

000 001 002 003 004 005 LEARNED CARDINALITY ESTIMATION UNDER QUERY 006 AND DATA DISTRIBUTION DRIFT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022

ABSTRACT

023 The problem of estimating the cardinality of queries is central to database sys-
024 tems. Recently, there has been growing interest in applying machine learning to
025 this task. However, real-world databases are dynamic: the underlying data evolves
026 and query patterns change over time. A key limitation of existing learning-based
027 approaches is their susceptibility to drift. To the best of our knowledge, no prior
028 method provides provable performance guarantees in fully dynamic environments.
029 In this paper, we design an online learner that can, by passively observing queries
030 and their corresponding cardinalities, maintain an effective model with strong per-
031 formance guarantees even under continuous distributional drift. The algorithm ap-
032 plies to a broad class of queries, including orthogonal range-queries and distance-
033 based queries commonly used in practice. Our work demonstrates that effective
034 cardinality estimation in a dynamic setting possible even without direct access to
035 the dataset.
036

037 Beyond our algorithmic results, we establish foundational results on the learnabil-
038 ity of distribution-based models in static and dynamic environments. Such models
039 are valued for their interpretability and inherent robustness to drift, making them
040 especially important in practice.
041

1 INTRODUCTION

042 Estimating the cardinality of a database query, i.e., the number of tuples in a dataset that satisfy
043 the query predicate, is a fundamental problem in databases (Lipton et al., 1990). Query optimizers
044 depend on accurate estimates of query cardinalities to choose good execution plans, and over the last
045 decade (Ding et al., 2024), there has been increasing interest on using machine learning (ML) for
046 this task (Wang et al., 2021). In this paper, we focus on the *query-driven* regime, where the learner
047 learns a regression model for cardinality estimation from past queries and their cardinalities (Kipf
048 et al., 2019; Dutt et al., 2019; Park et al., 2020; Wu et al., 2025; Hu et al., 2022).
049

050 In the real world, most databases are dynamic. Both the query distribution (which regions of the
051 data space are queried) and the data distribution (the state of the table itself) drift over time. When
052 queries move into unseen regions or when the data distribution shifts significantly, the performance
053 of learned cardinality estimators is known to degrade (Negi et al., 2023; Wu et al., 2025). While
054 there exist ML-based methods with performance guarantees under limited drift (Wu et al., 2025; Hu
055 et al., 2022), to the best of our knowledge, none offer guarantees in a fully dynamic environment. In
056 an orthogonal line of work, Zeighami & Shahabi (2024a;b) characterize when learned methods can
057 succeed, including under drifting conditions, but do not prescribe concrete learning algorithms.
058

059 This paper considers the setting where both query and data distributions may evolve over time. The
060 learner only has access to query-cardinality pairs obtained by *passively* observing the database. For
061 each new query, it produces an estimate using its current model; once the query is executed, the true
062 cardinality is revealed. The learner may use this information to improve its model but must also be
063 efficient in doing so. We note that systems for handling drift—e.g., Li et al. (2022); Negi (2024);
064 Wu & Ives (2024)—typically have much more information at their disposal, including direct access
065 to the dataset and update sequence, as well as the ability to *actively* generate additional queries.
066 In contrast, we pose the following question: *Is it possible to design an online learning algorithm*
067 *that can maintain an effective and efficient cardinality estimator solely by passively observing user-*
068 *generated queries?*

054 **Our contributions.** We establish that the answer to the above question is indeed affirmative under
 055 some natural conditions. Specifically, we make the following contributions:
 056

- 057 1. We formalize cardinality estimation under drift as an online-learning problem, where the
 058 learner observes a sequence of query–cardinality pairs, each drawn from an evolving dis-
 059 tribution induced by drifting queries and data (Section 2).
- 060 2. We propose an online learning algorithm (Section 3), *Dynamically Updated Support Set*
 061 (DUSS), which maintains a distribution-based model of the underlying dataset solely from
 062 query–cardinality feedback. DUSS supports a broad class of queries, including all standard
 063 geometric range queries (boxes, balls, halfspaces, etc.).
- 064 3. We prove that when both data and query distributions drift gradually, DUSS guarantees
 065 small expected error on each new prediction (Section 4). Furthermore, even if the query
 066 distribution changes arbitrarily, as long as the data distribution remains stable, DUSS en-
 067 sures that the number of times its error exceeds a threshold is bounded. Together, these
 068 conditions cover many practical situations.
- 069 4. Beyond DUSS, we establish foundational results on the learnability of distribution-based
 070 models in static and dynamic environments (see Theorems 2.1 and 4.3). Such models are
 071 widely used in database systems; their interpretability and inherent robustness to drift make
 072 them especially valuable in practice.
- 073 5. We implement a prototype of DUSS and compare it with other methods (Section D).
 074 Across diverse settings, DUSS fulfills its provable guarantees while consistently outper-
 075 forming baselines in both accuracy and efficiency.

076 **Related Work.** There is extensive work on cardinality estimation in the database community; a
 077 comprehensive review is beyond the scope of this paper. Here we briefly discuss the work most
 078 closely related to ours; see Appendix E for a more detailed discussion. Despite extensive work
 079 on learned cardinality estimation, techniques with provable performance guarantees are limited.
 080 Hu et al. (2022) showed that distribution-based models are PAC-learnable with sample complexity
 081 bounds. Wu et al. (2025) extended this to hypothesis classes defined via signed measures (Stein
 082 & Shakarchi, 2005), obtaining the same order of sample complexity and showing robustness under
 083 limited query drift. Both works proposed concrete learners from query–cardinality pairs: Hu et al.
 084 (2022) designed a learner that reconstructs a distributional representation of the dataset by solving a
 085 quadratic program, while Wu et al. (2025) showed a neural-network-based learner and proved that
 086 the network maintains a signed measure, thereby enjoying theoretical guarantees. However, their
 087 results do not extend to the fully dynamic setting, where both query and data distributions evolve.

088 The only other theoretical study of learned cardinality estimation under drift is by Zeighami &
 089 Shahabi (2024b). They showed existential results under the framework of *distribution learnability*.
 090 These results are not comparable to ours for several reasons. For example, they assume access to data
 091 updates while our framework is purely based on observing workload queries with no direct access to
 092 data. Moreover, Zeighami & Shahabi (2024b) did not explicitly design a learner, while we provide
 093 a concrete algorithm with provable guarantees for a broad class of queries, including all standard
 094 geometric queries. Complementary to these results, Zeighami & Shahabi (2024a) established lower
 095 bounds on the model size necessary for cardinality estimation.

096 2 THE LEARNING MODEL

099 A *range space* $\Sigma = (X, R)$ consists of a *universe* of objects X and a family of subsets $R \subseteq 2^X$ called
 100 *ranges*. For example, if $X = \mathbb{R}^d$, then R may be the set of all boxes, balls, or halfspaces in \mathbb{R}^d . In our
 101 context, X is the domain of a dataset, and R corresponds to families of queries, such as orthogonal
 102 range queries (boxes), distance-based queries (balls), or linear-inequality queries (halfspaces). We
 103 model a *dataset* C as a finite multiset of tuples from X . For a query range $R \in R$, its *cardinality* on
 104 C is $|C \cap R|$, the number of tuples in the dataset contained in R .

105 A *data distribution* over Σ is a probability distribution over X . For a data distribution D , the
 106 corresponding *selectivity function* with respect to Σ , denoted $\mu_D : R \rightarrow [0, 1]$, is defined by
 107 $\mu_D(R) = \Pr_{x \sim D}[x \in R]$, i.e., the probability that a random point drawn from D lies in $R \in R$. For
 108 a dataset C , if we define the distribution D_C to be $1/|C|$ for all points in C and 0 otherwise, then

108 for any query R , $|\mathbf{C} \cap R| = |\mathbf{C}| \cdot \mu_{D_{\mathbf{C}}}(R)$, so the cardinality-estimation problem is a special case
 109 of the selectivity-estimation problem.
 110

111 In this paper, we study the general problem of learning selectivity functions over range spaces in
 112 a dynamic environment where the query and data distributions drift over time. The learner has no
 113 access to the underlying data distribution and must rely only on *observations* of the form $z = (R, s)$,
 114 i.e., query-selectivity pairs in $Z = \mathbf{R} \times [0, 1]$ to learn the selectivity function. For clarity, we first
 115 present the problem in the static setting and then extend it to the dynamic setting.
 116

2.1 LEARNING IN A STATIC SETTING

118 We model the static setting by assuming a fixed *query distribution* Q over \mathbf{R} and a fixed *data distribution*
 119 D over \mathbf{X} . This corresponds to the fact that the query patterns are stable and the dataset is
 120 fixed. The learner receives observations of the form $z = (R, s)$, where z is a query-selectivity pair
 121 in Z . An observation is generated by first sampling a query $R \sim Q$ and then setting $s = \mu_D(R)$.
 122 We call the distribution of z , induced jointly by Q and D , the *state distribution* (SD) W over Z .
 123

124 For a *hypothesis* $h : \mathbf{R} \rightarrow [0, 1]$, define the loss¹ on an observation $z = (R, s)$ as $\ell_h(z) := |h(R) - s|$.
 125 The *expected error* of h with respect to W is $\text{err}_W(h) = \int_z \ell_h(z) W(z) dz$. Let \mathcal{H} be a collection
 126 of hypotheses and let $\varepsilon \in (0, 1)$ be a tolerance parameter for acceptable error. Informally, the goal
 127 is to design a learner such that, for any W , it can (with high probability) learn from a finite number
 128 of observations drawn from W a hypothesis $h \in \mathcal{H}$ satisfying $\text{err}_W(h) \leq \inf_{h' \in \mathcal{H}} \text{err}_W(h') + \varepsilon$.
 129 If such a learner exists for \mathcal{H} , the class is said to be ε -*learnable* (see Haussler (1992) for the formal
 130 definition). The number of observations required is called the *sample complexity*.
 131

132 **Our results.** Our main contribution is to establish improved sample complexity bounds for
 133 *distribution-based hypothesis sets*. Suppose $\mathbf{X} \subseteq \mathbb{R}^d$ and \mathbf{R} corresponds to geometric objects of
 134 constant size such as boxes, balls, or halfspaces (an arbitrary convex polygon is not of constant
 135 size). Let \mathcal{D} be a family of probability distributions over \mathbf{X} (e.g., histograms, mixture models, or
 136 probabilistic graphical models). Define the hypothesis set $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}} = \{\mu_D \mid D \in \mathcal{D}\}$; that
 137 is, \mathcal{M} is the class of selectivity functions induced by distributions in \mathcal{D} . For example, if \mathcal{D} is the
 138 family of all histograms on \mathbf{X} , then \mathcal{M} corresponds to the class of selectivity functions defined by
 139 histograms. We obtain the following.
 140

141 **Theorem 2.1.** *Let $\Sigma = (\mathbf{X}, \mathbf{R})$ be a range space, where $\mathbf{X} \subseteq \mathbb{R}^d$ and let \mathbf{R} correspond to geometric
 142 objects of constant size such as boxes, or balls or halfspaces. Let \mathcal{D} be a family of probability
 143 distribution over \mathbf{X} and let $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ be the corresponding family of selectivity functions.
 144 Then, \mathcal{M} is ε -learnable with sample complexity $O(d^2 \varepsilon^{-2} (\log^4 \varepsilon^{-1}))$ for any $\varepsilon \in (0, 1)$.*
 145

146 Our result improves upon the previously best-known bound of $O(\varepsilon^{-d-2} \text{polylog}(\varepsilon^{-1}))$ (Hu et al.,
 147 2022; Wu et al., 2025). In fact, our result holds for a more general setting as stated in Theorem C.1.
 148

2.2 LEARNING IN A DYNAMIC SETTING

149 In a dynamic environment, both the query distribution and the data distribution may evolve over
 150 time, as query patterns shift and the underlying data itself changes. To capture drift, we allow the
 151 SD to vary with time. Formally, we assume that observations are drawn from a sequence of SD's
 152 $W = \langle W_1, W_2, \dots \rangle$, where the t -th observation $z_t = (R_t, s_t)$ is sampled from W_t . Furthermore, we
 153 assume that W is *realizable*; i.e., there exist underlying query and data distributions Q_t and D_t such
 154 that $R_t \sim Q_t$ and $s_t = \mu_{D_t}(R_t)$. Intuitively, Q_t describes how the t -th query is generated, while
 155 D_t represents the data distribution against which the query is evaluated. The sequences $\langle Q_1, Q_2 \dots \rangle$
 156 and $\langle D_1, D_2 \dots \rangle$ capture the evolution of the query and data distributions, respectively.
 157

158 Let $\mathcal{H} \subseteq \{\mathbf{R} \rightarrow [0, 1]\}$ be a hypothesis set. In a dynamic environment, any fixed hypothesis will
 159 quickly become obsolete, so learning a single hypothesis no longer suffices. Instead, we adopt an
 160 *online learning* framework, where the learner must produce a sequence of hypothesis $\langle h_1, h_2, \dots \rangle$:
 161 for each t , upon seeing the prefix $\langle z_1, \dots, z_t \rangle$ of the observations, the learner produces a function
 162 $h_t \in \mathcal{H}$ to be used for predicting the selectivity for the next range R_{t+1} ; the predicted selectivity
 163 can then be compared with the observation z_{t+1} . In other words, the learner repeatedly predicts
 164

¹Other loss functions, such as squared loss, can also be used; we adopt absolute loss here for simplicity.

162 the selectivity for each incoming query, receives feedback in the form of the true selectivity after
 163 query execution, and then subsequently updates its model. We consider two natural objectives for
 164 an online learner over a sequence of SDs $\mathcal{W} = \langle W_1, W_2, \dots \rangle$. Let $\varepsilon \in [0, 1]$ be the error threshold.
 165

- 166 **1. Tracking:** Ideally, we want the learner to ensure that the *current hypothesis* h_t always gives good
 167 prediction for the next query. That is, the expected error of using h_t with respect to the next SD
 168 is small: i.e., $\text{err}_{W_{t+1}}(h_t) \leq \varepsilon$ for every $t > 0$.
- 169 **2. Low regret:** Instead of insisting on the accuracy of every prediction, we want the learner to not
 170 incur too many big errors over time. Formally, we define the overall regret (up to time t) as
 171 the sum $\sum_{i=1}^t \mathbf{1}[\ell_{h_i}(z_i) > \varepsilon]$, where $\mathbf{1}[\cdot]$ returns 1 if the input condition holds or 0 otherwise.
 172 Ideally, we want to keep the overall regret low for any $t > 0$.

173 In general, if the drift between consecutive SDs can be arbitrarily large, it would be impossible to
 174 obtain any guarantees. Hence, we propose reasonable conditions under which the above objectives
 175 can be achieved.
 176

177 **Discrepancy.** To measure how much the environment has changed, we adopt a hypothesis-class
 178 dependent notion called *discrepancy*; see Mohri & Medina (2012). For two SD's W, W' over
 179 $Z = \mathbb{R} \times [0, 1]$, the discrepancy is defined as $\text{disc}_{\mathcal{H}}(W, W') = \sup_{h \in \mathcal{H}} |\text{err}_W(h) - \text{err}_{W'}(h)|$. Intu-
 180 itively, $\text{disc}_{\mathcal{H}}(W, W')$ measures how much a change in the underlying SD from W to W' affects the
 181 learner's view. For example, suppose W and W' are induced by (Q, D) and (Q', D') . If $D \neq D'$
 182 but $Q = Q'$ and the queries only touch regions unchanged between the two data distributions, then
 183 $\text{disc}(W, W') = 0$, since the change has no effect from the learner's perspective.
 184

185 **Our results.** We propose a novel algorithm called DUSS (Section 3) for the dynamic setting,
 186 with good provable guarantees on its performance. Suppose $X \subseteq \mathbb{R}^d$ and R corresponds to stan-
 187 dard geometric objects such as boxes, balls, or halfspaces. Consider the family \mathcal{D} of all *discrete*
 188 *distributions* over X and the family $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ of all selectivity functions with respect to \mathcal{D} . Let
 189 $\mathcal{W} = \langle W_1, W_2, \dots \rangle$ be a sequence of SDs, where each W_t is induced by a query distribution Q_t
 190 and a data distribution D_t . DUSS accepts a parameter $\varepsilon \in [0, 1]$ and processes a sequence of ob-
 191 servation $\langle z_1, z_2, \dots \rangle$, where each $z_i \sim W_i$. At the beginning of step t , it has a selectivity function
 192 $\mu_{t-1} \in \mathcal{M}$. After processing each z_t , it updates its hypothesis from μ_{t-1} to μ_t , based on $\ell_{\mu_{t-1}}(z_t)$.
 193 It maintains the following guarantees.

- 194 **1. Tracking under gradual drift (Theorem 4.5).** If both the query and data distribution can
 195 change, but the drift between any two consecutive SDs is small, i.e., $\text{disc}(W_t, W_{t+1}) = o(\varepsilon^3)$
 196 for every t , then DUSS ensures that for every t , it produces $\mu_t \in \mathcal{M}$ such that $\text{err}_{W_{t+1}}(\mu_t) \leq \varepsilon$.
- 197 **2. Low regret under stable data but arbitrary query drift (Theorem 4.2).** If the data distribu-
 198 tion remains “stable” (a notion we will formalize later), even if the query distribution changes
 199 arbitrarily, DUSS guarantees low regret: i.e., for any $t > 0$, $\sum_{i=1}^t \mathbf{1}_\varepsilon(\ell_{\mu_i}(z_{i+1}))$ is $O(\varepsilon^{-3})$.
 200 Moreover, DUSS only needs to update its hypothesis $O(\varepsilon^{-3})$ times.

201 In other words, when both query and data distributions evolve gradually, DUSS gives good pre-
 202 dictions consistently. Even if the query distribution drifts arbitrarily, DUSS still keeps regret low
 203 as long as the data distribution remains stable. Arbitrary drift in the data distribution is hostile to
 204 any passive learner without access to the data, but in large databases with row-level updates such
 205 events between consecutive queries are rare. Beyond DUSS, we also prove that the same tracking
 206 guarantees hold for any online learner that maintains a hypothesis in $\mathcal{M}_{\Sigma, \mathcal{D}}$ with ε -error on the
 207 most recent $O(d^2 \varepsilon^{-2} \text{polylog}(1/\varepsilon))$ observations, extending our static guarantees naturally to the
 208 dynamic setting (Theorem 4.3).
 209

210 3 DUSS: ONLINE SELECTIVITY LEARNING ALGORITHM

211 Let $\Sigma = (X, R)$ be a range space. Our algorithm DUSS (*Dynamically Updated Support Set*) handles
 212 general range spaces; for simplicity assume $X \subseteq \mathbb{R}^d$ and R are geometric objects (boxes, balls,
 213 halfspaces). Recall $Z = \mathbb{R} \times [0, 1]$. DUSS maintains a discrete distribution \widehat{D} over X as its model,
 214 updated on a stream of observations $\mathcal{Z} = \langle z_1, z_2, \dots \rangle$ from Z . Let $\mathcal{Z}_t = \langle z_1, \dots, z_t \rangle$, and $\mathcal{Z}_{t,k}$
 215 denote the suffix of \mathcal{Z}_t of length $\min\{t, k\}$.

216 **Overview.** DUSS accepts an error threshold ε and a window size $m \geq 0$. It maintains a weighted
 217 support \widehat{D} over \mathcal{X} and a selectivity function $\mu_{\widehat{D}}$. At time t , given $z_t = (R_t, s_t)$, the algorithm treats
 218 $\mathcal{Z}_{t,m}$ as a training set and aims to maintain the invariant $|\mu_{\widehat{D}}(R_i) - s_i| \leq \varepsilon$ for all $(R_i, s_i) \in \mathcal{Z}_{t,m}$.
 219 If $\mu_{\widehat{D}}(R_t)$ under- or overestimates s_t , DUSS adjusts weights inside or outside R_t until balanced.
 220 If \widehat{D} drifts too much, it revisits $\mathcal{Z}_{t,m}$ to restore the invariant, or resets entirely when a large data
 221 shift is detected. The pseudocode appears in Algorithm 1; below we describe the information and
 222 parameters it maintains, the weight-update rule, and the revisit/reset steps.
 223

224 DUSS stores $\mathcal{Z}_{t,m}$ and maintains a candidate support $S \subseteq \mathcal{X}$. If \mathcal{X} is finite, $S = \mathcal{X}$; if $\mathcal{X} = [0, 1]^d$, S
 225 may be a large random sample or grid. We assume S has enough representational power (formalized
 226 later). Each $p \in S$ has an integer weight $\omega(p)$, initially 1. Let $W_{\text{curr}} = \sum_{p \in S} \omega(p)$, so $\widehat{D} =$
 227 $\{(p, \omega(p)/W_{\text{curr}}) \mid p \in S\}$.

228 **Weight-update.** Given $z_t = (R_t, s_t)$, let R_t be *balanced* if $|\mu_{\widehat{D}}(R_t) - s_t| \leq \varepsilon$, *light* if the estimate
 229 is too small, and *heavy* if too large. If balanced, nothing is done. Otherwise:
 230

231 • If light: set $\chi = \frac{\varepsilon^2/4}{s_t - \varepsilon/2}$ and repeatedly update $\omega(p) \leftarrow (1 + \chi)\omega(p)$ for all $p \in S \cap R_t$ until
 232 balanced.
 233 • If heavy: set $\chi = \frac{\varepsilon^2/4}{1 - s_t - \varepsilon/2}$ and repeatedly update $\omega(p) \leftarrow (1 + \chi)\omega(p)$ for all $p \in S \setminus R_t$ until
 234 balanced.
 235

236 We track COUNT, the number of updates, which is used to trigger resets.
 237

238 **Revisiting the window and Resetting.** Weight-updates may break accuracy for past queries.
 239 We check whether W_{curr} has grown by more than a factor $1/(1 - \varepsilon/2)$ since initialization or the
 240 last revisit. If so, we sequentially process $\mathcal{Z}_{t,m}$, applying weight-updates to any light or heavy
 241 observation. If W_{curr} again grows too much, we repeat. We prove in Section 4.1 that this always
 242 converges and the number of updates remains bounded when the data distribution is stable.
 243 If the data distribution drifts significantly, incremental updates fail. From our analysis, if the data is
 244 stable then $\text{COUNT} \leq \tau_{\text{res}} = 16\varepsilon^{-3} \ln |S|$. Thus, when $\text{COUNT} > \tau_{\text{res}}$, DUSS resets: discarding all
 245 weights and restarting from $\mathcal{Z}_{t,m}$.
 246

247 4 ANALYSIS OF DUSS

248 Let $\Sigma = (\mathcal{X}, \mathcal{R})$ be a range space. Before proceeding with the analysis of DUSS, we introduce the
 249 concept of *VC-dimension*, a standard measure of the *combinatorial complexity* of a range space. The
 250 VC-dimension of Σ , denoted $\text{VC-dim}(\Sigma)$, is the size of the largest $Y \subseteq \mathcal{X}$ such that $\{R \cap Y : R \in \mathcal{R}\} = 2^Y$;
 251 if no such bound exists then $\text{VC-dim}(\Sigma) = \infty$. For example, when $\mathcal{X} = \mathbb{R}^d$ and \mathcal{R} is
 252 the set of boxes, balls, or halfspaces, the VC-dimension is $2d$, $d + 2$, or $d + 1$, respectively. By
 253 contrast, if \mathcal{R} is the set of convex polygons, $\text{VC-dim}(\Sigma) = \infty$. The guarantees in this section hold
 254 when $\text{VC-dim}(\Sigma)$ is bounded.
 255

256 Let \mathcal{D} the class of discrete distributions over \mathcal{X} , and $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ the corresponding class of
 257 selectivity functions. Recall that DUSS processes a sequence of observations $\mathcal{Z} = \langle z_1, z_2, \dots \rangle$,
 258 where each $z_t \in \mathcal{Z} = \mathcal{R} \times [0, 1]$. We analyze DUSS under the assumption that \mathcal{Z} is generated from
 259 a sequence of SDs $\mathcal{W} = \langle W_1, W_2, \dots \rangle$: i.e. for each t , $z_t \sim W_t$, and each W_t is *realized* by a query
 260 distribution Q_t over \mathcal{R} and a data distribution D_t over \mathcal{X} , so that $z_t = (R_t, s_t)$ is obtained by first
 261 sampling $R_t \sim Q_t$ and then setting $s_t = \mu_{D_t}(R_t)$. We emphasize that both D_t and Q_t may change
 262 over time: i.e. $D_t \neq D_{t+1}$ and $Q_t \neq Q_{t+1}$ in general. Since the hypotheses learned by DUSS
 263 during its execution are probability distributions over a fixed support set $S \subseteq \mathcal{X}$, it is intuitively clear
 264 that, for DUSS to be effective, S must possess sufficient representational power to accurately model
 265 the evolving data distribution in \mathcal{W} . We formalize this requirement as follows.
 266

267 **ρ -representative support.** For a range space $\Sigma = (\mathcal{X}, \mathcal{R})$ and a distribution D over \mathcal{X} , a fi-
 268 nite set $\mathcal{A} \subseteq \mathcal{X}$ is called an ϵ -sample (or ϵ -approximation) with respect to D if, for every range
 269 $R \in \mathcal{R}$, $\left| \mu_D(R) - \frac{|\mathcal{R} \cap \mathcal{A}|}{|\mathcal{A}|} \right| \leq \epsilon$. It is known that if $\text{VC-dim}(\Sigma) = d$, then an ϵ -sample of size
 270 $O(\frac{d}{\epsilon^2} \log \frac{1}{\epsilon})$ always exists and can be obtained easily via random sampling (Vapnik & Chervonenkis, 1971). We call a finite subset $S \subseteq \mathcal{X}$ an ρ -representative with respect to a realizable sequence

270 $\mathcal{W} = \langle W_1, W_2, \dots \rangle$ of SD’s if, for every t , there exists a sub-multiset $S_t \subseteq S$ that is a ρ -sample of Σ
 271 w.r.t. D_t . The choice and implementation of ρ -representative supports depends on the range space
 272 Σ . In Section 5, we describe a heuristic for maintaining S for geometric ranges. In the following
 273 analysis, we assume that S is a ρ -representative support of \mathcal{W} with $\rho = c\varepsilon$ for some sufficiently
 274 small constant $c > 0$. Here ε denotes the error tolerance parameter of the algorithm.
 275

276 4.1 STABLE DATA AND ARBITRARILY DRIFTING QUERIES

277 We first analyze the case where the query distribution may drift arbitrarily while the data distribution
 278 remains fixed (later we relax this to a “stable” data distribution). Formally, for every $W_i \in \mathcal{W}$,
 279 we assume $D_i = D^*$, a fixed distribution over X . Thus each observation $z_t = (R_t, s_t)$ satisfies
 280 $s_t = \mu_{D^*}(R_t)$. In contrast, the query distribution may vary freely, i.e., Q_t can differ arbitrarily
 281 from Q_{t+1} , so W_{t+1} may differ from W_t . Our focus here is the *low-regret* objective introduced in
 282 Section 2.

283 Let $\mathcal{H} \subseteq \{h : R \rightarrow [0, 1]\}$ be a hypothesis class, $\mathcal{Z} = \langle z_1, z_2, \dots \rangle$ an observation sequence, and
 284 $\varepsilon > 0$ a tolerance. Let ALG be an online learner producing $h_t \in \mathcal{H}$ after processing z_t . For $t \geq 0$,
 285 define $f_{\mathcal{Z}}(t, \varepsilon) = \sum_{i=1}^t \mathbf{1}[\ell_{h_i}(z_{i+1}) > \varepsilon]$, i.e., the number of observations in \mathcal{Z}_t with error above ε .
 286 We say ALG has regret bound $f(t, \varepsilon)$ w.r.t. \mathcal{W} if $\max_{z \sim W} f_{\mathcal{Z}}(t, \varepsilon) \leq f(t, \varepsilon)$ for all $t \geq 0$. In the
 287 following lemma, we bound the number of times the weight-update step in DUSS is triggered; see
 288 Appendix A for a proof.

289 **Lemma 4.1.** *Let \mathcal{W} be a realizable SD sequence where the data distribution is fixed. For any
 290 observation sequence $\mathcal{Z} \sim \mathcal{W}$, DUSS performs the weight-update step at most $\tau_{\text{res}}(\varepsilon) := O(\varepsilon^{-3} \cdot
 291 \log |S|)$ times, irrespective of the window size m .*

293 Since a weight-update step is only triggered if a new observation is *light* or *heavy*, i.e. DUSS’s
 294 prediction on the observation is off by at least ε , this immediately implies that cumulative regret
 295 is bounded by $O(\varepsilon^{-3} \log |S|)$. A straightforward calculation shows that DUSS performs at least
 296 $\Omega(\varepsilon^{-1})$ weight-update steps between two consecutive revisit steps, and therefore it revisits the sliding
 297 window at most $O(\varepsilon^{-2} \ln |S|)$ times. As in Lemma 4.1, this bound holds independently of the
 298 window size m .

299 Next, recall that DUSS maintains a probability distribution \widehat{D} . Let \widehat{D}_t denote that state of \widehat{D} after
 300 processing z_t . We make the following observations: 1) after DUSS finishes processing z_t , R_t is
 301 neither light nor heavy by design; and 2) between any two revisit steps, the selectivity of every range
 302 with respect to $\mu_{\widehat{D}}$ can change by at most $\varepsilon/2$. Combining these facts with Lemma 4.1 implies that,
 303 for any window size $m > 0$ and any observation sequence $\mathcal{Z} \sim \mathcal{W}$, DUSS ensures that

$$304 \max_{z \in \mathcal{Z}_{t,m}} \text{err}(\mu_{\widehat{D}_t}, z) \leq 2\varepsilon. \quad (1)$$

306 This implies the following property (which will also be useful in Section 4.2):

307 **Sliding-window ERM property.** Let $\mathcal{H} \subseteq \{R \rightarrow [0, 1]\}$ be a hypothesis set. Given an error threshold $\varepsilon \geq 0$ and a window parameter $m \in \mathbb{N}$, we say that an online learning algorithm ALG satisfies
 308 the (ε, m) -sliding window empirical risk minimizer property, or (ε, m) -window ERM property for
 309 short, with respect to an observation sequence $\mathcal{Z} = \langle z_1, z_2, \dots \rangle$, if for any t , after processing z_t ,
 310 ALG maintains a hypothesis $h_t \in \mathcal{H}$ such that

$$313 \sum_{z \in \mathcal{Z}_{t,m}} \text{err}(h_t, z) \leq \inf_{h \in \mathcal{H}} \sum_{z \in \mathcal{Z}_{t,m}} \text{err}(h, z) + \varepsilon m.$$

316 Note that this guarantee is retrospective, as it evaluates the performance of the current hypothesis
 317 h_t on the last m observations. In simple terms, it implies that the total error incurred on the most
 318 recent m observations is within εm of the minimum possible. As discussed earlier, assuming a
 319 fixed data distribution, DUSS maintains Inequality (1), which is a stronger condition that implies
 320 the (ε, m) -window ERM property. Putting everything together, we obtain the following theorem.

321 **Theorem 4.2.** *Let \mathcal{W} be any realizable SD sequence where the data distribution is fixed. DUSS
 322 achieves a regret bound of $O(\varepsilon^{-3} \log |S|)$, performs the revisit step at most $O(\varepsilon^{-2} \log |S|)$ times,
 323 and satisfies the (ε, m) -sliding-window ERM property with respect to any observation sequence
 324 $\mathcal{Z} \sim \mathcal{W}$.*

324 **From fixed to stable data distributions.** We note that Theorem 4.2 extends to the case where
 325 the data distribution is not fixed but *stable* under \mathcal{W} . Formally, for two data distributions D and
 326 D' , the *total variation distance* is defined as $\text{TV}(D, D') := \sup_{A \subseteq \mathcal{X}} |D(A) - D'(A)|$. Intuitively,
 327 $\text{TV}(D, D')$ is the maximum difference in selectivity that the two distributions assign to the same
 328 point set. We say that an SD sequence \mathcal{W} is σ -stable if for every pair $W_i, W_j \in \mathcal{W}$, $\text{TV}(D_i, D_j) \leq$
 329 σ holds. Theorem 4.2 remains valid as long as \mathcal{W} is $c\varepsilon$ -stable, where c is a suitably small constant
 330 and ε is the algorithm's tolerance parameter.

331

332 4.2 GRADUALLY DRIFTING DATA AND QUERIES

333

334 In the previous subsection, we bounded the regret when the data distribution is fixed or sufficiently
 335 stable, even if the query distribution changes arbitrarily at each step. Ideally, we would like our
 336 algorithm's prediction, based on past observations $\langle z_1, \dots, z_t \rangle$, to remain accurate for the next ob-
 337 servation z_{t+1} . Clearly, if either distribution drifts abruptly, no meaningful accuracy guarantees are
 338 possible. We therefore focus here on the case of gradual drift, adopting the drift-tracking framework
 339 of Mohri & Medina (2012).

340 **(Δ, ε) -tracking.** Let \mathcal{H} be a hypothesis set. Let ALG be an algorithm that receives a sequence
 341 $\mathcal{Z} = \langle z_1, z_2, \dots \rangle$ of observations and maintains a hypothesis in \mathcal{H} . Let $h_t \in \mathcal{H}$ be the hypothesis
 342 that ALG has computed at step t , which depends on the prefix \mathcal{Z}_t of \mathcal{Z} . Let $\Lambda_t = \ell_{h_{t-1}}(z_t)$ denote
 343 the loss on observation z_t . Let $\mathcal{W} = \langle W_1, W_2, \dots \rangle$ be a sequence of SD's. For any $t > 0$, we define
 344 $\bar{\Lambda}_t(\mathcal{W}) = \mathbb{E}_{z_t \sim \mathcal{W}}[\Lambda_t]$. For parameters $\Delta, \varepsilon \in (0, 1)$, we say that ALG (Δ, ε) -tracks \mathcal{H} if there exists
 345 $t_0 := t_0(\Delta, \varepsilon)$ such that for all $t \geq t_0$ and for any sequence \mathcal{W} where $\text{disc}_{\mathcal{H}}(W_i, W_{i+1}) \leq \Delta$ for
 346 all $i \geq 1$, we have $\bar{\Lambda}(\mathcal{W}) \leq \inf_{h \in \mathcal{H}} \text{err}_{W_t}(\mu) + \varepsilon$.

347 Intuitively, assuming that the *drift rate* in \mathcal{W} is limited to Δ , a tracking algorithm is expected
 348 to deliver good predictions. In this section, we prove that DUSS is a tracking algorithm when
 349 both query and data distributions drift gradually. Before doing so, we first establish a general result
 350 that holds for any sliding-window ERM algorithm (see Section 4.1). We believe this result is of
 351 independent interest with other potential applications.

352 **Theorem 4.3.** Let $\Sigma = (\mathcal{X}, \mathcal{R})$ be a range space with $\text{VC-dim}(\Sigma) = O(1)$. Let \mathcal{D} be a class
 353 of distributions over \mathcal{X} and $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ the associated family of selectivity functions. Consider
 354 an (ε, m) -window ERM algorithm ALG using the hypothesis set \mathcal{M} . If the drift rate Δ of the SD
 355 sequence satisfies $\Delta = O(\varepsilon^3 \log^{-4}(\varepsilon^{-1}))$ and the window size $m = \Theta(\varepsilon^{-2} \log^4(\varepsilon^{-1}))$, then ALG
 356 (Δ, ε) -tracks \mathcal{M} .

357 Informally, the theorem suggests that for drift rate $\Delta < \varepsilon^3$, a (ε, m) -window ERM algorithm with
 358 window size $m \approx \varepsilon^{-2}$ can consistently maintain its prediction accuracy. The crux of the proof lies
 359 in bounding the covering number of \mathcal{M} . For a parameter $\alpha > 0$ and $m > 1$, the α -covering number,
 360 denoted $N(\mathcal{M}, \alpha, m)$, is the smallest number of hypotheses in \mathcal{M} that can approximate, within α
 361 point-wise error, all functions in \mathcal{M} on any set of m queries. We prove the following lemma. See
 362 also Lemma B.2 in Appendix B.

363 **Lemma 4.4.** $N(\mathcal{M}, \alpha, m) = m^{O(\alpha^{-2} \log \alpha^{-1})}$.

364

365 We combine this lemma with some known results in learning theory to obtain Theorem 4.3. See
 366 Appendix B for more details. We now apply Theorem 4.3 to DUSS. Consider a realizable sequence
 367 of SD's $\mathcal{W} = \langle W_1, W_2, \dots \rangle$ with associated underlying data distributions $\langle D_1, D_2, \dots \rangle$, where the
 368 total variation distance between D_t and D_{t+1} is at most $\Delta = c_1 \varepsilon^3 \log^{-4}(\varepsilon^{-1})$, for some constant c_1
 369 to be chosen. Given a window size $m = \Theta(\varepsilon^{-2} \log^4 \varepsilon^{-1})$, we can choose c_1 such that for any sliding
 370 window $\mathcal{Z}_{t,m}$ and for any $W, W' \in \mathcal{W}_{t,m}$ with respective underlying data distributions D, D' , we
 371 have $\text{TV}(D, D') \leq m\Delta \leq c_2 \varepsilon$ for some $c_2 < 1$. By the extension of Theorem 4.2 to stable data
 372 distributions, we argue that DUSS satisfies the (ε, m) -window ERM property. Combining this fact
 373 with Theorem 4.3, we establish the following property of DUSS, which is the main result of this
 374 section.

375 **Theorem 4.5.** Let $\Sigma = (\mathcal{X}, \mathcal{R})$ be a range space with $\text{VC-dim}(\Sigma) = O(1)$. Let \mathcal{D} be the class
 376 of discrete distributions on \mathcal{X} and $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ the corresponding family of selectivity functions.
 377 Let $\varepsilon \in (0, 1)$ be the error threshold, and assume that the sequence of SD's is realized by an
 378 underlying sequence of data distributions where the total-variation distance between consecutive

378 distributions is at most $\Delta = O(\varepsilon^3 \log^4(\varepsilon^{-1}))$. Using a window size $m = \Theta(\varepsilon^{-2} \log^4(\varepsilon^{-1}))$ and a
 379 $(\varepsilon/100)$ -representative support, DUSS (Δ, ε) -tracks \mathcal{M} .
 380

381 In simple words, the above result suggests that if the drift rate $\Delta < o(\varepsilon^3)$, we can initialize DUSS
 382 with a representative support and set its window size to $m = \Theta(\varepsilon^{-2} \log^4(\varepsilon^{-1}))$; then, DUSS
 383 maintains a model that accurately predicts selectivities of incoming queries in a way that consistently
 384 tracks the gradually drifting environment.
 385

386 5 SUMMARY OF EXPERIMENTS

388 We evaluate DUSS on real-world datasets, comparing it with other query-driven methods and
 389 baselines. Since our main goal is to validate our theoretical results (instead of outperforming state-
 390 of-the-art systems), we use a simple implementation of DUSS.
 391

392 **Datasets and Queries.** We use several standard real-world datasets from prior work, including
 393 **Power** (Dua & Graff, 2019), **Forest** (Dua & Graff, 2019), and **IMDb** (Leis et al., 2015). Data are
 394 normalized to $[0, 1]^d$. We further splice the **IMDb** data along the time axis to simulate data drift.
 395 For queries, we consider orthogonal range queries (boxes), since all models we compare with can
 396 support them. We consider two forms of drift. In the *gradual* drift setting, query centers shift slowly
 397 from one region of the data space to another, producing slow but continuous changes in workload. In
 398 the *abrupt* drift setting, queries remain clustered around a fixed region for some time before suddenly
 399 jumping to a different region, yielding sharp transitions. Figure D.1 illustrates the two forms of drift.
 400 Additional details regarding the datasets and query generation are deferred to Appendix D.

401 **Implementation details for DUSS.** Recall that DUSS assumes access to a representative support
 402 set $S \subseteq [0, 1]^d$. Rather than setting it as a uniform grid over $[0, 1]^d$ or precomputing it some other
 403 way (e.g., using historical queries), we construct S dynamically: when queries target a region, we
 404 adaptively increase resolution there, under the assumption that future queries are likely to target
 405 nearby regions. Specifically, when a new query arrives, if fewer than $\text{MIN-PTS} = 20$ points fall
 406 inside its range, we sample additional points from within that range uniformly to ensure there are
 407 at least that many points and add them with negligible initial weights. This gives flexibility to the
 408 algorithm to tune them later if necessary. We upper-bound the model size by setting the support size
 409 budget to $K = 50,000$ points (less than 4 MB), and initialize S with a few thousand uniformly sam-
 410 pled points. When the space budget is exhausted, DUSS can compress the support set via weighted
 411 sampling, although in our experiments S never required compression. We also stored S as a simple
 412 array and performed all operations by scanning. While there are several advanced data structures
 413 that could accelerate these operations for orthogonal ranges, even this basic implementation is suf-
 414 ficiently efficient to validate our theory. As for the error tolerance parameter ε , since selectivity
 415 values are typically very small in practice (most queries return a few hundred tuples out of hundreds
 416 of thousands), we set the error tolerance parameter to $\varepsilon = 10^{-4}$. Although in theory (Theorem 4.5),
 417 the algorithm requires a sliding window of ε^{-2} for tracking (no window is needed for regret guar-
 418antees per Theorem 4.2), in our experiments we observed that a much smaller window or no window
 419 worked well. Hence, for simplicity, we report results for the sliding window parameter $m = 0$.
 420

421 **Methods compared.** We compare DUSS against other approaches that operate using query feed-
 422 back only. Such models fall into two classes: deep learning and distribution-based. We pick one
 423 representative of each, along with a widely studied baseline: CDF (Wu et al., 2025), a recent state-of-
 424 the-art deep model; PtsHist (Hu et al., 2022), a distribution-based model; and MSCN (Kipf et al., 2019),
 425 a standard baseline. Unlike DUSS, which adapts online, none of the other methods are designed for
 426 continual updates and rely on periodic retraining or fine-tuning. To ensure fair comparison, we pro-
 427 vide each model with $s_{\text{init}} = 2000$ initial training queries drawn from the first SD $\hat{W}_1 = (Q_1, D_1)$,
 428 and then evaluate them on the test sequence $\mathcal{Z} = (z_1, z_2, \dots)$, where each $z_t = (R_t, s_t) \sim W_t \in \mathcal{W}$.
 429 We explore three adaptation strategies: (i) $\mathfrak{M}\text{-}S$, where the model remains static; (ii) $\mathfrak{M}\text{-}R(w, p)$,
 430 where the model is retrained every p queries using the most recent w (or all when $w = \infty$); and (iii)
 431 $\mathfrak{M}\text{-}T(w, p)$, where the model is fine-tuned after every p queries using w recent queries (supported
 432 only by CDF and MSCN, not by PtsHist).

433 **Performance metrics.** We evaluate accuracy using standard Root-Mean-Squared-Error (RMSE)
 434 and percentile Q-error (Moerkotte et al., 2009). For n test queries $\{R_i\}$ with estimates $\hat{s}(R_i)$ and true

432
 433 Table 5.1: Selectivity estimation accuracy and training cost under simultaneous data and query
 434 distribution drifts (data drifts gradually and then abruptly; queries drift gradually or abruptly) on
 435 IMDb-7d and IMDb-2d. *The lowest error and training time in each column are highlighted in bold.*

436 Method	IMDb-7d Query-Gradual				IMDb-7d Query-Abrupt				IMDb-2d Query-Gradual				IMDb-2d Query-Abrupt			
	437 RMSE	438 Med.	439 90-th	440 Train	441 RMSE	442 Med.	443 90-th	444 Train	445 RMSE	446 Med.	447 90-th	448 Train	449 RMSE	450 Med.	451 90-th	452 Train
453 q-err	454 q-err	455 (s)	456 q-err	457 q-err	458 (s)	459 q-err	460 (s)	461 q-err	462 q-err	463 (s)	464 q-err	465 q-err	466 (s)	467 q-err	468 q-err	469 (s)
DUSS	0.079	1.53	12.4	39	0.067	1.42	11.2	47	0.023	1.022	1.321	11	0.013	1.005	1.081	11
CDF-R (2k, 2k)	0.287	2.16	12.2	733	0.341	3.89	299.0	748	0.212	1.122	2.483	121	0.452	1.484	12.510	60
CDF-R (x, 2k)	0.215	1.64	7.4	2000	0.209	1.88	86.0	2867	0.099	1.050	1.879	260	0.335	1.201	113.900	255
MSCN-R (2k, 2k)	0.285	2.35	12.8	120	0.324	3.25	49.1	128	0.189	1.174	1.792	21	0.431	1.358	11.540	13
MSCN-R (x, 2k)	0.229	1.76	7.4	382	0.266	2.25	29.5	381	0.149	1.034	1.378	54	0.358	1.036	16.750	48
PtsHist-R (2k, 2k)	0.110	2.93	284.0	505	0.116	4.38	594.0	512	0.029	1.011	1.520	459	0.035	1.006	1.154	439
PtsHist-R (x, 2k)	0.106	2.57	212.1	1280	0.106	3.33	306.0	1398	0.027	1.014	1.606	4553	0.030	1.007	1.166	4839

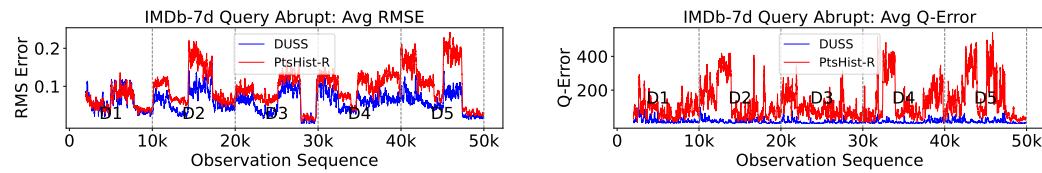


Figure 5.1: Sliding-window performance on IMDb-7d.

selectivities $s(R_i)$, RMSE is $(\frac{1}{n} \sum_{i=1}^n (\hat{s}(R_i) - s(R_i))^2)^{1/2}$, and Q-error(p) is the p -th percentile of $\{\max\{\hat{s}(R_i), s(R_i)\} / \min\{\hat{s}(R_i), s(R_i)\}\}$. RMSE captures absolute error, while Q-error highlights relative error and is widely used in the database community since selectivities are often small. We also report efficiency, measure training/fine-tuning overhead and inference time in Appendix D.

Summary. We perform two types of experiments: (i) fixing the data distribution while allowing the query distribution to drift (more details in Appendix D.1), and (ii) allowing both data and query distributions to drift (more details in Appendix D.2). Within each setting, we consider both gradual and abrupt drift for queries and, where applicable, for data. Across all scenarios, DUSS consistently delivers the best trade-off between accuracy and efficiency, while also incurring some of the lowest training (model-update) costs.

Under gradual query drift, the distribution-based PtsHist can achieve comparable, and occasionally marginally better, predictive performance on certain metrics in low-dimensional cases. This observation aligns with our theory (Theorem 4.5), which suggests that distribution-based models, by maintaining a good fit on a sliding window, should also perform well under gradual drift. However, PtsHist requires solving a quadratic program, leading to significantly higher training (model-update) time. In contrast, the neural network-based CDF-MSCN and MSCN are considerably less effective, even with frequent retraining. We suspect that their model complexity demands much larger training data and longer sliding windows to generalize effectively. See Table 5.1 here and Table D.1 in appendix for more details. Unfortunately, PtsHist loses its advantage in high dimensions: because it is designed around a fixed support set, it cannot maintain a representative support in sparse, high-dimensional spaces. Preserving its performance would require dramatically increasing the support size. In contrast, DUSS adapts through a dynamic support.

When drift becomes abrupt—especially in high-dimensional settings—DUSS is the only method that maintains superior accuracy with minimal training costs, owing to its low-regret guarantees (Theorem 4.2). Again, see Table 5.1 and Table D.1 for details. Figure 5.1 further illustrates a complex drift scenario with abrupt query drift and mixed data drift (further details are in Appendix D.2). DUSS consistently maintains lower average sliding-window error, and quickly adapts under drift, demonstrating its robustness.

Taken together, these results confirm that DUSS can maintain robust estimator even in the presence of drift by only observing query-selectivity (query-cardinality) pairs.

REFERENCES

Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building histograms without looking at data. In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh (eds.), *SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data*,

486 June 1-3, 1999, Philadelphia, Pennsylvania, USA, pp. 181–192. ACM Press, 1999. doi:
 487 10.1145/304182.304198. URL <https://doi.org/10.1145/304182.304198>.

488

489 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
 490 algorithm and applications. *Theory of computing*, 8(1):121–164, 2012.

491 Peter L Bartlett. Learning with a slowly changing distribution. In *Proceedings of the fifth annual*
 492 *workshop on Computational learning theory*, pp. 243–252, 1992.

493

494 Rakesh D Barve and Philip M Long. On the complexity of learning from drifting distributions.
 495 In *Proceedings of the ninth annual conference on Computational learning theory*, pp. 122–130,
 496 1996.

497 Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Stholes: A multidimensional workload-aware
 498 histogram. In *Proceedings of the 2001 ACM SIGMOD international conference on Management*
 499 *of data*, pp. 211–222, 2001.

500

501 B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite vc-dimension. *Discrete*
 502 & *Computational Geometry*, 4(5):467–489, 1989.

503 Bailu Ding, Vivek R. Narasayya, and Surajit Chaudhuri. Extensible query optimizers in practice.
 504 *Found. Trends Databases*, 14(3-4):186–402, 2024. doi: 10.1561/1900000077. URL <https://doi.org/10.1561/1900000077>.

505

506 Dheeru Dua and Casey Graff. Uci machine learning repository. <http://archive.ics.uci.edu/ml>, 2019.

507

508 Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya, and Surajit Chaud-
 509 huri. Selectivity estimation for range predicates using lightweight models. *Proceedings of the*
 510 *VLDB Endowment*, 12(9):1044–1057, 2019.

511

512 Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and Gautam Das.
 513 Deep learning models for selectivity estimation of multi-attribute queries. In *Proceedings of the*
 514 *2020 ACM SIGMOD International Conference on Management of Data*, pp. 1035–1050, 2020.

515

516 David Haussler. Decision theoretic generalizations of the pac model for neural net and other learning
 517 applications. *Information and computation*, 100(1):78–150, 1992.

518

519 David P Helmbold and Philip M Long. Tracking drifting concepts by minimizing disagreements.
 520 *Machine learning*, 14:27–45, 1994.

521

522 Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and
 523 Carsten Binnig. Deepdb: learn from data, not from queries! *Proceedings of the VLDB Endow-
 524 ment*, 13(7):992–1005, 2020.

525

526 Xiao Hu, Yuxi Liu, Haibo Xiu, Pankaj K. Agarwal, Debmalya Panigrahi, Sudeepa Roy, and Jun
 527 Yang. Selectivity functions of range queries are learnable. In Zachary G. Ives, Angela Bonifati,
 528 and Amr El Abbadi (eds.), *SIGMOD '22: International Conference on Management of Data*,
 529 *Philadelphia, PA, USA, June 12 - 17, 2022*, pp. 959–972. ACM, 2022. doi: 10.1145/3514221.
 530 3517896. URL <https://doi.org/10.1145/3514221.3517896>.

531

532 Raghav Kaushik and Dan Suciu. Consistent histograms in the presence of distinct value counts.
 533 *Proceedings of the VLDB Endowment*, 2(1):850–861, 2009.

534

535 Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper.
 536 Learned cardinalities: Estimating correlated joins with deep learning. In *9th Biennial Confer-
 537 ence on Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16,
 538 2019, Online Proceedings*. [www.cidrdb.org](http://cidrdb.org), 2019. URL <http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf>.

539

540 Meghdad Kurmanji and Peter Triantafillou. Detect, distill and update: Learned DB systems facing
 541 out of distribution data. *Proc. ACM Manag. Data*, 1(1):33:1–33:27, 2023. doi: 10.1145/3588713.
 542 URL <https://doi.org/10.1145/3588713>.

540 Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neu-
 541 man. How good are query optimizers, really? *Proc. VLDB Endow.*, 9(3):204–215, 2015. doi:
 542 10.14778/2850583.2850594. URL <http://www.vldb.org/pvldb/vol9/p204-leis.pdf>.

543

544 Beibin Li, Yao Lu, and Srikanth Kandula. Warper: Efficiently adapting learned cardinality es-
 545 timators to data and workload drifts. In Zachary G. Ives, Angela Bonifati, and Amr El Ab-
 546 badi (eds.), *SIGMOD '22: International Conference on Management of Data, Philadelphia, PA,*
 547 *USA, June 12 - 17, 2022*, pp. 1920–1933. ACM, 2022. doi: 10.1145/3514221.3526179. URL
 548 <https://doi.org/10.1145/3514221.3526179>.

549

550 R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity estimation through adaptive
 551 sampling. In *Proc. 9th ACM SIGMOD Int. Conf. Management Data*, pp. 1–11, 1990.

552 Volker Markl, Peter J Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh Srivastava, and Tam Minh
 553 Tran. Consistent selectivity estimation via maximum entropy. *The VLDB journal*, 16:55–76,
 554 2007.

555

556 Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad plans by bounding the
 557 impact of cardinality estimation errors. *Proc. VLDB Endow.*, 2(1):982–993, 2009. doi: 10.14778/
 558 1687627.1687738. URL <http://www.vldb.org/pvldb/vol2/vldb09-657.pdf>.

559

560 Mehryar Mohri and Andres Muñoz Medina. New analysis and algorithm for learning with drifting
 561 distributions. In Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, and Thomas Zeugmann (eds.),
 562 *Algorithmic Learning Theory - 23rd International Conference, ALT 2012, Lyon, France, October*
 563 *29-31, 2012. Proceedings*, volume 7568 of *Lecture Notes in Computer Science*, pp. 124–138.
 564 Springer, 2012. doi: 10.1007/978-3-642-34106-9_13. URL https://doi.org/10.1007/978-3-642-34106-9_13.

565

566 Parimarjan Negi. *Machine Learning for Out of Distribution Database Workloads*. PhD thesis, MIT,
 567 USA, 2024. URL <https://hdl.handle.net/1721.1/153835>.

568

569 Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam Madden, Tim Kraska,
 570 and Mohammad Alizadeh. Robust query driven cardinality estimation under changing workloads.
 571 *Proc. VLDB Endow.*, 16(6):1520–1533, 2023. doi: 10.14778/3583140.3583164. URL <http://www.vldb.org/pvldb/vol16/p1520-negi.pdf>.

572

573 Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with
 574 mixture models. In *Proceedings of the 2020 ACM SIGMOD International Conference on Man-
 575 agement of Data*, pp. 1017–1033, 2020.

576

577 V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value independence
 578 assumption. In *VLDB*, volume 97, pp. 486–495. Citeseer, 1997.

579

580 Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning - From*
 581 *Theory to Algorithms*. Cambridge University Press, 2014. ISBN 978-1-10-
 582 705713-5. URL <http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms>.

583

584 Utkarsh Srivastava, Peter J Haas, Volker Markl, Marcel Kutsch, and Tam Minh Tran. Isomer: Con-
 585 sistent histogram construction using query feedback. In *22nd International Conference on Data*
 586 *Engineering (ICDE'06)*, pp. 39–39. IEEE, 2006.

587

588 Elias M. Stein and Rami Shakarchi. *Real Analysis: Measure Theory, Integration, and Hilbert*
 589 *Spaces*. Princeton University Press, 2005. ISBN 9780691113869.

590

591 V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
 592 events to their probabilities. *Theory of Probability & Its Applications*, 16(2):264–280, 1971. doi:
 593 10.1137/1116025. URL <https://doi.org/10.1137/1116025>.

594

595 Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. Are we ready for
 596 learned cardinality estimation? *Proceedings of the VLDB Endowment*, 14(9):1640–1654, 2021.

594 **Algorithm 1** DUSS: Dynamic Update Support-Set.

```

595 1: Input: Window size  $m$ , error parameter  $\varepsilon$ , support set  $S \subseteq X$ 
596 2: Initialize weights:  $\omega(p) \leftarrow 1$  for all  $p \in S$ 
597 3:  $W_{\text{curr}} \leftarrow |S|$ ,  $W_{\text{rev}} \leftarrow |S|$ ,  $\text{COUNT} \leftarrow 0$ 
598 4: Initialize  $\hat{D}$  as the distribution with uniform weights on  $S$ 
599 5: Method PROCESS(Observation stream  $\mathcal{Z}$ )
600 6:   loop  $z_t = (R_t, s_t) \leftarrow$  each new observation
601 7:      $\mathcal{Z}_{t,m} \leftarrow (\mathcal{Z}_{t-1,m} \cup \{z_t\}) - \{z_{t-m}\}$ ,  $\hat{s}_t \leftarrow \mu_{\hat{D}}(R_t)$ 
602 8:     if  $|\hat{s}_t - s_t| > \varepsilon$  then
603 9:       WEIGHTUPDATE( $(R_t, s_t)$ )
604 10:      while  $W_{\text{curr}} > W_{\text{rev}}/(1 - \varepsilon/2)$  do
605 11:         $W_{\text{rev}} \leftarrow W_{\text{curr}}$ 
606 12:        REVISITWINDOW
607 13: Method WEIGHTUPDATE( $(R, s)$ )
608 14:   if  $\mu_{\hat{D}}(R) < s - \varepsilon$  then
609 15:      $\chi \leftarrow \frac{\varepsilon^2}{4(s - \varepsilon/2)}$ 
610 16:     while  $\mu_{\hat{D}}(R) < s - \varepsilon$  do
611 17:        $\omega(p) \leftarrow (1 + \chi) \cdot \omega(p)$ ,  $\forall p \in S \cap R$ 
612 18:       COUNT  $\leftarrow$  COUNT + 1
613 19:   else if  $\mu_{\hat{D}}(R) > s + \varepsilon$  then
614 20:      $\chi \leftarrow \frac{\varepsilon^2}{4(1 - s - \varepsilon/2)}$ 
615 21:     while  $\mu_{\hat{D}}(R) > s + \varepsilon$  do
616 22:        $\omega(p) \leftarrow (1 + \chi) \cdot \omega(p)$ ,  $\forall p \in S \setminus R$ 
617 23:       COUNT  $\leftarrow$  COUNT + 1
618 24:   if COUNT  $> \tau_{\text{res}}$  then
619 25:     RESET
620 26:   return

```

621
622 Peizhi Wu and Zachary G. Ives. Modeling shifting workloads for learned database systems. *Proc. ACM Manag. Data*, 2(1):38:1–38:27, 2024. doi: 10.1145/3639293. URL <https://doi.org/10.1145/3639293>.

626 Peizhi Wu, Haoshu Xu, Ryan Marcus, and Zachary G Ives. A practical theory of generalization in
627 selectivity learning. *Proceedings of the VLDB Endowment*, 18(6), 2025.

628 Haibo Xiu, Pankaj K. Agarwal, and Jun Yang. PARQO: penalty-aware robust plan selection in query
629 optimization. *Proc. VLDB Endow.*, 17(13):4627–4640, 2024. URL <https://www.vldb.org/pvldb/vol17/p4627-xiu.pdf>.

632 Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel,
633 Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. Deep unsupervised cardinality estimation.
634 *Proceedings of the VLDB Endowment*, 13(3), 2020.

635 Sepanta Zeighami and Cyrus Shahabi. Towards establishing guaranteed error for learned database
636 operations. In *The Twelfth International Conference on Learning Representations, ICLR 2024*,
637 Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL <https://openreview.net/forum?id=6tqgL8VluV>.

639 Sepanta Zeighami and Cyrus Shahabi. Theoretical analysis of learned database operations under
640 distribution shift through distribution learnability. In *Forty-first International Conference on Ma-*
641 *chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024b. URL
642 <https://openreview.net/forum?id=oowQ8LPA12>.

644 **A PROOF OF LEMMA 4.1**
645

646 For a range R , let \bar{R} denote its complement. If R is a box then \bar{R} is the region lying outside the box.
647 For $i \geq 1$, let $z_i = (R_i, s_i)$ be the observation when the weights were updated the i -th time, let W_i

648 be the value of W_{curr} after i weight updates. Recall, that an observation may cause multiple updates,
 649 so z_i may be the same as z_{i+1} .
 650

651 Recall that the support S is $c\varepsilon$ -representative. For the analysis, assume $c = 0.01$. Let $A \subseteq S$ be
 652 an $c\varepsilon$ -sample of D^* . Since the input data distribution D^* is fixed, by the $c\varepsilon$ -representative support
 653 property of S , such a set must exist. We prove a bound on T , the number of weight-update steps, by
 654 obtaining an upper bound on W_T and a lower bound on the weight of the points in A after T updates,
 655 and by showing that the latter exceeds the former once $T > \tau_{\text{res}}(\varepsilon)$. This is a typical argument for
 656 the multiplicative-weight-update (MWU) method Arora et al. (2012).
 657

658 We first obtain an upper bound on W_i . Initially, $W_0 = |S|$. For simplicity, let $\gamma = \varepsilon/2$. If R_i is
 659 light, we set $b_i = s_i - \gamma$ and $\Delta_i = R_i$, and if R_i is heavy, we set $b_i = 1 - s_i - \gamma$ and $\Delta_i = \bar{R}_i$.
 Then after the i -th weight update,
 660

$$\begin{aligned} W_i &\leq \sum_{p \in \Delta_i} \omega(p) \left(1 + \frac{\gamma^2}{b_i}\right) + \sum_{p \notin \Delta_i} \omega(p) \\ &\leq W_{i-1} + W_{i-1} \cdot \frac{\gamma^2}{b_i} \sum_{p \in \Delta_i} \frac{\omega(p)}{W_{i-1}} \leq W_{i-1} \left(1 + \frac{\gamma^2}{b_i} \cdot (b_i - \gamma)\right) \\ &\leq W_{i-1}(1 + \gamma^2(1 - \gamma)) \leq W_{i-1} \cdot \exp(\gamma^2(1 - \gamma)). \end{aligned}$$

661 The second last inequality follows because $b_i \leq 1$. Hence,
 662

$$W_T \leq W_0 \cdot \exp(\gamma^2(1 - \gamma)T) = |S| \cdot \exp(\gamma^2(1 - \gamma)T).$$

663 Next, we focus on the weights of points in A . First, it can be verified that $b_i \geq \gamma$. Let $W_i(p)$ denote
 664 the weight of $p \in S$ after the i -th weight update. If $p \in \Delta_i$, then
 665

$$W_i(p) \geq (1 + \frac{\gamma^2}{b_i})W_{i-1}(p) \geq (1 + \gamma)^{\frac{\gamma}{b_i}} W_{i-1}(p). \quad (2)$$

666 The last inequality follows because $\gamma, \gamma/b_i \in [0, 1]$. For a subset $I \subseteq [T]$, let $\sigma(I) = \sum_{j \in I} (1/b_j)$.
 667 Let $\mathcal{I}(p) \subseteq \{1, \dots, T\}$ be the set of indices in which the weight of p was updated, then by (2),
 668

$$W_T(p) \geq W_0(p) \cdot (1 + \gamma)^{\gamma \cdot \sigma(\mathcal{I}(p))}. \quad (3)$$

669 Since arithmetic mean of a set of non-negative numbers is at least as large as their geometric mean
 670

$$\left[\prod_{p \in A} W_T(p) \right]^{\frac{1}{a}} \leq \frac{W_T(A)}{a} \leq \frac{W_T}{a}, \quad (4)$$

671 where $a = |A|$ and $W_T(A) = \sum_{p \in A} W_T(p)$. On the other hand, by (3)
 672

$$\left[\prod_{p \in A} W_T(p) \right]^{\frac{1}{a}} \geq (1 + \gamma)^{\frac{\gamma}{a} \cdot \sum_{p \in A} \sigma(\mathcal{I}(p))}. \quad (5)$$

673 Next, we observe that
 674

$$\frac{1}{a} \sum_{p \in A} \sigma(\mathcal{I}(p)) = \frac{1}{a} \sum_{p \in A} \sum_{j \in \mathcal{I}(p)} \frac{1}{b_j} = \frac{1}{a} \sum_{j=1}^T \frac{|A \cap \Delta_j|}{b_j}. \quad (6)$$

675 Since A is an $c\varepsilon$ -sample, for $c = 0.01$, of the underlying data distribution D^* , $\frac{|A \cap \Delta_j|}{a} \geq b_j + 0.98\gamma$.
 676 Plugging this bound in (6),
 677

$$\frac{1}{a} \sum_{p \in A} \sigma(\mathcal{I}(p)) \geq \sum_{j=1}^T \frac{b_j + 0.98\gamma}{b_j} \geq T \cdot (1 + 0.98\gamma). \quad (7)$$

702 Combining (2),(3), and (7), we obtain
 703

704
 705
$$(1 + \gamma)^{\gamma(1+0.98\gamma)T} \leq \frac{W_T}{a} \leq W_T. \quad (8)$$

 706

707 Plugging the value of W_T in (7) and taking \ln on both sides,
 708

709
$$\gamma T(1 + 0.98\gamma) \ln(1 + \gamma) \leq \gamma^2(1 - \varepsilon)T + \ln |\mathcal{S}|.$$

 710

711 Using the fact that $\ln(1 + \gamma) \geq \gamma - \gamma^2/2$, we obtain $T \leq \gamma^{-2} \ln |\mathcal{S}|(f(\gamma))^{-1}$, where $f(\gamma) =$
 712 $(1 + 0.98\gamma) \cdot (1 - \gamma/2) - (1 - \gamma) \geq \gamma/2$. Hence, substituting $\gamma = \varepsilon/2$, we conclude that $T \leq$
 713 $2\gamma^{-3} \ln |\mathcal{S}| \leq 16\varepsilon^{-3} \ln |\mathcal{S}|$, as claimed. This completes the proof of the lemma.
 714

715 B SLIDING-WINDOW SIZE BOUND UNDER THE DYNAMIC SETTING 716

717 **Theorem B.1** (Restatement of Theorem 4.3). *Let $\Sigma = (\mathcal{X}, \mathcal{R})$ be a range space with $\text{VC-dim}(\Sigma) =$
 718 $O(1)$. Let \mathcal{D} be a class of distributions over \mathcal{X} and $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ the associated family of se-
 719 lectivity functions. Consider an (ε, m) -window ERM algorithm ALG using the hypothesis set \mathcal{M} .
 720 If the drift rate Δ of the SD sequence satisfies $\Delta = O(\varepsilon^3 \log^{-4}(\varepsilon^{-1}))$ and the window size
 721 $m = \Theta(\varepsilon^{-2} \log^4(\varepsilon^{-1}))$, then ALG (Δ, ε) -tracks \mathcal{M} .
 722*

723 The argument proceeds in several parts. The key insight, however, is to show that the α -cover (see
 724 (Shalev-Shwartz & Ben-David, 2014, Ch. 26–27)) of the class of selectivity functions \mathcal{M} is small.
 725 We then use the bound on the α -cover to bound the *Rademacher complexity*, a well-known concept
 726 in machine learning (Shalev-Shwartz & Ben-David, 2014, Chapter 26). Finally, we combine the
 727 bound on the Rademacher complexity with a result by (Mohri & Medina, 2012, Theorem 1) to
 728 prove Theorem 4.3.
 729

730 Let $\mathcal{B} \subseteq \mathcal{R}$ be a set of ranges. For two selectivity functions $\mu_1, \mu_2 \in \mathcal{M}$, we define the distance
 731 between them with respect to \mathcal{B} to be $d_{\mathcal{B}}(\mu_1, \mu_2) := \max_{R \in \mathcal{B}} |\mu_1(R) - \mu_2(R)|$. For $\alpha > 0$, a
 732 subset $\mathcal{M}' \subseteq \mathcal{M}$ is called an α -cover with respect to \mathcal{B} if all functions of \mathcal{M} are within distance α
 733 from \mathcal{M}' (under the distance function $d_{\mathcal{B}}$). That is, $\sup_{\mu \in \mathcal{M}} \inf_{\mu' \in \mathcal{M}'} d_{\mathcal{B}}(\mu, \mu') \leq \alpha$. We define the
 734 *empirical α -covering number* (w.r.t. \mathcal{B}) of \mathcal{M} as

735
$$N(\mathcal{M}, \alpha, \mathcal{B}) = \min\{|\mathcal{M}'| : \mathcal{M}' \text{ is an } \alpha\text{-cover of } \mu \text{ w.r.t. } \mathcal{B}\}.$$

736 Finally, for $m \geq 1$, set $N(\mathcal{M}, \alpha, m) = \max_{\mathcal{B} \subseteq \mathcal{R}, |\mathcal{B}|=m} N(\mathcal{M}, \alpha, \mathcal{B})$.
 737

738 Our main technical result is an upper bound on $N(\mathcal{M}, \alpha, m)$ stated below.

739 **Lemma B.2.** *Let $\Sigma = (\mathcal{X}, \mathcal{R})$ be a range space with finite VC-dimension. Let \mathcal{D} be a class of
 740 probability distributions over \mathcal{X} and let $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$. For any $\alpha > 0$ and positive integer m ,*

741
$$N(\mathcal{M}, \alpha, m) = m^{O(\alpha^{-2} \log \alpha^{-1})}.$$

 742

743 *Proof.* Let $\mathcal{B} \subseteq \mathcal{R}$ be any arbitrary subset of m ranges. We bound $N(\mathcal{M}, \alpha, \mathcal{B})$ in three steps.
 744 First, we show that there exists a family \mathcal{C} of uniform discrete distributions each with support size
 745 $\eta = O(\alpha^{-2} \log \alpha^{-1})$, such that $\mathcal{M}_{\mathcal{C}} = \{\mu_C \mid C \in \mathcal{C}\}$, the class of selectivity functions associated
 746 with the distributions in \mathcal{C} , forms an $\alpha/2$ -cover of \mathcal{M} with respect to \mathcal{B} (Note that even if $\mathcal{M}_{\mathcal{C}} \not\subseteq \mathcal{M}$,
 747 the notion of $\alpha/2$ -cover is still well-defined). Next, we show that there exists a small subset $\mathcal{C}' \subseteq \mathcal{C}$
 748 such that $\mathcal{M}_{\mathcal{C}} = \mathcal{M}_{\mathcal{C}'}$. Finally, we use \mathcal{C}' to choose a subset $\mathcal{D}' \subseteq \mathcal{D}$ of size $|\mathcal{C}'|$ and set $\mathcal{M}' =$
 749 $\{\mu_D \mid D \in \mathcal{D}'\}$ such that \mathcal{M}' is an α -cover of \mathcal{M} (w.r.t. \mathcal{B}). We describe the full construction
 750 below.

751 Let $\mathcal{B} \subseteq \mathcal{R}$ be any arbitrary subset of m ranges. Consider the range space $\Sigma_{\mathcal{B}} = (\mathcal{X}, \mathcal{B})$. It is easily
 752 seen that $\text{VC}(\Sigma_{\mathcal{B}}) \leq \text{VC}(\Sigma)$, so $\text{VC}(\Sigma_{\mathcal{B}}) = O(1)$. For any distribution $D_i \in \mathcal{D}$, as mentioned
 753 above, there is an $(\alpha/2)$ -sample C_i of size $\eta = O(\alpha^{-1} \log \alpha^{-1})$, i.e., $|\mu_{D_i}(R) - \frac{|C_i \cap R|}{|C_i|}| \leq \alpha/2$ for
 754 any $R \in \mathcal{R}$. Setting $\mu_{C_i}(R) = \frac{|C_i \cap R|}{|C_i|}$, $d_{\mathcal{B}}(\mu_{C_i}, \mu_{D_i}) \leq \alpha/2$. Let $\mathcal{C} = \{C_i \mid D_i \in \mathcal{D}\}$. Then $\mathcal{M}_{\mathcal{C}}$
 755 is an $(\alpha/2)$ -cover of \mathcal{M} (w.r.t. \mathcal{B}).

756 Next, we choose the set $\mathcal{C}' \subseteq \mathcal{C}$ as follows. Define the dual range space $\Sigma_{\mathcal{B}}^* = (\mathcal{B}, \mathcal{X}^*)$ of $\Sigma_{\mathcal{B}}$ where
 757 $\mathcal{X}^* = \{\{R \in \mathcal{B} \mid x \in R\} \mid x \in \mathcal{X}\}.$
 758

759 Each range in \mathcal{X}^* is defined by a point $x \in \mathcal{X}$ and comprises the set of ranges in \mathcal{B} that contain
 760 x . Since $\text{VC-dim}(\Sigma_{\mathcal{B}}) = O(1)$ then $\text{VC-dim}(\Sigma_{\mathcal{B}}^*)$ is also $O(1)$, say $\text{VC-dim}(\Sigma^*) = \kappa$. Then
 761 $|\mathcal{X}^*| = O(m^\kappa)$. \mathcal{X}^* implies an equivalence relation \equiv on \mathcal{X} that partitions \mathcal{X} into $O(m^\kappa)$ equivalence
 762 classes, where $x_1 \equiv x_2$ if and only if any range in \mathcal{B} either contains both x_1 and x_2 or neither of
 763 them Chazelle & Welzl (1989). Define two subsets $\mathcal{C}, \mathcal{C}' \subseteq \mathcal{X}$ as equivalent with respect to \mathcal{B} if there
 764 exists a bijection $f : \mathcal{C} \rightarrow \mathcal{C}'$ such that $x \equiv f(x)$ for all $x \in \mathcal{X}$. The number of combinatorially
 765 distinct subsets (with respect to \mathcal{B}) of \mathcal{X} of size η is at most $O(m^{\eta \cdot \kappa})$. Observe that if $\mathcal{C} \equiv \mathcal{C}'$,
 766 then $\mu_{\mathcal{C}}(R) = \mu_{\mathcal{C}'}(R)$ for every $R \in \mathcal{B}$. Let $\mathcal{C}' \subseteq \mathcal{C}$ be a maximal set of combinatorially distinct
 767 sets (i.e. they are defined by combinatorially distinct subsets of \mathcal{X}) in \mathcal{C} . Since $|\mathcal{C}| \leq \eta$ for any
 768 $\mathcal{C} \in \mathcal{C}$, $|\mathcal{C}| = O(m^{\kappa \cdot \eta})$. Finally, we choose a subset $\mathcal{D}' \subseteq \mathcal{D}$ of size $|\mathcal{C}'|$ as follows. Recall
 769 that each $C_i \in \mathcal{C}$ is an $(\alpha/2)$ -sample pf a distribution $D_i \in \mathcal{D}$. Set $\mathcal{D}' = \{D_i \mid C_i \in \mathcal{C}'\}$ and
 770 $\mathcal{M}' = \{\mu_{D_i} \mid D \in \mathcal{D}'\}$. To prove that \mathcal{M}' is an α -cover of \mathcal{M} , let D_i be a distribution in \mathcal{D} , let
 771 $C'_i \in \mathcal{C}$ be the set equivalent to C_i , and let $D'_i \in \mathcal{D}'$ be the distribution in \mathcal{D}' corresponding to C'_i .
 772 Then for any $R \in \mathcal{B}$, $|\mu_{D_i}(R) - \mu_{D'_i}(R)| \leq \alpha/2 + \alpha/2 \leq \alpha$ (using the triangle inequality). Hence,
 773 $d_{\mathcal{B}}(\mu_{D_i}, \mu_{D'_i}) \leq \alpha$, so \mathcal{M}' is an α -cover of \mathcal{M} of size $O(m^{\kappa \cdot \eta}) = m^{O(\alpha^{-2} \log \alpha^{-1})}$.
 774 \square
 775

776 To proceed with the proof we require the following definition.
 777

778 **Rademacher complexity.** Let $\mathcal{B} = \{R_1, R_2, \dots, R_m\} \subseteq \mathcal{R}$, be a subset of m ranges. Let
 779 $\sigma = (\sigma_1, \dots, \sigma_m) \in \{+1, -1\}^m$ be a random vector where $\Pr[\sigma_i = 1] = \Pr[\sigma_i = 0] = 1/2$. The
 780 *empirical Rademacher complexity* of \mathcal{M} w.r.t. \mathcal{B} is defined as

$$781 \hat{\mathfrak{R}}_{\mathcal{B}}(\mathcal{M}) := \frac{1}{m} \mathbb{E}_{\sigma} \left[\sup_{\mu \in \mathcal{M}} \sum_{i=1}^m \sigma_i \mu(R_i) \right].$$

$$782$$

$$783$$

784 For $m \geq 1$, we define the (worst-case) empirical Rademacher complexity as $\hat{\mathfrak{R}}_m(\mathcal{M}) :=$
 785 $\sup_{\mathcal{B} \subseteq \mathcal{R}, |\mathcal{B}|=m} \hat{\mathfrak{R}}_{\mathcal{B}}(\mathcal{M})$.
 786

787 Roughly speaking, Rademacher complexity measures the rate of uniform convergence as a function
 788 of training sample size. Using Lemma B.2 and the well-known connection between the covering
 789 number and the Rademacher complexity (see (Shalev-Shwartz & Ben-David, 2014, Ch 27)) we
 790 obtain the following lemma.

791 **Lemma B.3.** *Let $\Sigma = (\mathcal{X}, \mathcal{R})$ be a range space with $\text{VC}(\Sigma) = O(1)$. Let \mathcal{D} be a family of distribu-
 792 tions on \mathcal{X} , and let $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$. Then for any $m \geq 1$, $\hat{\mathfrak{R}}_m(\mathcal{M}) = O(m^{-1/2} \log^2 m)$.*
 793

794 Recall the loss function $\ell_{\mu} : \mathcal{Z} \mapsto [0, 1]$ defined with respect to a selectivity function μ in Section 2.
 795 Consider the class of functions $\mathcal{L}_{\mathcal{M}} = \{\ell_{\mu} : \mu \in \mathcal{M}\}$. The notion of Rademacher complexity also
 796 applies to the function class $\mathcal{L}_{\mathcal{M}}$, by substituting \mathcal{R} with \mathcal{Z} and replacing \mathcal{B} with a subset of \mathcal{Z} in the
 797 definition above. Since $\mathcal{M} \subseteq \{\mathcal{R} \mapsto [0, 1]\}$, it is known that, see (Shalev-Shwartz & Ben-David,
 798 2014, Chapter 26), $\hat{\mathfrak{R}}_m(\mathcal{L}_{\mathcal{M}}) = O(\hat{\mathfrak{R}}_m(\mathcal{M}))$. Therefore,

799 **Corollary B.1.** *For any $m \geq 1$, $\hat{\mathfrak{R}}_m(\mathcal{L}_{\mathcal{M}}) = O(m^{-1/2} \log^2 m)$.*
 800

801 We next prove Theorem 4.3 using the Corollary B.1. By plugging the bound on $\hat{\mathfrak{R}}_m(\mathcal{L}_{\mathcal{M}}) =$
 802 $O(m^{-1/2} \log^2 m)$ from Corollary B.1, into a result by Mohri and Medina (Mohri & Medina, 2012,
 803 Theorem 1), we obtain the following:

804 **Lemma B.4.** *Let $\Sigma = (\mathcal{X}, \mathcal{R})$ be a range space with $\text{VC-dim}(\Sigma) = O(1)$, and let W_1, \dots, W_k be
 805 SD's on $\mathcal{Z} = \mathcal{R} \times [0, 1]$. Suppose that z_1, \dots, z_k are observations with each $z_i \sim W_i$. Then, for any
 806 SD W , for any $\delta \in (0, 1)$, the following inequality holds for every $\mu \in \mathcal{M}$ with probability at least
 807 $1 - \delta$:*

$$808 \text{err}_W(\mu) \leq \frac{1}{k} \sum_{i=1}^k \left(\ell_{\mu}(z_i) + \text{disc}_{\mathcal{M}}(W_i, W) \right) + \frac{O(\log^2 k + \sqrt{\log \delta^{-1}})}{\sqrt{k}}. \quad (9)$$

$$809$$

810 Moreover, if $\mu^* = \arg \min_{\mu \in \mathcal{M}} \text{err}_W(\mu)$ then with probability at least $1 - \delta$ it holds that,
 811

$$812 \quad \frac{1}{k} \sum_{i=1}^k \ell_{\mu^*}(z_i) \leq \text{err}_W(\mu^*) + \frac{1}{k} \sum_{i=1}^k \text{disc}_{\mathcal{M}}(W_i, W) + \frac{O(\log^2 k + \sqrt{\log \delta^{-1}})}{\sqrt{k}}. \quad (10)$$

815 We use Lemma B.4 to prove Theorem 4.3 as follows. Fix a window size m and define ALG as a
 816 (ε, m) -sliding-window ERM algorithm that receives a sequence $\mathcal{Z} = \langle z_1, z_2, \dots \rangle$ of observations
 817 and for each t maintains a selectivity function μ_t such that
 818

$$819 \quad \frac{1}{m} \sum_{i=t-m+1}^t \ell_{\mu_t}(z_i) \leq \varepsilon + \inf_{\mu \in \mathcal{M}} \frac{1}{m} \sum_{i=t-m+1}^t \ell_{\mu_t}(z_i)$$

822 Suppose we execute ALG on a stream of observations $\mathcal{Z} = \langle z_1, z_2, \dots \rangle$ drawn from a sequence
 823 $\mathcal{W} = \langle W_1, W_2, \dots \rangle$ such that, $\text{disc}_{\mathcal{M}}(\mu_i, \mu_{i+1}) \leq \Delta$ for all i , where $\Delta \geq 0$. Let $\mu_t^* =$
 824 $\arg \inf_{\mu \in \mathcal{M}} \text{err}_{W_t}(\mu)$. Consider the random variable X_{t+1} :
 825

$$826 \quad X_{t+1} := \text{err}_{W_{t+1}}(\mu_t) - \text{err}_{W_{t+1}}(\mu_t^*).$$

828 Our goal is to bound $\mathbb{E}_{\mathcal{Z} \sim \mathcal{W}}[X_{t+1}]$. By Fubini's theorem,
 829

$$830 \quad \mathbb{E}_{\mathcal{Z} \sim \mathcal{W}}[X_{t+1}] = \mathbb{E}_{\mathcal{Z}_t \sim \mathcal{W}}[\text{err}_{W_{t+1}}(\mu_t) - \text{err}_{W_{t+1}}(\mu_t^*)].$$

831 Since ALG is an (ε, m) -sliding window ERM, we invoke Lemma B.4 on both μ_t and μ_{t+1}^* with a
 832 confidence parameter of $\delta/2$. By the union bound, it follows that both bounds hold simultaneously
 833 with probability at least $1 - \delta$. Combining (9) and (10) it follows that with probability $1 - \delta$,

$$834 \quad X_{t+1} \leq \varepsilon + \frac{2}{m} \sum_{i=t-m+1}^t \text{disc}_{\mathcal{M}}(\mu_i, \mu_{t+1}) + 2 \cdot \frac{O(\log^2 m + \sqrt{\log \delta^{-1}})}{\sqrt{m}}.$$

837 It is easy to verify that for any SD's W_1, W_2, W_3 over \mathcal{Z} , the triangle inequality holds, i.e.,
 838 $\text{disc}_{\mathcal{M}}(W_1, W_3) \leq \text{disc}_{\mathcal{M}}(W_1, W_2) + \text{disc}_{\mathcal{M}}(W_2, W_3)$ holds. Since discrepancy satisfies the tri-
 839 angle inequality and $\text{disc}_{\mathcal{M}}(W_j, W_{j+1}) \leq \Delta$ for all j , $\text{disc}_{\mathcal{M}}(\mu_i, \mu_t) \leq (t - i)\Delta$. Thus,
 840

$$841 \quad \frac{1}{m} \sum_{i=t-m+1}^t \text{disc}_{\mathcal{M}}(\mu_i, \mu_t) \leq (m+1)\Delta.$$

845 Therefore, with probability at least $1 - \delta$,

$$847 \quad X_{t+1} \leq \varepsilon + (m+1) \cdot \Delta + 2 \cdot \frac{O(\log^2 m + \sqrt{\log \delta^{-1}})}{\sqrt{m}}.$$

850 We wish to bound the expectation $\mathbb{E}[X_{t+1}]$. Let Y be a random variable such that $\Pr[Y >$
 851 $\sqrt{\log \delta^{-1}}] < \delta$ or for any integer $a \geq 1$ $\Pr[Y > a] \leq 2^{-a^2}$, we obtain that $\mathbb{E}[Y] = O(1)$.
 852 Hence, we conclude that $\mathbb{E}[X_{t+1}] \leq \varepsilon + (m+1)\Delta + O(m^{-1/2} \log^2 m)$. This immediately implies
 853 the following lemma.

854 **Lemma B.5.** *Let \mathcal{A} be a (ε, m) -sliding-window ERM algorithm (as described above). Then for any
 855 SD sequence $\mathcal{W} = \langle W_1, W_2, \dots \rangle$,*

$$857 \quad \text{err}_{W_{t+1}}(\mu_t) \leq \varepsilon + \inf_{\mu \in \mathcal{M}} \text{err}_{W_{t+1}}(\mu) + O(m^{-1/2} \log^2 m) + (m+1)\Delta.$$

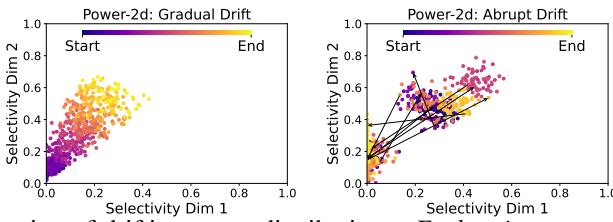
859 In the above lemma, the second term is the estimation error (arising from the Rademacher com-
 860 plexity) while the last term reflects the cumulative drift over a window of size m . To minimize the
 861 prediction error we balance these two terms and set $m = \Theta(\Delta^{-2/3} \log^{4/3} \Delta^{-1})$. This back yields
 862 an overall excess error of $O(\Delta^{1/3} \log^{4/3} \Delta^{-1})$. Therefore, to achieve an error of ε , one must have
 863 $\Delta = O(\varepsilon^3 / \log^4(\varepsilon^{-1}))$. This completes the proof of Theorem 4.3.

864 C SAMPLE COMPLEXITY BOUND UNDER THE STATIC SETTING
865866 We first state the definition of (ε, δ) -learnability Haussler (1992).
867868 **(ε, δ) -learnability.** A *learning procedure* is a function ALG from a finite sequence of observations
869 from Z to a hypothesis in \mathcal{H} . Namely, given a finite sequence $z^n = (z_1, \dots, z_n) \in Z^n$, $\text{ALG}(z^n)$
870 returns a function in \mathcal{H} .871 We say that ALG (ε, δ) -*learns* from n random samples z^n if
872

873
$$\sup_W \Pr \left[\text{err}_W \left(\text{ALG}(z^n) \right) > \inf_{\mu \in \mathcal{M}} \text{err}_W(\mu) + \varepsilon \right] \leq \delta. \quad (11)$$

874

875 A hypothesis set \mathcal{H} is said to be (ε, δ) -*learnable* if there exists a learning procedure ALG , such that
876 for every $\varepsilon > 0$ and $\delta > 0$, there is a sample size $n_0 = n_0(\varepsilon, \delta)$ such that (11) holds. It is called
877 ε -*learnable* if the above holds for every $\varepsilon > 0$ with some fixed confidence parameter $\delta < 1$.
878879 Next, recall the definition of $\mathcal{L}_{\mathcal{M}}$ from Appendix B. In Corollary B.1, we proved that for any $m \geq 1$,
880 $\mathfrak{R}_m(\mathcal{L}_{\mathcal{M}}) = O(m^{-1/2} \log^2 m)$. A well-known relationship between the Rademacher complexity
881 and sample complexity (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5) implies the following
882 theorem883 **Theorem C.1.** *Let $\Sigma = (X, R)$ be a range space such that $\text{VC-dim}(\Sigma) = O(1)$. Let \mathcal{D} be a family
884 of probability distribution over X . Then, $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ is agnostic (ε, δ) -learnable with sample
885 complexity $O(\varepsilon^{-2}(\log^4 \varepsilon^{-1} + \log \delta^{-1}))$ for any $\varepsilon, \delta \in (0, 1)$.*
886887 Suppose $\text{VC-dim}(\Sigma) = \kappa_1$ and $\text{VC-dim}(\Sigma^*) = \kappa_2$, where Σ^* corresponds to the dual range space
888 of Σ . The order notation in the sample complexity bound of Theorem C.1 hides a dependence on
889 $\kappa_1 \cdot \kappa_2$. It is a well-known fact that for standard geometric ranges such as boxes, balls and halfspaces
890 in \mathbb{R}^d , $\kappa_1 \cdot \kappa_2 = O(d^2)$.891 **Corollary C.1** (restatement of Theorem 2.1). *Let $\Sigma = (X, R)$ be a range space, where $X \subseteq \mathbb{R}^d$ and
892 let R correspond to standard geometric ranges such as boxes, balls or halfspaces. Let \mathcal{D} be a family
893 of probability distribution over X and let $\mathcal{M} := \mathcal{M}_{\Sigma, \mathcal{D}}$ be the corresponding family of selectivity
894 functions. Then, \mathcal{M} is ε -learnable with sample complexity $O(d^2 \varepsilon^{-2}(\log^4 \varepsilon^{-1}))$ for any $\varepsilon \in (0, 1)$*
895896 D DETAILED EXPERIMENTAL RESULTS
897898 **Datasets.** We use several real-world datasets, all of which have been used in prior work, including the
899 benchmark study Wang et al. (2021):
900901 • **Power** Dua & Graff (2019): Electric power usage data collected from a household over 47 months,
902 with 2.1 million tuples over 7 numerical attributes. We consider ranges involving 2–7 dimensions.
903 • **Forest** Dua & Graff (2019): Forest cover types with 581,000 tuples and 10 numerical attributes.
904 We consider ranges involving 2–10 dimensions.
905 • **IMDb** Leis et al. (2015): Information about 2.5 million movies, popular in benchmarking query
906 optimization. While Power and Forest each have a single table, we consider multi-table join
907 queries with range selections on columns from different tables. We also use IMDb to create
908 drifting data distributions, as was done in Xiu et al. (2024), by “slicing” the movies by production
909 year such that each data slice has a naturally different distribution. See details in Section D.2.
910911 **Queries.** As there are no widely available benchmarks with drifting query distributions over real-
912 world data, we define our own for the datasets above. For simplicity, we normalize data distributions
913 such that every D_t of interest has support in the unit hypercube $[0, 1]^d$. While our techniques
914 generalize to arbitrary ranges in $[0, 1]^d$, we mainly restrict ourselves to orthogonal ranges because they
915 are supported by all alternative approaches compared. To define a distribution of range queries in-
916 volving d dimensions, we use two parameters: a *center* $c \in [0, 1]^d$ and a *diagonal vector* $g \in [0, 1]^d$.
917 To generate a query, we sample a center point r from a normal distribution centered at c . Then,
918 we sample a diagonal vector h from a normal distribution centered at g . The resulting query is a

918
919
920
921
922
923
924

925 Figure D.1: Visualization of drifting query distributions. *Each axis corresponds to a selected dimension of data; each dot represents the center of a range query, with color indicating temporal 926 progression from start to end in the query sequence \mathcal{Z} . To highlight significant shifts, black arrows 927 connect consecutive queries whose centers move beyond a fixed threshold (0.3 in either dimension).* 928

929 hyper-rectangular range $[r - h/2, r + h/2]$, clipped to lie within $[0, 1]^d$. Intuitively, the center c controls 930 where queries are focused, while g controls their size and aspect ratio. As a vector, g provides 931 coordinate-wise flexibility—allowing queries to be narrow in some dimensions and wide in others.

932 To synthesize drifting query distributions for our experiments, we construct two scenarios (further 933 details in Section D.1):

935 • **Gradual drift:** In this scenario, the query distribution drifts gradually over time, from an initial 936 distribution Q_1 parameterized by $(c_{\text{start}}, g_{\text{start}})$ to a final distribution Q_n parameterized by 937 $(c_{\text{end}}, g_{\text{end}})$. We ensure that the two distributions have sufficient distance in between to induce 938 a meaningful drift. Between Q_1 and Q_n , to obtain an intermediate query distribution Q_t with setting 939 (c_t, g_t) , we linearly interpolate between $(c_{\text{start}}, g_{\text{start}})$ and $(c_{\text{end}}, g_{\text{end}})$. This method produces a 940 smooth drift in both location and size/aspect ratio.²

941 • **Abrupt drift:** Here, the query distribution would remain the same for a duration of time, after 942 which a sudden abrupt change occurs. Specifically, at fixed intervals, we sample a new center 943 $c' \in [0, 1]^d$ and a new diagonal vector $g' \in \mathbb{R}_{\geq 0}^d$ to be used for the new query distribution, again 944 ensuring sufficient separation from the previous setting to create a meaningful shift. For example, 945 if the stable period is k , the first k query distributions Q_1, \dots, Q_k will be the same, defined by a 946 fixed (c, g) ; then, a new setting (c', g') is sampled that defines Q_{k+1}, \dots, Q_{2k} , and so on. This 947 setup induces a piecewise stationary process with sharp transitions between phrases.

948 Figure D.1 visualizes these two types of query drift using Power-2d workload as an example, where 949 queries are 2-d ranges over 2 selected data dimensions. In the gradual drift case, queries evolve 950 smoothly over time, forming a continuous trajectory. In contrast, the abrupt drift case exhibits 951 sudden directional changes and clear spatial jumps.

952 **Methods compared.** We compare against other approaches that can operate using query feedback 953 only, without requiring access to the underlying data. Learned query-driven models can be broadly 954 categorized into two types: deep learning and distribution-based. We pick one representative of each 955 class, along with a well-studied standard baseline:

956 • CDF Wu et al. (2025), a representative of the deep learning type, is a recent state-of-the-art model 957 that has been shown to be more robust than previous work against drifts, both theoretically and 958 empirically. The original implementation of CDF only supports one-sided ranges; we modify it to 959 support two-sided ranges.

960 • PtsHist Hu et al. (2022) is a representative distribution-based model.

961 • MSCN Kipf et al. (2019) is a widely studied learned model that has served as a standard baseline for 962 comparison in related work. Note that MSCN also has features that use samples from the underlying 963 data; to ensure fair comparison in a purely query-driven setting, we turn off such features in our 964 experiments.

966 While DUSS maintains a dynamic model that continuously adapts over time, the above methods, 967 as with most existing ones in literature, are not designed for online updates; instead, they rely on 968 periodic model retraining or fine-tuning. To ensure fair comparison, we implement various periodic 969

970 ²Besides linear interpolation, we have also tried non-linear interpolation (e.g., sinusoidal or Bézier curves) 971 as well as various configurations of the initial and final settings. The conclusions from evaluation results are 972 consistent across these variants.

strategies for retraining/fine-tuning for these methods. These strategies not only vary the duration of the period, but also how much historical information to use in each retraining/fine-tuning step: one could use recent queries or all past queries (as long as the data distribution is stable). Finally, most models require some initial training. We give each model access to a fixed set of s_{init} initial training queries along with their observed selectivities, drawn from the first workload state distribution in the sequence \mathcal{W} (i.e., based on Q_1 and D_1). Algorithm performance is then evaluated on the sequence of testing queries in \mathcal{Z} separate from the initial training queries. Unless otherwise specified, we set $s_{\text{init}} = 2,000$ for each model $\mathfrak{M} \in \{\text{CDF}, \text{MSCN}, \text{PtSHist}\}$. We then explore the following general adaptation strategies:

- $\mathfrak{M}\text{-}S$: After initialization, the model remains static and is used to predict on \mathcal{Z} without any further model updates.
- $\mathfrak{M}\text{-}R(w, p)$: After initialization, the model is retrained every p queries using the most recent w queries. When $w = \infty$, the model is retrained on all queries seen so far.
- $\mathfrak{M}\text{-}T(w, p)$: After initialization, the model is fine-tuned (as opposed to fully retrained) after every p queries using the most recent w queries. This strategy is supported only by MSCN and CDF, where updates are performed using stochastic gradient descent on the w queries for a few epochs. It is not applicable to PtSHist, which requires solving a non-negative least-squares problem and does not support incremental updates.

Performance metrics. To measure predictive performance, we use several metrics. For overall accuracy, we use two standard measures: RMSE (Root Mean Squared Error) and percentile Q-Error Moerkotte et al. (2009). Given a set of n test queries $\{R_1, \dots, R_n\}$ with estimated selectivities $\hat{s}(R_i)$ and true selectivities $s(R_i)$, RMSE is defined as $(\frac{1}{n} \sum_{i=1}^n (\hat{s}(R_i) - s(R_i))^2)^{1/2}$; Q-error(p) is defined as the p -th percentile of the set of relative errors:

$$\{ \max\{\hat{s}(R_i), s(R_i)\} / \min\{\hat{s}(R_i), s(R_i)\} : i \in [n] \}.$$

While RMSE focuses on absolute error and penalizes large deviations heavily, Q-error highlights relative error, capturing performance across varying scales of selectivity.

Finally, to be practical, a model must adapt efficiently and provide fast predictions. Therefore, we also measure the computation overhead of model retraining/fine-tuning as well as inference. All experiments were conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz, 256 GB of RAM, and a NVIDIA GeForce RTX 3090 GPU (24 GB), running CUDA 12.8.

D.1 FIXED DATA, DRIFTING QUERIES

Table D.1: Selectivity estimation accuracy and training cost under gradual and abrupt query drifts on Power-2d and Power-7d workloads. \blacktriangleright marks the lowest error or training time; \triangleright marks the second- and third-lowest.

Method	Power-2d Gradual				Power-2d Abrupt				Power-7d Gradual				Power-7d Abrupt			
	RMSE	Med.	90-th	Train (s)	RMSE	Med.	90-th	Train (s)	RMSE	Med.	90-th	Train (s)	RMSE	Med.	90-th	Train (s)
DUSS	▷0.026	▷1.154	▷2.6	▷5	▷0.027	▷1.055	▷1.8	▷5	▷0.092	▷1.364	▷14.9	▷9	▷0.072	▷1.215	▷17.9	22
CDF-R(∞, 2k)	0.105	2.	24.9	236	0.242	11.096	4410.0	245	0.195	2.397	22.4	296	0.215	3.196	126.1	288
CDF-R(∞, 500)	0.063	1.439	4.0	1176	0.176	1.556	237.0	1224	0.139	1.679	▷11.0	1361	0.164	3.221	▷60.0	1309
CDF-R(2k, 2k)	0.095	1.761	12.0	255	0.363	8.	4410.0	277	0.179	2.471	33.0	290	0.221	3.330	2163.0	288
MSCN-R(∞, 2k)	0.099	1.579	12.0	49	0.201	3.042	4410.0	50	0.171	2.	23.9	52	0.215	4.442	217.3	55
MSCN-R(∞, 500)	0.071	1.435	4.8	232	0.145	1.613	45.0	252	0.148	1.525	▷7.0	248	0.168	2.446	▷47.6	253
MSCN-R(2k, 2k)	0.102	1.557	12.0	19	0.273	458.	4410.0	14	0.217	3.	50.5	20	0.263	10.221	1998.0	25
PtSHist-R(∞, 2k)	▷0.036	1.178	4.6	135	▷0.135	▷1.027	1709.0	150	0.106	1.484	38.2	131	▷0.104	▷1.340	153.7	134
PtSHist-R(∞, 500)	▷0.016	▷1.110	▷3.4	632	▷0.086	▷0.107	▷6.6	711	▷0.101	▷1.469	35.0	607	▷0.095	▷1.296	75.9	616
PtSHist-R(2k, 2k)	▷0.036	▷1.116	▷3.7	73	0.289	626.	4612.0	79	▷0.103	▷1.456	36.6	76	0.210	3.745	2584.0	80
CDF-T(2k, 2k)	0.099	2.	24.1	54	0.271	269.	4607.0	51	0.197	2.541	41.0	68	0.257	9.	241.5	72
CDF-T(500, 500)	0.058	1.501	6.0	109	0.181	2.	2765.0	108	0.163	2.124	21.5	123	0.197	3.157	283.5	121
MSCN-T(2k, 2k)	0.147	2.141	23.0	10	0.279	345.471	4227.0	6	0.189	2.112	38.1	10	0.201	3.502	105.1	▷5
MSCN-T(500, 500)	0.071	1.599	8.2	12	0.198	2.269	618.1	8	0.133	1.846	10.9	12	0.195	3.002	120.4	▷10
DUSS-S	0.149	5.848	22.4	▷3	0.224	6.149	▷40.3	▷3	0.203	2.808	130.2	▷6	0.110	1.366	159.1	12
CDF-S	0.181	10.	4000.0	15	0.260	53.5	4643.0	24	0.320	20.330	146.0	24	0.250	9.210	67.2	18
MSCN-S	0.181	11.	4076.0	▷3	0.275	20.280	4608.0	▷3	0.310	15.554	116.9	▷2	0.215	4.749	64.7	▷5
PtSHist-S	0.137	797.	797.0	13	0.239	9.121	4609.0	14	0.177	2.491	138.0	13	0.113	1.580	200.0	13

We first consider the simpler setting where the data distribution remains fixed, while the query distribution undergoes drift. Although this setting is “simpler,” it still presents considerable challenge for

1026 learners relying only on query-feedback. We focus on single-table range selection queries over the
 1027 Power and Forest. For each dataset, we compare competing query-driven approaches under multiple
 1028 workloads, with the number of dimensions in the query range varying from 2 to 7, and query drift
 1029 being either gradual or robust. The change in range dimensionality is intended to evaluate the mod-
 1030 els under varying degrees of query complexity. Each workload consists a sequence of $n = 10,000$
 1031 testing queries, separate from the initial s_{init} training queries.

1032
 1033
 1034 **Results on Power.** Table D.1 presents results for Power-2d and Power-7d under both gradual and
 1035 abrupt drift scenarios. To help spot top performers, we highlight the best values in each column
 1036 representing a performance metric. Note that the reported training times (“Train” column) broadly
 1037 include model initialization using the s_{init} training queries, as well as all subsequent updating, re-
 1038 training, or fine-tuning costs incurred while processing the testing workload.

1039 As we can see from Table D.1, DUSS consistently delivers the best trade-off between accuracy and
 1040 efficiency. It ranks among the top three for all accuracy metrics across workloads, while incurring
 1041 some of the lowest training times. In contrast, competing methods occasionally match or slightly
 1042 surpass its accuracy, but only do so by incurring substantially higher training costs. For example,
 1043 for Power-2d under gradual drift, PtsHist achieves marginally lower RMSE than DUSS, but requires
 1044 over $120\times$ more training time. As the query drift intensifies—particularly in high-dimensional or
 1045 abrupt settings—the advantage of DUSS becomes even more pronounced: it is the only method to
 1046 maintain superior accuracy with minimal training costs—typically under 22 seconds in total. (To
 1047 put this number in context, it represents a mere 2% of the time needed to execute all queries in the
 1048 workload.)

1049 These results also shed light on the effectiveness of different adaptation strategies. Static baselines,
 1050 while requiring no further cost to maintain, consistently underperform in accuracy, highlighting the
 1051 importance of model adaptability in a dynamic setting, even if only the query distribution drifts (and
 1052 the data distribution does not). Among the adaptive variants, $\mathcal{M}\text{-}R(\infty, 500)$ —which retrains on the
 1053 full query history at high frequency—typically delivers the highest accuracy, but incurs substantial
 1054 training time. Reducing the frequency to $\mathcal{M}\text{-}R(\infty, 2000)$ lowers cost, though at the expense of accu-
 1055 racy. Fine-tuning strategies like $\mathcal{M}\text{-}T(500, 500)$, which incrementally update the model using fewer
 1056 epochs, strike a middle ground: they lower overhead compared to full retraining while improving
 1057 accuracy over infrequent retraining. However, they still cannot match the best-performing retrained
 1058 models, and they remain more costly than DUSS.

1059 Moreover, we note that the right adaptation strategy depends heavily on the drift scenario. Under
 1060 gradual drift, retraining on only recent queries (e.g., $\mathcal{M}\text{-}R(2k, 2k)$) is often sufficient and cost-efficient.
 1061 However, this approach performs poorly under abrupt drift—sometimes it is even worse than a static
 1062 model—as it neglects earlier but still relevant queries. In such cases, retraining on the full query
 1063 history, as in $\mathcal{M}\text{-}R(\infty, 2k)$, proves more robust and reliable. In contrast, DUSS does not have this
 1064 problem of having to pick the right adaptation strategy at all.

1065
 1066 **Additional results on Power and Forest.** Complementing Table D.1, Figure D.2 visualizes the
 1067 trade-off between accuracy (RMSE) and maintenance cost (log-scaled training time) for Power-
 1068 2d/7d and Forest-2d/10d under both gradual and abrupt drift scenarios. The trade-offs achieved by
 1069 different variants of the same approach are connected into one curve. For DUSS, we additionally
 1070 consider a “static” variant where we freeze its model after initiation and prevent it from dynamic
 1071 adaption; the performance of this variant is then connected to the normal DUSS. Other approaches
 1072 are shown under three retraining strategies with varying retraining frequencies: $\mathcal{M}\text{-}S$, $\mathcal{M}\text{-}R(\infty, 2k)$,
 1073 and $\mathcal{M}\text{-}R(\infty, 500)$.

1074 DUSS’s ability to achieve high accuracy with minimal maintenance cost is clearly illustrated in
 1075 the figure. Across all scenarios, including high-dimensional and abrupt drift cases, DUSS achieves
 1076 strong accuracy with under 30 seconds of training time. In comparison, competing methods require
 1077 significantly more time to reach similar performance. PtsHist- $R(\infty, 500)$ is the most competitive among
 1078 the baselines in terms of accuracy, especially under gradual drift in low-dimensional settings. How-
 1079 ever, it still falls short of DUSS under abrupt drift and incurs significantly higher cost, up to 1,000
 1080 times more in cases like Forest-2d. CDF is often more accurate than MSCN (but not always); at the
 1081 same time, it is more costly.

Table D.2: Average total training time and end-to-end inference time (per query) comparison across methods.

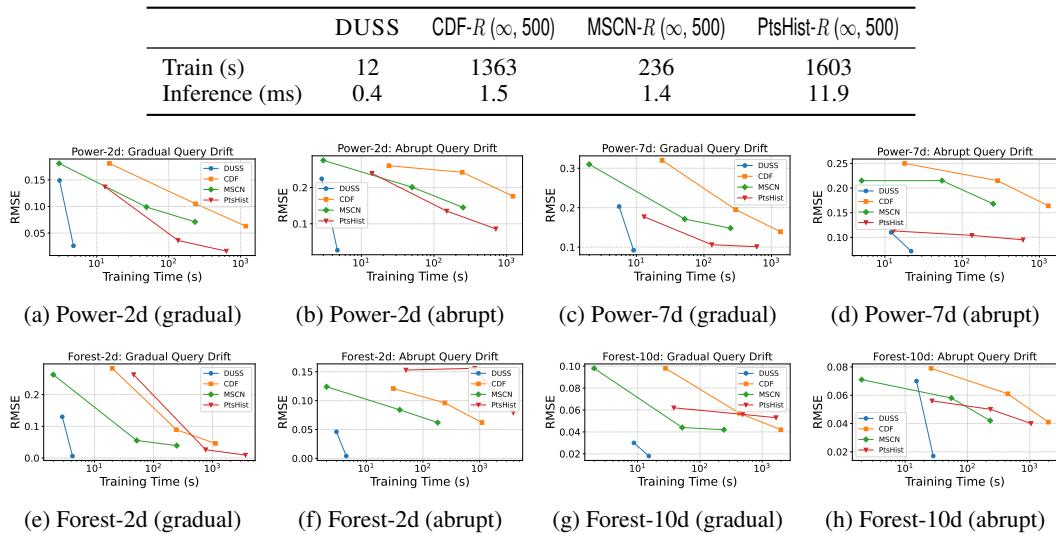


Figure D.2: RMSE vs. log-scaled training time (in seconds) for different estimators under gradual and abrupt query drift.

Inference cost. Last but not least, we measure the average end-to-end inference time per query for different models across various scenario enumerated in Figure D.2. Results are shown in Table D.2. Inference speed is a critical factor in assessing the practicality of a selectivity estimator, as slower inference slows down query optimization and prolongs end-to-end query latency. Thanks to its simple model, DUSS, even with a straightforward implementation, achieves the lowest inference time among all approaches. Deep-learning approaches require preprocessing steps such as zero-padding, mask generation, and tensor conversion to ready each incoming query for estimation. Both DUSS and deep-learning approaches offer reasonable inference speed, typically under 1.5ms per query. In contrast, PtsHist incurs significantly higher inference overhead due to its more complex internal structure and geometric computations. Although PtsHist can occasionally outperform DUSS in accuracy after nontrivial training efforts, its high inference cost limits its suitability for latency-sensitive scenarios.

D.2 DRIFTING QUERY AND DATA DISTRIBUTIONS

We now consider a more challenging and realistic scenario where both the query and data distributions are drifting simultaneously over time. Table 5.1 presents the results for four workloads based on IMDb. The queries in IMDb-2d come from a 2-way join query template, with local range selections on both tables; those in IMDb-7d come from a 7-way join query template, with local range selections on 6 tables. Changes in the distribution of query ranges are generated as described earlier in this section. To simulate changes in data distribution, we partition the IMDb dataset based on the production year of the movies (*title.production_year*). Specifically, we define five slices: 2015-2006, 2012-2003, 2009-2000, 1999-1981, and 1980-1880, denoted D_1 to D_5 , respectively. Each slice includes the movies produced within the corresponding year range, along with associated data in other tables, and is treated as a standalone database instance. The first three instances cover recent movies in a sliding-window fashion: each slice is 10 years and overlaps with adjacent slices by 7 years. The last two slices include older movies, with no overlap with the earlier slices. In effect, the sequence simulates somewhat gradual data distribution shifts between D_1 to D_3 , followed by more abrupt and significant changes to D_4 and D_5 . For the query workload, we again consider the two types of query drifts studied in Section D.1, gradual and abrupt. Each query workload contains $n = 50,000$ queries, divided into equal-sized chunks and assigned to the five corresponding data slices in order.

For each competing query-driven method \mathfrak{M} , we evaluate two retraining strategies: $\mathfrak{M}\text{-}R(2k, 2k)$ and $\mathfrak{M}\text{-}R(\infty, 2k)$. In the $\mathfrak{M}\text{-}R(\infty, 2k)$ setup, instead of using all historical queries to retrain, we restrict them to queries that were executed against the current database slice (if they are available). This restriction

is intuitive because earlier queries would have provided incorrect selectivity feedback. On the other hand, the knowledge about when the underlying database slice has changed is in fact unavailable to the model; therefore, we are effectively giving this setup an unfair advantage over others.

From Table 5.1, we observe trends consistent with those in Section D.1, despite the added difficulty of simultaneous shifts in both data and query distributions. First, DUSS consistently achieves the best accuracy and training efficiency across both gradual and abrupt query drift settings, outperforming all other query-driven methods—including PtsHist, the strongest among them. Second, as before, retraining on all observed queries yields better accuracy than using only recent windows—particularly under abrupt query drifts, where relying solely on recent queries can be detrimental. Third, CDF generally achieves lower RMSE than MSCN, but this improvement comes at the cost of significantly higher training time.

In Figure 5.1, we track RMSE and Q-error using a sliding window of size 100 on IMDb-7d with abrupt query drift—our most challenging setting. Each metric reflects the average error within a window. A well-adapting model should sustain low error even with small windows. We compare DUSS against PtsHist-R ($\infty, 2k$), the most competitive baseline in Table 5.1. As expected, both models exhibit error spikes around distribution shifts—such as transitions between data slices (e.g., from D_n to D_{n+1}) and query shifts at 15K and 45K. However, DUSS adapts more quickly and returns to good accuracy sooner. For RMSE, it has lower worst-case error and faster recovery, whereas PtsHist lags behind even with much heavier retraining. For Q-error, DUSS remains consistently lower with smaller fluctuation. These results further demonstrate DUSS’s ability to adapt to both data and query distribution shifts.

E ADDITIONAL RELATED WORK

Cardinality Estimation. Cardinality/Selectivity estimation is a fundamental problem in query processing Lipton et al. (1990); Poosala & Ioannidis (1997); Aboulnaga & Chaudhuri (1999); Bruno et al. (2001); Srivastava et al. (2006); Markl et al. (2007); Kaushik & Suciu (2009). Recently, there has been significant interest in ML-based techniques for selectivity estimation Park et al. (2020); Hasan et al. (2020); Kipf et al. (2019); Yang et al. (2020); Dutt et al. (2019); Hilprecht et al. (2020); Wang et al. (2021). Broadly, ML-based approaches falls into two categories, including *data-driven* Hilprecht et al. (2020); Yang et al. (2020); Hasan et al. (2020) and *query-driven* Park et al. (2020); Kipf et al. (2019); Hu et al. (2022); Wu et al. (2025); Dutt et al. (2019). Data-driven methods aim to model the underlying data distribution by directly accessing full tables or sampled subsets. In contrast, query-driven methods focus on specific query workloads and typically learn from query-selectivity feedback. A large variety of models has been proposed for the query-driven setting, including methods based on probability distributions (e.g., histograms, mixture models), tree ensembles, graphs and deep neural networks. For a comprehensive survey, see Wang et al. (2021).

Several strategies have been adopted to handle query and data drift. For example, Robust-MSCN Negi et al. (2023) extends basic MSCN Kipf et al. (2019), leveraging up-to-date DBMS statistics and data sampling-based features. On the other hand, CDF-MSCN Wu et al. (2025) shows that distribution-based models are robust against query drift and modifies MSCN to have this property. However, when the drift is enough, no fixed model can perform well without re-training/finetuning. This has led to sophisticated techniques such as Warper Li et al. (2022), which employs a Generative Adversarial Network (GAN) to synthesize additional training queries. More recently, ShiftHandler Wu & Ives (2024) proposes a replay buffer to select a smaller, high-impact subset of training queries for retraining. DDUp Kurmanji & Triantafillou (2023) considers how to update models in the presence of data updates. Typically, methods used to maintain an accurate model in fully dynamic environments require data access. This is in contrast to our algorithm DUSS which only works based on observations of user generated queries and their cardinalities. For example, Warper Li et al. (2022) and ShiftHandler Wu & Ives (2024) accesses data by re-executing queries; Robust-MSCN Negi et al. (2023) rebuilds its sample bitmaps.

Learning Under Drift. The general problem of learning under drift has been extensively studied in the machine learning community and giving a full overview is beyond our scope. Early work by Helmbold & Long (1994) established learning bounds under the assumption that only the target concept may drift. Subsequently, significant extensions were made by Bartlett (1992); Barve & Long

1188 (1996). We use the framework by Mohri & Medina (2012), who themselves extended the results of
1189 Bartlett (1992) to real-valued functions.
1190

1191 F LLM DECLARATION 1192

1193 All intellectual contributions in this paper are solely due to the authors. We made limited use of
1194 a large language model (ChatGPT) to edit prose. Specifically, certain paragraphs written by the
1195 authors were lightly polished for style, grammar and clarity. The model was not involved in the
1196 generation of research ideas, including algorithms, proofs, or design of experiments. AI-assistance
1197 was used for coding our algorithms, especially for debugging.
1198

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241