., 2024)	41.1	63.4	79.2	30.2	14.5	50.1	91.7	20.7	27.0	55.6	-
Video-3D LLM (Zheng et al., 2025)	42.4	62.3	83.8	28.9	16.2	49.0	102.1	19.8	30.1	58.6	-
SR-3D-8B	44.7	67.3	97.9	31.5	18.1	51.2	109.3	21.2	30.4	62.2	-

Table 4: Evaluation of spatial scene understanding on the Scan2Cap, ScanQA, and SQA3D benchmarks.

[†] indicates methods evaluated in a zero-shot setting. SR-3D achieves state-of-the-art results across all metrics.

We further evaluate SR-3D on the $\text{BLINK}_{\text{Depth}}$ benchmark (Fu et al., 2024b) using the region-prompts as in SpatialRGPT (Cheng et al., 2024), which tests point-level depth understanding in VLMs. $\text{BLINK}_{\text{Depth}}$ is a challenging task that requires both spatial and regional awareness. We report results in Table 2 showing that SR-3D outperforms current state-of-the-art SpatialRGPT (Cheng et al., 2024), achieving 90% accuracy. These results highlight that our approach excels in region extraction and effectively utilizes the provided 3D-aware input.

General Question Answering. We investigate two key questions: (1) Does incorporating 3D positional information affect general vision-language understanding capabilities? (2) Can it improve performance on spatial-related tasks? To answer these, we evaluate our model on general VLM benchmarks covering Spatial (xAI, 2024; Ray et al., 2025; Du et al., 2024; Fu et al., 2024b), Math (Lu et al., 2024), General Understanding (Hudson & Manning, 2019; Kembhavi et al., 2016; Yue et al., 2024; Li et al., 2024; 2023), and OCR-related (Singh et al., 2019; Masry et al., 2022; Mathew et al., 2021) tasks. As shown in Table 1, compared to the base model NVILA-Lite-8B (Liu et al., 2025b), our model maintains comparable performance in math, general understanding, and OCR-related tasks, confirming that integrating 3D positional information does not degrade overall vision-language capabilities. Additionally, our method improves performance on the spatial understanding benchmark RealWorldQA (xAI, 2024). We also provide qualitative examples from RealWorldQA in Figure 3, showcasing cases where NVILA-Lite fails while SR-3D succeeds. These results demonstrate that SR-3D enhances spatial reasoning while preserving general capabilities.

3.2 EVALUATION ON 3D BENCHMARKS

General 3D Question Answering. We report results on three classic 3D vision-language understanding tasks: 3D dense captioning on Scan2Cap (Chen et al., 2021), ScanQA (Azuma et al., 2022), and SQA3D (Ma et al., 2023) in Table 4. Our evaluation metrics include conventional scores (e.g., CIDEr, BLEU, METEOR, ROUGE) as well as exact-match (EM) accuracy. Following prior work, we assume that input scenes may lack 3D object mask annotations during inference and use off-the-shelf models to generate proposals. However, unlike previous approaches, we leverage 2D segmentation models to generate 2D object proposals instead. We compare SR-3D against strong baselines, including task-specific specialist models for each benchmark and leading methods from both 2D and 3D large multimodal models (LMMs). SR-3D significantly outperforms state-of-the-art single-task and task-specific fine-tuned models on 3D dense captioning and 3D QA tasks. Our design operates in a canonicalized 3D space, making it naturally compatible with geometric foundation models and well-suited for extending to casual in-the-wild videos. Motivated by this, we further evaluate robustness under reconstructed inputs using Cut3R (Wang et al., 2025c), comparing results against ground-truth point clouds. As shown in Table 9, SR-3D maintains performance close to ground truth, highlighting its resilience to reconstruction artifacts, while Video3dLLM (Zheng et al., 2025) exhibits a clear performance drop.

Methods	Wide/Thin	Tall/Short	Big/Small	Multi. Simple	Multi. Complex	Avg.	Width	Height	Distance	Avg.
	Qualitative					Quantitative				
Blind LLMs w/ Language Referral										
GPT-4o (OpenAI, 2024)	64.8	64.5	64.0	47.8	41.4	56.5	70.5	70.6	50.4	63.8
VLMs w/ Language Referral										
GPT-4o (OpenAI, 2024)	52.1	54.1	57.5	62.4	42.4	53.7	72.4	72.8	55.8	67.0
NVILA-Video-8B (Liu et al., 2025b)	48.8	38.9	53.7	52.1	36.0	45.9	59.2	54.3	6.6	40.0
Region VLMs										
GPT-4o (OpenAI, 2024)+SoM	46.1	39.9	39.3	52.1	43.2	44.1	52.4	47.8	40.0	46.7
NVILA-Video-8B (Liu et al., 2025b)+SoM	49.3	40.0	53.7	52.1	40.4	47.1	59.3	54.1	6.6	40.0
SR-3D-8B	76.3	83.1	81.8	80.3	76.0	79.5	87.7	87.3	74.8	83.3

Table 5: Evaluation of region-level spatial scene understanding on the SR-3D-Bench. SR-3D outperforms all baselines, highlighting the importance of strong region understanding and spatial awareness. Notably, SoM struggles with multi-frame inputs, reflecting the inherent difficulty of multi-frame visual grounding.

Figure 4: SR-3D results on region-level multi-view spatial understanding. We show extreme cases where the same region prompts are used across samples but with different target objects. SR-3D answers all queries correctly, showing strong evidence that it truly understands 3D spatial relationships. Note that the overlaid region ID tags are only for visualization in the paper to improve readability and are not used during inference.

3.3 VIDEO SPATIAL INTELLIGENCE.

Region-level Spatial QA. Currently, no video benchmarks specifically focus on region-level spatial understanding. Without explicit region information, spatial understanding can become ambiguous, especially when multiple identical objects are present or when referring to a specific area in a scene that is difficult to describe precisely using language alone. To address this, we propose SR-3D-Bench, a region-level spatial benchmark curated from ScanNet (Dai et al., 2017), ARKitScenes (Baruch et al., 2021), and Matterport (Chang et al., 2017) video scan datasets with 3D ground truth. Specifically, we utilize preprocessed oriented bounding box annotations from EmbodiedScan (Wang et al., 2024d), where each object is axis-aligned within a canonicalized geodetic coordinate system. This alignment ensures that the bounding box dimensions accurately represent the true width, length, and height. Using these bounding boxes, we construct a conversational benchmark that includes both qualitative and quantitative question-answering tasks. The qualitative QA consists of choice-based, predicate-based, and multiple-choice questions, while the quantitative QA focuses on measuring object width, height, and distance. We generate these QA pairs using template-based conversation generation and allow the VLM to generate free-form language. For qualitative QA evaluation, we use GPT-4o (OpenAI, 2024) as an evaluator and report the accuracy, while for quantitative QA, we measure the success rate by thresholding the maximum ratio between estimation and the ground truth value.

We report three types of baseline models: (1) Blind LLMs, which answer questions using only the provided text without visual input. To improve this, we replace the mask prompt with the object class for each question. This serves as a baseline to measure how much video spatial reasoning can come from general world knowledge alone. We use GPT-4o (OpenAI, 2024) as the representative, as it is

378	379	380	381	Methods	Obj. Count	Abs. Dist.	Obj. Size	Room Size	Rel. Dist.	Rel. Dir.	Route Plan	Appr. Order	Avg.
382	383	384	385	386	Quantitative		Qualitative						
Random					-	-	-	-	25.0	36.1	28.3	25.0	-
Human Level [†]					94.3	47.0	60.4	45.9	94.7	95.8	95.8	100	79.2
Proprietary Models (API)													
GPT-4o (OpenAI, 2024)					46.2	5.3	43.8	38.2	37.0	41.3	31.5	28.5	34.0
Gemini-1.5 Flash (Georgiev et al., 2024)					49.8	30.8	53.5	54.4	37.7	41.0	31.5	37.8	42.1
Gemini-1.5 Pro (Georgiev et al., 2024)					56.2	30.9	64.1	43.6	51.3	46.3	36.0	34.6	45.3
Open-source Models													
InternVL2-8B (Chen et al., 2024e)					31.3	29.0	48.9	44.2	38.0	33.4	28.9	46.4	37.5
InternVL2-40B (Chen et al., 2024e)					41.3	26.2	48.2	27.5	47.6	32.7	27.8	44.7	37.0
LongVILA-8B (Xue et al., 2025)					29.1	9.1	16.7	0.0	29.6	30.7	32.5	25.5	21.6
VILA-1.5-8B (Lin et al., 2024)					17.4	21.8	50.3	18.8	32.1	34.8	31.0	24.8	28.9
VILA-1.5-40B (Lin et al., 2024)					22.4	24.8	48.7	22.7	40.5	25.7	31.5	32.9	31.2
LongVA-7B (Zhang et al., 2024a)					38.0	16.6	38.9	22.2	33.1	43.3	25.4	15.7	29.2
LLaVA-Video-7B (Zhang et al., 2024b)					48.5	14.0	47.8	24.2	43.5	42.4	34.0	30.6	35.6
LLaVA-Video-72B (Zhang et al., 2024b)					48.9	22.8	57.4	35.3	42.4	36.7	35.0	48.6	40.9
LLaVA-OneVision-7B (Li et al., 2025)					47.7	20.2	47.4	12.3	42.5	35.2	29.4	24.4	32.4
LLaVA-OneVision-72B (Li et al., 2025)					43.5	23.9	57.6	37.5	42.5	39.9	32.5	44.6	40.2
SR-3D-8B					54.9	53.8	74.5	65.1	63.5	81.8	33.5	75.9	62.9

Table 6: Results on multi-view global spatial scene understanding evaluated on VSI-Bench (Yang et al., 2025b).

[†] indicates methods tested on the Tiny subset. SR-3D achieves strong performance, especially on the relative direction task, providing clear evidence that the model effectively leverages the 3D positional encoding.

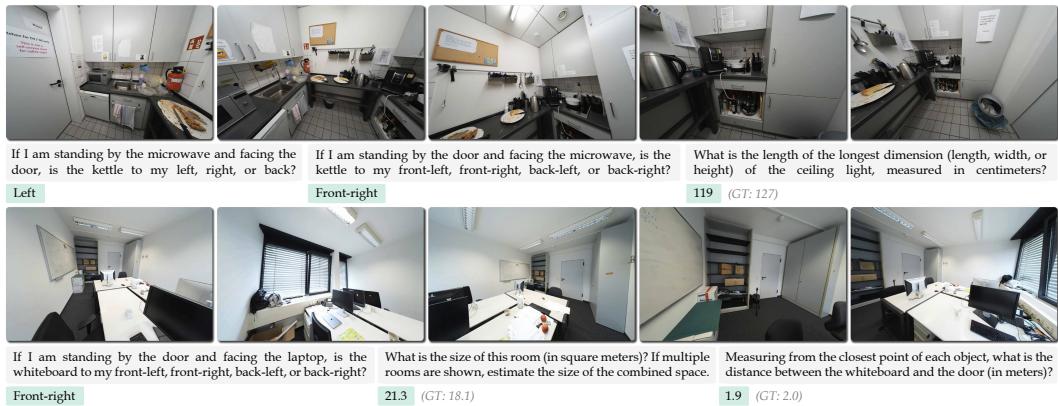


Figure 5: VSI-Bench (Yang et al., 2025b) results. SR-3D answers spatial questions correctly even without region prompts, handles fine-grained directional queries such as distinguishing front-left from front-right, and accurately answers metric-scale spatial questions like distance queries.

one of the most advanced models for general knowledge. (2) VLMs with Language Referral, which have access to visual content, allowing them to potentially perform better than blind LLMs. We use state-of-the-art vision-language models GPT-4o and NVILA-Video (Liu et al., 2025b) as baselines in this category. (3) Region-aware Video VLMs. These models process specific image regions without relying on text descriptions or object class information. We equip GPT-4o and NVILA-Video with Set of Marks (SoM) for region-based reasoning. Note that while Qiu et al. (2024) and Wang et al. (2024a) are also region-level video VLMs, they are excluded from comparisons as they cannot handle multi-object input or lack support for multi-frame prompts.

We present results in Table 5. The findings suggest that both Blind LLMs and VLMs with Language Referral perform reasonably well on quantitative tasks, such as estimating object width, due to their general world knowledge. However, region-level VLMs equipped with SoM struggle, likely because the models find it challenging to track the set of marks across frames. Overall, our method outperforms all baselines across all categories.

Global Spatial QA. We also report results on global spatial understanding using VSI-Bench (Yang et al., 2025b), a recently proposed benchmark that quantitatively evaluates the visual-spatial intelligence of VLMs based on egocentric videos. To avoid potential effects from noisy or inconsistent labels, training samples from the ScanQA series are excluded. We follow the original setting and use accuracy as the evaluation metric for qualitative questions and Mean Relative Accuracy (MRA)

432

433

434

435

436

437

438

	2D Pre-train	3D Tall/Short	3D Big/Small	3D Height	3D Distance
Zero-shot 2D Models					
Base Model		40.0 _{-31.4}	53.7 _{-26.0}	54.1 _{-14.4}	6.6 _{-61.9}
SR-3D-2D	✓	71.4	79.7	68.5	68.5
Finetuned 3D Models					
SR-3D		83.1 _{-0.0}	80.5 _{-1.3}	85.7 _{-1.6}	60.3 _{-14.5}
SR-3D	✓	83.1	81.8	87.3	74.8

Table 7: Zero-shot evaluation of our 2D-trained VLM on SR-3D-Bench, testing whether the model’s representations are truly aligned. SR-3D-2D achieves reasonable accuracy without explicit 3D supervision.

440

441

442

443

444

3D PE	PT	Scan2Cap	ScanQA	SQA3D	3D Region	3D Global
		92.9	101.3	58.6	74.0	51.1
✓	✓	94.3	108.2	59.5	78.1	52.9
✓		92.7	102.9	59.1	75.3	51.2
✓	✓	97.9	109.3	62.2	80.9	62.0

Table 8: Ablation study on the impact of incorporating 3D positional embeddings (3D PE) and single-view pre-training (PT). The results indicate that both 3D positional embeddings and single-view pre-training are crucial, and further scaling up pre-training is likely to yield additional gains.

for quantitative questions. As shown in Table 6, SR-3D outperforms all open-source models and performs comparably, if not better, than API-based models.

3.4 ANALYSIS AND ABLATION STUDY

Zero-shot Generalization. In this analysis, we ask: Can a foundational 2D VLM trained only on single-view images perform zero-shot spatial reasoning on multi-view 3D scenes? To test this, we evaluate its zero shot performance on SR-3D-Bench across the Tall/Short, Big/Small, Height, and Distance categories. We exclude width because it is defined differently in single-view and multi-view settings: in single-view images, it refers to the horizontal extent in the image plane (Cheng et al., 2024), while in multi-view scenes, it denotes the maximum object dimension. Table 7 presents the results, showing that the single-view model performs strongly. This indicates that our unified representation transfers knowledge from single-view images effectively, even though the model has not seen multi-view data, scene-level position embeddings, or ground truth spatial annotations.

3D Position Embedding and Single-view Pre-training. We conduct an ablation study to evaluate the impact of single-view pre-training and 3D positional embeddings. Four model variants are compared, with/without pre-training and with/without 3D positional embeddings. As shown in Table 8, single-view pre-training provides substantial gains by allowing the model to transfer spatial knowledge, while 3D embeddings offer limited improvements at the current scale. These findings highlight the need for larger-scale settings to fully exploit positional representations for spatial reasoning.

4 RELATED WORK

Our work builds upon recent advancements in region-level understanding (Yuan et al., 2024b; Guo et al., 2024), spatial reasoning (Chen et al., 2024a; Yang et al., 2025b), and 3D large multimodal models (Hong et al., 2023; Chen et al., 2024b). The most closely related methods are LLaVA-3D (Zhu et al., 2024) and Video-3D LLM (Zheng et al., 2025), which also integrate 3D position-aware features into 2D VLMs. However, these approaches often rely on separate processing pathways for 2D/3D data or require fine-tuning on specialized 3D video data, which risks overfitting position encodings to specific tasks. In contrast, we propose a unified architecture and a shared 3D representation space for both images and videos, fostering better alignment and improving generalization across spatial understanding tasks. A comprehensive literature review is in Appendix B.

5 CONCLUSION

We introduce SR-3D, a foundational vision language model for 3D-aware spatial reasoning. By unifying single- and multi-view data, our approach adapts strong 2D priors from pretrained VLMs into a 3D-aware representation for complex spatial tasks. Additionally, our tile-and-stitch method extracts high-resolution region features, enabling flexible region prompts. Experiments on 2D and 3D benchmarks show state-of-the-art performance, validating SR-3D’s ability to unify and enhance spatial reasoning, unlocking the potential of 3D-aware VLMs.

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

3D Source	C ↑	B-1 ↑	B-4 ↑	M ↑	R ↑	EM ↑
Video-3D LLM	GT	102.1	47.1	16.2	19.8	49.0
Video-3D LLM	Cut3R	100.7	46.6	15.8	19.6	48.6
SR-3D	GT	109.3	50.9	18.1	21.2	51.2
SR-3D	Cut3R	109.3	50.9	18.1	21.2	51.2

Table 9: ScanQA results on ground-truth and Cut3R-reconstructed point clouds, compared with Video-3D LLM (Zheng et al., 2025). SR-3D exhibits a smaller performance drop than the baseline when shifting from ground-truth to reconstructed inputs.

486 ETHICS STATEMENT

487
 488 SR-3D is developed as a general-purpose visual assistant, similar to other vision language mod-
 489 els (OpenAI, 2024; xAI, 2024; Georgiev et al., 2024). While it offers potential benefits for tasks
 490 in robotics, AR/VR, and other domains, it also shares common concerns associated with large lan-
 491 guage and multimodal models. These include the risk of output hallucinations, inherited biases from
 492 pretrained models, and the environmental impact of scaling to larger architectures. Evaluating spa-
 493 tial reasoning performance remains challenging (Cheng et al., 2024), and further research is needed
 494 to ensure robustness and reliability, particularly in safety-critical domains such as robotics. In po-
 495 tential applications to VR/AR smart glasses, future work should also address privacy and security
 496 concerns. Our work serves as a research prototype, and we do not claim deployment readiness. No
 497 human subjects were involved in this study, and no personally identifiable information was collected.
 498 The supplementary demonstration video on the website uses publicly available YouTube footage and
 499 is provided solely for academic research purposes, not for commercial use.

500 REPRODUCIBILITY STATEMENT

501 We have taken several measures to ensure the reproducibility of our work. SR-3D builds upon an
 502 open-sourced vision language model (Liu et al., 2025b) as the base, and all datasets used in our
 503 experiments are publicly available, with no in-house or proprietary data involved. In the main paper
 504 and appendix, we provide detailed descriptions of the data curation pipeline, model architecture, and
 505 training hyperparameters. To further support reproducibility, we will release our curated datasets,
 506 benchmark, source code, and pretrained model weights as open-sourced software.

507 REFERENCES

508 Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
 509 han Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
 510 models. *arXiv:2312.11805*, 2023. 1, 5

511 Anthropic. Claude-3-family, 2024. URL <https://www.anthropic.com/news/claude-3-family>. 5

512 Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question an-
 513 swering for spatial scene understanding. In *CVPR*, 2022. 4, 6, 19

514 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
 515 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
 516 *arXiv:2308.12966*, 2023. 21

517 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 518 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv:2502.13923*, 2025. 1

519 Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Yuri Feigin, Peter Fu, Thomas Gebauer, Daniel
 520 Kurz, Tal Dimry, Brandon Joffe, Arik Schwartz, and Elad Shulman. ARKitscenes: A diverse
 521 real-world dataset for 3d indoor scene understanding using mobile RGB-d data. In *NeurIPS*,
 522 2021. 7

523 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
 524 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
 525 Paligemma: A versatile 3b vlm for transfer. *rXiv:2407.07726*, 2024. 21

526 Daigang Cai, Lichen Zhao, Jing Zhang, Lu Sheng, and Dong Xu. 3djcg: A unified framework for
 527 joint dense captioning and visual grounding on 3d point clouds. In *CVPR*, 2022. 19

528 Wenzhao Cai, Iaroslav Ponomarenko, Jianhao Yuan, Xiaoqi Li, Wankou Yang, Hao Dong, and
 529 Bo Zhao. Spatialbot: Precise spatial understanding with vision language models. In *ICRA*, 2025.
 530 18

531 Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
 532 Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. In *arXiv:2403.17297*, 2024. 5

540 Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
 541 Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
 542 environments. *arXiv:1709.06158*, 2017. 7

543

544 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 545 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *CVPR*,
 546 2024a. 9, 18, 21

547 Chi Chen, Ruoyu Qin, Fuwen Luo, Xiaoyue Mi, Peng Li, Maosong Sun, and Yang Liu. Position-
 548 enhanced visual instruction tuning for multimodal large language models. *arXiv:2308.13437*,
 549 2023a. 5

550

551 Dave Zhenyu Chen, Qirui Wu, Matthias Nießner, and Angel X Chang. D3net: A unified speaker-
 552 listener architecture for 3d dense captioning and visual grounding. In *European Conference on*
 553 *Computer Vision*, 2022. 19

554 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Kr-
 555 ishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large lan-
 556 guage model as a unified interface for vision-language multi-task learning. *arXiv:2310.09478*,
 557 2023b. 18

558

559 Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
 560 multimodal llm's referential dialogue magic. *arXiv:2306.15195*, 2023c. 5, 18

561

562 Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan,
 563 and Tao Chen. Ll3da: Visual interactive instruction tuning for omni-3d understanding reasoning
 564 and planning. In *CVPR*, 2024b. 2, 6, 9, 18, 19

565

566 Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Runsen Xu, Ruiyuan Lyu, Dahua Lin, and
 567 Jiangmiao Pang. Grounded 3d-llm with referent tokens. *arXiv:2405.10370*, 2024c. 19

568

569 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
 570 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
 571 commercial multimodal models with open-source suites. *arXiv:2404.16821*, 2024d. 2

572

573 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 574 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 575 for generic visual-linguistic tasks. In *CVPR*, 2024e. 8

576

577 Zhenyu Chen, Ali Gholami, Matthias Nießner, and Angel X Chang. Scan2cap: Context-aware dense
 578 captioning in rgb-d scans. In *CVPR*, 2021. 4, 6, 19

579

580 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 581 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. In *NeurIPS*,
 582 2024. 2, 4, 5, 6, 9, 10, 21

583

584 An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian Gongye, Xueyan Zou, Jan Kautz, Erdem
 585 Biyik, Hongxu Yin, Sifei Liu, and Xiaolong Wang. Navila: Legged robot vision-language-action
 586 model for navigation. *RSS*, 2025. 6

587

588 XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. <https://github.com/InternLM/xtuner>, 2023. 5

589

590 Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
 591 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *CVPR*, 2017. 7

592

593 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
 594 Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-
 595 language models with instruction tuning. In *NeurIPS*, 2023. 5

596

597 Mengfei Du, Binhao Wu, Zejun Li, Xuanjing Huang, and Zhongyu Wei. Embsspatial-bench: Bench-
 598 marking spatial understanding for embodied tasks with large vision-language models. *arXiv*
 599 *preprint arXiv:2406.05756*, 2024. 6

594 Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Meishan Zhang, Mong-Li Lee, and Wynne Hsu.
 595 Video-of-thought: Step-by-step video reasoning from perception to cognition. In *ICML*, 2024. 18
 596

597 Rao Fu, Jingyu Liu, Xilun Chen, Yixin Nie, and Wenhan Xiong. Scene-llm: Extending language
 598 model for 3d visual understanding and reasoning. *arXiv preprint*, 2024a. 6, 18, 19

599 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
 600 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
 601 not perceive. In *ECCV*, 2024b. 6

602

603 Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
 604 Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding
 605 across millions of tokens of context. *arXiv:2403.05530*, 2024. 8, 10

606

607 Qiushan Guo, Shalini De Mello, Hongxu Yin, Wonmin Byeon, Ka Chun Cheung, Yizhou Yu, Ping
 608 Luo, and Sifei Liu. Regionopt: Towards region understanding vision language model. In *CVPR*,
 609 2024. 2, 4, 5, 9, 18

610

611 Miran Heo, Min-Hung Chen, De-An Huang, Sifei Liu, Subhashree Radhakrishnan, Seon Joo Kim,
 612 Yu-Chiang Frank Wang, and Ryo Hachiuma. Omni-rgpt: Unifying image and video region-level
 613 understanding via token marks. In *CVPR*, 2025. 18

614

615 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 616 Gan. 3d-llm: Injecting the 3d world into large language models. In *NeurIPS*, 2023. 1, 6, 9, 18,
 617 19

618

619 De-An Huang, Shijia Liao, Subhashree Radhakrishnan, Hongxu Yin, Pavlo Molchanov, Zhiding Yu,
 620 and Jan Kautz. Lita: Language instructed temporal-localization assistant. In *ECCV*, 2024a. 1

621

622 Haifeng Huang, Yilun Chen, Zehan Wang, Rongjie Huang, Runsen Xu, Tai Wang, Luping Liu, Xize
 623 Cheng, Yang Zhao, Jiangmiao Pang, et al. Chat-scene: Bridging 3d scene and large language
 624 models with object identifiers. In *NeurIPS*, 2024b. 2, 6, 19

625

626 Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puaho Li, Yan Wang, Qing Li,
 627 Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In
 628 *ICML*, 2024c. 1, 2, 6, 18, 19

629

630 Ting Huang, Zeyu Zhang, and Hao Tang. 3d-r1: Enhancing reasoning in 3d vlms for unified scene
 631 understanding. *arXiv:2507.23478*, 2025. 18

632

633 Drew A Hudson and Christopher D Manning. GQA: A New Dataset for Real-World Visual Reasoning
 634 and Compositional Question Answering. In *CVPR*, 2019. 6

635

636 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 637 Farhadi. A Diagram is Worth a Dozen Images. In *ECCV*, 2016. 6

638

639 Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r.
 640 In *ECCV*, 2024. 2, 5, 18

641

642 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 643 Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. LLaVA-onevision: Easy visual task transfer.
 644 *TMLR*, 2025. 8

645

646 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. SEED-Bench: Bench-
 647 marking Multimodal LLMs with Generative Comprehension. In *CVPR*, 2024. 6

648

649 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 650 object hallucination in large vision-language models. In *EMNLP*, 2023. 6

651

652 Yuan-Hong Liao, Rafid Mahmood, Sanja Fidler, and David Acuna. Reasoning paths with reference
 653 objects elicit quantitative spatial reasoning in large vision-language models. In *EMNLP*, 2024. 18

654

655 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
 656 pre-training for visual language models. In *CVPR*, 2024. 8

648 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 649 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014. 5
 650

651 Xiongkun Linghu, Jiangyong Huang, Xuesong Niu, Xiaojian Shawn Ma, Baoxiong Jia, and Siyuan
 652 Huang. Multi-modal situated reasoning in 3d scenes. In *NeurIPS*, 2024. 18

653 Haotian Liu, Chunyuan Li, Qingsong Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 654 2023. 1, 5

655 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 656 tuning. In *CVPR*, 2024a. 5

657 Yuecheng Liu, Dafeng Chi, Shiguang Wu, Zhanhuang Zhang, Yaochen Hu, Lingfeng Zhang,
 658 Yingxue Zhang, Shuang Wu, Tongtong Cao, Guowei Huang, et al. Spatialcot: Advancing spa-
 659 tial reasoning through coordinate alignment and chain-of-thought for embodied task planning.
 660 *arXiv:2501.10074*, 2025a. 18

661

662 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 663 Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. In
 664 *CVPR*, 2025b. 1, 2, 4, 6, 7, 8, 10

665

666 Zuyan Liu, Yuhao Dong, Ziwei Liu, Winston Hu, Jiwen Lu, and Yongming Rao. Oryx mllm: On-
 667 demand spatial-temporal understanding at arbitrary resolution. *arXiv:2409.12961*, 2024b. 6, 19

668

669 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 670 Wei Chang, Michel Galley, and Jianfeng Gao. MathVista: Evaluating Mathematical Reasoning
 671 of Foundation Models in Visual Contexts. In *ICLR*, 2024. 6

672

673 Tengchao Lv, Yupan Huang, Jingye Chen, Lei Cui, Shuming Ma, Yaoyao Chang, Shaohan Huang,
 674 Wenhui Wang, Li Dong, Weiyao Luo, et al. Kosmos-2.5: A multimodal literate model.
 675 *arXiv:2309.11419*, 2023. 1

676

677 Chenyang Ma, Kai Lu, Ta-Ying Cheng, Niki Trigoni, and Andrew Markham. Spatialpin: Enhancing
 678 spatial reasoning capabilities of vision-language models through prompting and interacting 3d
 priors. In *NeurIPS*, 2024a. 18

679

680 Wufei Ma, Haoyu Chen, Guofeng Zhang, Celso M de Melo, Alan Yuille, and Jieneng Chen. 3dsr-
 681 bench: A comprehensive 3d spatial reasoning benchmark. *arXiv:2412.07825*, 2024b. 18

682

683 Xiaoqian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
 Sqa3d: Situated question answering in 3d scenes. In *ICLR*, 2023. 4, 6, 19

684

685 Yunze Man, Liang-Yan Gui, and Yu-Xiong Wang. Situational awareness matters in 3d vision lan-
 686 guage reasoning. In *CVPR*, 2024. 18

687

688 Damiano Marsili, Rohun Agrawal, Yisong Yue, and Georgia Gkioxari. Visual agentic ai for spatial
 689 reasoning with a dynamic api. *arXiv:2502.06787*, 2025. 18

690

691 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A Bench-
 692 mark for Question Answering about Charts with Visual and Logical Reasoning. In *ACL*, 2022.
 6

693

694 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. DocVQA: A Dataset for VQA on Docu-
 695 ment Images. In *WACV*, 2021. 6

696

697 OpenAI. Gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>. 1, 5, 7, 8,
 10

698

699 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei.
 700 Kosmos-2: Grounding multimodal large language models to the world. In *ICLR*, 2024. 18

701

Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? generating
 customized prompts for zero-shot image classification. In *ICCV*, 2023. 1

702 Jihao Qiu, Yuan Zhang, Xi Tang, Lingxi Xie, Tianren Ma, Pengyu Yan, David Doermann, Qixiang
 703 Ye, and Yunjie Tian. Artemis: Towards referential understanding in complex videos. In *NeurIPS*,
 704 2024. 8

705 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 706 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 707 models from natural language supervision. In *ICML*, 2021. 5

708 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
 709 Cholakkal, Rao M Anwer, Erix Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel
 710 grounding large multimodal model. In *CVPR*, 2024. 2, 18

711 Arijit Ray, Jiafei Duan, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani, Aniruddha
 712 Kembhavi, Bryan A Plummer, Ranjay Krishna, Kuo-Hao Zeng, et al. Sat: Spatial aptitude training
 713 for multimodal language models. In *COLM*, 2025. 6

714 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 715 and Marcus Rohrbach. Towards vqa models that can read. In *CVPR*, 2019. 6

716 Chan Hee Song, Valts Blukis, Jonathan Tremblay, Stephen Tyree, Yu Su, and Stan Birchfield. Ro-
 717 bospatial: Teaching spatial understanding to 2d and 3d vision-language models for robotics.
 718 *arXiv:2411.16537*, 2024. 18

719 Yihong Tang, Ao Qu, Zhaokai Wang, Dingyi Zhuang, Zhaofeng Wu, Wei Ma, Shenhao Wang,
 720 Yunhan Zheng, Zhan Zhao, and Jinhua Zhao. Sparkle: Mastering basic spatial capabilities in
 721 vision language models elicits generalization to composite spatial reasoning. *arXiv:2410.16162*,
 722 2024. 18

723 Han Wang, Yongjie Ye, Yanjie Wang, Yuxiang Nie, and Can Huang. Elysium: Exploring object-
 724 level perception in videos via mllm. In *ECCV*, 2024a. 8, 18

725 Haochen Wang, Yucheng Zhao, Tiancai Wang, Haoqiang Fan, Xiangyu Zhang, and Zhaoxiang
 726 Zhang. Ross3d: Reconstructive visual instruction tuning with 3d-awareness. In *ICCV*, 2025a.
 727 18

728 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 729 Novotny. Vggt: Visual geometry grounded transformer. In *CVPR*, 2025b. 18

730 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 731 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 732 world at any resolution. *arXiv:2409.12191*, 2024b. 1

733 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Con-
 734 tinuous 3d perception model with persistent state. In *CVPR*, 2025c. 2, 5, 6, 18

735 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Reaud. Dust3r: Ge-
 736 ometric 3d vision made easy. In *CVPR*, 2024c. 2

737 Tai Wang, Xiaohan Mao, Chenming Zhu, Runsen Xu, Ruiyuan Lyu, Peisen Li, Xiao Chen, Wenwei
 738 Zhang, Kai Chen, Tianfan Xue, et al. Embodiedscan: A holistic multi-modal 3d perception suite
 739 towards embodied ai. In *CVPR*, 2024d. 5, 7, 21

740 Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
 741 Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. In *NeurIPS*,
 742 2024e. 18

743 Weiyun Wang, Yiming Ren, Haowen Luo, Tiantong Li, Chenxiang Yan, Zhe Chen, Wenhui Wang,
 744 Qingyun Li, Lewei Lu, Xizhou Zhu, et al. The all-seeing project v2: Towards general relation
 745 comprehension of the open world. In *ECCV*, 2024f. 18

746 Weiyun Wang, Min Shi, Qingyun Li, Wenhui Wang, Zhenhang Huang, Linjie Xing, Zhe Chen, Hao
 747 Li, Xizhou Zhu, Zhiguo Cao, et al. The all-seeing project: Towards panoptic visual recognition
 748 and understanding of the open world. In *ICLR*, 2024g. 5

756 Weiyun Wang, Min Shi, Qingyun Li, Wenhui Wang, Zhenhang Huang, Linjie Xing, Zhe Chen, Hao
 757 Li, Xizhou Zhu, Zhiguo Cao, et al. The all-seeing project: Towards panoptic visual recognition
 758 and understanding of the open world. In *ICLR*, 2024h. 18

759

760 Wenhui Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
 761 Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
 762 vision-centric tasks. *NeurIPS*, 2023a. 18

763 Yifan Wang, Jianjun Zhou, Haoyi Zhu, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Jiang-
 764 miao Pang, Chunhua Shen, and Tong He. π^3 : Scalable permutation-equivariant visual geometry
 765 learning. *arXiv preprint arXiv:2507.13347*, 2025d. 18

766 Zehan Wang, Haifeng Huang, Yang Zhao, Ziang Zhang, and Zhou Zhao. Chat-3d: Data-efficiently
 767 tuning large language model for universal dialogue of 3d scenes. *arXiv:2308.08769*, 2023b. 6,
 768 18, 19

769

770 Diankun Wu, Fangfu Liu, Yi-Hsin Hung, and Yueqi Duan. Spatial-mllm: Boosting mllm capabilities
 771 in visual-based spatial intelligence. *arXiv:2505.23747*, 2025. 18

772 xAI. Grok-1.5, 2024. 4, 6, 10

773

774 Mingjie Xu, Mengyang Wu, Yuzhi Zhao, Jason Chun Lok Li, and Weifeng Ou. Llava-spacesgg:
 775 Visual instruct tuning for open-vocabulary scene graph generation with enhanced spatial relations.
 776 In *WACV*, 2025. 18

777 Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
 778 Empowering large language models to understand point clouds. In *ECCV*, 2024. 2

779

780 Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 781 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
 782 long videos. In *ICLR*, 2025. 8

783 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
 784 prompting unleashes extraordinary visual grounding in gpt-4v. *arXiv:2310.11441*, 2023. 18

785

786 Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu,
 787 Mu Cai, Seonghyeon Ye, Joel Jang, et al. Magma: A foundation model for multimodal ai agents.
 788 In *CVPR*, 2025a. 18

789

790 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking
 791 in space: How multimodal large language models see, remember, and recall spaces. In *CVPR*,
 792 2025b. 8, 9, 18, 20

793

794 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 Zhao. Depth anything v2. In *NeurIPS*, 2024. 2, 3

795 Hanrong Ye, De-An Huang, Yao Lu, Zhiding Yu, Wei Ping, Andrew Tao, Jan Kautz, Song Han, Dan
 796 Xu, Pavlo Molchanov, et al. X-vila: Cross-modality alignment for large language model. *arXiv
 797 preprint arXiv:2405.19335*, 2024. 18

798

799 Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
 800 Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. *arXiv:2403.04652*,
 801 2024. 5

802

803 En Yu, Liang Zhao, Yana Wei, Jinrong Yang, Dongming Wu, Lingyu Kong, Haoran Wei, Tiancai
 804 Wang, Zheng Ge, Xiangyu Zhang, et al. Merlin: Empowering multimodal llms with foresight
 805 minds. In *ECCV*, 2024. 18

806

807 Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. Deep modular co-attention networks for
 808 visual question answering. In *CVPR*, 2019. 6

809

810 Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
 811 Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
 812 prediction for robotics. In *CoRL*, 2024a. 18

810 Yuqian Yuan, Wentong Li, Jian Liu, Dongqi Tang, Xinjie Luo, Chi Qin, Lei Zhang, and Jianke Zhu.
 811 Osprey: Pixel understanding with visual instruction tuning. In *CVPR*, 2024b. 2, 9, 18
 812

813 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
 814 Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal
 815 understanding benchmark. *arXiv:2409.02813*, 2024. 6

816 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 817 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 818 *arXiv:2406.16852*, 2024a. 8

819 Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Kai Chen,
 820 and Ping Luo. Gpt4roi: Instruction tuning large language model on region-of-interest.
 821 *arXiv:2307.03601*, 2023. 5, 18

823 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
 824 Chunyuan Li. Llava-next: A strong zero-shot video understanding model, 2024b. 5, 8

825 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 826 instruction tuning with synthetic data. *arXiv:2410.02713*, 2024c. 6, 19

828 Yuzhong Zhao, Feng Liu, Yue Liu, Mingxiang Liao, Chen Gong, Qixiang Ye, and Fang Wan. Dyn-
 829 refer: Delving into region-level multi-modality tasks via dynamic resolution. In *CVPR*, 2025. 5,
 830 18

831 Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
 832 model for embodied navigation. In *CVPR*, 2024. 6, 19

834 Duo Zheng, Shijia Huang, and Liwei Wang. Video-3d llm: Learning position-aware video repre-
 835 sentation for 3d scene understanding. In *CVPR*, 2025. 2, 6, 9, 18, 19

836 Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
 837 Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image
 838 pretraining. In *CVPR*, 2022. 5

840 Qiang Zhou, Chaohui Yu, Shaofeng Zhang, Sitong Wu, Zhibing Wang, and Fan Wang. Region-
 841 blip: A unified multi-modal pre-training framework for holistic and regional comprehension.
 842 *arXiv:2308.02299*, 2023. 18

843 Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang, and Xihui Liu. Llava-3d: A simple yet
 844 effective pathway to empowering lmms with 3d-awareness. *arXiv:2409.18125*, 2024. 2, 5, 6, 9,
 845 18, 19

847 Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan Huang, and Qing Li. 3d-vista: Pre-
 848 trained transformer for 3d vision and text alignment. In *ICCV*, 2023. 6, 19

849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864	APPENDIX: TABLE OF CONTENTS	
865		
866		
867	A Applications	18
868		
869	B Comprehensive Literature Review	18
870		
871	C More Quantitative Results on 3D General Benchmarks	19
872		
873	D More Qualitative Results on VSI-Bench	19
874		
875	E More Ablation Study	20
876		
879	F Statistics of SR-3D-Bench	21
880		
881	G Implementation Details of SR-3D	21
882		
883	H Limitations	22
884		
885	I Use of LLM	22
886		
887		
888		
889		
890		
891		
892		
893		
894		
895		
896		
897		
898		
899		
900		
901		
902		
903		
904		
905		
906		
907		
908		
909		
910		
911		
912		
913		
914		
915		
916		
917		

918

A APPLICATIONS

919
 920 Our method is flexible in two key ways. First, since SR-3D is trained in a normalized 3D space,
 921 it naturally integrates with existing 3D foundation models (Wang et al., 2025c; Leroy et al., 2024;
 922 Wang et al., 2025d; b) for pointmap estimation. This design allows the input to extend beyond 3D
 923 scans, and SR-3D can also process in the wild videos such as YouTube footage. Second, SR-3D
 924 removes the need for costly 3D annotations or dense per-frame labeling. Instead, users can provide
 925 lightweight region inputs by drawing on a single frame, which the model then propagates across the
 926 video for spatial reasoning.

927 Combining these two aspects, SR-3D demonstrates robust spatial understanding from unconstrained
 928 video inputs without reliance on 3D scans or exhaustive annotations (Figure 1). These flexibilities
 929 open the door to a wide range of real-world applications, such as assisting robots in unstructured
 930 environments, analyzing large video collections, and supporting interactive spatial reasoning tasks.

931

B COMPREHENSIVE LITERATURE REVIEW

932 **Region-level Vision-Language Models.** Region-level VLMs enhance fine-grained visual under-
 933 standing by focusing on specific regions in images and videos. Early methods (Peng et al., 2024;
 934 Chen et al., 2023c; b; Wang et al., 2024e) represent regions as text using bounding box coordinates,
 935 making integration easy but relying on the language decoder for spatial reasoning. Others use visual
 936 markers like SoM (Yang et al., 2023), which overlay numbers and masks but alter image appearance
 937 and require rule-based placement. Another approach maps region features into LLM tokens using
 938 RoI-aligned features (Wang et al., 2024h; f; 2023a; Zhou et al., 2023; Zhang et al., 2023; Rasheed
 939 et al., 2024; Zhao et al., 2025), with RegionGPT (Guo et al., 2024) and Osprey (Yuan et al., 2024b)
 940 refining this by pooling pixel-level mask features for flexible region shapes. However, they struggle
 941 with resolution and aspect ratio constraints. In the video domain, various representations (Wang
 942 et al., 2024a; Yu et al., 2024; Fei et al., 2024; Ye et al., 2024; Heo et al., 2025) have been explored,
 943 but they mainly focus on tracking rather than multi-view spatial reasoning.

944 **Spatial Reasoning in Vision-Language Models.** Vision-language models have a strong visual un-
 945 derstanding because they integrate the reasoning abilities of LLMs with powerful vision foundation
 946 models. Recently, there has been growing interest in equipping VLMs with spatial reasoning capa-
 947 bilities (Chen et al., 2024a; Ma et al., 2024a; Cai et al., 2025; Yuan et al., 2024a; Ma et al., 2024b;
 948 Tang et al., 2024; Song et al., 2024; Xu et al., 2025; Marsili et al., 2025; Liu et al., 2025a; Yang
 949 et al., 2025a; Liao et al., 2024). While most previous work has focused on spatial understanding
 950 from 2D images, multi-view spatial reasoning remains less explored. Recently, VSI-Bench (Yang
 951 et al., 2025b) was introduced as a testbed for evaluating models’ 3D video-based spatial understand-
 952 ing. Our work extends this direction by proposing a unified 3D-aware architecture and representation
 953 that seamlessly supports both images and videos.

954 **3D Large Multimodal Models.** Our work also relates to recent advancements in 3D LMMs (Wang
 955 et al., 2023b; Man et al., 2024; Linghu et al., 2024; Hong et al., 2023; Fu et al., 2024a; Chen et al.,
 956 2024b; Huang et al., 2024c; Wang et al., 2025a; Huang et al., 2025; Wu et al., 2025). Various 3D rep-
 957 resentations have been explored to integrate position information into LLMs. 3D-LLM (Hong et al.,
 958 2023) and Scene-LLM (Fu et al., 2024a) use multi-view images with object segmentation masks to
 959 construct pixel-aligned point representations, while LL3DA (Chen et al., 2024b) directly employs
 960 a point cloud encoder to extract 3D scene features. LEO (Huang et al., 2024c) and Chat3D (Wang
 961 et al., 2023b) segment objects from the scene’s point cloud and extract object features to represent
 962 the environment. These methods typically transform 3D scenes into voxel or point representations, but
 963 such approaches often limit the effectiveness of LLMs. Aligning these representations with LLMs
 964 requires vast amounts of data, which is challenging due to the scarcity of large-scale 3D datasets.
 965 Moreover, many of these methods rely on off-the-shelf 3d detection or segmentation models, which
 966 inherently constrain performance.

967 The most closely related works to ours are LLaVA-3D (Zhu et al., 2024) and Video-3D-LLM (Zheng
 968 et al., 2025), which also incorporate 3D position-aware features into 2D vision-language models.
 969 However, LLaVA-3D processes 3D and 2D data through separate pathways, while Video-3D-LLM
 970 fine-tunes 3D video data on a pre-trained video VLM. Both approaches risk overfitting 3D posi-
 971 tion encodings to specific 3D tasks. In contrast, our method adopts a unified architecture and 3D
 972 representation space for both image and video data, enabling better alignment and improving gener-
 973 alization across spatial understanding tasks.

972 C MORE QUANTITATIVE RESULTS ON 3D GENERAL BENCHMARKS
973974 Following prior work, we report results using additional metrics for a more comprehensive evalua-
975 tion. Table 10 presents results on Scan2Cap, Table 11 on ScanQA, and Table 12 on SQA3D. Apart
976 from our method, all other results are from Video-3D-LLM (Zheng et al., 2025).
977

	Cider \uparrow	Bleu-4 \uparrow	Meteor \uparrow	Rouge \uparrow
Scan2Cap (Chen et al., 2021)	39.1	23.3	22.0	44.5
3DJCG (Cai et al., 2022)	49.5	31.0	24.2	50.8
D3Net (Chen et al., 2022)	62.6	35.7	25.7	53.9
3D-VisTA (Zhu et al., 2023)	66.9	34.0	27.1	54.3
LL3DA (Chen et al., 2024b)	65.2	36.8	26.0	55.1
LEO (Huang et al., 2024c)	68.4	36.9	27.7	57.8
ChatScene (Huang et al., 2024b)	77.2	36.3	28.0	58.1
LLaVA-3D (Zhu et al., 2024)	79.2	41.1	30.2	63.4
Video-3D LLM (Zheng et al., 2025)	83.8	42.4	28.9	62.3
SR-3D	97.9	44.7	31.5	67.3

978 Table 10: Full results on Scan2Cap (Chen et al., 2021) validation set.
979

	EM	Bleu-1 \uparrow	Bleu-2 \uparrow	Bleu-3 \uparrow	Bleu-4 \uparrow	Rouge \uparrow	Meteor \uparrow	Cider \uparrow
ScanQA (Azuma et al., 2022)	21.1	30.2	20.4	15.1	10.1	33.3	13.1	64.9
3D-VisTA (Zhu et al., 2023)	22.4	—	—	—	10.4	35.7	13.9	69.6
Oryx-34B (Liu et al., 2024b)	—	38.0	24.6	—	—	37.3	15.0	72.3
LLaVA-Video-7B (Zhang et al., 2024c)	—	39.7	26.6	9.3	3.2	44.6	17.7	88.7
3D-LLM (Flamingo) (Hong et al., 2023)	20.4	30.3	17.8	12.0	7.2	32.3	12.2	59.2
3D-LLM (BLIP2-flant5) (Hong et al., 2023)	20.5	39.3	25.2	18.4	12.0	35.7	14.5	69.4
Chat-3D (Wang et al., 2023b)	—	29.1	—	—	6.4	28.5	11.9	53.2
NavILM (Zheng et al., 2024)	23.0	—	—	—	12.5	38.4	15.4	75.9
LL3DA (Chen et al., 2024b)	—	—	—	—	13.5	37.3	15.9	76.8
Scene-LLM (Fu et al., 2024a)	27.2	43.6	26.8	19.1	12.0	40.0	16.6	80.0
LEO (Huang et al., 2024c)	—	—	—	—	11.5	39.3	16.2	80.0
Grounded 3D-LLM (Chen et al., 2024c)	—	—	—	—	13.4	—	—	72.7
ChatScene (Huang et al., 2024b)	21.6	43.2	29.1	20.6	14.3	41.6	18.0	87.7
LLaVA-3D (Zhu et al., 2024)	27.0	—	—	—	14.5	50.1	20.7	91.7
Video-3D LLM (Zhang et al., 2024c)	30.1	47.1	31.7	22.8	16.2	49.0	19.8	102.1
SR-3D	30.4	50.9	34.3	25.1	18.1	51.2	21.1	109.3

1004 Table 11: Full results on ScanQA (Azuma et al., 2022) validation set.
1005

	What	Is	How	Can	Which	Others	Avg.
SQA3D (Ma et al., 2023)	31.6	63.8	46.0	69.5	43.9	45.3	46.6
3D-VisTA (Zhu et al., 2023)	34.8	63.3	45.4	69.8	47.2	48.1	48.5
LLaVA-Video(Zhang et al., 2024c)	42.7	56.3	47.5	55.3	50.1	47.2	48.5
Scene-LLM (Fu et al., 2024a)	40.9	69.1	45.0	70.8	47.2	52.3	54.2
LEO (Huang et al., 2024c)	—	—	—	—	—	—	50.0
ChatScene (Huang et al., 2024b)	45.4	67.0	52.0	69.5	49.9	55.0	54.6
LLaVA-3D (Zhu et al., 2024)	—	—	—	—	—	—	55.6
Video-3D LLM (Zheng et al., 2025)	51.1	72.4	55.5	69.8	51.3	56.0	58.6
SR-3D	55.0	76.4	59.8	71.6	54.7	61.1	62.2

1015 Table 12: Full results on SQA3D (Ma et al., 2023) testing set.
10161017 D MORE QUALITATIVE RESULTS ON VSI-BENCH
10181019 We report additional visual results on VSI-Bench, primarily using scenes from ScanNet⁺⁺.
1020 ScanNet⁺⁺ is not included in EmbodiedScan’s annotations, making it a distinct and challenging
1021 dataset for evaluation. Compared to ScanNet, ScanNet⁺⁺ offers higher fidelity and greater diversity
1022 in indoor environments. Moreover, its 3D annotations are only coarsely aligned to match walls and
1023 floors to the axis. Despite these challenges, as shown in Figure 6, our method demonstrates superior
1024 capabilities in determining relative direction, highlighting its robustness in real-world tasks.
1025

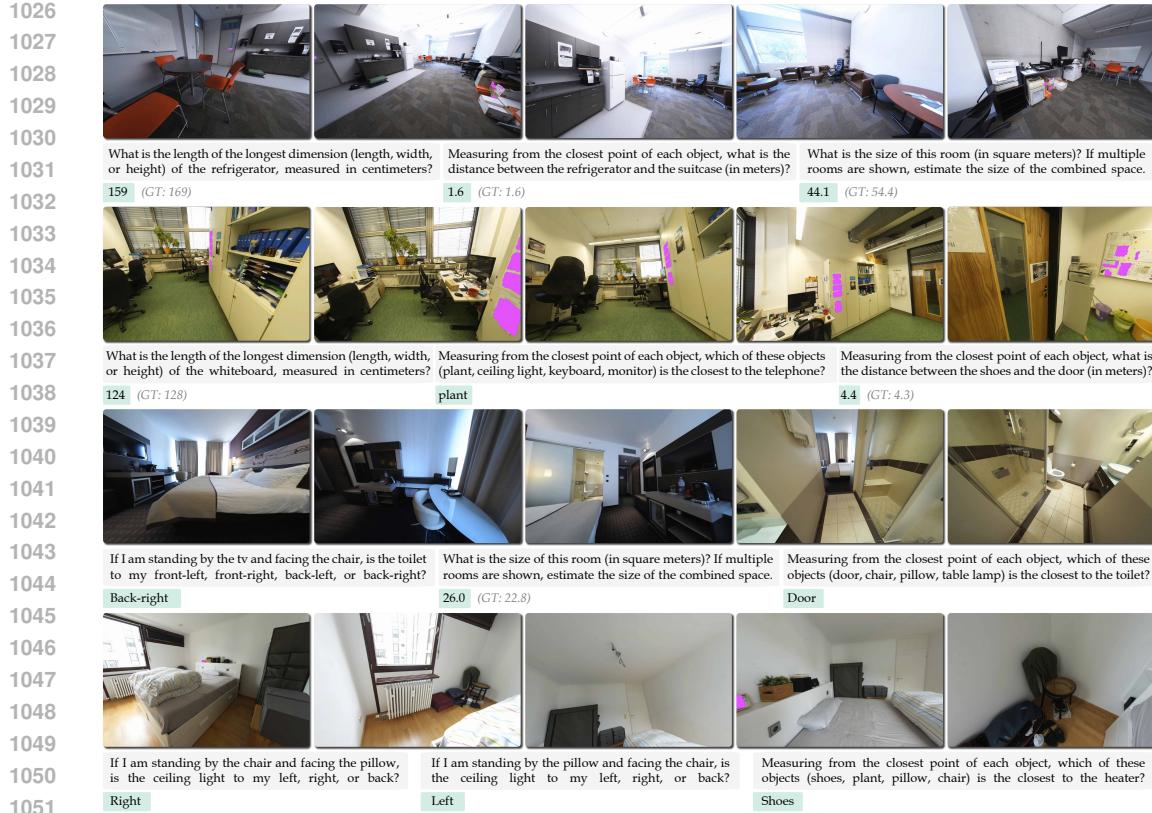


Figure 6: More results on VSI-Bench (Yang et al., 2025b). We highlight SR-3D’s outputs and include ground-truth values for numerical answers.

E MORE ABLATION STUDY

We present the complete ablation study results on 2D single-view pre-training and 3D positional encoding without pre-training, evaluating their influence on model performance. The detailed results are shown in Table 13 and Table 16, respectively.

Overall, the fully-trained model consistently outperforms baseline models on 3D general QA benchmarks, demonstrating the benefits of leveraging both 2D and 3D spatial information. However, in the 3D spatial-focused dataset, we observe a slight drop in the Wide and Big category, likely due to differences in how width is defined in 2D versus 3D, as discussed in the main paper.

Additionally, we find that removing pre-training leads to a substantial drop in performance for more complex reasoning tasks, particularly in the multi-choice complex category, where the model struggles without prior exposure to large-scale 2D pre-training. These results highlight the importance of both spatial-aware representation learning and strong pre-training strategies in enhancing 3D reasoning capabilities.

PE	PT	Scan2Cap				ScanQA				SQA3D	
		Bleu-4↑	Rouge↑	Cider↑	Meteor↑	Bleu-4↑	Rouge↑	Cider↑	Meteor↑	EM↑	EM↑
		44.2	67.3	92.9	31.1	16.0	48.9	101.3	19.8	28.8	58.6
✓		44.0	67.3	92.7	31.0	17.4	48.8	102.9	20.0	29.1	59.1
✓	✓	44.7	67.3	97.9	31.5	18.1	51.2	109.3	21.2	30.4	62.2

Table 13: Ablation study full results on Scan2Cap, ScanQA, and SQA3D benchmarks.

Category	Thin-Wide	Tall-Short	Big-Small	Multi-Simple	Multi-Complex	Width Data	Distance Data	Height Data	Total Length
Count	219	231	231	117	500	496	242	464	2500

Table 14: Statistical analysis of our SR-3D-Bench, showing the distribution of different spatial attributes.

2D Data	
Hybrid	ShareGPT4V-SFT, Molmo, The Cauldron, Cambrian, LLaVA-OneVision
Captioning	MSR-VTT, Image Paragraph Captioning, ShareGPT4V-100K
Reasoning	CLEVR, NLVR, VisualMRC
Document	DocVQA, UniChart-SFT, ChartQA
OCR	TextCaps, OCRVQA, ST-VQA, POIE, SORIE, SynthDoG-en, TextOCR-GPT4V, ArxivQA, LLaVAR
General VQA	ScienceQA, VQAv2, ViQuAE, Visual Dialog, GQA, Geo170K, LRV-Instruction, RefCOCO, GeoQA, OK-VQA, TabMVP, EstVQA
Diagram & Dialogue	DVQA, AI2D, Shikra, UniMM-Chat
Instruction	LRV-Instruction, SVIT, MMC-Instruction, MM-Instruction
Text-only	FLAN-IM, MathInstruct, Dolly, GSM8K-ScRel-SFT
Knowledge	WordART, WIT, STEM-QA
Medical	PathVQA, Slake, MedVQA
Region	RegionGPT
Spatial	SpatialRGPT
3D Data	
General	ScanQA, SQA3D, Scan2Cap
Spatial	EmbodiedScan

Table 15: Data recipe for training 2D foundational VLM and 3D fine-tuning.

PE	PT	3D Region						3D Global			
		Wide	Tall	Big	M. Sim.	M. Cpx.	Avg.	Width	Height	Dist.	Avg.
		77.6	80.5	82.6	71.7	55.8	73.6	85.8	84.4	53.7	74.4
✓		77.6	83.1	80.5	70.9	59.0	74.2	85.5	85.7	60.3	77.2
✓	✓	76.3	83.1	81.8	80.3	76.0	79.5	87.7	87.3	74.8	83.3

Table 16: Ablation study full results on 3D region and 3D global tasks.

F STATISTICS OF SR-3D-BENCH

Our benchmark follows template designs from prior works on spatial reasoning in vision-language models, including SpatialRGPT (Cheng et al., 2024) and SpatialVLM (Chen et al., 2024a). To further increase the complexity and diversity of spatial reasoning tasks, we incorporate situated annotations from the EmbodiedScan (Wang et al., 2024d) dataset, ensuring a more realistic and challenging evaluation setting. Specifically, our dataset includes a range of spatial relationships, from basic geometric comparisons such as thin-wide, tall-short, and big-small, to more complex multi-object interactions categorized as multi-simple and multi-complex. Additionally, we introduce explicit width, distance, and height annotations to facilitate fine-grained spatial understanding. With a total of 2,500 samples, our benchmark provides a comprehensive evaluation for assessing the region-level spatial reasoning capabilities of vision-language models in realistic scenarios.

G IMPLEMENTATION DETAILS OF SR-3D

We use PaliGemma (Beyer et al., 2024) as our visual backbone with an input size of 448 and a patch size of 14, paired with a Qwen-2-7B (Bai et al., 2023) LLM backbone. For training the foundational 2D VLM, we follow prior work and set the maximum tiles per image to 12. For the multi-view VLM, we use a frame size of 32 with a uniform sampling strategy to ensure a fair comparison with previous methods. For training the 2D VLM, we adopt a learning rate of 5e-5 with cosine decay and gradient clipping enabled. The same hyperparameters are used for fine-tuning the 3D VLM, except for a reduced batch size due to the increased token length. The data recipe for both training stages is detailed in Table 15. We train on a subset of 2D data, excluding spatial and region-related datasets, to preserve the original vision-language capabilities while incorporating a diverse source.

1134

H LIMITATIONS

1135
1136

Orientations. Although our method shows promising results, it remains challenging for current
1137 vision-language models to accurately perceive and interpret spatial questions related to object ori-
1138 entation. This challenge arises due to the difficulty of scaling up data. We leave this as future work.

1139
1140

Dynamic Videos. Our method is designed for multi-view static data, whereas real-world scenarios
1141 often involve dynamic environments. Incorporating positional embeddings to handle both static and
1142 dynamic inputs is non-trivial. Future work should explore methods to address this limitation.

1143
1144

OCR Tasks. In the main paper of Table 1, we report the performance of our 2D foundation model
1145 on general benchmarks. While our model maintains comparable performance to the base model,
1146 demonstrating improved spatial understanding without significant trade-offs, we observe a consis-
1147 tent slight drop in OCR-related tasks. A potential solution is to incorporate more OCR-related tasks
1148 into the training data pipeline.

1149
1150

Unified Checkpoint. While our unified architecture and representation provide a foundation for
1151 both single- and multi-view 3D-aware VLMs, we leave it to future work to investigate how to ef-
1152 fectively combine the two models. This could be achieved either by introducing an agentic flow
1153 between single- and multi-view models or by directly training a single model across both settings,
1154 which may further improve generalization and efficiency.

1155

I USE OF LLM

1156
1157

To improve the clarity and presentation of this manuscript, we used large language models for minor
1158 editorial suggestions on grammar and sentence structure. The core scientific ideas, experimental
1159 work, and original text were authored exclusively. We critically evaluated every change proposed
1160 by the LLM to guarantee that the final manuscript is a faithful and accurate representation of our
1161 research and findings.

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187