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future would provide not just the score but also the rationale, enabling the understanding of each judgment.

Abstract

In the rapidly advancing field of conditional001
image generation research, challenges such as002
limited explainability lie in effectively evalu-003
ating the performance and capabilities of vari-004
ous models. This paper introduces VIESCORE,005
a Visual Instruction-guided Explainable met-006
ric for evaluating any conditional image gen-007
eration tasks. VIESCORE leverages general008
knowledge from Multimodal Large Language009
Models (MLLMs) as the backbone and does010
not require training or fine-tuning. We evaluate011
VIESCORE on seven prominent tasks in condi-012
tional image tasks and found: (1) VIESCORE013
(GPT4-v) achieves a high Spearman correla-014
tion of 0.3 with human evaluations, while the015
human-to-human correlation is 0.45. (2) VI-016
ESCORE (with open-source MLLM) is signifi-017
cantly weaker than GPT-4v in evaluating syn-018
thetic images. (3) VIESCORE achieves a corre-019
lation on par with human ratings in the genera-020
tion tasks but struggles in editing tasks. With021
these results, we believe VIESCORE shows its022
great potential to replace human judges in eval-023
uating image synthesis tasks.024

1 Introduction 025

Diffusion models have become a focal point in AI 026

research for image synthesis. Over the past year, 027

several new models (Kumari et al., 2023; Ruiz et al., 028

2023; Li et al., 2023c; Zhang and Agrawala, 2023) 029

have been introduced to enhance control over im- 030

age generation. However, comprehensively evalu- 031

ating AI-synthesized images remains a challenging 032

and unresolved issue. While metrics like LPIPS 033

(Zhang et al., 2018), CLIP-Score (Hessel et al., 034

2021), and DreamSim (Fu et al., 2023b) were pro- 035

posed, they have certain limitations: (1) these met- 036

rics are agnostic the end task, which can fail to mea- 037

sure the desired aspects of the generated images, 038

(2) the score is opaque with limited explainability. 039

These limitations heavily restrict their effectiveness 040

in assessing conditional image generation. Some re- 041

search work (Denton et al., 2015; Isola et al., 2017; 042

Meng et al., 2021; Chen et al., 2023; Sheynin et al., 043

2023) relied on human-driven evaluation methods. 044

While humans excel at understanding and inter- 045

preting visual content, such methods in the context 046

are facing challenges such as scalability limits and 047

preference subjectivity issues. This reliance on 048
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human judgment highlights the need for more uni-049

form evaluation methods in the field. To solve the050

mentioned issues, we formulate the problem defi-051

nition with our desired properties, as presented in052

equation 1. The function f takes an instruction I ,053

a synthesized image O, and C∗ which is a set of054

conditions (e.g. style, subject, background, canny-055

edge, etc). The score function should produce the056

intermediate rationale in the form of natural lan-057

guage before generating the final score according058

to the prompt instruction I:059

fVIE(I,O,C∗) = (rationale, score) (1)060

The function f can be any Multimodal Large Lan-061

guage Model (MLLM) such as GPT-4 (OpenAI,062

2023) and LLaVA (Liu et al., 2023a), which can063

take input images to generate human-like text re-064

sponses. Unlike the automatic metrics, MLLM can065

receive human instructions and produce rationale.066

With such motivation, we introduce VIESCORE067

(Visual Instruction-guided Explainable Score), a068

framework to assess synthetic images in different069

conditional image generation tasks. VIESCORE070

has multiple advantages compared to auto-metrics071

and human evaluation. It includes:072

Task Awareness. Existing metrics were often de-073

signed to measure a certain aspect of generated im-074

ages. For example, LPIPS measures the perceptual075

similarity of a pair of images, while CLIP-Score076

measures the text alignment of one single image.077

As a consequence, these metrics cannot be adapted078

to evaluate other tasks. VIESCORE acts as a silver079

bullet to tackle all conditional image generation080

evaluation processes due to its instruction-guiding081

property. It can be carefully adjusted with different082

instruction requirements.083

Explainability. The existing metrics normally out-084

put a single float-point score, which cannot offer085

detailed insights into the ’rationale’ behind its eval-086

uations. Such a score makes it difficult to inter-087

pret the decisions from the metric output. Instead,088

VIESCORE can offer the rationale in the form of089

natural languages to help humans understand the090

reasoning process. As depicted in Figure 1, the091

rationale can significantly improve the trustworthi-092

ness of VIESCORE.093

While the ultimate goal is to derive an MLLM094

that can rate images like humans, in this paper we095

also explore how well MLLMs can assess synthetic096

images compared to human evaluation and present097

insights and challenges on state-of-the-art MLLMs098

towards human evaluators, as shown in Figure 2.099

2 Related Works 100

2.1 Conditional Image Synthesis 101

With recent advancements in Image Synthesis re- 102

search (Goodfellow et al., 2016; Ho et al., 2020; 103

Dhariwal and Nichol, 2021), researchers proposed 104

different methods and contributed a large amount 105

of controllable image synthesis models with con- 106

ditional inputs. Prevalent tasks include Text-To- 107

Image generation (Saharia et al., 2022; Rombach 108

et al., 2022; stability.ai, 2023) (known as text- 109

guided image generation), Inpainting (Avrahami 110

et al., 2022; Lugmayr et al., 2022) (known as mask- 111

guided image editing) and Text-guided image edit- 112

ing (Brooks et al., 2023; Couairon et al., 2022; Wu 113

and la Torre, 2023). 114

More recent works proposed new tasks such as 115

Subject-driven image generation and editing (Gal 116

et al., 2022; Ruiz et al., 2023; Li et al., 2023c) to 117

inject one specific subject into a synthesized image, 118

while Multi-concept image composition (Kumari 119

et al., 2023; Liu et al., 2023b) allows multiple spe- 120

cific subjects into the synthesized image. Control- 121

guided image generation (Zhang and Agrawala, 122

2023; Qin et al., 2023) allows additional conditions 123

alongside the text prompt to guide the image syn- 124

thesis. Our work uses MLLM to access all the 125

discussed tasks on synthetic image evaluation. 126

2.2 Synthetic Images Evaluation 127

Various metrics are proposed to evaluate the qual- 128

ity of AI-generated images. Traditional measures 129

like the Inception Score (IS) (Salimans et al., 2016) 130

and the Frechet Inception Distance (FID) (Heusel 131

et al., 2017) are commonly employed to measure 132

image fidelity. On the other hand, to measure 133

the alignment between the generated image and 134

the text prompt, several metrics (Kim et al., 2022; 135

Kynkäänniemi et al., 2019; Park et al., 2021; Saj- 136

jadi et al., 2018) have been introduced. The CLIP 137

score (Hessel et al., 2021) and BLIP score (Li et al., 138

2022) are the most commonly used. Recently, ap- 139

proaches such as (Cho et al., 2023) and (Lu et al., 140

2023c) aim to provide a fine-grained evaluation 141

framework, while the HEIM-benchmark (Lee et al., 142

2023) assesses text-to-image models across mul- 143

tiple aspects, such as toxicity and safety. Other 144

methods, such as projective-geometry (Sarkar et al., 145

2023), evaluate images’ physical and geometric 146

realism. However, these metrics are primarily fo- 147

cused on text-to-image generation and remain nar- 148

row in scope. General image generation tasks like 149
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subject-driven image generation and image edit-150

ing (Ruiz et al., 2023; Li et al., 2023c) still lack151

effective automatic metrics. One traditional, yet152

effective method to evaluate AI-generated image153

performance is to have human annotators assess154

visual quality. Recent works like ImagenHub (Ku155

et al., 2023), and HEIM (Lee et al., 2023) attempt156

to standardize human evaluation across various im-157

age generation tasks, though scalability remains a158

challenge. Our research aims to identify the chal-159

lenges in mimicking human perception in synthetic160

image evaluation and address these gaps by devel-161

oping auto-metrics that align with human judgment162

across common image evaluation tasks.163

2.3 Large Language Models as Evaluators164

Large language models (LLMs) are often used to165

evaluate the quality of model-generated outputs.166

Recent works used LLMs as an evaluator demon-167

strating their great ability in text generation eval-168

uation (Zheng et al., 2023; Dubois et al., 2023).169

This ability for evaluation naturally emerges (Fu170

et al., 2023a) and stems from LLM’s great reason-171

ing ability and instruction-following ability. Re-172

cent works also tried to devise a smaller but ex-173

plicitly fine-tuned LLM(Touvron et al., 2023) that174

achieves similar evaluation results on natural lan-175

guage generation (Xu et al., 2023; Jiang et al., 2023;176

Li et al., 2023b). Besides text evaluation, LLMs177

with visual features have been used as evaluators178

on images (Lu et al., 2023d; Huang et al., 2023).179

GPT-4v, regarded as the state-of-the-art LLM with180

visual features, also reported a decent ability on181

image evaluation, especially in text-image align-182

ment (Zhang et al., 2023b). However, the GPT-4v183

is not perfect for image evaluation. A comprehen-184

sive study on GPT-4v’s vision ability reported that185

GPT-4v makes mistakes on image evaluation tasks186

(Yang et al., 2023). For example, it failed to pro-187

vide proper reasonings for spotting the difference188

between two similar images.189

3 Preliminary190

3.1 Evaluation Benchmark191

ImagenHub (Ku et al., 2023) is a standardized192

benchmark for evaluating conditional image gen-193

eration models with human raters. The framework194

covered mainstream tasks, including image gener-195

ation, editing, and several conditioned tasks. In196

this section, we visit how humans assess images197

in the ImagenHub framework. Images are rated198

in two aspects: (1) Semantic Consistency (SC) as- 199

sesses how well the generated image aligns with 200

the given conditions, such as prompts and subject 201

tokens, ensuring coherence and relevance to the 202

specified criteria according to the task. (2) Per- 203

ceptual Quality (PQ) evaluates the extent to which 204

the generated image appears visually authentic and 205

conveys a sense of naturalness. 206

ImagenHub curated a human evaluation dataset 207

for each task, in which the dataset contains around 208

100 to 200 conditional inputs for generating syn- 209

thesized images. Then each image was rated by 210

three human raters according to the guidelines of 211

the defined task, and a final score in the range [0.0, 212

1.0] was reported for the average score in semantic 213

consistency (SC) and perceptual quality (PQ) re- 214

spectively, with another overall score (O) derived 215

from the geometric mean of semantic consistency 216

and perceptual quality at the instance level. Ima- 217

genHub covered 30 image synthesis models and re- 218

ported 0.4 Krippendorff’s alpha on the inter-worker 219

agreement of their human rating. 220

3.2 Multimodal Large Language Models 221

Multimodal Large Language Models (MLLMs) 222

typically denote LLMs with integrated visual capa- 223

bilities (Yin et al., 2023). This visual proficiency 224

opens up the potential to perform image analysis 225

and evaluation. However, for a comprehensive as- 226

sessment of synthetic images, multiple images may 227

be examined in one pass due to complex conditions. 228

The prompt will also be extensive to comprehen- 229

sively describe the rating process. Therefore, the 230

MLLM candidate should possess specific capabil- 231

ities: (1) The model must efficiently process and 232

interpret multiple images simultaneously. (2) The 233

model needs to comprehend and respond to lengthy 234

text prompts while matching all requirements. 235

Recent popular open-source MLLMs, includ- 236

ing LLaVA (Liu et al., 2023a), InstructBLIP (Dai 237

et al., 2023), Fuyu (Bavishi et al., 2023), and 238

CogVLM (Wang et al., 2023), can only accept a 239

single image as input along with text instruction. 240

To feed multiple images, a workaround is to merge 241

and concatenate multiple images horizontally and 242

feed as one image. More recent MLLMs such as 243

Open-Flamingo (Awadalla et al., 2023), Kosmos- 244

2 (Peng et al., 2023), and QwenVL (Bai et al., 245

2023) can accept multiple images in an interleaved 246

image-text format. For closed-source MLLM, ac- 247

cording to OpenAI’s product description, GPT-4v 248

(OpenAI, 2023) can only take up to 10 images. 249
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3.3 Existing Auto-metrics250

Here we list some prominent automatic metrics:251

Image-Text Alignment. CLIP-Score (Hessel et al.,252

2021) computes the average cosine similarities be-253

tween prompt and generated image CLIP embed-254

dings. One disadvantage of CLIP-Score is that the255

score is biased towards the training distribution256

(Kim et al., 2023). Moreover, in practical evalu-257

ation, the average CLIP-Score result of a decent258

method will always fall in the range [0.25, 0.35]259

even though a single CLIP-Score is within [0, 1].260

Such a narrow range may not offer enough differ-261

entiation to know which model is better. Moreover,262

image-text alignment is not the only considered263

aspect of semantic consistency. For example, it264

cannot examine the degree of overediting in text or265

mask-guided image editing tasks.266

Perceptual Distance. LPIPS (Zhang et al., 2018)267

measures the resemblance between two images in a268

manner that aligns with human perception. With its269

sensitivity to distortions, it is an often used metric270

in image synthesis research such as image editing271

tasks and control-guided Image Generation task272

(Meng et al., 2021; Qin et al., 2023), to measure be-273

tween the input (or ground truth) and the generated274

image. However, in the image editing context, the275

image’s naturalness (e.g. shadow, lighting, sense of276

distance) is often required in the human perspective277

of perceptual quality, which is missed in the LPIPS278

metric. It is also difficult to access a model’s perfor-279

mance by distortion level, as in the current state of280

research the models often can process high-quality281

editing without artifacts.282

Subject Fidelity. CLIP-I computes the average283

pairwise cosine similarities between CLIP embed-284

dings of generated and real images, first proposed285

in Textual-Inversion (Gal et al., 2022). However,286

CLIP-I cannot distinguish between different sub-287

jects that may have highly similar text descriptions,288

and it is less sensitive to shape consistency as it289

compares the semantic similarity between images.290

DINO metric was proposed in DreamBooth (Ruiz291

et al., 2023). The metric is computed by the mean292

cosine similarities calculated pairwise between the293

DINO embeddings of ViT-S/16 (Caron et al., 2021)294

for both synthesized and authentic images. In con-295

trast to CLIP-I, the DINO metric is sensitive to296

differences between subjects of the same class due297

to the self-supervised training objective of DINO.298

These two became popular metrics reported in re-299

Prompt: A cat [V] standing by a pot [M]

MLLM

Text−guided Image Editing

Synthetic image

Make it a slice of pizza

Multi−Concept Image Composition

Synthetic image

Text−to−Image Generation

Prompt:
A cartoon- 
styled alarm 
clock

Synthetic image

You will have to evaluate the 
effectiveness of the AI-generated 
image(s) based on the given rules.
RULES:
Two images will be provided: The first 
being the original A…

Instructions:

Humans

The score is given an 8 because the 
image demonstrates proper 
shadowing and lighting…

- Perceptual Quality: 
The pot looks different from 
the referenced one, so I will 
give it a 5.

-Perceptual Quality: 

- Semantic Consistency: 
Correlate? The cat is right next to the 

pot, just like in the prompt. 
I'm giving it a solid 10.

-Semantic Consistency: 

The cat is standing by the pot, 
hence the score of 9 for following 
the prompt…

Figure 2: We study the correlation between MLLMs
and human perspectives on rating images.

search on subject-driven image generation and edit- 300

ing tasks (Li et al., 2023c; Lu et al., 2023a). 301

4 Method 302

During the experiment, we select 29 models eval- 303

uated in ImagenHub (Ku et al., 2023) to compare 304

the correlations with human ratings. See Appendix 305

B for the details. 306

Rating instructions. In ImagenHub, each image 307

in one rating aspect is rated by picking an option 308

from List[0, 0.5, 1] by three human raters. While 309

such simple rating instruction is human-friendly 310

and offers enough granularity, the simplicity of 311

the scale can lead to less accurate representations 312

of opinions, as given the broad spectrum covered 313

by the rating aspects of semantic consistency (SC) 314

and perceptual quality (PQ). We propose a more 315

rigorous rating instruction toward comprehensive 316

evaluation for each type of task. We split the rat- 317

ing of semantic consistency (SC) and perceptual 318

quality (PQ) into multiple sub-scores, which SC 319

contains multiple scores according to the tasks. 320

For example, in the multi-concept image com- 321

position task as shown in Figure 3, two images 322

(known as concepts) and a text prompt are pro- 323

vided as input, and the desired synthesized image 324

will contain the two concept objects in the image 325
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Semantic Consistency (SC)
Input

Concept 1 Concept 2

Synthesized Image

PQ Prompt

SC Prompt

“dog sitting 
in a driving 
car”

Prompt for 
Synthesized 

Image

SC Scores: 
Alignment with the prompt: 7
Resemblance to concept 1: 9
Resemblance to concept 2: 0

SC score = min(7, 9, 0) = 0

Perceptual Quality (PQ)

PQ Scores: 
looks natural: 7
Has no artifacts: 8

PQ score = min(7, 8) = 7

MLLM

MLLM

Response: 
The naturalness score is given a 7 because the dog appears well 
integrated into the car setting with proper shadowing and lighting 
that matches the interior of the car...The artifact score is an 8
because the image is clear ...

Response: 
The dog isn't sitting as a driver would, hence the score of 7 for following 
the prompt. The dog in the second image strongly resembles…, 
warranting a score of 9 for resemblance. The car's interior and style are 
entirely different, which results in a score of 0 for resemblance…

Figure 3: Process of MLLM evaluation on one synthetic image. All input conditions, synthesized images, and rating
instructions are fed together to the MLLM in one pass. Multi-concept image composition task is used here as an
example. The final overall score of the image is derived with equation 2.

in actions according to the text prompt. Thus SC326

will be split into 3 sub-scores: (1) Is the image327

aligning with the prompt? (2) Does the object in328

the image resemble the first concept? (3) Does329

the object in the image resemble the second con-330

cept? For PQ, the naturalness level and distortion331

level will be accessed separately, resulting in 2 sub-332

scores: (i) Does the image give an unnatural feeling333

such as a wrong sense of distance, wrong shadow,334

or wrong lighting? (ii) Does the image contain a335

portion of distortion, watermark, scratches, etc.?336

Our proposed rating system enhances the evalua-337

tion of tasks by dividing SC and PQ into distinct338

sub-scores. The details of prompt templates are339

available in Appendix A.340

O = [min(α1, ..., αi)min(β1, ..., βi)]
1
2 (2)341

Our overall score is derived as shown in equation 2.342

We assume each sub-score weights the same and343

used min operation to emphasize the importance of344

meeting all criteria without exception. αi is a sub-345

score in SC and βi is a sub-score in PQ. The final346

rating scores of SC and PQ provided by MLLMs347

are on a scale of 0 to 10. The design rationale348

is that in ImagenHub’s human rating method, the349

possible results when the answers of three human350

raters, each picking an option from List[0, 0.5, 1],351

are added together and then divided by 3, will fall352

into one of the options: List[0.0, 0.17, 0.33, 0.5,353

0.67, 0.83, 1.0]. Thus we simply use a scale of 0354

to 10 and normalized in the range [0.0, 1.0] when355

comparing with human ratings. Input conditions356

Backbone M-HSC
corr M-HPQ

corr M-HO
corr

Across All 7 Tasks

Human Raters 0.4700 0.4124 0.4558

VIESCORE

GPT-4v0shot 0.3655 0.3092 0.3266
GPT-4v1shot 0.2689 0.2338 0.2604
LLaVA0shot 0.1046 0.0319 0.0925
LLaVA1shot 0.1012 0.0138 0.0695
Qwen-VL0shot 0.0679 0.0165 0.0920
BLIP20shot 0.0504 -0.0108 0.0622
InstructBLIP0shot 0.0246 0.0095 0.0005
Fuyu0shot -0.0110 -0.0172 0.0154
CogVLM0shot -0.0228 0.0514 -0.0050
OpenFlamingo0shot -0.0037 -0.0102 -0.0122

Table 1: Correlations across all tasks with different
backbone models. We highlight the highest correlation
numbers in green. See Appendix C for details.

and synthetic image are fed into the MLLM to- 357

gether during the rating process of SC, while in the 358

PQ rating process, only the synthetic image is fed 359

into the MLLM. This is to avoid the model getting 360

confused by the input conditions in the PQ rating 361

process, as to be discussed in section 5.1. 362

5 Experimental Results 363

5.1 Correlation Study 364

For all presented correlations, we applied Fisher 365

Z-transformation to estimate the average Spearman 366

correlation ∈ [−1, 1] across models and tasks. 367

5



Method M-HSC
corr M-HPQ

corr M-HO
corr

Text-guided Image Generation (5 models)

Human Raters 0.5044 0.3640 0.4652
CLIP-Score -0.0817 -0.0114 -0.0881

VIESCORE

GPT-4v0shot 0.4885 0.2379 0.4614
GPT-4v1shot 0.4531 0.1770 0.3801
LLaVA0shot 0.1809 0.0306 0.1410
LLaVA1shot 0.1789 -0.0020 0.1309

Mask-guided Image Editing (4 models)

Human Raters 0.5390 0.5030 0.4981
LPIPS -0.1012 0.0646 -0.0694

VIESCORE

GPT-4v0shot 0.4508 0.2859 0.4069
GPT-4v1shot 0.4088 0.2352 0.3810
LLaVA0shot 0.1180 -0.0531 0.0675
LLaVA1shot 0.1263 -0.0145 0.1040

Text-guided Image Editing (8 models)

Human Raters 0.4230 0.5052 0.4184
LPIPS 0.0956 0.2504 0.1142

VIESCORE

GPT-4v0shot 0.2610 0.4274 0.2456
GPT-4v1shot 0.2428 0.3402 0.2279
LLaVA0shot 0.0448 0.0583 0.0273
LLaVA1shot 0.0185 -0.0107 0.0258

Table 2: Correlations comparison of available methods.
We highlight the best method and the correlation num-
bers closest to human raters. Continue in Table 3.

Metric-to-Human (M-H) correlations. In Table 2368

and 3, we first verified the reliability of ImagenHub369

human ratings by computing the Human-to-Human370

(H-H) correlation, as the correlation goes around371

0.5, expected to be the highest value compared372

to MLLMs. Then we benchmark the MLLMs ac-373

cording to our designed method to compute the374

Metric-to-Human (M-H) correlation. We noticed375

only GPT4v and LLaVA were able to follow our376

instructions clearly while other MLLMs were not377

able to produce any meaningful results according378

to our setup. For example, BLIP-2, while able to379

output the correct format, the scores provided are380

constant zeros. Qwen-VL and InstructBLIP could381

only produce a portion of responses for seman-382

tic consistency but failed to generate any results383

for perceptual quality evaluation. From overall384

performance, we found that GPT-4v reports a sig-385

nificantly higher correlation than LLaVA, while386

LLaVA’s correlation is much less than human raters.387

It seems that LLaVA is less effective in these spe-388

Method M-HSC
corr M-HPQ

corr M-HO
corr

Subject-driven Image Generation (4 models)

Human Raters 0.4780 0.3565 0.4653
DINO 0.4160 0.1206 0.4246

CLIP-I 0.2961 0.1694 0.3058

VIESCORE

GPT-4v0shot 0.3979 0.1903 0.3738
GPT-4v1shot 0.2757 0.2261 0.2753
LLaVA0shot 0.0326 -0.0303 0.1219
LLaVA1shot 0.1334 0.0858 0.1248

Subject-driven Image Editing (3 models)

Human Raters 0.4887 0.2986 0.4747
DINO 0.3022 -0.0381 0.3005

CLIP-I 0.2834 0.1248 0.2813

VIESCORE

GPT-4v0shot 0.3274 0.2960 0.1507
GPT-4v1shot -0.0255 0.1572 -0.0139
LLaVA0shot 0.0360 -0.0073 0.0168
LLaVA1shot 0.0587 -0.0249 0.0309

Multi-concept Image Composition (3 models)

Human Raters 0.5927 0.5145 0.5919
DINO 0.0979 -0.1643 0.0958
CLIP-I 0.1512 -0.0963 0.1498

VIESCORE

GPT-4v0shot 0.3209 0.3025 0.3346
GPT-4v1shot 0.1859 0.1185 0.1918
LLaVA0shot 0.1022 0.1194 0.1070
LLaVA1shot 0.0828 0.0379 0.0293

Control-guided Image Generation (2 models)

Human Raters 0.5443 0.5279 0.5307
LPIPS 0.3699 0.4204 0.4133

VIESCORE

GPT-4v0shot 0.4360 0.4975 0.3999
GPT-4v1shot 0.3892 0.4132 0.4237

LLaVA0shot 0.2207 0.1060 0.1679
LLaVA1shot 0.1121 0.0247 0.0416

Table 3: Continued from Table 2.

cific tasks compared to GPT-4v. It is worth men- 389

tioning that GPT4v shows satisfactory performance 390

on nearly all tasks with a difference of less than 391

0.2 towards human correlations, even on par with 392

humans in text-guide image generation tasks. Both 393

GPT-4v and LLaVA demonstrated the weakest per- 394

formance in the text-guided and subject-driven im- 395

age editing tasks. This suggests that GPT-4v is a 396

capable model in some tasks although it is still not 397

on par with human performance. 398

Extra visuals resulted in a decline in perfor- 399

mance. Numerous studies (Brown et al., 2020; 400

Parnami and Lee, 2022; Liu et al., 2021) have 401
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1st image as a rating example.
PQ scores:
Image looks natural? 5
Image has no artifacts? 5
Reasoning: 
The image gives an unnatural 
feeling on hands of the girl. There 
is also minor distortion on the 
eyes of the girl.

Please evaluate the 2nd image. 
PQ scores:
Image looks natural? _
Image has no artifacts? _
Reasoning:
________________________________
________________________________
________________________________
________________________________

PQ scores:
Image looks natural? 3
Image has no artifacts? 4
Reasoning:
The girl's image has an unnatural 
blurring effect .... The birds also 
look slightly distorted. The cat’s 
the face looks slightly artificial.LLM

Prompt

Response

……. (Detailed text of rating instruction on PQ)  …….

Figure 4: MLLM making mistakes on rationale when
prompted with extra images as examples.

highlighted that In-Context Learning (ICL) allows402

LLMs to tackle novel tasks effectively without re-403

quiring the traditional fine-tuning process. We ap-404

plied In-Context Learning in our prompting method405

with the expectation of increasing the correlation406

scores, but we observed the opposite. In Table 2407

and 3, there is an observable general trend of dimin-408

ishing correlation scores. The overall correlation409

score in subject-driven image generation and edit-410

ing, and the multi-concept image composition task411

dropped significantly. Only the mask-guided image412

editing task and control-guided image generation413

task reported a subtle increase in correlation score.414

Looking into the rationale, we found that the415

MLLMs tend to get confused by the example im-416

ages, as illustrated in Figure 4. Such behavior is417

observed in both GPT4v and LLaVA rationale. An-418

other recent work (Lu et al., 2023b) also reported a419

similar issue where the model attempted to consider420

the example when answering the visual question.421

This explains the deterioration of the correlation on422

both GPT4v and LLaVA when the ICL prompting423

technique is used. This also implied the low cor-424

relation scores on image editing tasks were due to425

the limited capability of state-of-the-art MLLMs426

for multiple image understanding.427

Ablation study on PQ rating setting. As provid-428

TIE MCIC
PQ Prompting Method M-HPQ

corr M-HPQ
corr

Human (with inputs) 0.5052 0.5145

without inputs 0.4274 0.3025
with inputs 0.2256 0.0731

Table 4: Correlations of GPT4v when including inputs
in the PQ prompt in TIE (Text-guided Image Editing)
and MCIC (Multi-concept Image Composition) task.
See 6 for a detailed comparison in the Appendix.

ing multiple images could potentially decrease the 429

performance, we attempt to minimize the workload 430

of MLLM by only providing the synthetic image 431

in the PQ rating process instead of including the 432

input conditions. We report the correlation score 433

in the two different settings with GPT-4v in Table 434

4 to examine the impact. We spotted a significant 435

improvement in correlation after taking away the 436

inputs in the PQ rating process. 437

Ranking image models. Besides rating score 438

correlations, we also compared the model rank- 439

ing from the ImagenHub human evaluation leader- 440

board and the model ranking suggested by the 441

MLLMs, shown in Table 5. We computed Spear- 442

man’s footrule dSF (r, r∗) ∈ [0,+∞) and Spear- 443

man’s rho ρS(r, r∗) ∈ [−1, 1] to examine the rank- 444

ing correlation. Both GPT4v and LLaVA can align 445

to ImagenHub rankings on the multi-concept image 446

composition task and control-guided image gener- 447

ation task, and with only one model difference in 448

the subject-driven image editing task. While the 449

results vary significantly across other tasks, GPT4v 450

generally maintains a stronger alignment with the 451

ImagenHub rankings compared to LLaVA. 452

5.2 Insights and Challenges on VIESCORE 453

MLLMs are weak at capturing image nuances 454

in edited images. From Table 2, we noticed the 455

correlation scores on editing tasks are generally 456

lower than generation tasks. Upon investigation, 457

it was found that MLLMs often fail to detect mi- 458

nor changes made in image editing, such as small 459

patch edits. Consequently, MLLMs might perceive 460

two images as identical even when humans recog- 461

nize the edits as successful. This issue may stem 462

from MLLMs focusing on high-level image fea- 463

tures while overlooking finer details like color and 464

texture differences, as illustrated in Figure 5. This 465

limitation is apparent in both GPT-4v and LLaVA, 466

highlighting a challenge in synthetic image evalua- 467
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Figure 5: Representative pairs that MLLMs misunder-
stood as identical images. Images in the first row are
the inputs and in the second row are the edited.

tion accuracy on image editing tasks.468

Both MLLMs and human evaluators display a469

broader range of views regarding perceptual470

quality compared to semantic consistency. From471

Table 2 and Table 3, we can observe that the cor-472

relation scores of PQ are generally lower than the473

correlation scores of SC and Overall, even on hu-474

man raters. This suggests the human raters’ per-475

spective on evaluating perceptual quality is more476

diverse. Possible impacting factors include the477

rater’s eyesight condition, screen resolution, rating478

leniency, etc. In the context of MLLMs, we found479

that MLLMs while being able to correctly recog-480

nize the naturalness and artifacts of the image, the481

rating scores are as diverse as human rating scores482

even though we have provided a marking rubric.483

5.3 VIESCORE and Auto-metrics vs Human484

We report the human correlations in Table 2 and485

3 to compare the performance between our VI-486

ESCORE and popular auto-metrics. To ensure a487

fair comparison, we only included automatic met-488

rics that have been previously reported in related489

research for the specific tasks under consideration.490

DINO is an effective metric in subject-driven491

tasks. The DINO metric demonstrates sensitivity492

to variations within the same class of subjects, mak-493

ing it an effective metric for measuring whether494

the subject in the synthesized image aligns with495

the token subject. Our correlation result shows496

that DINO outperforms GPT-4v and CLIP-I on497

subject-driven image generation and editing tasks,498

suggesting that DINO highly aligns with human’s499

perspective on semantic consistency where subject500

fidelity is considered.501

LPIPS metric proves to be effective in control-502

guided tasks, but less effective in image edit-503

ing tasks. As discussed in section 3.3, LPIPS has504

great ability in detecting distortions. Since the505

control-guided task is a less mature research direc- 506

tion compared to image editing tasks, distortions 507

are often found in the synthetic images from the 508

control-guided task. On the other hand, current 509

image editing models can synthesize images with 510

less distortions. This explains the high correlation 511

in the control-guided task. 512

CLIP-Score has a much weaker correlation with 513

human ratings in the text-to-image task than 514

GPT-4v. We also noticed none of the synthetic 515

images achieved higher than 0.3 CLIP-Score, even 516

if they are regarded as having high semantic consis- 517

tency by human raters. This can be due to different 518

evaluation focuses, as humans tend to grab the ab- 519

stract idea from the prompt to access the image, but 520

CLIP-Score considers the whole text prompt. 521

GPT-4v outperforms other auto-metrics on Im- 522

agenHub leaderboard rankings. The correlation 523

of model rankings on ImagenHub was evaluated 524

against CLIP Score and LPIPS metrics, as shown 525

in Table 5, and compared with MLLMs in the VI- 526

ESCORE. We found that GPT-4v can achieve a 527

positive correlation with the model rankings on 528

every task. This shows the sign of capability for 529

MLLMs as evaluators for image synthesis research. 530

6 Conclusion 531

In this paper, we propose the VIESCORE for syn- 532

thetic image evaluation across seven popular image 533

synthesis tasks and comprehensively access the ef- 534

ficacy using human ratings from ImagenHub. Our 535

experiment reported that VIESCORE with GPT-4v 536

backbone is significantly more effective than other 537

open-source MLLMs in assessing synthetic images, 538

achieving a correlation of over 0.3 to human rat- 539

ings on a portion of the tasks, especially on par 540

with humans on the Text-To-Image task. However, 541

it notes a lower correlation in image editing tasks 542

for MLLMs, including GPT-4v. Comparing our 543

VIESCORE to existing auto-metrics, we found that 544

GPT-4v is more effective than auto-metrics in most 545

tasks, while DINO is more effective in subject- 546

driven image generation and editing tasks. GPT-4v 547

also shows a higher ranking correlation with the 548

ImagenHub leaderboard than other automatic met- 549

rics. This marked a milestone towards explainable 550

metrics for conditional image synthesis evaluation. 551

Our future research will focus on investigating the 552

use of distillation models to replicate human-like 553

performance in evaluating synthetic images. 554
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7 Limitations555

OpenAI Security and Privacy Policy. Due556

to ChatGPT’s security and privacy policy, AI-557

generated images that resemble a real person or558

photograph will be refused by GPT-4v for evalu-559

ation. The model will return results similar to "I560

am sorry, but I cannot process these images as they561

contain real people.". We simply drop those results562

by keyword matching.563

OpenAI GPT-4v Playground vs API. While GPT-564

4v Playground allows the user to keep a session,565

the OpenAI API does not provide such a func-566

tion. While we believe using GPT-4v playground567

might yield better performance, especially in an568

In-Context learning setting, we can only rely on569

API due to the large scale of the experiment.570

8 Potential Risks571

Multimodal models can inadvertently perpetuate or572

amplify biases present in their training data. The573

interpretation and evaluation of synthetic images574

depend heavily on context. A multimodal model575

might not fully grasp certain images’ nuances or576

cultural sensitivities, leading to inappropriate or577

offensive outputs.578

9 Artifacts579

All datasets and models are publicly accessible580

for academic use, and the official OpenAI API is581

available for academic purposes.582

10 Computational Experiments583

All open-source model experiments were con-584

ducted on an NVIDIA RTX A6000 GPU. Approx-585

imately 250 US dollars were spent on an OpenAI586

API call for GPT-4v experiments.587
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A Prompt Templates941

Prompt Engineering. We found that not all942

MLLMs can fully understand our prompt to give943

a desired output format consistently. Thus we re-944

quired MLLMs to output a JSON format, which is945

supposed to be capable for most MLLMs.946

Prompt Design. The prompt is divided into947

two segments: the ‘context prompt’ and the ‘rat-948

ing prompt’. The ultimate prompt provided to the949

model is a combination of these two segments.950

Context

You are a professional digital artist. You
will have to evaluate the effectiveness of the
AI-generated image(s) based on the given
rules. You will have to give your output in
this way (Keep your reasoning concise and
short.):
{
"score" : [...],
"reasoning" : "..."
}

PQ Rating Prompt Template (for all tasks)

RULES:
The image is an AI-generated image. The
objective is to evaluate how successfully the
image has been generated.
On a scale 0 to 10:
A score from 0 to 10 will be given based on
image naturalness.
( 0 indicates that the scene in the image does
not look natural at all or gives an unnatural
feeling such as a wrong sense of distance,
wrong shadow, or wrong lighting. 10 indi-
cates that the image looks natural. )
A second score from 0 to 10 will rate the
image artifacts.
( 0 indicates that the image contains a large
portion of distortion, watermarks, scratches,
blurred faces, unusual body parts, or sub-
jects not harmonized. 10 indicates the im-
age has no artifacts. )
Put the score in a list such that output score
= [naturalness, artifacts]
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SC Rating Prompt Template (Text-Guided Image Generation)

RULES:
The image is an AI-generated image according to the text prompt. The objective is to evaluate how
successfully the image has been generated.
On a scale 0 to 10:
A score from 0 to 10 will be given based on the success in following the prompt. (0 indicates that
the AI-generated image does not follow the prompt at all. 10 indicates the AI-generated image
follows the prompt perfectly.)
Put the score in a list such that output score = [score].
Text Prompt: <prompt>

SC Rating Prompt Template (Text/Mask-Guided Image Editing)

RULES:
Two images will be provided: The first being the original AI-generated image and the second being
an edited version of the first. The objective is to evaluate how successfully the editing instruction
has been executed in the second image. Note that sometimes the two images might look identical
due to the failure of the image edit.
On scale of 0 to 10:
A score from 0 to 10 will be given based on the success of the editing. (0 indicates that the scene
in the edited image does not follow the editing instructions at all. 10 indicates that the scene in the
edited image follows the editing instruction text perfectly.)
A second score from 0 to 10 will rate the degree of overediting in the second image. (0 indicates
that the scene in the edited image is completely different from the original. 10 indicates that the
edited image can be recognized as a minimally edited yet effective version of the original.)
Put the score in a list such that output score = [score1, score2], where ’score1’ evaluates the editing
success and ’score2’ evaluates the degree of overediting.
Editing instruction: <instruction>

SC Rating Prompt Template (Control-Guided Image Generation)

RULES:
Two images will be provided: The first being a processed image (e.g. Canny edges, openpose,
grayscale, etc.) and the second being an AI-generated image using the first image as guidance.
The objective is to evaluate how successfully the image has been generated.
On scale 0 to 10:
A score from 0 to 10 will be given based on the success in following the prompt. (0 indicates that
the second image does not follow the prompt at all. 10 indicates the second image follows the
prompt perfectly.)
A second score from 0 to 10 will rate how well the generated image is following the guidance
image. (0 indicates that the second image does not follow the guidance at all. 10 indicates that the
second image is following the guidance image.)
Put the score in a list such that output score = [score1, score2], where ’score1’ evaluates the
prompt and ’score2’ evaluates the guidance.
Text Prompt: <prompt>
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SC Rating Prompt Template (Subject-Driven Image Generation)

RULES:
Two images will be provided: The first is a token subject image and the second is an AI-generated
image using the first image as guidance. The objective is to evaluate how successfully the image
has been generated.
On a scale of 0 to 10:
A score from 0 to 10 will be given based on the success in following the prompt. (0 indicates that
the second image does not follow the prompt at all. 10 indicates the second image follows the
prompt perfectly.)
A second score from 0 to 10 will rate how well the subject in the generated image resembles the
token subject in the first image. (0 indicates that the subject in the second image does not look like
the token subject at all. 10 indicates the subject in the second image looks exactly like the token
subject.)
Put the score in a list such that output score = [score1, score2], where ’score1’ evaluates the prompt
and ’score2’ evaluates the resemblance.
Text Prompt: <prompt>

SC Rating Prompt Template (Subject-Guided Image Editing)

RULES:
Three images will be provided: The first image is an input image to be edited. The second image
is a token subject image. The third image is an AI-edited image from the first image. it should
contain a subject that looks like the subject in the second image. The objective is to evaluate how
successfully the image has been edited.
On a scale 0 to 10:
A score from 0 to 10 will rate how well the subject in the generated image resembles the token
subject in the second image. (0 indicates that the subject in the third image does not look like the
token subject at all. 10 indicates the subject in the third image looks exactly like the token subject.)
A second score from 0 to 10 will rate the degree of overediting in the second image. (0 indicates
that the scene in the edited image is completely different from the first image. 10 indicates that the
edited image can be recognized as a minimally edited yet effective version of the original.)
Put the score in a list such that output score = [score1, score2], where ’score1’ evaluates the
resemblance and ’score2’ evaluates the degree of overediting.
Subject: <subject>
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dSF (rHuman, rMethod)↓ ρS(rHuman, rMethod)↑
Task (Total number of Models) GPT4v LLaVA LPIPS CLIP GPT4v LLaVA LPIPS CLIP

Text-guided Image Generation (5) 2 6 N/A 8 0.90 0.50 N/A -0.20
Mask-guided Image Editing (4) 2 8 2 0 0.80 -1.00 0.80 1.00
Text-guided Image Editing (8) 12 16 20 16 0.67 0.48 0.17 0.48
Subject-driven Image Generation (4) 4 6 0 6 0.20 -0.40 1.00 -0.20
Subject-driven Image Editing (3) 2 2 4 4 0.50 0.50 -0.50 -1.00
Multi-concept Image Composition (3) 0 0 2 2 1.00 1.00 0.50 0.50
Control-guided Image Generation (2) 0 0 0 2 1.00 1.00 1.00 -1.00

Table 5: Ranking judgment from each metric method. dSF (r, r∗) is the Spearman’s footrule and ρS(r, r∗) is the
Spearman’s rho (correlation). LPIPS is not available for the first task because there are no reference images.

B Supplementary Information951

B.1 Human Correlation Study952

In our paper content, we only reported the Spear-953

man correlations. Here we included the Pearson954

and Kendall correlation in Table 7 for comparative955

analysis of Human-to-Human (H-H) correlation.956

B.2 Zero-shot vs One-shot on VIE957

We applied only zero-shot and one-shot experi-958

ments in this paper because not even GPT-4v can959

produce anything with few-shot setting in our con-960

text. We report full table of GPT-4v performance961

in Table 6 for zero-shot vs one-shot results.962

B.3 Autometrics vs Human Detail results963

See Table 8, 9, 10, 11 for detail statistics of CLIP-964

Score, LPIPS, DINO, and CLIP-I correlation with965

human ratings.966

B.4 ImagenHub Models used967

• Text-guided Image Generation: Stable Dif-968

fusion (SD) (Rombach et al., 2022), SDXL969

(stability.ai, 2023), DALLE-2 (Ramesh et al.,970

2022), DeepFloydIF (deep floyd.ai, 2023),971

OpenJourney (openjourney.ai, 2023).972

• Mask-guided Image Editing: SD (runwayml,973

2023), SDXL (stability.ai, 2023), GLIDE,974

BlendedDiffusion (Avrahami et al., 2022)975

• Text-guided Image Editing: MagicBrush976

(Zhang et al., 2023a), InstructPix2Pix (Brooks977

et al., 2023), Prompt-to-Prompt (Mokady978

et al., 2023), CycleDiffusion (Wu and la Torre,979

2023), SDEdit (Meng et al., 2021), Text2Live980

(Bar-Tal et al., 2022), DiffEdit (Couairon981

et al., 2022), Pix2PixZero (Parmar et al.,982

2023).983

• Subject-driven Image Generation: Dream-984

Booth (Ruiz et al., 2023), DreamBooth-Lora985

(Hu et al., 2021), BLIP-Diffusion (Li et al., 986

2023a), TextualInversion (Gal et al., 2022). 987

• Subject-driven Image Editing: PhotoSwap 988

(Gu et al., 2023), DreamEdit (Li et al., 2023c), 989

BLIP-Diffusion. 990

• Multi-concept Image Composition: CustomD- 991

iffusion (Kumari et al., 2023), DreamBooth, 992

TextualInversion. 993

• Control-guided Image Generation: Control- 994

Net (Zhang and Agrawala, 2023), UniControl 995

(Qin et al., 2023). 996

B.5 ImagenHub Human data information 997

We showed the total human rating data we used for 998

each task in Table 12. 999

16



Backbone: GPT-4v
Zero-Shot One-Shot

Image Model M-HSC
0shot M-HPQ

0shot M-HO
0shot M-HSC

1shot M-HPQ
1shot M-HO

1shot

Text-guided Image Generation

DeepFloydIF 0.5182 0.3509 0.5479 0.4272 0.2048 0.3849
Stable Diffusion XL 0.5684 0.2823 0.5301 0.5136 0.1522 0.3735
Dalle-2 0.5046 0.2192 0.4871 0.4469 0.1822 0.5364
OpenJourney 0.4835 0.1624 0.4648 0.4563 0.2730 0.3750
Stable Diffusion 2.1 0.5957 0.1981 0.4658 0.5988 0.0820 0.3311

Mask-guided Image Editing

SDXL-Inpainting 0.5461 0.2331 0.4772 0.5308 0.3460 0.5261
SD-Inpainting 0.5607 0.4253 0.544 0.3759 0.3446 0.3969
GLIDE 0.4663 0.2816 0.4499 0.4247 0.1056 0.3536
BlendedDiffusion 0.3695 0.2363 0.2563 0.4054 0.1624 0.3283

Text-guided Image Editing

MagicBrush 0.3273 0.3696 0.3395 0.3613 0.5135 0.4727
InstructPix2Pix 0.3094 0.4461 0.3363 0.4423 0.3106 0.3921
Prompt-to-prompt 0.3094 0.3696 0.3395 0.2514 0.2057 0.2068
CycleDiffusion 0.4488 0.6124 0.3927 0.3522 0.3374 0.1578
SDEdit 0.1607 0.3944 0.1570 0.1754 0.3837 0.2814
Text2Live 0.1875 0.4158 0.1964 0.2817 0.2357 0.2753
DiffEdit 0.1803 0.5957 0.0247 0.1761 0.4874 0.1281
Pix2PixZero 0.2144 0.4502 0.2193 -0.0588 0.3609 -0.0588

Subject-driven Image Generation

DreamBooth 0.4975 0.2199 0.4787 0.5409 0.1930 0.5848
BLIP-Diffusion 0.3367 0.0663 0.2845 0.1176 0.3402 0.1194
TextualInversion 0.5564 0.2398 0.4795 0.3882 0.0010 0.3035
DreamBooth-Lora 0.2938 0.2448 0.3285 0.0856 0.3860 0.1225

Subject-driven Image Editing

PhotoSwap 0.3711 0.1246 0.1598 -0.0782 0.0385 -0.1063
DreamEdit 0.3817 0.4419 0.1580 0.1384 0.3037 0.0954
BLIP-Diffusion 0.2671 0.3488 0.1379 -0.1368 0.1333 -0.0309

Multi-concept Image Composition

CustomDiffusion 0.4781 0.431 0.4263 0.5064 0.0194 0.4867
DreamBooth 0.1494 0.2367 0.232 0.0396 0.0633 0.0694
TextualInversion 0.3703 0.269 0.3857 0.0183 0.2745 0.0266

Control-guided Image Generation

ControlNet 0.4270 0.4827 0.4753 0.3561 0.4052 0.4055
UniControl 0.5797 0.4173 0.3972 0.4655 0.4737 0.4988

Table 6: Comprehensive study on the Spearman correlation between GPT4v-to-Human (GPT4v-H) ratings across
various models, in zero-shot (0shot) and one-shot (1shot) settings, across different test categories: Semantic
Consistency (SC), Perceptual Quality (PQ), and Overall (O).
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Image Model H-HSC
pear H-HPQ

pear H-HO
pear H-HSC

spea H-HPQ
spea H-HO

spea H-HSC
kend H-HPQ

kend H-HO
kend

Text-guided Image Generation

DeepFloydIF 0.5933 0.3086 0.5595 0.5635 0.3029 0.5131 0.5360 0.2878 0.4581
Stable Diffusion XL 0.5990 0.4957 0.5945 0.5807 0.4992 0.5896 0.5468 0.4719 0.5289
Dalle-2 0.5208 0.5024 0.4630 0.5019 0.4680 0.4348 0.4654 0.4459 0.3820
OpenJourney 0.5678 0.3853 0.5513 0.5321 0.3600 0.4861 0.5017 0.3442 0.4347
Stable Diffusion 2.1 0.6202 0.3227 0.5397 0.5979 0.2772 0.4962 0.5707 0.2636 0.4557

Mask-guided Image Editing

SDXL-Inpainting 0.6550 0.5929 0.6578 0.6574 0.5928 0.6556 0.6160 0.5382 0.6040
SD-Inpainting 0.6606 0.5197 0.5716 0.6590 0.5166 0.5394 0.6222 0.4728 0.5039
GLIDE 0.6253 0.5496 0.6144 0.5894 0.5530 0.5695 0.5573 0.4984 0.5357
BlendedDiffusion 0.5863 0.5873 0.5879 0.5051 0.5511 0.4224 0.4911 0.5346 0.4157

Text-guided Image Editing

MagicBrush 0.6217 0.5251 0.6288 0.6219 0.5190 0.6289 0.5740 0.4740 0.5651
InstructPix2Pix 0.6573 0.6158 0.6632 0.6600 0.5955 0.6561 0.6250 0.5502 0.6157
Prompt-to-prompt 0.5954 0.5084 0.5699 0.5880 0.5028 0.5811 0.5611 0.4537 0.5470
CycleDiffusion 0.5908 0.5848 0.6101 0.5482 0.5887 0.5891 0.5228 0.5378 0.5600
SDEdit 0.2303 0.4717 0.1674 0.2657 0.4705 0.1991 0.2618 0.4211 0.1957
Text2Live 0.3167 0.6013 0.2890 0.2675 0.5757 0.1524 0.2648 0.5440 0.1503
DiffEdit 0.2513 0.6331 0.3570 0.3286 0.6214 0.4265 0.3268 0.5924 0.4247
Pix2PixZero 0.4747 0.5763 0.5247 0.3311 0.5770 0.3327 0.3305 0.5299 0.3312

Subject-driven Image Generation

DreamBooth 0.6337 0.3988 0.5834 0.6452 0.3871 0.6208 0.6010 0.3787 0.5625
BLIP-Diffusion 0.4970 0.2663 0.4394 0.4458 0.3263 0.4390 0.4090 0.3180 0.3993
TextualInversion 0.5987 0.3219 0.5533 0.6000 0.3351 0.5686 0.5683 0.3078 0.5226
DreamBooth-Lora 0.5014 0.4571 0.4278 0.3903 0.4430 0.3878 0.3831 0.4169 0.3756

Subject-driven Image Editing

PhotoSwap 0.4685 0.3213 0.5025 0.4805 0.2961 0.4973 0.4412 0.2768 0.4368
DreamEdit 0.5684 0.2319 0.5520 0.5867 0.2245 0.5460 0.5485 0.2130 0.4892
BLIP-Diffusion 0.5411 0.4086 0.5074 0.5359 0.4033 0.5051 0.5221 0.3779 0.4857

Multi-concept Image Composition

CustomDiffusion 0.7257 0.4889 0.7215 0.7256 0.4838 0.7217 0.7101 0.4665 0.6963
DreamBooth 0.6560 0.6583 0.6575 0.6209 0.6423 0.6222 0.6068 0.6228 0.6022
TextualInversion 0.6833 0.6009 0.6799 0.6990 0.5803 0.6980 0.6935 0.5563 0.6898

Control-guided Image Generation

ControlNet 0.6166 0.5730 0.5830 0.6144 0.5682 0.5868 0.5585 0.5408 0.5429
UniControl 0.6014 0.6194 0.6131 0.6060 0.6062 0.5954 0.5577 0.5741 0.5533

Table 7: Comparative analysis of Human-to-Human (H-H) correlation ratings across various models. Metrics used
include Pearson’s (pear), Spearman’s (spea), and Kendall’s (kend) correlation coefficients, across different test
categories: Semantic Consistency (SC), Perceptual Quality (PQ), and Overall (O).
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Metric: CLIP-Score
Image Model M-HSC

corr M-HPQ
corr M-HO

corr

Text-guided Image Generation

DeepFloydIF 0.0272 0.1025 0.0332
OpenJourney -0.1628 -0.0875 -0.1907
DALLE2 -0.0946 0.1469 -0.0381
SD -0.0528 -0.0691 -0.0632
SDXL -0.1265 -0.1500 -0.1830

Table 8: CLIP-Score vs Human correlation on Text-
guided image generation task.

Metric: LPIPS
Image Model M-HSC

corr M-HPQ
corr M-HO

corr

Text-guided Image Editing

InstructPix2Pix 0.1652 0.4717 0.2045
CycleDiffusion -0.0936 0.3193 -0.0211
MagicBrush 0.2146 0.3722 0.2667
Text2Live -0.0812 0.2906 -0.0787
DiffEdit 0.0943 0.3299 0.1440
Pix2PixZero 0.1379 0.0256 0.1370
Prompt2prompt 0.1918 0.1929 0.1798
SDEdit 0.1381 0.0441 0.0857

Mask-guided Image Editing

Glide -0.1098 0.0647 -0.0662
BlendedDiffusion 0.0980 0.1371 0.0598
SDInpaint -0.2447 -0.0749 -0.2110
SDXLInpaint -0.1496 0.1318 -0.0607

Control-guided Image Generation

ControlNet 0.3447 0.3916 0.3888
UniControl 0.4319 0.5048 0.4904

Table 9: LPIPS (signs inverted) vs Human correlation
on several tasks.

Metric: DINO
Model M-HSC

corr M-HPQ
corr M-HO

corr

Multi-Concept Image Composition

TextualInversion 0.0759 -0.2746 0.0754
DreamBooth 0.1027 -0.0761 0.1054
CustomDiffusion 0.1159 -0.1466 0.1074

Subject-Driven Image Generation

DreamBoothLora 0.2335 0.0684 0.2535
BLIPDiffusion (Gen) 0.4718 0.0798 0.4751
TextualInversion 0.6508 -0.0169 0.6450
DreamBooth 0.4153 0.3535 0.4396

Subject-Driven Image Editing

BLIPDiffusion (Edit) 0.4063 -0.1081 0.4000
DreamEdit 0.1994 -0.0877 0.1878
PhotoSwap 0.3300 0.0814 0.3424

Table 10: DINO vs Human correlation on several tasks.

Metric: CLIP-I
Image Model M-HSC

corr M-HPQ
corr M-HO

corr

Multi-Concept Image Composition

TextualInversion 0.1511 -0.1847 0.1523
DreamBooth 0.0741 -0.1166 0.0758
CustomDiffusion 0.2319 0.0116 0.2246

Subject-Driven Image Generation

DreamBoothLora 0.2499 0.1801 0.2615
BLIPDiffusion (Gen) 0.2611 0.1031 0.2660
TextualInversion 0.5776 0.0362 0.5775
DreamBooth 0.1324 0.3648 0.1587

Subject-Driven Image Editing

BLIPDiffusion (Edit) 0.4202 -0.0798 0.3844
DreamEdit 0.1927 0.1535 0.1955
PhotoSwap 0.2613 0.3028 0.2874

Table 11: CLIP-I vs Human correlation on several tasks.

Data amount per model Total Human rating data

Task: Text-guided Image Generation

197 2955

Task: Mask-guided Image Editing

179 2148

Task: Text-guided Image Editing

179 4296

Task: Subject-driven Image Generation

150 1800

Task: Subject-driven Image Editing

154 1386

Task: Multi-concept Image Composition

102 918

Task: Control-guided Image Generation

150 900

Sum of 7 tasks

14403

Table 12: Number of human ratings from ImagenHub
used in this paper.
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C Backbone Performances1000

C.1 Parsing MLLM outputs1001

We tried to parse the output using Regex and mod-1002

ify the format requirement if the MLLM fail to do1003

so. If the output failed to pass our parsing rules, we1004

fill random value as output to penalize the correla-1005

tion.1006

C.2 Observations of GPT-4v.1007

GPT-4-vision-preview tends to be the best MLLM1008

in this context. It can understand every task instruc-1009

tion in VIESCORE and produce reasonable scores1010

and rationale.1011

C.3 Observations of LLaVA.1012

LLaVA-1.5-7B can also understand every task in-1013

struction in VIESCORE and produce reasonable1014

rationale. However, the scores produced tend to be1015

concentrated toward certain numbers.1016

C.4 Observations of Qwen-VL.1017

Qwen-VL-7B does not understand the meaning of1018

delimiter. However, it was able to output a JSON-1019

like dictionary following the instructions on both1020

SC and PQ. The rationale produced is often not1021

reasonable.1022

C.5 Observations of BLIP2.1023

BLIP-2 FLAN-T5-XXL often failed to produce the1024

result formats according to the instructions, espe-1025

cially in PQ. It also tend to give 0 score in SC.1026

Prompt engineering in our context does not solve1027

the issue.1028

C.6 Observations of InstructBLIP.1029

InstructBLIP-T5-XL shares same observation as1030

BLIP-2 FLAN-T5-XXL.1031

C.7 Observations of Fuyu.1032

Fuyu-8B always output 0 and failed to follow in1033

our instruction.1034

C.8 Observations of CogVLM.1035

CogVLM tends to output numbers fall off the range1036

[0, 10] and often failed to follow the required for-1037

mat. Prompt engineering in our context does not1038

solve the issue.1039

C.9 Observations of OpenFlamingo.1040

OpenFlamingo simply printing blank as the output1041

in our context.1042
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