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ABSTRACT

The problem of estimating the cardinality of queries is central to database sys-
tems. Recently, there has been growing interest in applying machine learning to
this task. However, real-world databases are dynamic: the underlying data evolves
and query patterns change over time. A key limitation of existing learning-based
approaches is their susceptibility to drift. To the best of our knowledge, no prior
method provides provable performance guarantees in fully dynamic environments.
In this paper, we design an online learner that can, by passively observing queries
and their corresponding cardinalities, maintain an effective model with strong per-
formance guarantees even under continuous distributional drift. The algorithm ap-
plies to a broad class of queries, including orthogonal range-queries and distance-
based queries commonly used in practice. Our work demonstrates that effective
cardinality estimation in a dynamic setting possible even without direct access to
the dataset.
Beyond our algorithmic results, we establish foundational results on the learnabil-
ity of distribution-based models in static and dynamic environments. Such models
are valued for their interpretability and inherent robustness to drift, making them
especially important in practice.

1 INTRODUCTION

Estimating the cardinality of a database query, i.e., the number of tuples in a dataset that satisfy
the query predicate, is a fundamental problem in databases (Lipton et al., 1990). Query optimizers
depend on accurate estimates of query cardinalities to choose good execution plans, and over the last
decade (Ding et al., 2024), there has been increasing interest on using machine learning (ML) for
this task (Wang et al., 2021). In this paper, we focus on the query-driven regime, where the learner
learns a regression model for cardinality estimation from past queries and their cardinalities (Kipf
et al., 2019; Dutt et al., 2019; Park et al., 2020; Wu et al., 2025; Hu et al., 2022).

In the real world, most databases are dynamic. Both the query distribution (which regions of the
data space are queried) and the data distribution (the state of the table itself) drift over time. When
queries move into unseen regions or when the data distribution shifts significantly, the performance
of learned cardinality estimators is known to degrade (Negi et al., 2023; Wu et al., 2025). While
there exist ML-based methods with performance guarantees under limited drift (Wu et al., 2025; Hu
et al., 2022), to the best of our knowledge, none offer guarantees in a fully dynamic environment. In
an orthogonal line of work, Zeighami & Shahabi (2024a;b) characterize when learned methods can
succeed, including under drifting conditions, but do not prescribe concrete learning algorithms.

This paper considers the setting where both query and data distributions may evolve over time. The
learner only has access to query-cardinality pairs obtained by passively observing the database. For
each new query, it produces an estimate using its current model; once the query is executed, the true
cardinality is revealed. The learner may use this information to improve its model but must also be
efficient in doing so. We note that systems for handling drift—e.g., Li et al. (2022); Negi (2024);
Wu & Ives (2024)—typically have much more information at their disposal, including direct access
to the dataset and update sequence, as well as the ability to actively generate additional queries.
In contrast, we pose the following question: Is it possible to design an online learning algorithm
that can maintain an effective and efficient cardinality estimator solely by passively observing user-
generated queries?
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Our contributions. We establish that the answer to the above question is indeed affirmative under
some natural conditions. Specifically, we make the following contributions:

1. We formalize cardinality estimation under drift as an online-learning problem, where the
learner observes a sequence of query–cardinality pairs, each drawn from an evolving dis-
tribution induced by drifting queries and data (Section 2).

2. We propose an online learning algorithm (Section 3), Dynamically Updated Support Set
(DUSS), which maintains a distribution-based model of the underlying dataset solely from
query–cardinality feedback. DUSS supports a broad class of queries, including all standard
geometric range queries (boxes, balls, halfspaces, etc.).

3. We prove that when both data and query distributions drift gradually, DUSS guarantees
small expected error on each new prediction (Section 4). Furthermore, even if the query
distribution changes arbitrarily, as long as the data distribution remains stable, DUSS en-
sures that the number of times its error exceeds a threshold is bounded. Together, these
conditions cover many practical situations.

4. Beyond DUSS, we establish foundational results on the learnability of distribution-based
models in static and dynamic environments (see Theorems 2.1 and 4.3). Such models are
widely used in database systems; their interpretability and inherent robustness to drift make
them especially valuable in practice.

5. We implement a prototype of DUSS and compare it with other methods (Section D).
Across diverse settings, DUSS fulfills its provable guarantees while consistently outper-
forming baselines in both accuracy and efficiency.

Related Work. There is extensive work on cardinality estimation in the database community; a
comprehensive review is beyond the scope of this paper. Here we briefly discuss the work most
closely related to ours; see Appendix E for a more detailed discussion. Despite extensive work
on learned cardinality estimation, techniques with provable performance guarantees are limited.
Hu et al. (2022) showed that distribution-based models are PAC-learnable with sample complexity
bounds. Wu et al. (2025) extended this to hypothesis classes defined via signed measures (Stein
& Shakarchi, 2005), obtaining the same order of sample complexity and showing robustness under
limited query drift. Both works proposed concrete learners from query–cardinality pairs: Hu et al.
(2022) designed a learner that reconstructs a distributional representation of the dataset by solving a
quadratic program, while Wu et al. (2025) showed a neural-network–based learner and proved that
the network maintains a signed measure, thereby enjoying theoretical guarantees. However, their
results do not extend to the fully dynamic setting, where both query and data distributions evolve.

The only other theoretical study of learned cardinality estimation under drift is by Zeighami &
Shahabi (2024b). They showed existential results under the framework of distribution learnability.
These results are not comparable to ours for several reasons. For example, they assume access to data
updates while our framework is purely based on observing workload queries with no direct access to
data. Moreover, Zeighami & Shahabi (2024b) did not explicitly design a learner, while we provide
a concrete algorithm with provable guarantees for a broad class of queries, including all standard
geometric queries. Complementary to these results, Zeighami & Shahabi (2024a) established lower
bounds on the model size necessary for cardinality estimation.

2 THE LEARNING MODEL

A range space Σ = (X,R) consists of a universe of objects X and a family of subsets R ⊆ 2X called
ranges. For example, if X = Rd, then R may be the set of all boxes, balls, or halfspaces in Rd. In our
context, X is the domain of a dataset, and R corresponds to families of queries, such as orthogonal
range queries (boxes), distance-based queries (balls), or linear-inequality queries (halfspaces). We
model a dataset C as a finite multiset of tuples from X. For a query range R ∈ R, its cardinality on
C is |C ∩R|, the number of tuples in the dataset contained in R.

A data distribution over Σ is a probability distribution over X. For a data distribution D, the
corresponding selectivity function with respect to Σ, denoted µD : R → [0, 1], is defined by
µD(R) = Prx∼D[x ∈ R], i.e., the probability that a random point drawn from D lies in R ∈ R. For
a dataset C, if we define the distribution DC to be 1/|C| for all points in C and 0 otherwise, then
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for any query R, |C ∩ R| = |C| · µDC
(R), so the cardinality-estimation problem is a special case

of the selectivity-estimation problem.

In this paper, we study the general problem of learning selectivity functions over range spaces in
a dynamic environment where the query and data distributions drift over time. The learner has no
access to the underlying data distribution and must rely only on observations of the form z = (R, s),
i.e., query–selectivity pairs in Z = R × [0, 1] to learn the selectivity function. For clarity, we first
present the problem in the static setting and then extend it to the dynamic setting.

2.1 LEARNING IN A STATIC SETTING

We model the static setting by assuming a fixed query distribution Q over R and a fixed data dis-
tribution D over X. This corresponds to the fact that the query patterns are stable and the dataset is
fixed. The learner receives observations of the form z = (R, s), where z is a query–selectivity pair
in Z. An observation is generated by first sampling a query R ∼ Q and then setting s = µD(R).
We call the distribution of z, induced jointly by Q and D, the state distribution (SD) W over Z.

For a hypothesis h : R→ [0, 1], define the loss1 on an observation z = (R, s) as ℓh(z) := |h(R)−s|.
The expected error of h with respect to W is errW (h) =

∫
z
ℓh(z)W (z) dz. Let H be a collection

of hypotheses and let ε ∈ (0, 1) be a tolerance parameter for acceptable error. Informally, the goal
is to design a learner such that, for any W , it can (with high probability) learn from a finite number
of observations drawn from W a hypothesis h ∈ H satisfying errW (h) ≤ infh′∈H errW (h′) + ε.
If such a learner exists for H, the class is said to be ε-learnable (see Haussler (1992) for the formal
definition). The number of observations required is called the sample complexity.

Our results. Our main contribution is to establish improved sample complexity bounds for
distribution-based hypothesis sets. Suppose X ⊆ Rd and R corresponds to geometric objects of
constant size such as boxes, balls, or halfspaces (an arbitrary convex polygon is not of constant
size). Let D be a family of probability distributions over X (e.g., histograms, mixture models, or
probabilistic graphical models). Define the hypothesis setM := MΣ,D = {µD | D ∈ D}; that
is, M is the class of selectivity functions induced by distributions in D. For example, if D is the
family of all histograms on X, thenM corresponds to the class of selectivity functions defined by
histograms. We obtain the following.

Theorem 2.1. Let Σ = (X,R) be a range space, where X ⊆ Rd and let R correspond to geometric
objects of constant size such as boxes, or balls or halfspaces. Let D be a family of probability
distribution over X and let M := MΣ,D be the correspondning family of selectivity functions.
Then,M is ε-learnable with sample complexity O(d2 ε−2(log4 ε−1)) for any ε ∈ (0, 1).

Our result improves upon the previously best-known bound of O(ε−d−2 polylog(ε−1)) (Hu et al.,
2022; Wu et al., 2025). In fact, our result holds for a more general setting as stated in Theorem C.1.

2.2 LEARNING IN A DYNAMIC SETTING

In a dynamic environment, both the query distribution and the data distribution may evolve over
time, as query patterns shift and the underlying data itself changes. To capture drift, we allow the
SD to vary with time. Formally, we assume that observations are drawn from a sequence of SD’s
W = ⟨W1,W2, . . .⟩, where the t-th observation zt = (Rt, st) is sampled from Wt. Furthermore, we
assume thatW is realizable; i.e., there exist underlying query and data distributions Qt and Dt such
that Rt ∼ Qt and st = µDt(Rt). Intuitively, Qt describes how the t-th query is generated, while
Dt represents the data distribution against which the query is evaluated. The sequences ⟨Q1, Q2 . . .⟩
and ⟨D1, D2 . . .⟩ capture the evolution of the query and data distributions, respectively.

Let H ⊆ {R → [0, 1]} be a hypothesis set. In a dynamic environment, any fixed hypothesis will
quickly become obsolete, so learning a single hypothesis no longer suffices. Instead, we adopt an
online learning framework, where the learner must produce a sequence of hypothesis ⟨h1, h2, . . .⟩:
for each t, upon seeing the prefix ⟨z1, . . . , zt⟩ of the observations, the learner produces a function
ht ∈ H to be used for predicting the selectivity for the next range Rt+1; the predicted selectivity
can then be compared with the observation zt+1. In other words, the learner repeatedly predicts

1Other loss functions, such as squared loss, can also be used; we adopt absolute loss here for simplicity.
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the selectivity for each incoming query, receives feedback in the form of the true selectivity after
query execution, and then subsequently updates its model. We consider two natural objectives for
an online learner over a sequence of SDsW = ⟨W1,W2, . . .⟩. Let ε ∈ [0, 1] be the error threshold.

1. Tracking: Ideally, we want the learner to ensure that the current hypothesis ht always gives good
prediction for the next query. That is, the expected error of using ht with respect to the next SD
is small: i.e., errWt+1(ht) ≤ ε for every t > 0.

2. Low regret: Instead of insisting on the accuracy of every prediction, we want the learner to not
incur too many big errors over time. Formally, we define the overall regret (up to time t) as
the sum

∑t
i=1 1

[
ℓhi

(zi) > ε
]
, where 1[·] returns 1 if the input condition holds or 0 otherwise.

Ideally, we want to keep the overall regret low for any t > 0.

In general, if the drift between consecutive SDs can be arbitrarily large, it would be impossible to
obtain any guarantees. Hence, we propose reasonable conditions under which the above objectives
can be achieved.

Discrepancy. To measure how much the environment has changed, we adopt a hypothesis-class
dependent notion called discrepancy; see Mohri & Medina (2012). For two SD’s W,W ′ over
Z = R× [0, 1], the discrepancy is defined as discH(W,W ′) = suph∈H |errW (h)− errW ′(h)|. Intu-
itively, discH(W,W ′) measures how much a change in the underlying SD from W to W ′ affects the
learner’s view. For example, suppose W and W ′ are induced by (Q,D) and (Q′, D′). If D ̸= D′

but Q = Q′ and the queries only touch regions unchanged between the two data distributions, then
disc(W,W ′) = 0, since the change has no effect from the learner’s perspective.

Our results. We propose a novel algorithm called DUSS (Section 3) for the dynamic setting,
with good provable guarantees on its performance. Suppose X ⊆ Rd and R corresponds to stan-
dard geometric objects such as boxes, balls, or halfspaces. Consider the family D of all discrete
distributions over X and the familyM :=MΣ,D of all selectivity functions with respect to D. Let
W = ⟨W1,W2, . . .⟩ be a sequence of SDs, where each Wt is induced by a query distribution Qt

and a data distribution Dt. DUSS accepts a parameter ε ∈ [0, 1] and processes a sequence of ob-
servation ⟨z1, z2, . . .⟩, where each zi ∼ Wi. At the beginning of step t, it has a selectivity function
µt−1 ∈M. After processing each zt, it updates its hypothesis from µt−1 to µt, based on ℓµt−1(zt).
It maintains the following guarantees.

1. Tracking under gradual drift (Theorem 4.5). If both the query and data distribution can
change, but the drift between any two consecutive SDs is small, i.e., disc(Wt,Wt+1) = o(ε3)
for every t, then DUSS ensures that for every t, it produces µt ∈M such that errWt+1

(µt) ≤ ε.
2. Low regret under stable data but arbitrary query drift (Theorem 4.2). If the data distribu-

tion remains “stable” (a notion we will formalize later), even if the query distribution changes
arbitrarily, DUSS guarantees low regret: i.e., for any t > 0,

∑t
i=1 1ε

(
ℓµi

(zi+1)
)

is O(ε−3).
Moreover, DUSS only needs to update its hypothesis O(ε−3) times.

In other words, when both query and data distributions evolve gradually, DUSS gives good pre-
dictions consistently. Even if the query distribution drifts arbitrarily, DUSS still keeps regret low
as long as the data distribution remains stable. Arbitrary drift in the data distribution is hostile to
any passive learner without access to the data, but in large databases with row-level updates such
events between consecutive queries are rare. Beyond DUSS, we also prove that the same tracking
guarantees hold for any online learner that maintains a hypothesis in MΣ,D with ε-error on the
most recent O(d2ε−2 polylog(1/ε)) observations, extending our static guarantees naturally to the
dynamic setting (Theorem 4.3).

3 DUSS: ONLINE SELECTIVITY LEARNING ALGORITHM

Let Σ = (X,R) be a range space. Our algorithm DUSS (Dynamically Updated Support Set) handles
general range spaces; for simplicity assume X ⊆ Rd and R are geometric objects (boxes, balls,
halfspaces). Recall Z = R × [0, 1]. DUSS maintains a discrete distribution D̂ over X as its model,
updated on a stream of observations Z = ⟨z1, z2, . . .⟩ from Z. Let Zt = ⟨z1, . . . , zt⟩, and Zt,k

denote the suffix of Zt of length min{t, k}.
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Overview. DUSS accepts an error threshold ε and a window size m ≥ 0. It maintains a weighted
support D̂ over X and a selectivity function µD̂. At time t, given zt = (Rt, st), the algorithm treats
Zt,m as a training set and aims to maintain the invariant |µD̂(Ri)− si| ≤ ε for all (Ri, si) ∈ Zt,m.
If µD̂(Rt) under- or overestimates st, DUSS adjusts weights inside or outside Rt until balanced.
If D̂ drifts too much, it revisits Zt,m to restore the invariant, or resets entirely when a large data
shift is detected. The pseudocode appears in Algorithm 1; below we describe the information and
parameters it maintains, the weight-update rule, and the revisit/reset steps.

DUSS stores Zt,m and maintains a candidate support S ⊆ X. If X is finite, S = X; if X = [0, 1]d, S
may be a large random sample or grid. We assume S has enough representational power (formalized
later). Each p ∈ S has an integer weight ω(p), initially 1. Let Wcurr =

∑
p∈S ω(p), so D̂ =

{(p, ω(p)/Wcurr) | p ∈ S}.

Weight-update. Given zt = (Rt, st), let Rt be balanced if |µD̂(Rt)− st| ≤ ε, light if the estimate
is too small, and heavy if too large. If balanced, nothing is done. Otherwise:

• If light: set χ = ε2/4
st−ε/2 and repeatedly update ω(p) ← (1 + χ)ω(p) for all p ∈ S ∩ Rt until

balanced.

• If heavy: set χ = ε2/4
1−st−ε/2 and repeatedly update ω(p) ← (1 + χ)ω(p) for all p ∈ S \ Rt until

balanced.

We track COUNT, the number of updates, which is used to trigger resets.

Revisiting the window and Resetting. Weight-updates may break accuracy for past queries.
We check whether Wcurr has grown by more than a factor 1/(1 − ε/2) since initialization or the
last revisit. If so, we sequentially process Zt,m, applying weight-updates to any light or heavy
observation. If Wcurr again grows too much, we repeat. We prove in Section 4.1 that this always
converges and the number of updates remains bounded when the data distribution is stable.
If the data distribution drifts significantly, incremental updates fail. From our analysis, if the data is
stable then COUNT ≤ τres = 16ε−3 ln |S|. Thus, when COUNT > τres, DUSS resets: discarding all
weights and restarting from Zt,m.

4 ANALYSIS OF DUSS

Let Σ = (X,R) be a range space. Before proceeding with the analysis of DUSS, we introduce the
concept of VC-dimension, a standard measure of the combinatorial complexity of a range space. The
VC-dimension of Σ, denoted VC-dim(Σ), is the size of the largest Y ⊆ X such that {R ∩ Y : R ∈
R} = 2Y ; if no such bound exists then VC-dim(Σ) = ∞. For example, when X = Rd and R is
the set of boxes, balls, or halfspaces, the VC-dimension is 2d, d + 2, or d + 1, respectively. By
contrast, if R is the set of convex polygons, VC-dim(Σ) = ∞. The guarantees in this section hold
when VC-dim(Σ) is bounded.

Let D the class of discrete distributions over X, and M := MΣ,D the corresponding class of
selectivity functions. Recall that DUSS processes a sequence of observations Z = ⟨z1, z2, . . .⟩,
where each zt ∈ Z = R× [0, 1]. We analyze DUSS under the assumption that Z is generated from
a sequence of SDsW = ⟨W1,W2, . . .⟩: i.e. for each t, zt ∼Wt, and each Wt is realized by a query
distribution Qt over R and a data distribution Dt over X, so that zt = (Rt, st) is obtained by first
sampling Rt ∼ Qt and then setting st = µDt(Rt). We emphasize that both Dt and Qt may change
over time: i.e. Dt ̸= Dt+1 and Qt ̸= Qt+1 in general. Since the hypotheses learned by DUSS
during its execution are probability distributions over a fixed support set S ⊆ X, it is intuitively clear
that, for DUSS to be effective, S must possess sufficient representational power to accurately model
the evolving data distribution inW . We formalize this requirement as follows.

ρρρ-representative support. For a range space Σ = (X,R) and a distribution D over X, a fi-
nite set A ⊆ X is called an ϵ-sample (or ϵ-approximation) with respect to D if, for every range
R ∈ R,

∣∣∣µD(R)− |R∩A|
|A|

∣∣∣ ≤ ϵ. It is known that if VC-dim(Σ) = d, then an ϵ-sample of size
O
(

d
ϵ2 log

1
ϵ

)
always exists and can be obtained easily via random sampling (Vapnik & Chervo-

nenkis, 1971). We call a finite subset S ⊆ X an ρ-representative with respect to a realizable sequence

5
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W = ⟨W1,W2, . . .⟩ of SD’s if, for every t, there exists a sub-multiset St ⊆ S that is a ρ-sample of Σ
w.r.t. Dt. The choice and implementation of ρ-representative supports depends on the range space
Σ. In Section 5, we describe a heuristic for maintaining S for geometric ranges. In the following
analysis, we assume that S is a ρ-representative support of W with ρ = cε for some sufficiently
small constant c > 0. Here ε denotes the error tolerance parameter of the algorithm.

4.1 STABLE DATA AND ARBITRARILY DRIFTING QUERIES

We first analyze the case where the query distribution may drift arbitrarily while the data distribution
remains fixed (later we relax this to a “stable” data distribution). Formally, for every Wi ∈ W ,
we assume Di = D∗, a fixed distribution over X. Thus each observation zt = (Rt, st) satisfies
st = µD∗(Rt). In contrast, the query distribution may vary freely, i.e., Qt can differ arbitrarily
from Qt+1, so Wt+1 may differ from Wt. Our focus here is the low-regret objective introduced in
Section 2.
Let H ⊆ {h : R → [0, 1]} be a hypothesis class, Z = ⟨z1, z2, . . .⟩ an observation sequence, and
ε > 0 a tolerance. Let ALG be an online learner producing ht ∈ H after processing zt. For t ≥ 0,
define fZ(t, ε) =

∑t
i=1 1[ℓhi(zi+1) > ε], i.e., the number of observations in Zt with error above ε.

We say ALG has regret bound f(t, ε) w.r.t.W if maxZ∼W fZ(t, ε) ≤ f(t, ε) for all t ≥ 0. In the
following lemma, we bound the number of times the weight-update step in DUSS is triggered; see
Appendix A for a proof.

Lemma 4.1. Let W be a realizable SD sequence where the data distribution is fixed. For any
observation sequence Z ∼ W , DUSS performs the weight-update step at most τres(ε) := O(ε−3 ·
log |S|) times, irrespective of the window size m.

Since a weight-update step is only triggered if a new observation is light or heavy, i.e. DUSS’s
prediction on the observation is off by at least ε, this immediately implies that cumulative regret
is bounded by O(ε−3 log |S|). A straightforward calculation shows that DUSS performs at least
Ω(ε−1) weight-update steps between two consecutive revisit steps, and therefore it revisits the slid-
ing window at most O(ε−2 ln |S|) times. As in Lemma 4.1, this bound holds independently of the
window size m.
Next, recall that DUSS maintains a probability distribution D̂. Let D̂t denote that state of D̂ af-
ter processing zt. We make the following observations: 1) after DUSS finishes processing zt, Rt is
neither light nor heavy by design; and 2) between any two revisit steps, the selectivity of every range
with respect to µD̂ can change by at most ε/2. Combining these facts with Lemma 4.1 implies that,
for any window size m > 0 and any observation sequence Z ∼ W , DUSS ensures that

max
z∈Zt,m

err(µD̂t
, z) ≤ 2ε. (1)

This implies the following property (which will also be useful in Section 4.2):

Sliding-window ERM property. LetH ⊆ {R→ [0, 1]} be a hypothesis set. Given an error thresh-
old ε ≥ 0 and a window parameter m ∈ N, we say that an online learning algorithm ALG satisfies
the (ε,m)-sliding window empirical risk minimizer property, or (ε,m)-window ERM property for
short, with respect to an observation sequence Z = ⟨z1, z2 . . . , ⟩, if for any t, after processing zt,
ALG maintains a hypothesis ht ∈ H such that∑

z∈Zt,m

err(ht, z) ≤ inf
h∈H

∑
z∈Zt,m

err(h, z) + εm.

Note that this guarantee is retrospective, as it evaluates the performance of the current hypothesis
ht on the last m observations. In simple terms, it implies that the total error incurred on the most
recent m observations is within εm of the minimum possible. As discussed earlier, assuming a
fixed data distribution, DUSS maintains Inequality (1), which is a stronger condition that implies
the (ε,m)-window ERM property. Putting everything together, we obtain the following theorem.

Theorem 4.2. Let W be any realizable SD sequence where the data distribution is fixed. DUSS
achieves a regret bound of O(ε−3 log |S|), performs the revisit step at most O(ε−2 log |S|) times,
and satisfies the (ε,m)-sliding-window ERM property with respect to any observation sequence
Z ∼ W .
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From fixed to stable data distributions. We note that Theorem 4.2 extends to the case where
the data distribution is not fixed but stable under W . Formally, for two data distributions D and
D′, the total variation distance is defined as TV(D,D′) := supA⊆X |D(A) −D′(A)|. Intuitively,
TV(D,D′) is the maximum difference in selectivity that the two distributions assign to the same
point set. We say that an SD sequenceW is σ-stable if for every pair Wi,Wj ∈ W , TV(Di, Dj) ≤
σ holds. Theorem 4.2 remains valid as long asW is cε-stable, where c is a suitably small constant
and ε is the algorithm’s tolerance parameter.

4.2 GRADUALLY DRIFTING DATA AND QUERIES

In the previous subsection, we bounded the regret when the data distribution is fixed or sufficiently
stable, even if the query distribution changes arbitrarily at each step. Ideally, we would like our
algorithm’s prediction, based on past observations ⟨z1, . . . , zt⟩, to remain accurate for the next ob-
servation zt+1. Clearly, if either distribution drifts abruptly, no meaningful accuracy guarantees are
possible. We therefore focus here on the case of gradual drift, adopting the drift-tracking framework
of Mohri & Medina (2012).

(∆, ε)(∆, ε)(∆, ε)-tracking. Let H be a hypothesis set. Let ALG be an algorithm that receives a sequence
Z = ⟨z1, z2, . . .⟩ of observations and maintains a hypothesis in H. Let ht ∈ H be the hypothesis
that ALG has computed at step t, which depends on the prefix Zt of Z . Let Λt = ℓht−1(zt) denote
the loss on observation zt. LetW = ⟨W1,W2, . . .⟩ be a sequence of SD’s. For any t > 0, we define
Λ̄t(W) = EZt∼W [Λt]. For parameters ∆, ε ∈ (0, 1), we say that ALG (∆, ε)-tracksH if there exists
t0 := t0(∆, ε) such that for all t ≥ t0 and for any sequenceW where discH(Wi,Wi+1) ≤ ∆ for
all i ≥ 1, we have Λ̄(W) ≤ infh∈H errWt

(µ) + ε.

Intuitively, assuming that that the drift rate in W is limited to ∆, a tracking algorithm is expected
to deliver good predictions. In this section, we prove that DUSS is a tracking algorithm when
both query and data distributions drift gradually. Before doing so, we first establish a general result
that holds for any sliding-window ERM algorithm (see Section 4.1). We believe this result is of
independent interest with other potential applications.

Theorem 4.3. Let Σ = (X,R) be a range space with VC-dim(Σ) = O(1). Let D be a class
of distributions over X and M := MΣ,D the associated family of selectivity functions. Consider
an (ε,m)-window ERM algorithm ALG using the hypothesis set M. If the drift rate ∆ of the SD
sequence satisfies ∆ = O(ε3 log−4(ε−1)) and the window size m = Θ(ε−2 log4(ε−1)), then ALG
(∆, ε)-tracksM.

Informally, the theorem suggests that for drift rate ∆ < ε3, a (ε,m)-window ERM algorithm with
window size m ≈ ε−2 can consistently maintain its prediction accuracy. The crux of the proof lies
in bounding the covering number ofM. For a parameter α > 0 and m > 1, the α-covering number,
denoted N(M, α,m), is the smallest number of hypotheses inM that can approximate, within α
point-wise error, all functions inM on any set of m queries. We prove the following lemma. See
also Lemma B.2 in Appendix B.

Lemma 4.4. N(M, α,m) = mO(α−2 logα−1).

We combine this lemma with some known results in learning theory to obtain Theorem 4.3. See
Appendix B for more details. We now apply Theorem 4.3 to DUSS. Consider a realizable sequence
of SD’sW = ⟨W1,W2, . . .⟩ with associated underlying data distributions ⟨D1, D2, . . .⟩, where the
total variation distance between Dt and Dt+1 is at most ∆ = c1ε

3 log−4(ε−1), for some constant c1
to be chosen. Given a window size m = Θ(ε−2 log4 ε−1), we can choose c1 such that for any sliding
window Zt,m and for any W,W ′ ∈ Wt,m with respective underlying data distributions D,D′, we
have TV(D,D′) ≤ m∆ ≤ c2ε for some c2 < 1. By the extension of Theorem 4.2 to stable data
distributions, we argue that DUSS satisfies the (ε,m)-window ERM property. Combining this fact
with Theorem 4.3, we establish the following property of DUSS, which is the main result of this
section.

Theorem 4.5. Let Σ = (X,R) be a range space with VC-dim(Σ) = O(1). Let D be the class
of discrete distributions on X andM := MΣ,D the corresponding family of selectivity functions.
Let ε ∈ (0, 1) be the error threshold, and assume that the sequence of SD’s is realized by an
underlying sequence of data distributions where the total-variation distance between consecutive
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distributions is at most ∆ = O(ε3 log4(ε−1)). Using a window size m = Θ(ε−2 log4(ε−1)) and a
(ε/100)-representative support, DUSS (∆, ε)-tracksM.

In simple words, the above result suggests that if the drift rate ∆ < o(ε3), we can initialize DUSS
with a representative support and set its window size to m = Θ(ε−2 log4(ε−1)); then, DUSS
maintains a model that accurately predicts selectivities of incoming queries in a way that consistently
tracks the gradually drifting environment.

5 SUMMARY OF EXPERIMENTS

We evaluate DUSS on real-world datasets, comparing it with other query-driven methods and
baselines. Since our main goal is to validate our theoretical results (instead of outperforming state-
of-the-art systems), we use a simple implementation of DUSS.

Datasets and Queries. We use several standard real-world datasets from prior work, including
Power (Dua & Graff, 2019), Forest (Dua & Graff, 2019), and IMDb (Leis et al., 2015). Data are
normalized to [0, 1]d. We further splice the IMDb data along the time axis to simulate data drift.
For queries, we consider orthogonal range queries (boxes), since all models we compare with can
support them. We consider two forms of drift. In the gradual drift setting, query centers shift slowly
from one region of the data space to another, producing slow but continuous changes in workload. In
the abrupt drift setting, queries remain clustered around a fixed region for some time before suddenly
jumping to a different region, yielding sharp transitions. Figure D.1 illustrates the two forms of drift.
Additional details regarding the datasets and query generation are deferred to Appendix D.

Implementation details for DUSS. Recall that DUSS assumes access to a representative support
set S ⊆ [0, 1]d. Rather than setting it as a uniform grid over [0, 1]d or precomputing it some other
way (e.g., using historical queries), we construct S dynamically: when queries target a region, we
adaptively increase resolution there, under the assumption that future queries are likely to target
nearby regions. Specifically, when a new query arrives, if fewer than MIN-PTS = 20 points fall
inside its range, we sample additional points from within that range uniformly to ensure there are
at least that many points and add them with negligible initial weights. This gives flexibility to the
algorithm to tune them later if necessary. We upper-bound the model size by setting the support size
budget to K = 50, 000 points (less than 4 MB), and initialize S with a few thousand uniformly sam-
pled points. When the space budget is exhausted, DUSS can compress the support set via weighted
sampling, although in our experiments S never required compression. We also stored S as a simple
array and performed all operations by scanning. While there are several advanced data structures
that could accelerate these operations for orthogonal ranges, even this basic implementation is suf-
ficiently efficient to validate our theory. As for the error tolerance parameter ε, since selectivity
values are typically very small in practice (most queries return a few hundred tuples out of hundreds
of thousands), we set the error tolerance parameter to ε = 10−4. Although in theory (Theorem 4.5),
the algorithm requires a sliding window of ε−2 for tracking (no window is needed for regret guaran-
tees per Theorem 4.2), in our experiments we observed that a much smaller window or no window
worked well. Hence, for simplicity, we report results for the sliding window parameter m = 0.

Methods compared. We compare DUSS against other approaches that operate using query feed-
back only. Such models fall into two classes: deep learning and distribution-based. We pick one
representative of each, along with a widely studied baseline: CDF (Wu et al., 2025), a recent state-of-
the-art deep model; PtsHist (Hu et al., 2022), a distribution-based model; and MSCN (Kipf et al., 2019),
a standard baseline. Unlike DUSS, which adapts online, none of the other methods are designed for
continual updates and rely on periodic retraining or fine-tuning. To ensure fair comparison, we pro-
vide each model with sinit = 2000 initial training queries drawn from the first SD W1 = (Q1, D1),
and then evaluate them on the test sequenceZ = (z1, z2, . . .), where each zt = (Rt, st) ∼Wt ∈ W .
We explore three adaptation strategies: (i) M-S, where the model remains static; (ii) M-R(w, p),
where the model is retrained every p queries using the most recent w (or all when w =∞); and (iii)
M-T (w, p), where the model is fine-tuned after every p queries using w recent queries (supported
only by CDF and MSCN, not by PtsHist).

Performance metrics. We evaluate accuracy using standard Root-Mean-Squared-Error (RMSE)
and percentile Q-error (Moerkotte et al., 2009). For n test queries {Ri}with estimates ŝ(Ri) and true
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Table 5.1: Selectivity estimation accuracy and training cost under simultaneous data and query
distribution drifts (data drifts gradually and then abruptly; queries drift gradually or abruptly) on
IMDb-7d and IMDb-2d. The lowest error and training time in each column are highlighted in bold.

Method
IMDb-7d Query-Gradual IMDb-7d Query-Abrupt IMDb-2d Query-Gradual IMDb-2d Query-Abrupt

RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train
q-err q-err (s) q-err q-err (s) q-err q-err (s) q-err q-err (s)

DUSS 0.079 1.53 12.4 39 0.067 1.42 11.2 47 0.023 1.022 1.321 11 0.013 1.005 1.081 11
CDF-R (2k, 2k) 0.287 2.16 12.2 733 0.341 3.89 299.0 748 0.212 1.122 2.483 121 0.452 1.484 12.510 60
CDF-R (∞, 2k) 0.215 1.64 7.4 2000 0.209 1.88 86.0 2867 0.099 1.050 1.879 260 0.335 1.201 113.900 255
MSCN-R (2k, 2k) 0.285 2.35 12.8 120 0.324 3.25 49.1 128 0.189 1.174 1.792 21 0.431 1.358 11.540 13
MSCN-R (∞, 2k) 0.229 1.76 7.4 382 0.266 2.25 29.5 381 0.149 1.034 1.378 54 0.358 1.036 16.750 48
PtsHist-R (2k, 2k) 0.110 2.93 284.0 505 0.116 4.38 594.0 512 0.029 1.011 1.520 459 0.035 1.006 1.154 439
PtsHist-R (∞, 2k) 0.106 2.57 212.1 1280 0.106 3.33 306.0 1398 0.027 1.014 1.606 4553 0.030 1.007 1.166 4839
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Figure 5.1: Sliding-window performance on IMDb-7d.

selectivities s(Ri), RMSE is
(
1
n

∑n
i=1(ŝ(Ri) − s(Ri))

2
)1/2

, and Q-error(p) is the p-th percentile
of {max{ŝ(Ri), s(Ri)}/min{ŝ(Ri), s(Ri)}}. RMSE captures absolute error, while Q-error high-
lights relative error and is widely used in the database community since selectivities are often small.
We also report efficiency, measure training/fine-tuning overhead and inference time in Appendix D.

Summary. We perform two types of experiments: (i) fixing the data distribution while allowing
the query distribution to drift (more details in Appendix D.1), and (ii) allowing both data and query
distributions to drift (more details in Appendix D.2). Within each setting, we consider both gradual
and abrupt drift for queries and, where applicable, for data. Across all scenarios, DUSS consistently
delivers the best trade-off between accuracy and efficiency, while also incurring some of the lowest
training (model-update) costs.

Under gradual query drift, the distribution-based PtsHist can achieve comparable, and occasionally
marginally better, predictive performance on certain metrics in low-dimensional cases. This ob-
servation aligns with our theory (Theorem 4.5), which suggests that distribution-based models, by
maintaining a good fit on a sliding window, should also perform well under gradual drift. However,
PtsHist requires solving a quadratic program, leading to significantly higher training (model-update)
time. In contrast, the neural network–based CDF-MSCN and MSCN are considerably less effective, even
with frequent retraining. We suspect that their model complexity demands much larger training data
and longer sliding windows to generalize effectively. See Table 5.1 here and Table D.1 in appendix
for more details. Unfortunately, PtsHist loses its advantage in high dimensions: because it is designed
around a fixed support set, it cannot maintain a representative support in sparse, high-dimensional
spaces. Preserving its performance would require dramatically increasing the support size. In con-
trast, DUSS adapts through a dynamic support.

When drift becomes abrupt—especially in high-dimensional settings—DUSS is the only method
that maintains superior accuracy with minimal training costs, owing to its low-regret guarantees
(Theorem 4.2). Again, see Table 5.1 and Table D.1 for details. Figure 5.1 further illustrates a com-
plex drift scenario with abrupt query drift and mixed data drift (further details are in Appendix D.2).
DUSS consistently maintains lower average sliding-window error, and quickly adapts under drift,
demonstrating its robustness.

Taken together, these results these results confirm that DUSS can maintain robust estimator even in
the presence of drift by only observing query-selectivity (query-cardinality) pairs.
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Algorithm 1 DUSS: Dynamic Update Support-Set.
1: Input: Window size m, error parameter ε, support set S ⊆ X
2: Initialize weights: ω(p)← 1 for all p ∈ S
3: Wcurr ← |S|, Wrev ← |S|, COUNT ← 0

4: Initialize D̂ as the distribution with uniform weights on S
5: Method PROCESS(Observation stream Z)
6: loop zt = (Rt, st)← each new observation
7: Zt,m ← (Zt−1,m ∪ {zt})− {zt−m}, ŝt ← µD̂(Rt)
8: if |ŝt − st| > ε then
9: WEIGHTUPDATE((Rt, st))

10: while Wcurr > Wrev/(1− ε/2) do
11: Wrev ←Wcurr
12: REVISITWINDOW
13: Method WEIGHTUPDATE((R, s))
14: if µD̂(R) < s− ε then
15: χ← ε2

4(s−ε/2)

16: while µD̂(R) < s− ε do
17: ω(p)← (1 + χ) · ω(p), ∀p ∈ S ∩R
18: COUNT ← COUNT + 1
19: else if µD̂(R) > s+ ε then
20: χ← ε2

4(1−s−ε/2)

21: while µD̂(R) > s+ ε do
22: ω(p)← (1 + χ) · ω(p), ∀p ∈ S \R
23: COUNT ← COUNT + 1
24: if COUNT > τres then
25: RESET
26: return
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A PROOF OF LEMMA 4.1

For a range R, let R̄ denote its complement. If R is a box then R̄ is the region lying outside the box.
For i ≥ 1, let zi = (Ri, si) be the observation when the weights were updated the i-th time, let Wi
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be the value of Wcurr after i weight updates. Recall, that an observation may cause multiple updates,
so zi may be the same as zi+1.

Recall that the support S is cε-representative. For the analysis, assume c = 0.01. Let A ⊆ S be
an cε-sample of D∗. Since the input data distribution D∗ is fixed, by the cε-representative support
property of S, such a set must exist. We prove a bound on T , the number of weight-update steps, by
obtaining an upper bound on WT and a lower bound on the weight of the points in A after T updates,
and by showing that the latter exceeds the former once T > τres(ε). This is a typical argument for
the multiplicative-weight-update (MWU) method Arora et al. (2012).

We first obtain an upper bound on Wi. Initially, W0 = |S|. For simplicity, let γ = ε/2. If Ri is
light, we set bi = si − γ and ∆i = Ri, and if Ri is heavy, we set bi = 1 − si − γ and ∆i = R̄i.
Then after the i-th weight update,

Wi ≤
∑
p∈∆i

ω(p)

(
1 +

γ2

bi

)
+

∑
p/∈∆i

ω(p)

≤Wi−1 +Wi−1 ·
γ2

bi

∑
p∈∆i

ω(p)

Wi−1
≤Wi−1

(
1 +

γ2

bi
· (bi − γ)

)
≤Wi−1(1 + γ2(1− γ)) ≤Wi−1 · exp

(
γ2(1− γ)

)
.

The second last inequality follows because bi ≤ 1. Hence,

WT ≤W0 · exp
(
γ2(1− γ)T

)
= |S| · exp

(
γ2(1− γ)T

)
.

Next, we focus on the weights of points in A. First, it can be verified that bi ≥ γ. Let Wi(p) denote
the weight of p ∈ S after the i-th weight update. If p ∈ ∆i, then

Wi(p) ≥ (1 +
γ2

bi
)Wi−1(p) ≥ (1 + γ)

γ
bi Wi−1(p). (2)

The last inequality follows because γ, γ/bi ∈ [0, 1]. For a subset I ⊆ [T ], let σ(I) =
∑

j∈I (1/bj).
Let I(p) ⊆ {1, . . . , T} be the set of indices in which the weigh of p was updated, then by (2),

WT (p) ≥W0(p) · (1 + γ)γ·σ(I(p)). (3)

Since arithmetic mean of a set of non-negative numbers is at least as large as their geometric mean

[∏
p∈A

WT (p)
] 1

a ≤ WT (A)

a
≤ WT

a
, (4)

where a = |A| and WT (A) =
∑
p∈A

WT (p). On the other hand, by (3)

[∏
p∈A

WT (p)
] 1

a ≥ (1 + γ)

γ
a ·

∑
p∈A

σ(I(p))
. (5)

Next, we observe that
1

a

∑
p∈A

σ(I(p)) = 1

a

∑
p∈A

∑
j∈I(p)

1

bj
=

1

a

T∑
j=1

|A ∩∆j |
bj

. (6)

SinceA is an cε-sample, for c = 0.01, of the underlying data distribution D∗, |A∩∆j |
a ≥ bj +0.98γ.

Plugging this bound in (6),

1

a

∑
p∈A

σ
(
I(p)

)
≥

T∑
j=1

bj + 0.98γ

bj
≥ T · (1 + 0.98γ). (7)
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Combining (2),(3), and (7), we obtain

(1 + γ)γ(1+0.98γ)T ≤ WT

a
≤WT . (8)

Plugging the value of WT in (7) and taking ln on both sides,

γT (1 + 0.98γ) ln(1 + γ) ≤ γ2(1− ε)T + ln |S|.

Using the fact that ln(1 + γ) ≥ γ − γ2/2, we obtain T ≤ γ−2ln |S|(f(γ))−1, where f(γ) =
(1 + 0.98γ) · (1 − γ/2) − (1 − γ) ≥ γ/2. Hence, substituting γ = ε/2, we conclude that T ≤
2γ−3 ln |S| ≤ 16ε−3 ln |S|, as claimed. This completes the proof of the lemma.

B SLIDING-WINDOW SIZE BOUND UNDER THE DYNAMIC SETTING

Theorem B.1 (Restatement of Theorem 4.3). Let Σ = (X,R) be a range space with VC-dim(Σ) =
O(1). Let D be a class of distributions over X and M := MΣ,D the associated family of se-
lectivity functions. Consider an (ε,m)-window ERM algorithm ALG using the hypothesis set M.
If the drift rate ∆ of the SD sequence satisfies ∆ = O(ε3 log−4(ε−1)) and the window size
m = Θ(ε−2 log4(ε−1)), then ALG (∆, ε)-tracksM.

The argument proceeds in several parts. The key insight, however, is to show that the α-cover (see
(Shalev-Shwartz & Ben-David, 2014, Ch. 26–27)) of the class of selectivity functionsM is small.
We then use the bound on the α-cover to bound the Rademacher complexity, a well-known concept
in machine learning (Shalev-Shwartz & Ben-David, 2014, Chapter 26). Finally, we combine the
bound on the Rademacher complexity with a result by (Mohri & Medina, 2012, Theorem 1) to
prove Theorem 4.3.

Let B ⊆ R be a set of ranges. For two selectivity functions µ1, µ2 ∈ M, we define the distance
between them with respect to B to be dB(µ1, µ2) := maxR∈B |µ1(R) − µ2(R)|. For α > 0, a
subsetM′ ⊆ M is called an α-cover with respect to B if all functions ofM are within distance α
fromM′ (under the distance function dB). That is, supµ∈M infµ∈M′ dB(µ, µ

′) ≤ α. We define the
empirical α-covering number (w.r.t. B) ofM as

N(M, α,B) = min{|M′| :M′ is an α-cover of µ w.r.t. B}.

Finally, for m ≥ 1, set N(M, α,m) = maxB⊆R, |B|=m N(M, α,B).

Our main technical result is an upper bound on N(M, α,m) stated below.
Lemma B.2. Let Σ = (X,R) be a range space with finite VC-dimension. Let D be a class of
probability distributions over X and letM :=MΣ,D. For any α > 0 and positive integer m,

N(M, α,m) = mO(α−2 logα−1).

Proof. Let B ⊆ R be any arbitrary subset of m ranges. We bound N(M, α,B) in three steps.
First, we show that there exists a family C of uniform discrete distributions each with support size
η = O

(
α−2 logα−1

)
, such thatMC = {µC | C ∈ C}, the class of selectivity functions associated

with the distributions in C, forms an α/2-cover ofMwith respect to B (Note that even ifMC ̸⊆ M,
the notion of α/2-cover is still well-defined). Next, we show that there exists a small subset C′ ⊆ C
such that MC = MC′ . Finally, we use C′ to choose a subset D′ ⊆ D of size |C′| and set M′ =
{µD | D ∈ D′} such that M′ is an α-cover of M (w.r.t. B). We describe the full construction
below.

Let B ⊆ R be any arbitrary subset of m ranges.Consider the range space ΣB = (X,B). It is easily
seen that VC(ΣB) ≤ VC(Σ), so VC(ΣB) = O(1). For any distribution Di ∈ D, as mentioned
above, there is an (α/2)-sample Ci of size η = O(α−1 logα−1), i.e., |µDi

(R)− |Ci∩R|
|Ci| | ≤ α/2 for

any R ∈ R. Setting µCi(R) = |Ci∩R|
|Ci| , dB(µCi , µDi) ≤ α/2. Let C = {Ci | Di ∈ D}. ThenMC

is an (α/2)-cover ofM (w.r.t. B).
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Next, we choose the set C′ ⊆ C as follows. Define the dual range space Σ∗
B = (B,X∗) of ΣB where

X∗ = {{R ∈ B | x ∈ R} | x ∈ X} .

Each range in X∗ is defined by a point x ∈ X and comprises the set of ranges in B that contain
x. Since VC-dim(ΣB) = O(1) then VC-dim(Σ∗

B)is also O(1), say VC-dim(Σ∗) = κ. Then
|X∗| = O(mκ). X∗ implies an equivalence relation≡ on X that partitions X into O(mκ) equivalence
classes, where x1 ≡ x2 if and only if any range in B either contains both x1 and x2 or neither of
them Chazelle & Welzl (1989). Define two subsets C,C ′ ⊆ X as equivalent with respect to B if there
exists a bijection f : C → C ′ such that x ≡ f(x) for all x ∈ X. The number of combinatorially
distinct subsets (with respect to B) of X of size η is at most O(mη·κ).Observe that if C ≡ C ′,
then µC(R) = µC′(R) for every R ∈ B. Let C′ ⊆ C be a maximal set of combinatorially distinct
sets (i.e. they are defined by combinatorially distinct subsets of X) in C. Since |C| ≤ η for any
C ∈ C, |C| = O(mκ·η). Finally. we choose a subset D′ ⊆ D of size |C′| as follows. Recall
that each Ci ∈ C is an (α/2)-sample pf a distribution Di ∈ D. Set D′ = {Di | Ci ∈ C′} and
M′ = {µD | D ∈ D′}. To prove thatM′ is an α-cover ofM, let Di be a distribution in D, let
C ′

i ∈ C be the set equivalent to Ci, and let D′
i ∈ D′ be the distribution in D′ corresponding to C′i.

Then for any R ∈ B, |µDi
(R)− µD′

i
(R)| ≤ α/2+α/2 ≤ α (using the triangle inequality). Hence,

dB(µDi , µD′
i
) ≤ α, soM′ is an α-cover ofM of size O(mκ·η) = mO(α−2 logα−1).

To proceed with the proof we require the following definition.

Rademacher complexity. Let B = {R1, R2, . . . , Rm} ⊆ R, be a subset of m ranges. Let
σ = (σ1, . . . , σm) ∈ {+1,−1}m be a random vector where Pr[σi = 1] = Pr[σi = 0] = 1/2. The
empirical Rademacher complexity ofM w.r.t. B is defined as

R̂B(M) :=
1

m
Eσ

[
sup
µ∈M

m∑
i=1

σi µ(Ri)

]
.

For m ≥ 1, we define the (worst-case) empirical Rademacher complexity as R̂m(M) :=

supB⊆R, |B|=m R̂B(M).

Roughly speaking, Rademacher complexity measures the rate of uniform convergence as a function
of training sample size. Using Lemma B.2 and the well-known connection between the covering
number and the Rademacher complexity (see (Shalev-Shwartz & Ben-David, 2014, Ch 27)) we
obtain the following lemma.

Lemma B.3. Let Σ = (X,R) be a range space with VC(Σ) = O(1). Let D be a family of distribu-
tions on X, and letM :=MΣ,D. Then for any m ≥ 1, R̂m(M) = O(m−1/2 log2 m).

Recall the loss function ℓµ : Z 7→ [0, 1] defined with respect to a selectivity function µ in Section 2.
Consider the class of functions LM = {ℓµ : µ ∈ M}. The notion of Rademacher complexity also
applies to the function class LM, by substituting R with Z and replacing B with a subset of Z in the
definition above. Since M ⊆ {R 7→ [0, 1]}, it is known that, see (Shalev-Shwartz & Ben-David,
2014, Chapter 26), R̂m(LM) = O(R̂m(M)). Therefore,

Corollary B.1. For any m ≥ 1, R̂m(LM) = O(m−1/2 log2 m).

We next prove Theorem 4.3 using the Corollary B.1. By plugging the bound on R̂m(LM) =
O(m−1/2 log2 m) from Corollary B.1, into a result by Mohri and Medina (Mohri & Medina, 2012,
Theorem 1), we obtain the following:

Lemma B.4. Let Σ = (X,R) be a range space with VC-dim(Σ) = O(1), and let W1, . . . ,Wk be
SD’s on Z = R× [0, 1]. Suppose that z1, . . . , zk are observations with each zi ∼Wi. Then, for any
SD W , for any δ ∈ (0, 1), the following inequality holds for every µ ∈ M with probability at least
1− δ:

errW (µ) ≤ 1

k

k∑
i=1

(
ℓµ(zi) + discM(Wi,W )

)
+

O(log2 k +
√

log δ−1)√
k

. (9)
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Moreover, if µ∗ = argminµ∈M errW (µ) then with probability at least 1− δ it holds that,

1

k

k∑
i=1

ℓµ∗(zi) ≤ errW (µ∗) +
1

k

k∑
i=1

discM(Wi,W ) +
O(log2 k +

√
log δ−1)√

k
. (10)

We use Lemma B.4 to prove Theorem 4.3 as follows. Fix a window size m and define ALG as a
(ε,m)-sliding-window ERM algorithm that receives a sequence Z = ⟨z1, z2, . . .⟩ of observations
and for each t maintains a selectivity function µt such that

1

m

t∑
i=t−m+1

ℓµt
(zi) ≤ ε+ inf

µ∈M

1

m

t∑
i=t−m+1

ℓµt
(zi)

Suppose we execute ALG on a stream of observations Z = ⟨z1, z2, . . .⟩ drawn from a sequence
W = ⟨W1,W2, . . .⟩ such that, discM(µi, µi+1) ≤ ∆ for all i, where ∆ ≥ 0. Let µ∗

t =
arg infµ∈M errWt(µ). Consider the random variable Xt+1:

Xt+1 := errWt+1
(µt)− errWt+1

(µ∗
t+1).

Our goal is to bound EZ∼W [Xt+1]. By Fubini’s theorem,

EZ∼W [Xt+1] = EZt∼W [errWt+1(µt)− errWt+1(µ
∗
t+1)].

Since ALG is an (ε,m)-sliding window ERM, we invoke Lemma B.4 on both µt and µ∗
t+1 with a

confidence parameter of δ/2. By the union bound, it follows that both bounds hold simultaneously
with probability at least 1− δ. Combining (9) and (10) it follows that with probability 1− δ,

Xt+1 ≤ ε+
2

m

t∑
i=t−m+1

discM(µi, µt+1) + 2 · O(log2 m+
√

log δ−1)√
m

.

It is easy to verify that for any SD’s W1,W2,W3 over Z, the triangle inequality holds, i.e.,
discM(W1,W3) ≤ discM(W1,W2) + discM(W2,W3) holds. Since discrepancy satisfies the tri-
angle inequality and discM(Wj ,Wj+1) ≤ ∆ for all j, discM(µi, µt) ≤ (t− i)∆. Thus,

1

m

t∑
i=t−m+1

discM(µi, µt) ≤ (m+ 1)∆.

Therefore, with probability at least 1− δ,

Xt+1 ≤ ε+ (m+ 1) ·∆+ 2 ·
O(log2 m+

√
log δ−1)√

m
.

We wish to bound the expectation E[Xt+1]. Let Y be a random variable such that Pr[Y >√
log δ−1] < δ or for any integer a ≥ 1 Pr[Y > a] ≤ 2−a2

, we obtain that E[Y ] = O(1).
Hence, we conclude that E[Xt+1] ≤ ε+ (m+1)∆+O(m−1/2 log2 m). This immediately implies
the following lemma.

Lemma B.5. LetA be a (ε,m)-sliding-window ERM algorithm (as described above). Then for any
SD sequenceW = ⟨W1,W2, . . . , ⟩,

errWt+1
(µt) ≤ ε+ inf

µ∈M
errWt+1

(µ) +O(m−1/2 log2 m) + (m+ 1)∆.

In the above lemma, the second term is the estimation error (arising from the Rademacher com-
plexity) while the last term reflects the cumulative drift over a window of size m. To minimize the
prediction error we balance these two terms and set m = Θ(∆−2/3 log4/3 ∆−1). This back yields
an overall excess error of O(∆1/3 log4/3 ∆−1). Therefore, to achieve an error of ε, one must have
∆ = O(ε3/log4(ε−1)). This completes the proof of Theorem 4.3.
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C SAMPLE COMPLEXITY BOUND UNDER THE STATIC SETTING

We first state the definition of (ε, δ)-learnability Haussler (1992).

(ε, δ)-learnability. A learning procedure is a function ALG from a finite sequence of observations
from Z to a hypothesis in H. Namely, given a finite sequence zn = (z1, . . . , zn) ∈ Zn, ALG(zn)
returns a function inH.

We say that ALG (ε, δ)-learns from n random samples zn if

sup
W

Pr
[
errW

(
ALG(zn)

)
> inf

µ∈M
errW (µ) + ε

]
≤ δ. (11)

A hypothesis set H is said to be (ε, δ)-learnable if there exists a learning procedure ALG, such that
for every ε > 0 and δ > 0, there is s sample size n0 = n0(ε, δ) such that (11) holds. It is called
ε-learnable if the above holds for every ε > 0 with some fixed confidence parameter δ < 1.

Next, recall the definition of LM from Appendix B. In Corollary B.1, we proved that for any m ≥ 1,
R̂m(LM) = O(m−1/2 log2 m). A well-known relationship between the Rademacher complexity
and sample complexity (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5) implies the following
theorem
Theorem C.1. Let Σ = (X,R) be a range space such that VC-dim(Σ) = O(1). Let D be a family
of probability distribution over X. Then, M := MΣ,D is agnostic (ε, δ)-learnable with sample
complexity O(ε−2(log4 ε−1 + log δ−1)) for any ε, δ ∈ (0, 1).

Suppose VC-dim(Σ) = κ1 and VC-dim(Σ∗) = κ2, where Σ∗ corresponds to the dual range space
of Σ. The order notation in the sample complexity bound of Theorem C.1 hides a dependence on
κ1 ·κ2. It is a well-known fact that for standard geometric ranges such as boxes, balls and halfspaces
in Rd, κ1 · κ2 = O(d2).
Corollary C.1 (restatement of Theorem 2.1). Let Σ = (X,R) be a range space, where X ⊆ Rd and
let R correspond to standard geometric ranges such as boxes, balls or halfspaces. Let D be a family
of probability distribution over X and letM := MΣ,D be the corresponding family of selectivity
functions. Then,M is ε-learnable with sample complexity O(d2ε−2(log4 ε−1)) for any ε ∈ (0, 1)

D DETAILED EXPERIMENTAL RESULTS

Datasets. We use several real-world datasets, all of which have used in prior work, including the
benchmark study Wang et al. (2021):

• Power Dua & Graff (2019): Electric power usage data collected from a household over 47 months,
with 2.1 million tuples over 7 numerical attributes. We consider ranges involving 2–7 dimensions.

• Forest Dua & Graff (2019): Forest cover types with 581,000 tuples and 10 numerical attributes.
We consider ranges involving 2–10 dimensions.

• IMDb Leis et al. (2015): Information about 2.5 million movies, popular in benchmarking query
optimization. While Power and Forest each have a single table, we consider multi-table join
queries with range selections on columns from different tables. We also use IMDb to create
drifting data distributions, as was done in Xiu et al. (2024), by “slicing” the movies by production
year such that each data slice has a naturally different distribution. See details in Section D.2.

Queries. As there are no widely available benchmarks with drifting query distributions over real-
world data, we define our own for the datasets above. For simplicity, we normalize data distributions
such that every Dt of interest has support in the unit hypercube [0, 1]d. While our techniques gen-
eralize to arbitrary ranges in [0, 1]d, we mainly restrict ourselves to orthogonal ranges because they
are supported by all alternative approaches compared. To define a distribution of range queries in-
volving d dimensions, we use two parameters: a center c ∈ [0, 1]d and a diagonal vector g ∈ [0, 1]d.
To generate a query, we sample a center point r from a normal distribution centered at c. Then,
we sample a diagonal vector h from a normal distribution centered at g. The resulting query is a
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Figure D.1: Visualization of drifting query distributions. Each axis corresponds to a selected di-
mension of data; each dot represents the center of a range query, with color indicating temporal
progression from start to end in the query sequence Z . To highlight significant shifts, black arrows
connect consecutive queries whose centers move beyond a fixed threshold (0.3 in either dimension).

hyper-rectangular range [r−h/2, r+h/2], clipped to lie within [0, 1]d. Intuitively, the center c con-
trols where queries are focused, while g controls their size and aspect ratio. As a vector, g provides
coordinate-wise flexibility—allowing queries to be narrow in some dimensions and wide in others.

To synthesize drifting query distributions for our experiments, we construct two scenarios (further
details in Section D.1):

• Gradual drift: In this scenario, the query distribution drifts gradually over time, from an ini-
tial distribution Q1 parameterized by (cstart, gstart) to a final distribution Qn parameterized by
(cend, gend). We ensure that the two distributions have sufficient distance in between to induce
a meaningful drift. Between Q1 and Qn, to obtain an intermediate query distribution Qt with set-
ting (ct, gt), we linearly interpolate between (cstart, gstart) and (cend, gend). This method produces a
smooth drift in both location and size/aspect ratio.2

• Abrupt drift: Here, the query distribution would remain the same for a duration of time, after
which a sudden abrupt change occurs. Specifically, at fixed intervals, we sample a new center
c′ ∈ [0, 1]d and a new diagonal vector g′ ∈ Rd

≥0 to be used for the new query distribution, again
ensuring sufficient separation from the previous setting to create a meaningful shift. For example,
if the stable period is k, the first k query distributions Q1, . . . , Qk will be the same, defined by a
fixed (c, g); then, a new setting (c′, g′) is sampled that defines Qk+1, . . . , Q2k, and so on. This
setup induces a piecewise stationary process with sharp transitions between phrases.

Figure D.1 visualizes these two types of query drift using Power-2d workload as an example, where
queries are 2-d ranges over 2 selected data dimensions. In the gradual drift case, queries evolve
smoothly over time, forming a continuous trajectory. In contrast, the abrupt drift case exhibits
sudden directional changes and clear spatial jumps.

Methods compared. We compare against other approaches that can operate using query feedback
only, without requiring access to the underlying data. Learned query-driven models can be broadly
categorized into two types: deep learning and distribution-based. We pick one representative of each
class, along with a well-studied standard baseline:

• CDF Wu et al. (2025), a representative of the deep learning type, is a recent state-of-the-art model
that has been shown to be more robust than previous work against drifts, both theoretically and
empirically. The original implementation of CDF only supports one-sided ranges; we modify it to
support two-sided ranges.

• PtsHist Hu et al. (2022) is a representative distribution-based model.
• MSCN Kipf et al. (2019) is a widely studied learned model that has served as a standard baseline for

comparison in related work. Note that MSCN also has features that use samples from the underlining
data; to ensure fair comparison in a purely query-driven setting, we turn off such features in our
experiments.

While DUSS maintains a dynamic model that continuously adapts over time, the above methods,
as with most existing ones in literature, are not designed for online updates; instead, they rely on
periodic model retraining or fine-tuning. To ensure fair comparison, we implement various periodic

2Besides linear interpolation, we have also tried non-linear interpolation (e.g., sinusoidal or Bézier curves)
as well as various configurations of the initial and final settings. The conclusions from evaluation results are
consistent across these variants.
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strategies for retraining/fine-tuning for these methods. These strategies not only vary the duration of
the period, but also how much historical information to use in each retraining/fine-tuning step: one
could use recent queries or all past queries (as long as the data distribution is stable). Finally, most
models require some initial training. We give each model access to a fixed set of sinit initial training
queries along with their observed selectivities, drawn from the first workload state distribution in the
sequenceW (i.e., based on Q1 and D1). Algorithm performance is then evaluated on the sequence
of testing queries in Z separate from the initial training queries. Unless otherwise specified, we
set sinit = 2,000 for each model M ∈ {CDF,MSCN, PtsHist}. We then explore the following general
adaptation strategies:

• M-S: After initialization, the model remains static and is used to predict on Z without any further
model updates.

• M-R (w, p): After initialization, the model is retrained every p queries using the most recent w
queries. When w =∞, the model is retrained on all queries seen so far.

• M-T (w, p): After initialization, the model is fine-tuned (as opposed to fully retrained) after every
p queries using the most recent w queries. This strategy is supported only by MSCN and CDF, where
updates are performed using stochastic gradient descent on the w queries for a few epochs. It is
not applicable to PtsHist, which requires solving a non-negative least-squares problem and does not
support incremental updates.

Performance metrics. To measure predictive performance, we use several metrics. For overall
accuracy, we use two standard measures: RMSE (Root Mean Squared Error) and percentile
Q-Error Moerkotte et al. (2009). Given a set of n test queries {R1, . . . , Rn} with estimated
selectivities ŝ(Ri) and true selectivities s(Ri), RMSE is defined as ( 1n

∑n
i=1 (ŝ(Ri)− s(Ri))

2
)1/2;

Q-error(p) is defined as the p-th percentile of the set of relative errors:
{ max{ŝ(Ri), s(Ri)}/min{ŝ(Ri), s(Ri)} : i ∈ [n] } .

While RMSE focuses on absolute error and penalizes large deviations heavily, Q-error highlights
relative error, capturing performance across varying scales of selectivity.

Finally, to be practical, a model must adapt efficiently and provide fast predictions. Therefore, we
also measure the computation overhead of model retraining/fine-tuning as well as inference. All
experiments were conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 5215 CPU
@ 2.50GHz, 256 GB of RAM, and a NVIDIA GeForce RTX 3090 GPU (24 GB), running CUDA
12.8.

D.1 FIXED DATA, DRIFTING QUERIES

Table D.1: Selectivity estimation accuracy and training cost under gradual and abrupt query drifts
on Power-2d and Power-7d workloads. ▶ marks the lowest error or training time; ▷ marks the
second- and third-lowest.

Method
Power-2d Gradual Power-2d Abrupt Power-7d Gradual Power-7d Abrupt

RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train
q-err q-err (s) q-err q-err (s) q-err q-err (s) q-err q-err (s)

DUSS ▷0.026 ▷1.154 ▶2.6 ▷5 ▶0.027 ▷1.055 ▶1.8 ▷5 ▶0.092 ▶1.364 ▷14.9 ▷9 ▶0.072 ▶1.215 ▶17.9 22
CDF-R (∞, 2k) 0.105 2. 24.9 236 0.242 11.096 4410.0 245 0.195 2.397 22.4 296 0.215 3.196 126.1 288
CDF-R (∞, 500) 0.063 1.439 4.0 1176 0.176 1.556 237.0 1224 0.139 1.679 ▷11.0 1361 0.164 3.221 ▷60.0 1309
CDF-R (2k, 2k) 0.095 1.761 12.0 255 0.363 8. 4410.0 277 0.179 2.471 33.0 290 0.221 3.330 2163.0 288
MSCN-R (∞, 2k) 0.099 1.579 12.0 49 0.201 3.042 4410.0 50 0.171 2. 23.9 52 0.215 4.442 217.3 55
MSCN-R (∞, 500) 0.071 1.435 4.8 232 0.145 1.613 45.0 252 0.148 1.525 ▶7.0 248 0.168 2.446 ▷47.6 253
MSCN-R (2k, 2k) 0.102 1.557 12.0 19 0.273 458. 4410.0 14 0.217 3. 50.5 20 0.263 10.221 1998.0 25
PtsHist-R (∞, 2k) ▷0.036 1.178 4.6 135 ▷0.135 ▷1.027 1709.0 150 0.106 1.484 38.2 131 ▷0.104 ▷1.340 153.7 134
PtsHist-R (∞, 500) ▶0.016 ▶1.110 ▷3.4 632 ▷0.086 ▶1.017 ▷6.6 711 ▷0.101 ▷1.469 35.0 607 ▷0.095 ▷1.296 75.9 616
PtsHist-R (2k, 2k) ▷0.036 ▷1.116 ▷3.7 73 0.289 626. 4612.0 79 ▷0.103 ▷1.456 36.6 76 0.210 3.745 2584.0 80

CDF-T (2k, 2k) 0.099 2. 24.1 54 0.271 269. 4607.0 51 0.197 2.541 41.0 68 0.257 9. 241.5 72
CDF-T (500, 500) 0.058 1.501 6.0 109 0.181 2. 2765.0 108 0.163 2.124 21.5 123 0.197 3.157 283.5 121
MSCN-T (2k, 2k) 0.147 2.141 23.0 10 0.279 345.471 4227.0 6 0.189 2.112 38.1 10 0.201 3.502 105.1 ▶5
MSCN-T (500, 500) 0.071 1.599 8.2 12 0.198 2.269 618.1 8 0.133 1.846 10.9 12 0.195 3.002 120.4 ▷10

DUSS-S 0.149 5.848 22.4 ▶3 0.224 6.149 ▷40.3 ▶3 0.203 2.808 130.2 ▷6 0.110 1.366 159.1 12
CDF-S 0.181 10. 4000.0 15 0.260 53.5 4643.0 24 0.320 20.330 146.0 24 0.250 9.210 67.2 18
MSCN-S 0.181 11. 4076.0 ▶3 0.275 20.280 4608.0 ▶3 0.310 15.554 116.9 ▶2 0.215 4.749 64.7 ▶5
PtsHist-S 0.137 797. 797.0 13 0.239 9.121 4609.0 14 0.177 2.491 138.0 13 0.113 1.580 200.0 13

We first consider the simpler setting where the data distribution remains fixed, while the query distri-
bution undergoes drift. Although this setting is “simpler,” it still presents considerable challenge for
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learners relying only on query-feedback. We focus on single-table range selection queries over the
Power and Forest. For each dataset, we compare competing query-driven approaches under multiple
workloads, with the number of dimensions in the query range varying from 2 to 7, and query drift
being either gradual or robust. The change in range dimensionality is intended to evaluate the mod-
els under varying degrees of query complexity. Each workload consists a sequence of n = 10,000
testing queries, separate from the initial sinit training queries.

Results on Power. Table D.1 presents results for Power-2d and Power-7d under both gradual and
abrupt drift scenarios. To help spot top performers, we highlight the best values in each column
representing a performance metric. Note that the reported training times (“Train” column) broadly
include model initialization using the sinit training queries, as well as all subsequent updating, re-
training, or fine-tuning costs incurred while processing the testing workload.

As we can see from Table D.1, DUSS consistently delivers the best trade-off between accuracy and
efficiency. It ranks among the top three for all accuracy metrics across workloads, while incurring
some of the lowest training times. In contrast, competing methods occasionally match or slightly
surpass its accuracy, but only do so by incurring substantially higher training costs. For example,
for Power-2d under gradual drift, PtsHist achieves marginally lower RMSE than DUSS, but requires
over 120× more training time. As the query drift intensifies—particularly in high-dimensional or
abrupt settings—the advantage of DUSS becomes even more pronounced: it is the only method to
maintain superior accuracy with minimal training costs—typically under 22 seconds in total. (To
put this number in context, it represents a mere 2% of the time needed to execute all queries in the
workload.)

These results also shed light on the effectiveness of different adaptation strategies. Static baselines,
while requiring no further cost to maintain, consistently underperform in accuracy, highlighting the
importance of model adaptability in a dynamic setting, even if only the query distribution drifts (and
the data distribution does not). Among the adaptive variants, M-R (∞, 500)—which retrains on the
full query history at high frequency—typically delivers the highest accuracy, but incurs substantial
training time. Reducing the frequency to M-R (∞, 2000) lowers cost, though at the expense of accu-
racy. Fine-tuning strategies like M-T (500, 500), which incrementally update the model using fewer
epochs, strike a middle ground: they lower overhead compared to full retraining while improving
accuracy over infrequent retraining. However, they still cannot match the best-performing retrained
models, and they remain more costly than DUSS.

Moreover, we note that the right adaptation strategy depends heavily on the drift scenario. Under
gradual drift, retraining on only recent queries (e.g., M-R (2k, 2k)) is often sufficient and cost-efficient.
However, this approach performs poorly under abrupt drift—sometimes it is even worse than a static
model—as it neglects earlier but still relevant queries. In such cases, retraining on the full query
history, as in M-R (∞, 2k), proves more robust and reliable. In contrast, DUSS does not have this
problem of having to pick the right adaptation strategy at all.

Additional results on Power and Forest. Complementing Table D.1, Figure D.2 visualizes the
trade-off between accuracy (RMSE) and maintenance cost (log-scaled training time) for Power-
2d/7d and Forest-2d/10d under both gradual and abrupt drift scenarios. The trade-offs achieved by
different variants of the same approach are connected into one curve. For DUSS, we additionally
consider a “static” variant where we freeze its model after initiation and prevent it from dynamic
adaption; the performance of this variant is then connected to the normal DUSS. Other approaches
are shown under three retraining strategies with varying retraining frequencies: M-S, M-R (∞, 2k),
and M-R (∞, 500).

DUSS’s ability to achieve high accuracy with minimal maintenance cost is clearly illustrated in
the figure. Across all scenarios, including high-dimensional and abrupt drift cases, DUSS achieves
strong accuracy with under 30 seconds of training time. In comparison, competing methods require
significantly more time to reach similar performance. PtsHist-R (∞, 500) is the most competitive among
the baselines in terms of accuracy, especially under gradual drift in low-dimensional settings. How-
ever, it still falls short of DUSS under abrupt drift and incurs significantly higher cost, up to 1,000
times more in cases like Forest-2d. CDF is often more accurate than MSCN (but not always); at the
same time, it is more costly.
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Table D.2: Average total training time and end-to-end inference time (per query) comparison across
methods.

DUSS CDF-R (∞, 500) MSCN-R (∞, 500) PtsHist-R (∞, 500)

Train (s) 12 1363 236 1603
Inference (ms) 0.4 1.5 1.4 11.9
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Figure D.2: RMSE vs. log-scaled training time (in seconds) for different estimators under gradual
and abrupt query drift.

Inference cost. Last but not least, we measure the average end-to-end inference time per query for
different models across various scenario enumerated in Figure D.2. Results are shown in Table D.2.
Inference speed is a critical factor in assessing the practicality of a selectivity estimator, as slower
inference slows down query optimization and prolongs end-to-end query latency. Thanks to its
simple model, DUSS, even with a straightforward implementation, achieves the lowest inference
time among all approaches. Deep-learning approaches require preprocessing steps such as zero-
padding, mask generation, and tensor conversion to ready each incoming query for estimation. Both
DUSS and deep-learning approaches offer reasonable inference speed, typically under 1.5ms per
query. In contrast, PtsHist incurs significantly higher inference overhead due to its more complex
internal structure and geometric computations. Although PtsHist can occasionally outperform DUSS
in accuracy after nontrivial training efforts, its high inference cost limits its suitability for latency-
sensitive scenarios.

D.2 DRIFTING QUERY AND DATA DISTRIBUTIONS

We now consider a more challenging and realistic scenario where both the query and data distribu-
tions are drifting simultaneously over time. Table 5.1 presents the results for four workloads based
on IMDb. The queries in IMDb-2d come from a 2-way join query template, with local range selec-
tions on both tables; those in IMDb-7d come from a 7-way join query template, with local range
selections on 6 tables. Changes in the distribution of query ranges are generated as described earlier
in this section. To simulate changes in data distribution, we partition the IMDb dataset based on
the production year of the movies (title.production year). Specifically, we define five slices: 2015-
2006, 2012-2003, 2009-2000, 1999-1981, and 1980-1880, denoted D1 to D5, respectively. Each
slice includes the movies produced within the corresponding year range, along with associated data
in other tables, and is treated as a standalone database instance. The first three instances cover recent
movies in a sliding-window fashion: each slice is 10 years and overlaps with adjacent slices by 7
years. The last two slices include older movies, with no overlap with the earlier slices. In effect,
the sequence simulates somewhat gradual data distribution shifts between D1 to D3, followed by
more abrupt and significant changes to D4 and D5. For the query workload, we again consider the
two types of query drifts studied in Section D.1, gradual and abrupt. Each query workload contains
n = 50,000 queries, divided into equal-sized chunks and assigned to the five corresponding data
slices in order.

For each competing query-driven method M, we evaluate two retraining strategies: M-R (2k, 2k) and
M-R (∞, 2k). In the M-R(∞, 2k) setup, instead of using all historical queries to retrain, we restrict them
to queries that were executed against the current database slice (if they are available). This restriction
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is intuitive because earlier queries would have provided incorrect selectivity feedback. On the other
hand, the knowledge about when the underlying database slice has changed is in fact unavailable to
the model; therefore, we are effectively giving this setup an unfair advantage over others.

From Table 5.1, we observe trends consistent with those in Section D.1, despite the added difficulty
of simultaneous shifts in both data and query distributions. First, DUSS consistently achieves the
best accuracy and training efficiency across both gradual and abrupt query drift settings, outper-
forming all other query-driven methods—including PtsHist, the strongest among them. Second, as
before, retraining on all observed queries yields better accuracy than using only recent windows—
particularly under abrupt query drifts, where relying solely on recent queries can be detrimental.
Third, CDF generally achieves lower RMSE than MSCN, but this improvement comes at the cost of
significantly higher training time.

In Figure 5.1, we track RMSE and Q-error using a sliding window of size 100 on IMDb-7d with
abrupt query drift—our most challenging setting. Each metric reflects the average error within a
window. A well-adapting model should sustain low error even with small windows. We compare
DUSS against PtsHist-R (∞, 2k), the most competitive baseline in Table 5.1. As expected, both models
exhibit error spikes around distribution shifts—such as transitions between data slices (e.g., from Dn

to Dn+1) and query shifts at 15K and 45K. However, DUSS adapts more quickly and returns to
good accuracy sooner. For RMSE, it has lower worst-case error and faster recovery, whereas PtsHist
lags behind even with much heavier retraining. For Q-error, DUSS remains consistently lower with
smaller fluctuation. These results further demonstrate DUSS’s ability to adapt to both data and
query distribution shifts.

E ADDITIONAL RELATED WORK

Cardinality Estimation. Cardinality/Selectivity estimation is a fundamental problem in query pro-
cessing Lipton et al. (1990); Poosala & Ioannidis (1997); Aboulnaga & Chaudhuri (1999); Bruno
et al. (2001); Srivastava et al. (2006); Markl et al. (2007); Kaushik & Suciu (2009). Recently,
there has been significant interest in ML-based techniques for selectivity estimation Park et al.
(2020); Hasan et al. (2020); Kipf et al. (2019); Yang et al. (2020); Dutt et al. (2019); Hilprecht
et al. (2020); Wang et al. (2021). Broadly, ML-based approaches falls into two categories, including
data-driven Hilprecht et al. (2020); Yang et al. (2020); Hasan et al. (2020) and query-driven Park
et al. (2020); Kipf et al. (2019); Hu et al. (2022); Wu et al. (2025); Dutt et al. (2019). Data-driven
methods aim to model the underlying data distribution by directly accessing full tables or sampled
subsets. In contrast, query-driven methods focus on specific query workloads and typically learn
from query–selectivity feedback. A large variety of models has been proposed for the query-driven
setting, including methods based on probability distributions (e.g., histograms, mixture models), tree
ensembles, graphs and deep neural networks. For a comprehensive survey, see Wang et al. (2021).

Several strategies have been adopted to handle query and data drift. For example, Robust-
MSCN Negi et al. (2023) extends basic MSCN Kipf et al. (2019), leveraging up-to-date DBMS
statistics and data sampling-based features. On the other hand, CDF-MSCN Wu et al. (2025)
shows that distribution-based models are robust against query drift and modifies MSCN to have
this property. However, when the drift is enough, no fixed model can perform well without re-
training/finetuning. This has led to sophisticated techniques such as Warper Li et al. (2022), which
employs a Generative Adversarial Network (GAN) to synthesize additional training queries. More
recently, ShiftHandler Wu & Ives (2024) proposes a replay buffer to select a smaller, high-impact
subset of training queries for retraining. DDUp Kurmanji & Triantafillou (2023) considers how
to update models in the presence of data updates. Typically, methods used to maintain an accurate
model in fully dynamic environments require data access. This is in contrast to our algorithm DUSS
which only works based on observtaions of user generated queries and their cardinalities. For ex-
ample, Warper Li et al. (2022) and ShiftHandler Wu & Ives (2024) accesses data by re-executing
queries; Robust-MSCN Negi et al. (2023) rebuilds its sample bitmaps.

Learning Under Drift. The general problem of learning under drift has been extensively studied
in the machine learning community and giving a full overview is beyond our scope. Early work
by Helmbold & Long (1994) established learning bounds under the assumption that only the target
concept may drift. Subsequently, significant extensions were made by Bartlett (1992); Barve & Long
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(1996). We use the framework by Mohri & Medina (2012), who themselves extended the results of
Bartlett (1992) to real-valued functions.

F LLM DECLARATION

All intellectual contributions in this paper are solely due to the authors. We made limited use of
a large language model (ChatGPT) to edit prose. Specifically, certain paragraphs written by the
authors were lightly polished for style, grammar and clarity. The model was not involved in the
generation of research ideas, including algorithms, proofs, or design of experiments. AI-assistance
was used for coding our algorithms, especially for debugging.
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