
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNED CARDINALITY ESTIMATION UNDER QUERY
AND DATA DISTRIBUTION DRIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of estimating the cardinality of queries is central to database sys-
tems. Recently, there has been growing interest in applying machine learning to
this task. However, real-world databases are dynamic: the underlying data evolves
and query patterns change over time. A key limitation of existing learning-based
approaches is their susceptibility to drift. To the best of our knowledge, no prior
method provides provable performance guarantees in fully dynamic environments.
In this paper, we design an online learner that can, by passively observing queries
and their corresponding cardinalities, maintain an effective model with strong per-
formance guarantees even under continuous distributional drift. The algorithm ap-
plies to a broad class of queries, including orthogonal range-queries and distance-
based queries commonly used in practice. Our work demonstrates that effective
cardinality estimation in a dynamic setting possible even without direct access to
the dataset.
Beyond our algorithmic results, we establish foundational results on the learnabil-
ity of distribution-based models in static and dynamic environments. Such models
are valued for their interpretability and inherent robustness to drift, making them
especially important in practice.

1 INTRODUCTION

Estimating the cardinality of a database query, i.e., the number of tuples in a dataset that satisfy
the query predicate, is a fundamental problem in databases (Lipton et al., 1990). Query optimizers
depend on accurate estimates of query cardinalities to choose good execution plans, and over the last
decade (Ding et al., 2024), there has been increasing interest on using machine learning (ML) for
this task (Wang et al., 2021). In this paper, we focus on the query-driven regime, where the learner
learns a regression model for cardinality estimation from past queries and their cardinalities (Kipf
et al., 2019; Dutt et al., 2019; Park et al., 2020; Wu et al., 2025; Hu et al., 2022).

In the real world, most databases are dynamic. Both the query distribution (which regions of the
data space are queried) and the data distribution (the state of the table itself) drift over time. When
queries move into unseen regions or when the data distribution shifts significantly, the performance
of learned cardinality estimators is known to degrade (Negi et al., 2023; Wu et al., 2025). While
there exist ML-based methods with performance guarantees under limited drift (Wu et al., 2025; Hu
et al., 2022), to the best of our knowledge, none offer guarantees in a fully dynamic environment. In
an orthogonal line of work, Zeighami & Shahabi (2024a;b) characterize when learned methods can
succeed, including under drifting conditions, but do not prescribe concrete learning algorithms.

This paper considers the setting where both query and data distributions may evolve over time. The
learner only has access to query-cardinality pairs obtained by passively observing the database. For
each new query, it produces an estimate using its current model; once the query is executed, the true
cardinality is revealed. The learner may use this information to improve its model but must also be
efficient in doing so. We note that systems for handling drift—e.g., Li et al. (2022); Negi (2024);
Wu & Ives (2024)—typically have much more information at their disposal, including direct access
to the dataset and update sequence, as well as the ability to actively generate additional queries.
In contrast, we pose the following question: Is it possible to design an online learning algorithm
that can maintain an effective and efficient cardinality estimator solely by passively observing user-
generated queries?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our contributions. We establish that the answer to the above question is indeed affirmative under
some natural conditions. Specifically, we make the following contributions:

1. We formalize cardinality estimation under drift as an online-learning problem, where the
learner observes a sequence of query–cardinality pairs, each drawn from an evolving dis-
tribution induced by drifting queries and data (Section 2).

2. We propose an online learning algorithm (Section 3), Dynamically Updated Support Set
(DUSS), which maintains a distribution-based model of the underlying dataset solely from
query–cardinality feedback. DUSS supports a broad class of queries, including all standard
geometric range queries (boxes, balls, halfspaces, etc.).

3. We prove that when both data and query distributions drift gradually, DUSS guarantees
small expected error on each new prediction (Section 4). Furthermore, even if the query
distribution changes arbitrarily, as long as the data distribution remains stable, DUSS en-
sures that the number of times its error exceeds a threshold is bounded. Together, these
conditions cover many practical situations.

4. Beyond DUSS, we establish foundational results on the learnability of distribution-based
models in static and dynamic environments (see Theorems 2.1 and 4.3). Such models are
widely used in database systems; their interpretability and inherent robustness to drift make
them especially valuable in practice.

5. We implement a prototype of DUSS and compare it with other methods (Section D).
Across diverse settings, DUSS fulfills its provable guarantees while consistently outper-
forming baselines in both accuracy and efficiency.

Related Work. There is extensive work on cardinality estimation in the database community; a
comprehensive review is beyond the scope of this paper. Here we briefly discuss the work most
closely related to ours; see Appendix E for a more detailed discussion. Despite extensive work
on learned cardinality estimation, techniques with provable performance guarantees are limited.
Hu et al. (2022) showed that distribution-based models are PAC-learnable with sample complexity
bounds. Wu et al. (2025) extended this to hypothesis classes defined via signed measures (Stein
& Shakarchi, 2005), obtaining the same order of sample complexity and showing robustness under
limited query drift. Both works proposed concrete learners from query–cardinality pairs: Hu et al.
(2022) designed a learner that reconstructs a distributional representation of the dataset by solving a
quadratic program, while Wu et al. (2025) showed a neural-network–based learner and proved that
the network maintains a signed measure, thereby enjoying theoretical guarantees. However, their
results do not extend to the fully dynamic setting, where both query and data distributions evolve.

The only other theoretical study of learned cardinality estimation under drift is by Zeighami &
Shahabi (2024b). They showed existential results under the framework of distribution learnability.
These results are not comparable to ours for several reasons. For example, they assume access to data
updates while our framework is purely based on observing workload queries with no direct access to
data. Moreover, Zeighami & Shahabi (2024b) did not explicitly design a learner, while we provide
a concrete algorithm with provable guarantees for a broad class of queries, including all standard
geometric queries. Complementary to these results, Zeighami & Shahabi (2024a) established lower
bounds on the model size necessary for cardinality estimation.

2 THE LEARNING MODEL

A range space Σ = (X,R) consists of a universe of objects X and a family of subsets R ⊆ 2X called
ranges. For example, if X = Rd, then R may be the set of all boxes, balls, or halfspaces in Rd. In our
context, X is the domain of a dataset, and R corresponds to families of queries, such as orthogonal
range queries (boxes), distance-based queries (balls), or linear-inequality queries (halfspaces). We
model a dataset C as a finite multiset of tuples from X. For a query range R ∈ R, its cardinality on
C is |C ∩R|, the number of tuples in the dataset contained in R.

A data distribution over Σ is a probability distribution over X. For a data distribution D, the
corresponding selectivity function with respect to Σ, denoted µD : R → [0, 1], is defined by
µD(R) = Prx∼D[x ∈ R], i.e., the probability that a random point drawn from D lies in R ∈ R. For
a dataset C, if we define the distribution DC to be 1/|C| for all points in C and 0 otherwise, then

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for any query R, |C ∩ R| = |C| · µDC
(R), so the cardinality-estimation problem is a special case

of the selectivity-estimation problem.

In this paper, we study the general problem of learning selectivity functions over range spaces in
a dynamic environment where the query and data distributions drift over time. The learner has no
access to the underlying data distribution and must rely only on observations of the form z = (R, s),
i.e., query–selectivity pairs in Z = R × [0, 1] to learn the selectivity function. For clarity, we first
present the problem in the static setting and then extend it to the dynamic setting.

2.1 LEARNING IN A STATIC SETTING

We model the static setting by assuming a fixed query distribution Q over R and a fixed data dis-
tribution D over X. This corresponds to the fact that the query patterns are stable and the dataset is
fixed. The learner receives observations of the form z = (R, s), where z is a query–selectivity pair
in Z. An observation is generated by first sampling a query R ∼ Q and then setting s = µD(R).
We call the distribution of z, induced jointly by Q and D, the state distribution (SD) W over Z.

For a hypothesis h : R→ [0, 1], define the loss1 on an observation z = (R, s) as ℓh(z) := |h(R)−s|.
The expected error of h with respect to W is errW (h) =

∫
z
ℓh(z)W (z) dz. Let H be a collection

of hypotheses and let ε ∈ (0, 1) be a tolerance parameter for acceptable error. Informally, the goal
is to design a learner such that, for any W , it can (with high probability) learn from a finite number
of observations drawn from W a hypothesis h ∈ H satisfying errW (h) ≤ infh′∈H errW (h′) + ε.
If such a learner exists for H, the class is said to be ε-learnable (see Haussler (1992) for the formal
definition). The number of observations required is called the sample complexity.

Our results. Our main contribution is to establish improved sample complexity bounds for
distribution-based hypothesis sets. Suppose X ⊆ Rd and R corresponds to geometric objects of
constant size such as boxes, balls, or halfspaces (an arbitrary convex polygon is not of constant
size). Let D be a family of probability distributions over X (e.g., histograms, mixture models, or
probabilistic graphical models). Define the hypothesis setM := MΣ,D = {µD | D ∈ D}; that
is, M is the class of selectivity functions induced by distributions in D. For example, if D is the
family of all histograms on X, thenM corresponds to the class of selectivity functions defined by
histograms. We obtain the following.

Theorem 2.1. Let Σ = (X,R) be a range space, where X ⊆ Rd and let R correspond to geometric
objects of constant size such as boxes, or balls or halfspaces. Let D be a family of probability
distribution over X and let M := MΣ,D be the correspondning family of selectivity functions.
Then,M is ε-learnable with sample complexity O(d2 ε−2(log4 ε−1)) for any ε ∈ (0, 1).

Our result improves upon the previously best-known bound of O(ε−d−2 polylog(ε−1)) (Hu et al.,
2022; Wu et al., 2025). In fact, our result holds for a more general setting as stated in Theorem C.1.

2.2 LEARNING IN A DYNAMIC SETTING

In a dynamic environment, both the query distribution and the data distribution may evolve over
time, as query patterns shift and the underlying data itself changes. To capture drift, we allow the
SD to vary with time. Formally, we assume that observations are drawn from a sequence of SD’s
W = ⟨W1,W2, . . .⟩, where the t-th observation zt = (Rt, st) is sampled from Wt. Furthermore, we
assume thatW is realizable; i.e., there exist underlying query and data distributions Qt and Dt such
that Rt ∼ Qt and st = µDt(Rt). Intuitively, Qt describes how the t-th query is generated, while
Dt represents the data distribution against which the query is evaluated. The sequences ⟨Q1, Q2 . . .⟩
and ⟨D1, D2 . . .⟩ capture the evolution of the query and data distributions, respectively.

Let H ⊆ {R → [0, 1]} be a hypothesis set. In a dynamic environment, any fixed hypothesis will
quickly become obsolete, so learning a single hypothesis no longer suffices. Instead, we adopt an
online learning framework, where the learner must produce a sequence of hypothesis ⟨h1, h2, . . .⟩:
for each t, upon seeing the prefix ⟨z1, . . . , zt⟩ of the observations, the learner produces a function
ht ∈ H to be used for predicting the selectivity for the next range Rt+1; the predicted selectivity
can then be compared with the observation zt+1. In other words, the learner repeatedly predicts

1Other loss functions, such as squared loss, can also be used; we adopt absolute loss here for simplicity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the selectivity for each incoming query, receives feedback in the form of the true selectivity after
query execution, and then subsequently updates its model. We consider two natural objectives for
an online learner over a sequence of SDsW = ⟨W1,W2, . . .⟩. Let ε ∈ [0, 1] be the error threshold.

1. Tracking: Ideally, we want the learner to ensure that the current hypothesis ht always gives good
prediction for the next query. That is, the expected error of using ht with respect to the next SD
is small: i.e., errWt+1(ht) ≤ ε for every t > 0.

2. Low regret: Instead of insisting on the accuracy of every prediction, we want the learner to not
incur too many big errors over time. Formally, we define the overall regret (up to time t) as
the sum

∑t
i=1 1

[
ℓhi

(zi) > ε
]
, where 1[·] returns 1 if the input condition holds or 0 otherwise.

Ideally, we want to keep the overall regret low for any t > 0.

In general, if the drift between consecutive SDs can be arbitrarily large, it would be impossible to
obtain any guarantees. Hence, we propose reasonable conditions under which the above objectives
can be achieved.

Discrepancy. To measure how much the environment has changed, we adopt a hypothesis-class
dependent notion called discrepancy; see Mohri & Medina (2012). For two SD’s W,W ′ over
Z = R× [0, 1], the discrepancy is defined as discH(W,W ′) = suph∈H |errW (h)− errW ′(h)|. Intu-
itively, discH(W,W ′) measures how much a change in the underlying SD from W to W ′ affects the
learner’s view. For example, suppose W and W ′ are induced by (Q,D) and (Q′, D′). If D ̸= D′

but Q = Q′ and the queries only touch regions unchanged between the two data distributions, then
disc(W,W ′) = 0, since the change has no effect from the learner’s perspective.

Our results. We propose a novel algorithm called DUSS (Section 3) for the dynamic setting,
with good provable guarantees on its performance. Suppose X ⊆ Rd and R corresponds to stan-
dard geometric objects such as boxes, balls, or halfspaces. Consider the family D of all discrete
distributions over X and the familyM :=MΣ,D of all selectivity functions with respect to D. Let
W = ⟨W1,W2, . . .⟩ be a sequence of SDs, where each Wt is induced by a query distribution Qt

and a data distribution Dt. DUSS accepts a parameter ε ∈ [0, 1] and processes a sequence of ob-
servation ⟨z1, z2, . . .⟩, where each zi ∼ Wi. At the beginning of step t, it has a selectivity function
µt−1 ∈M. After processing each zt, it updates its hypothesis from µt−1 to µt, based on ℓµt−1(zt).
It maintains the following guarantees.

1. Tracking under gradual drift (Theorem 4.5). If both the query and data distribution can
change, but the drift between any two consecutive SDs is small, i.e., disc(Wt,Wt+1) = o(ε3)
for every t, then DUSS ensures that for every t, it produces µt ∈M such that errWt+1

(µt) ≤ ε.
2. Low regret under stable data but arbitrary query drift (Theorem 4.2). If the data distribu-

tion remains “stable” (a notion we will formalize later), even if the query distribution changes
arbitrarily, DUSS guarantees low regret: i.e., for any t > 0,

∑t
i=1 1ε

(
ℓµi

(zi+1)
)

is O(ε−3).
Moreover, DUSS only needs to update its hypothesis O(ε−3) times.

In other words, when both query and data distributions evolve gradually, DUSS gives good pre-
dictions consistently. Even if the query distribution drifts arbitrarily, DUSS still keeps regret low
as long as the data distribution remains stable. Arbitrary drift in the data distribution is hostile to
any passive learner without access to the data, but in large databases with row-level updates such
events between consecutive queries are rare. Beyond DUSS, we also prove that the same tracking
guarantees hold for any online learner that maintains a hypothesis in MΣ,D with ε-error on the
most recent O(d2ε−2 polylog(1/ε)) observations, extending our static guarantees naturally to the
dynamic setting (Theorem 4.3).

3 DUSS: ONLINE SELECTIVITY LEARNING ALGORITHM

Let Σ = (X,R) be a range space. Our algorithm DUSS (Dynamically Updated Support Set) handles
general range spaces; for simplicity assume X ⊆ Rd and R are geometric objects (boxes, balls,
halfspaces). Recall Z = R × [0, 1]. DUSS maintains a discrete distribution D̂ over X as its model,
updated on a stream of observations Z = ⟨z1, z2, . . .⟩ from Z. Let Zt = ⟨z1, . . . , zt⟩, and Zt,k

denote the suffix of Zt of length min{t, k}.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Overview. DUSS accepts an error threshold ε and a window size m ≥ 0. It maintains a weighted
support D̂ over X and a selectivity function µD̂. At time t, given zt = (Rt, st), the algorithm treats
Zt,m as a training set and aims to maintain the invariant |µD̂(Ri)− si| ≤ ε for all (Ri, si) ∈ Zt,m.
If µD̂(Rt) under- or overestimates st, DUSS adjusts weights inside or outside Rt until balanced.
If D̂ drifts too much, it revisits Zt,m to restore the invariant, or resets entirely when a large data
shift is detected. The pseudocode appears in Algorithm 1; below we describe the information and
parameters it maintains, the weight-update rule, and the revisit/reset steps.

DUSS stores Zt,m and maintains a candidate support S ⊆ X. If X is finite, S = X; if X = [0, 1]d, S
may be a large random sample or grid. We assume S has enough representational power (formalized
later). Each p ∈ S has an integer weight ω(p), initially 1. Let Wcurr =

∑
p∈S ω(p), so D̂ =

{(p, ω(p)/Wcurr) | p ∈ S}.

Weight-update. Given zt = (Rt, st), let Rt be balanced if |µD̂(Rt)− st| ≤ ε, light if the estimate
is too small, and heavy if too large. If balanced, nothing is done. Otherwise:

• If light: set χ = ε2/4
st−ε/2 and repeatedly update ω(p) ← (1 + χ)ω(p) for all p ∈ S ∩ Rt until

balanced.

• If heavy: set χ = ε2/4
1−st−ε/2 and repeatedly update ω(p) ← (1 + χ)ω(p) for all p ∈ S \ Rt until

balanced.

We track COUNT, the number of updates, which is used to trigger resets.

Revisiting the window and Resetting. Weight-updates may break accuracy for past queries.
We check whether Wcurr has grown by more than a factor 1/(1 − ε/2) since initialization or the
last revisit. If so, we sequentially process Zt,m, applying weight-updates to any light or heavy
observation. If Wcurr again grows too much, we repeat. We prove in Section 4.1 that this always
converges and the number of updates remains bounded when the data distribution is stable.
If the data distribution drifts significantly, incremental updates fail. From our analysis, if the data is
stable then COUNT ≤ τres = 16ε−3 ln |S|. Thus, when COUNT > τres, DUSS resets: discarding all
weights and restarting from Zt,m.

4 ANALYSIS OF DUSS

Let Σ = (X,R) be a range space. Before proceeding with the analysis of DUSS, we introduce the
concept of VC-dimension, a standard measure of the combinatorial complexity of a range space. The
VC-dimension of Σ, denoted VC-dim(Σ), is the size of the largest Y ⊆ X such that {R ∩ Y : R ∈
R} = 2Y ; if no such bound exists then VC-dim(Σ) = ∞. For example, when X = Rd and R is
the set of boxes, balls, or halfspaces, the VC-dimension is 2d, d + 2, or d + 1, respectively. By
contrast, if R is the set of convex polygons, VC-dim(Σ) = ∞. The guarantees in this section hold
when VC-dim(Σ) is bounded.

Let D the class of discrete distributions over X, and M := MΣ,D the corresponding class of
selectivity functions. Recall that DUSS processes a sequence of observations Z = ⟨z1, z2, . . .⟩,
where each zt ∈ Z = R× [0, 1]. We analyze DUSS under the assumption that Z is generated from
a sequence of SDsW = ⟨W1,W2, . . .⟩: i.e. for each t, zt ∼Wt, and each Wt is realized by a query
distribution Qt over R and a data distribution Dt over X, so that zt = (Rt, st) is obtained by first
sampling Rt ∼ Qt and then setting st = µDt(Rt). We emphasize that both Dt and Qt may change
over time: i.e. Dt ̸= Dt+1 and Qt ̸= Qt+1 in general. Since the hypotheses learned by DUSS
during its execution are probability distributions over a fixed support set S ⊆ X, it is intuitively clear
that, for DUSS to be effective, S must possess sufficient representational power to accurately model
the evolving data distribution inW . We formalize this requirement as follows.

ρρρ-representative support. For a range space Σ = (X,R) and a distribution D over X, a fi-
nite set A ⊆ X is called an ϵ-sample (or ϵ-approximation) with respect to D if, for every range
R ∈ R,

∣∣∣µD(R)− |R∩A|
|A|

∣∣∣ ≤ ϵ. It is known that if VC-dim(Σ) = d, then an ϵ-sample of size
O
(

d
ϵ2 log

1
ϵ

)
always exists and can be obtained easily via random sampling (Vapnik & Chervo-

nenkis, 1971). We call a finite subset S ⊆ X an ρ-representative with respect to a realizable sequence

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

W = ⟨W1,W2, . . .⟩ of SD’s if, for every t, there exists a sub-multiset St ⊆ S that is a ρ-sample of Σ
w.r.t. Dt. The choice and implementation of ρ-representative supports depends on the range space
Σ. In Section 5, we describe a heuristic for maintaining S for geometric ranges. In the following
analysis, we assume that S is a ρ-representative support of W with ρ = cε for some sufficiently
small constant c > 0. Here ε denotes the error tolerance parameter of the algorithm.

4.1 STABLE DATA AND ARBITRARILY DRIFTING QUERIES

We first analyze the case where the query distribution may drift arbitrarily while the data distribution
remains fixed (later we relax this to a “stable” data distribution). Formally, for every Wi ∈ W ,
we assume Di = D∗, a fixed distribution over X. Thus each observation zt = (Rt, st) satisfies
st = µD∗(Rt). In contrast, the query distribution may vary freely, i.e., Qt can differ arbitrarily
from Qt+1, so Wt+1 may differ from Wt. Our focus here is the low-regret objective introduced in
Section 2.
Let H ⊆ {h : R → [0, 1]} be a hypothesis class, Z = ⟨z1, z2, . . .⟩ an observation sequence, and
ε > 0 a tolerance. Let ALG be an online learner producing ht ∈ H after processing zt. For t ≥ 0,
define fZ(t, ε) =

∑t
i=1 1[ℓhi(zi+1) > ε], i.e., the number of observations in Zt with error above ε.

We say ALG has regret bound f(t, ε) w.r.t.W if maxZ∼W fZ(t, ε) ≤ f(t, ε) for all t ≥ 0. In the
following lemma, we bound the number of times the weight-update step in DUSS is triggered; see
Appendix A for a proof.

Lemma 4.1. Let W be a realizable SD sequence where the data distribution is fixed. For any
observation sequence Z ∼ W , DUSS performs the weight-update step at most τres(ε) := O(ε−3 ·
log |S|) times, irrespective of the window size m.

Since a weight-update step is only triggered if a new observation is light or heavy, i.e. DUSS’s
prediction on the observation is off by at least ε, this immediately implies that cumulative regret
is bounded by O(ε−3 log |S|). A straightforward calculation shows that DUSS performs at least
Ω(ε−1) weight-update steps between two consecutive revisit steps, and therefore it revisits the slid-
ing window at most O(ε−2 ln |S|) times. As in Lemma 4.1, this bound holds independently of the
window size m.
Next, recall that DUSS maintains a probability distribution D̂. Let D̂t denote that state of D̂ af-
ter processing zt. We make the following observations: 1) after DUSS finishes processing zt, Rt is
neither light nor heavy by design; and 2) between any two revisit steps, the selectivity of every range
with respect to µD̂ can change by at most ε/2. Combining these facts with Lemma 4.1 implies that,
for any window size m > 0 and any observation sequence Z ∼ W , DUSS ensures that

max
z∈Zt,m

err(µD̂t
, z) ≤ 2ε. (1)

This implies the following property (which will also be useful in Section 4.2):

Sliding-window ERM property. LetH ⊆ {R→ [0, 1]} be a hypothesis set. Given an error thresh-
old ε ≥ 0 and a window parameter m ∈ N, we say that an online learning algorithm ALG satisfies
the (ε,m)-sliding window empirical risk minimizer property, or (ε,m)-window ERM property for
short, with respect to an observation sequence Z = ⟨z1, z2 . . . , ⟩, if for any t, after processing zt,
ALG maintains a hypothesis ht ∈ H such that∑

z∈Zt,m

err(ht, z) ≤ inf
h∈H

∑
z∈Zt,m

err(h, z) + εm.

Note that this guarantee is retrospective, as it evaluates the performance of the current hypothesis
ht on the last m observations. In simple terms, it implies that the total error incurred on the most
recent m observations is within εm of the minimum possible. As discussed earlier, assuming a
fixed data distribution, DUSS maintains Inequality (1), which is a stronger condition that implies
the (ε,m)-window ERM property. Putting everything together, we obtain the following theorem.

Theorem 4.2. Let W be any realizable SD sequence where the data distribution is fixed. DUSS
achieves a regret bound of O(ε−3 log |S|), performs the revisit step at most O(ε−2 log |S|) times,
and satisfies the (ε,m)-sliding-window ERM property with respect to any observation sequence
Z ∼ W .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

From fixed to stable data distributions. We note that Theorem 4.2 extends to the case where
the data distribution is not fixed but stable under W . Formally, for two data distributions D and
D′, the total variation distance is defined as TV(D,D′) := supA⊆X |D(A) −D′(A)|. Intuitively,
TV(D,D′) is the maximum difference in selectivity that the two distributions assign to the same
point set. We say that an SD sequenceW is σ-stable if for every pair Wi,Wj ∈ W , TV(Di, Dj) ≤
σ holds. Theorem 4.2 remains valid as long asW is cε-stable, where c is a suitably small constant
and ε is the algorithm’s tolerance parameter.

4.2 GRADUALLY DRIFTING DATA AND QUERIES

In the previous subsection, we bounded the regret when the data distribution is fixed or sufficiently
stable, even if the query distribution changes arbitrarily at each step. Ideally, we would like our
algorithm’s prediction, based on past observations ⟨z1, . . . , zt⟩, to remain accurate for the next ob-
servation zt+1. Clearly, if either distribution drifts abruptly, no meaningful accuracy guarantees are
possible. We therefore focus here on the case of gradual drift, adopting the drift-tracking framework
of Mohri & Medina (2012).

(∆, ε)(∆, ε)(∆, ε)-tracking. Let H be a hypothesis set. Let ALG be an algorithm that receives a sequence
Z = ⟨z1, z2, . . .⟩ of observations and maintains a hypothesis in H. Let ht ∈ H be the hypothesis
that ALG has computed at step t, which depends on the prefix Zt of Z . Let Λt = ℓht−1(zt) denote
the loss on observation zt. LetW = ⟨W1,W2, . . .⟩ be a sequence of SD’s. For any t > 0, we define
Λ̄t(W) = EZt∼W [Λt]. For parameters ∆, ε ∈ (0, 1), we say that ALG (∆, ε)-tracksH if there exists
t0 := t0(∆, ε) such that for all t ≥ t0 and for any sequenceW where discH(Wi,Wi+1) ≤ ∆ for
all i ≥ 1, we have Λ̄(W) ≤ infh∈H errWt

(µ) + ε.

Intuitively, assuming that that the drift rate in W is limited to ∆, a tracking algorithm is expected
to deliver good predictions. In this section, we prove that DUSS is a tracking algorithm when
both query and data distributions drift gradually. Before doing so, we first establish a general result
that holds for any sliding-window ERM algorithm (see Section 4.1). We believe this result is of
independent interest with other potential applications.

Theorem 4.3. Let Σ = (X,R) be a range space with VC-dim(Σ) = O(1). Let D be a class
of distributions over X and M := MΣ,D the associated family of selectivity functions. Consider
an (ε,m)-window ERM algorithm ALG using the hypothesis set M. If the drift rate ∆ of the SD
sequence satisfies ∆ = O(ε3 log−4(ε−1)) and the window size m = Θ(ε−2 log4(ε−1)), then ALG
(∆, ε)-tracksM.

Informally, the theorem suggests that for drift rate ∆ < ε3, a (ε,m)-window ERM algorithm with
window size m ≈ ε−2 can consistently maintain its prediction accuracy. The crux of the proof lies
in bounding the covering number ofM. For a parameter α > 0 and m > 1, the α-covering number,
denoted N(M, α,m), is the smallest number of hypotheses inM that can approximate, within α
point-wise error, all functions inM on any set of m queries. We prove the following lemma. See
also Lemma B.2 in Appendix B.

Lemma 4.4. N(M, α,m) = mO(α−2 logα−1).

We combine this lemma with some known results in learning theory to obtain Theorem 4.3. See
Appendix B for more details. We now apply Theorem 4.3 to DUSS. Consider a realizable sequence
of SD’sW = ⟨W1,W2, . . .⟩ with associated underlying data distributions ⟨D1, D2, . . .⟩, where the
total variation distance between Dt and Dt+1 is at most ∆ = c1ε

3 log−4(ε−1), for some constant c1
to be chosen. Given a window size m = Θ(ε−2 log4 ε−1), we can choose c1 such that for any sliding
window Zt,m and for any W,W ′ ∈ Wt,m with respective underlying data distributions D,D′, we
have TV(D,D′) ≤ m∆ ≤ c2ε for some c2 < 1. By the extension of Theorem 4.2 to stable data
distributions, we argue that DUSS satisfies the (ε,m)-window ERM property. Combining this fact
with Theorem 4.3, we establish the following property of DUSS, which is the main result of this
section.

Theorem 4.5. Let Σ = (X,R) be a range space with VC-dim(Σ) = O(1). Let D be the class
of discrete distributions on X andM := MΣ,D the corresponding family of selectivity functions.
Let ε ∈ (0, 1) be the error threshold, and assume that the sequence of SD’s is realized by an
underlying sequence of data distributions where the total-variation distance between consecutive

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

distributions is at most ∆ = O(ε3 log4(ε−1)). Using a window size m = Θ(ε−2 log4(ε−1)) and a
(ε/100)-representative support, DUSS (∆, ε)-tracksM.

In simple words, the above result suggests that if the drift rate ∆ < o(ε3), we can initialize DUSS
with a representative support and set its window size to m = Θ(ε−2 log4(ε−1)); then, DUSS
maintains a model that accurately predicts selectivities of incoming queries in a way that consistently
tracks the gradually drifting environment.

5 SUMMARY OF EXPERIMENTS

We evaluate DUSS on real-world datasets, comparing it with other query-driven methods and
baselines. Since our main goal is to validate our theoretical results (instead of outperforming state-
of-the-art systems), we use a simple implementation of DUSS.

Datasets and Queries. We use several standard real-world datasets from prior work, including
Power (Dua & Graff, 2019), Forest (Dua & Graff, 2019), and IMDb (Leis et al., 2015). Data are
normalized to [0, 1]d. We further splice the IMDb data along the time axis to simulate data drift.
For queries, we consider orthogonal range queries (boxes), since all models we compare with can
support them. We consider two forms of drift. In the gradual drift setting, query centers shift slowly
from one region of the data space to another, producing slow but continuous changes in workload. In
the abrupt drift setting, queries remain clustered around a fixed region for some time before suddenly
jumping to a different region, yielding sharp transitions. Figure D.1 illustrates the two forms of drift.
Additional details regarding the datasets and query generation are deferred to Appendix D.

Implementation details for DUSS. Recall that DUSS assumes access to a representative support
set S ⊆ [0, 1]d. Rather than setting it as a uniform grid over [0, 1]d or precomputing it some other
way (e.g., using historical queries), we construct S dynamically: when queries target a region, we
adaptively increase resolution there, under the assumption that future queries are likely to target
nearby regions. Specifically, when a new query arrives, if fewer than MIN-PTS = 20 points fall
inside its range, we sample additional points from within that range uniformly to ensure there are
at least that many points and add them with negligible initial weights. This gives flexibility to the
algorithm to tune them later if necessary. We upper-bound the model size by setting the support size
budget to K = 50, 000 points (less than 4 MB), and initialize S with a few thousand uniformly sam-
pled points. When the space budget is exhausted, DUSS can compress the support set via weighted
sampling, although in our experiments S never required compression. We also stored S as a simple
array and performed all operations by scanning. While there are several advanced data structures
that could accelerate these operations for orthogonal ranges, even this basic implementation is suf-
ficiently efficient to validate our theory. As for the error tolerance parameter ε, since selectivity
values are typically very small in practice (most queries return a few hundred tuples out of hundreds
of thousands), we set the error tolerance parameter to ε = 10−4. Although in theory (Theorem 4.5),
the algorithm requires a sliding window of ε−2 for tracking (no window is needed for regret guaran-
tees per Theorem 4.2), in our experiments we observed that a much smaller window or no window
worked well. Hence, for simplicity, we report results for the sliding window parameter m = 0.

Methods compared. We compare DUSS against other approaches that operate using query feed-
back only. Such models fall into two classes: deep learning and distribution-based. We pick one
representative of each, along with a widely studied baseline: CDF (Wu et al., 2025), a recent state-of-
the-art deep model; PtsHist (Hu et al., 2022), a distribution-based model; and MSCN (Kipf et al., 2019),
a standard baseline. Unlike DUSS, which adapts online, none of the other methods are designed for
continual updates and rely on periodic retraining or fine-tuning. To ensure fair comparison, we pro-
vide each model with sinit = 2000 initial training queries drawn from the first SD W1 = (Q1, D1),
and then evaluate them on the test sequenceZ = (z1, z2, . . .), where each zt = (Rt, st) ∼Wt ∈ W .
We explore three adaptation strategies: (i) M-S, where the model remains static; (ii) M-R(w, p),
where the model is retrained every p queries using the most recent w (or all when w =∞); and (iii)
M-T (w, p), where the model is fine-tuned after every p queries using w recent queries (supported
only by CDF and MSCN, not by PtsHist).

Performance metrics. We evaluate accuracy using standard Root-Mean-Squared-Error (RMSE)
and percentile Q-error (Moerkotte et al., 2009). For n test queries {Ri}with estimates ŝ(Ri) and true

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5.1: Selectivity estimation accuracy and training cost under simultaneous data and query
distribution drifts (data drifts gradually and then abruptly; queries drift gradually or abruptly) on
IMDb-7d and IMDb-2d. The lowest error and training time in each column are highlighted in bold.

Method
IMDb-7d Query-Gradual IMDb-7d Query-Abrupt IMDb-2d Query-Gradual IMDb-2d Query-Abrupt

RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train
q-err q-err (s) q-err q-err (s) q-err q-err (s) q-err q-err (s)

DUSS 0.079 1.53 12.4 39 0.067 1.42 11.2 47 0.023 1.022 1.321 11 0.013 1.005 1.081 11
CDF-R (2k, 2k) 0.287 2.16 12.2 733 0.341 3.89 299.0 748 0.212 1.122 2.483 121 0.452 1.484 12.510 60
CDF-R (∞, 2k) 0.215 1.64 7.4 2000 0.209 1.88 86.0 2867 0.099 1.050 1.879 260 0.335 1.201 113.900 255
MSCN-R (2k, 2k) 0.285 2.35 12.8 120 0.324 3.25 49.1 128 0.189 1.174 1.792 21 0.431 1.358 11.540 13
MSCN-R (∞, 2k) 0.229 1.76 7.4 382 0.266 2.25 29.5 381 0.149 1.034 1.378 54 0.358 1.036 16.750 48
PtsHist-R (2k, 2k) 0.110 2.93 284.0 505 0.116 4.38 594.0 512 0.029 1.011 1.520 459 0.035 1.006 1.154 439
PtsHist-R (∞, 2k) 0.106 2.57 212.1 1280 0.106 3.33 306.0 1398 0.027 1.014 1.606 4553 0.030 1.007 1.166 4839

0 10k 20k 30k 40k 50k
Observation Sequence

0.1

0.2

RM
S

Er
ro

r

D1 D2 D3 D4 D5

IMDb-7d Query Abrupt: Avg RMSE
DUSS
PtsHist-R

0 10k 20k 30k 40k 50k
Observation Sequence

200
400

Q-
Er

ro
r

D1 D2 D3 D4 D5

IMDb-7d Query Abrupt: Avg Q-Error
DUSS
PtsHist-R

Figure 5.1: Sliding-window performance on IMDb-7d.

selectivities s(Ri), RMSE is
(
1
n

∑n
i=1(ŝ(Ri) − s(Ri))

2
)1/2

, and Q-error(p) is the p-th percentile
of {max{ŝ(Ri), s(Ri)}/min{ŝ(Ri), s(Ri)}}. RMSE captures absolute error, while Q-error high-
lights relative error and is widely used in the database community since selectivities are often small.
We also report efficiency, measure training/fine-tuning overhead and inference time in Appendix D.

Summary. We perform two types of experiments: (i) fixing the data distribution while allowing
the query distribution to drift (more details in Appendix D.1), and (ii) allowing both data and query
distributions to drift (more details in Appendix D.2). Within each setting, we consider both gradual
and abrupt drift for queries and, where applicable, for data. Across all scenarios, DUSS consistently
delivers the best trade-off between accuracy and efficiency, while also incurring some of the lowest
training (model-update) costs.

Under gradual query drift, the distribution-based PtsHist can achieve comparable, and occasionally
marginally better, predictive performance on certain metrics in low-dimensional cases. This ob-
servation aligns with our theory (Theorem 4.5), which suggests that distribution-based models, by
maintaining a good fit on a sliding window, should also perform well under gradual drift. However,
PtsHist requires solving a quadratic program, leading to significantly higher training (model-update)
time. In contrast, the neural network–based CDF-MSCN and MSCN are considerably less effective, even
with frequent retraining. We suspect that their model complexity demands much larger training data
and longer sliding windows to generalize effectively. See Table 5.1 here and Table D.1 in appendix
for more details. Unfortunately, PtsHist loses its advantage in high dimensions: because it is designed
around a fixed support set, it cannot maintain a representative support in sparse, high-dimensional
spaces. Preserving its performance would require dramatically increasing the support size. In con-
trast, DUSS adapts through a dynamic support.

When drift becomes abrupt—especially in high-dimensional settings—DUSS is the only method
that maintains superior accuracy with minimal training costs, owing to its low-regret guarantees
(Theorem 4.2). Again, see Table 5.1 and Table D.1 for details. Figure 5.1 further illustrates a com-
plex drift scenario with abrupt query drift and mixed data drift (further details are in Appendix D.2).
DUSS consistently maintains lower average sliding-window error, and quickly adapts under drift,
demonstrating its robustness.

Taken together, these results these results confirm that DUSS can maintain robust estimator even in
the presence of drift by only observing query-selectivity (query-cardinality) pairs.

REFERENCES

Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building histograms without
looking at data. In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh (eds.), SIG-
MOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

June 1-3, 1999, Philadelphia, Pennsylvania, USA, pp. 181–192. ACM Press, 1999. doi:
10.1145/304182.304198. URL https://doi.org/10.1145/304182.304198.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of computing, 8(1):121–164, 2012.

Peter L Bartlett. Learning with a slowly changing distribution. In Proceedings of the fifth annual
workshop on Computational learning theory, pp. 243–252, 1992.

Rakesh D Barve and Philip M Long. On the complexity of learning from drifting distributions.
In Proceedings of the ninth annual conference on Computational learning theory, pp. 122–130,
1996.

Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Stholes: A multidimensional workload-aware
histogram. In Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, pp. 211–222, 2001.

B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite vc-dimension. Discrete
& Computational Geometry, 4(5):467–489, 1989.

Bailu Ding, Vivek R. Narasayya, and Surajit Chaudhuri. Extensible query optimizers in practice.
Found. Trends Databases, 14(3-4):186–402, 2024. doi: 10.1561/1900000077. URL https:
//doi.org/10.1561/1900000077.

Dheeru Dua and Casey Graff. Uci machine learning repository. http://archive.ics.uci.
edu/ml, 2019.

Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya, and Surajit Chaud-
huri. Selectivity estimation for range predicates using lightweight models. Proceedings of the
VLDB Endowment, 12(9):1044–1057, 2019.

Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and Gautam Das.
Deep learning models for selectivity estimation of multi-attribute queries. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, pp. 1035–1050, 2020.

David Haussler. Decision theoretic generalizations of the pac model for neural net and other learning
applications. Information and computation, 100(1):78–150, 1992.

David P Helmbold and Philip M Long. Tracking drifting concepts by minimizing disagreements.
Machine learning, 14:27–45, 1994.

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and
Carsten Binnig. Deepdb: learn from data, not from queries! Proceedings of the VLDB Endow-
ment, 13(7):992–1005, 2020.

Xiao Hu, Yuxi Liu, Haibo Xiu, Pankaj K. Agarwal, Debmalya Panigrahi, Sudeepa Roy, and Jun
Yang. Selectivity functions of range queries are learnable. In Zachary G. Ives, Angela Bonifati,
and Amr El Abbadi (eds.), SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, pp. 959–972. ACM, 2022. doi: 10.1145/3514221.
3517896. URL https://doi.org/10.1145/3514221.3517896.

Raghav Kaushik and Dan Suciu. Consistent histograms in the presence of distinct value counts.
Proceedings of the VLDB Endowment, 2(1):850–861, 2009.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper.
Learned cardinalities: Estimating correlated joins with deep learning. In 9th Biennial Confer-
ence on Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings. www.cidrdb.org, 2019. URL http://cidrdb.org/cidr2019/
papers/p101-kipf-cidr19.pdf.

Meghdad Kurmanji and Peter Triantafillou. Detect, distill and update: Learned DB systems facing
out of distribution data. Proc. ACM Manag. Data, 1(1):33:1–33:27, 2023. doi: 10.1145/3588713.
URL https://doi.org/10.1145/3588713.

10

https://doi.org/10.1145/304182.304198
https://doi.org/10.1561/1900000077
https://doi.org/10.1561/1900000077
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/3514221.3517896
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.1145/3588713

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neu-
mann. How good are query optimizers, really? Proc. VLDB Endow., 9(3):204–215, 2015. doi:
10.14778/2850583.2850594. URL http://www.vldb.org/pvldb/vol9/p204-leis.
pdf.

Beibin Li, Yao Lu, and Srikanth Kandula. Warper: Efficiently adapting learned cardinality es-
timators to data and workload drifts. In Zachary G. Ives, Angela Bonifati, and Amr El Ab-
badi (eds.), SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022, pp. 1920–1933. ACM, 2022. doi: 10.1145/3514221.3526179. URL
https://doi.org/10.1145/3514221.3526179.

R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity estimation through adaptive
sampling. In Proc. 9th ACM SIGMOD Int. Conf. Management Data, pp. 1–11, 1990.

Volker Markl, Peter J Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh Srivastava, and Tam Minh
Tran. Consistent selectivity estimation via maximum entropy. The VLDB journal, 16:55–76,
2007.

Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad plans by bounding the
impact of cardinality estimation errors. Proc. VLDB Endow., 2(1):982–993, 2009. doi: 10.14778/
1687627.1687738. URL http://www.vldb.org/pvldb/vol2/vldb09-657.pdf.

Mehryar Mohri and Andres Muñoz Medina. New analysis and algorithm for learning with drifting
distributions. In Nader H. Bshouty, Gilles Stoltz, Nicolas Vayatis, and Thomas Zeugmann (eds.),
Algorithmic Learning Theory - 23rd International Conference, ALT 2012, Lyon, France, October
29-31, 2012. Proceedings, volume 7568 of Lecture Notes in Computer Science, pp. 124–138.
Springer, 2012. doi: 10.1007/978-3-642-34106-9\ 13. URL https://doi.org/10.1007/
978-3-642-34106-9_13.

Parimarjan Negi. Machine Learning for Out of Distribution Database Workloads. PhD thesis, MIT,
USA, 2024. URL https://hdl.handle.net/1721.1/153835.

Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam Madden, Tim Kraska,
and Mohammad Alizadeh. Robust query driven cardinality estimation under changing workloads.
Proc. VLDB Endow., 16(6):1520–1533, 2023. doi: 10.14778/3583140.3583164. URL https:
//www.vldb.org/pvldb/vol16/p1520-negi.pdf.

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with
mixture models. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data, pp. 1017–1033, 2020.

V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value independence
assumption. In VLDB, volume 97, pp. 486–495. Citeseer, 1997.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From
Theory to Algorithms. Cambridge University Press, 2014. ISBN 978-1-10-
705713-5. URL http://www.cambridge.org/de/academic/subjects/
computer-science/pattern-recognition-and-machine-learning/
understanding-machine-learning-theory-algorithms.

Utkarsh Srivastava, Peter J Haas, Volker Markl, Marcel Kutsch, and Tam Minh Tran. Isomer: Con-
sistent histogram construction using query feedback. In 22nd International Conference on Data
Engineering (ICDE’06), pp. 39–39. IEEE, 2006.

Elias M. Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert
Spaces. Princeton University Press, 2005. ISBN 9780691113869.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280, 1971. doi:
10.1137/1116025. URL https://doi.org/10.1137/1116025.

Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. Are we ready for
learned cardinality estimation? Proceedings of the VLDB Endowment, 14(9):1640–1654, 2021.

11

http://www.vldb.org/pvldb/vol9/p204-leis.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.1145/3514221.3526179
http://www.vldb.org/pvldb/vol2/vldb09-657.pdf
https://doi.org/10.1007/978-3-642-34106-9_13
https://doi.org/10.1007/978-3-642-34106-9_13
https://hdl.handle.net/1721.1/153835
https://www.vldb.org/pvldb/vol16/p1520-negi.pdf
https://www.vldb.org/pvldb/vol16/p1520-negi.pdf
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1137/1116025

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Algorithm 1 DUSS: Dynamic Update Support-Set.
1: Input: Window size m, error parameter ε, support set S ⊆ X
2: Initialize weights: ω(p)← 1 for all p ∈ S
3: Wcurr ← |S|, Wrev ← |S|, COUNT ← 0

4: Initialize D̂ as the distribution with uniform weights on S
5: Method PROCESS(Observation stream Z)
6: loop zt = (Rt, st)← each new observation
7: Zt,m ← (Zt−1,m ∪ {zt})− {zt−m}, ŝt ← µD̂(Rt)
8: if |ŝt − st| > ε then
9: WEIGHTUPDATE((Rt, st))

10: while Wcurr > Wrev/(1− ε/2) do
11: Wrev ←Wcurr
12: REVISITWINDOW
13: Method WEIGHTUPDATE((R, s))
14: if µD̂(R) < s− ε then
15: χ← ε2

4(s−ε/2)

16: while µD̂(R) < s− ε do
17: ω(p)← (1 + χ) · ω(p), ∀p ∈ S ∩R
18: COUNT ← COUNT + 1
19: else if µD̂(R) > s+ ε then
20: χ← ε2

4(1−s−ε/2)

21: while µD̂(R) > s+ ε do
22: ω(p)← (1 + χ) · ω(p), ∀p ∈ S \R
23: COUNT ← COUNT + 1
24: if COUNT > τres then
25: RESET
26: return

Peizhi Wu and Zachary G. Ives. Modeling shifting workloads for learned database systems. Proc.
ACM Manag. Data, 2(1):38:1–38:27, 2024. doi: 10.1145/3639293. URL https://doi.org/
10.1145/3639293.

Peizhi Wu, Haoshu Xu, Ryan Marcus, and Zachary G Ives. A practical theory of generalization in
selectivity learning. Proceedings of the VLDB Endowment, 18(6), 2025.

Haibo Xiu, Pankaj K. Agarwal, and Jun Yang. PARQO: penalty-aware robust plan selection in query
optimization. Proc. VLDB Endow., 17(13):4627–4640, 2024. URL https://www.vldb.
org/pvldb/vol17/p4627-xiu.pdf.

Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel,
Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. Deep unsupervised cardinality estimation.
Proceedings of the VLDB Endowment, 13(3), 2020.

Sepanta Zeighami and Cyrus Shahabi. Towards establishing guaranteed error for learned database
operations. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL https://openreview.
net/forum?id=6tqgL8VluV.

Sepanta Zeighami and Cyrus Shahabi. Theoretical analysis of learned database operations under
distribution shift through distribution learnability. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=oowQ8LPA12.

A PROOF OF LEMMA 4.1

For a range R, let R̄ denote its complement. If R is a box then R̄ is the region lying outside the box.
For i ≥ 1, let zi = (Ri, si) be the observation when the weights were updated the i-th time, let Wi

12

https://doi.org/10.1145/3639293
https://doi.org/10.1145/3639293
https://www.vldb.org/pvldb/vol17/p4627-xiu.pdf
https://www.vldb.org/pvldb/vol17/p4627-xiu.pdf
https://openreview.net/forum?id=6tqgL8VluV
https://openreview.net/forum?id=6tqgL8VluV
https://openreview.net/forum?id=oowQ8LPA12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

be the value of Wcurr after i weight updates. Recall, that an observation may cause multiple updates,
so zi may be the same as zi+1.

Recall that the support S is cε-representative. For the analysis, assume c = 0.01. Let A ⊆ S be
an cε-sample of D∗. Since the input data distribution D∗ is fixed, by the cε-representative support
property of S, such a set must exist. We prove a bound on T , the number of weight-update steps, by
obtaining an upper bound on WT and a lower bound on the weight of the points in A after T updates,
and by showing that the latter exceeds the former once T > τres(ε). This is a typical argument for
the multiplicative-weight-update (MWU) method Arora et al. (2012).

We first obtain an upper bound on Wi. Initially, W0 = |S|. For simplicity, let γ = ε/2. If Ri is
light, we set bi = si − γ and ∆i = Ri, and if Ri is heavy, we set bi = 1 − si − γ and ∆i = R̄i.
Then after the i-th weight update,

Wi ≤
∑
p∈∆i

ω(p)

(
1 +

γ2

bi

)
+

∑
p/∈∆i

ω(p)

≤Wi−1 +Wi−1 ·
γ2

bi

∑
p∈∆i

ω(p)

Wi−1
≤Wi−1

(
1 +

γ2

bi
· (bi − γ)

)
≤Wi−1(1 + γ2(1− γ)) ≤Wi−1 · exp

(
γ2(1− γ)

)
.

The second last inequality follows because bi ≤ 1. Hence,

WT ≤W0 · exp
(
γ2(1− γ)T

)
= |S| · exp

(
γ2(1− γ)T

)
.

Next, we focus on the weights of points in A. First, it can be verified that bi ≥ γ. Let Wi(p) denote
the weight of p ∈ S after the i-th weight update. If p ∈ ∆i, then

Wi(p) ≥ (1 +
γ2

bi
)Wi−1(p) ≥ (1 + γ)

γ
bi Wi−1(p). (2)

The last inequality follows because γ, γ/bi ∈ [0, 1]. For a subset I ⊆ [T], let σ(I) =
∑

j∈I (1/bj).
Let I(p) ⊆ {1, . . . , T} be the set of indices in which the weigh of p was updated, then by (2),

WT (p) ≥W0(p) · (1 + γ)γ·σ(I(p)). (3)

Since arithmetic mean of a set of non-negative numbers is at least as large as their geometric mean

[∏
p∈A

WT (p)
] 1

a ≤ WT (A)

a
≤ WT

a
, (4)

where a = |A| and WT (A) =
∑
p∈A

WT (p). On the other hand, by (3)

[∏
p∈A

WT (p)
] 1

a ≥ (1 + γ)

γ
a ·

∑
p∈A

σ(I(p))
. (5)

Next, we observe that
1

a

∑
p∈A

σ(I(p)) = 1

a

∑
p∈A

∑
j∈I(p)

1

bj
=

1

a

T∑
j=1

|A ∩∆j |
bj

. (6)

SinceA is an cε-sample, for c = 0.01, of the underlying data distribution D∗, |A∩∆j |
a ≥ bj +0.98γ.

Plugging this bound in (6),

1

a

∑
p∈A

σ
(
I(p)

)
≥

T∑
j=1

bj + 0.98γ

bj
≥ T · (1 + 0.98γ). (7)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Combining (2),(3), and (7), we obtain

(1 + γ)γ(1+0.98γ)T ≤ WT

a
≤WT . (8)

Plugging the value of WT in (7) and taking ln on both sides,

γT (1 + 0.98γ) ln(1 + γ) ≤ γ2(1− ε)T + ln |S|.

Using the fact that ln(1 + γ) ≥ γ − γ2/2, we obtain T ≤ γ−2ln |S|(f(γ))−1, where f(γ) =
(1 + 0.98γ) · (1 − γ/2) − (1 − γ) ≥ γ/2. Hence, substituting γ = ε/2, we conclude that T ≤
2γ−3 ln |S| ≤ 16ε−3 ln |S|, as claimed. This completes the proof of the lemma.

B SLIDING-WINDOW SIZE BOUND UNDER THE DYNAMIC SETTING

Theorem B.1 (Restatement of Theorem 4.3). Let Σ = (X,R) be a range space with VC-dim(Σ) =
O(1). Let D be a class of distributions over X and M := MΣ,D the associated family of se-
lectivity functions. Consider an (ε,m)-window ERM algorithm ALG using the hypothesis set M.
If the drift rate ∆ of the SD sequence satisfies ∆ = O(ε3 log−4(ε−1)) and the window size
m = Θ(ε−2 log4(ε−1)), then ALG (∆, ε)-tracksM.

The argument proceeds in several parts. The key insight, however, is to show that the α-cover (see
(Shalev-Shwartz & Ben-David, 2014, Ch. 26–27)) of the class of selectivity functionsM is small.
We then use the bound on the α-cover to bound the Rademacher complexity, a well-known concept
in machine learning (Shalev-Shwartz & Ben-David, 2014, Chapter 26). Finally, we combine the
bound on the Rademacher complexity with a result by (Mohri & Medina, 2012, Theorem 1) to
prove Theorem 4.3.

Let B ⊆ R be a set of ranges. For two selectivity functions µ1, µ2 ∈ M, we define the distance
between them with respect to B to be dB(µ1, µ2) := maxR∈B |µ1(R) − µ2(R)|. For α > 0, a
subsetM′ ⊆ M is called an α-cover with respect to B if all functions ofM are within distance α
fromM′ (under the distance function dB). That is, supµ∈M infµ∈M′ dB(µ, µ

′) ≤ α. We define the
empirical α-covering number (w.r.t. B) ofM as

N(M, α,B) = min{|M′| :M′ is an α-cover of µ w.r.t. B}.

Finally, for m ≥ 1, set N(M, α,m) = maxB⊆R, |B|=m N(M, α,B).

Our main technical result is an upper bound on N(M, α,m) stated below.
Lemma B.2. Let Σ = (X,R) be a range space with finite VC-dimension. Let D be a class of
probability distributions over X and letM :=MΣ,D. For any α > 0 and positive integer m,

N(M, α,m) = mO(α−2 logα−1).

Proof. Let B ⊆ R be any arbitrary subset of m ranges. We bound N(M, α,B) in three steps.
First, we show that there exists a family C of uniform discrete distributions each with support size
η = O

(
α−2 logα−1

)
, such thatMC = {µC | C ∈ C}, the class of selectivity functions associated

with the distributions in C, forms an α/2-cover ofMwith respect to B (Note that even ifMC ̸⊆ M,
the notion of α/2-cover is still well-defined). Next, we show that there exists a small subset C′ ⊆ C
such that MC = MC′ . Finally, we use C′ to choose a subset D′ ⊆ D of size |C′| and set M′ =
{µD | D ∈ D′} such that M′ is an α-cover of M (w.r.t. B). We describe the full construction
below.

Let B ⊆ R be any arbitrary subset of m ranges.Consider the range space ΣB = (X,B). It is easily
seen that VC(ΣB) ≤ VC(Σ), so VC(ΣB) = O(1). For any distribution Di ∈ D, as mentioned
above, there is an (α/2)-sample Ci of size η = O(α−1 logα−1), i.e., |µDi

(R)− |Ci∩R|
|Ci| | ≤ α/2 for

any R ∈ R. Setting µCi(R) = |Ci∩R|
|Ci| , dB(µCi , µDi) ≤ α/2. Let C = {Ci | Di ∈ D}. ThenMC

is an (α/2)-cover ofM (w.r.t. B).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Next, we choose the set C′ ⊆ C as follows. Define the dual range space Σ∗
B = (B,X∗) of ΣB where

X∗ = {{R ∈ B | x ∈ R} | x ∈ X} .

Each range in X∗ is defined by a point x ∈ X and comprises the set of ranges in B that contain
x. Since VC-dim(ΣB) = O(1) then VC-dim(Σ∗

B)is also O(1), say VC-dim(Σ∗) = κ. Then
|X∗| = O(mκ). X∗ implies an equivalence relation≡ on X that partitions X into O(mκ) equivalence
classes, where x1 ≡ x2 if and only if any range in B either contains both x1 and x2 or neither of
them Chazelle & Welzl (1989). Define two subsets C,C ′ ⊆ X as equivalent with respect to B if there
exists a bijection f : C → C ′ such that x ≡ f(x) for all x ∈ X. The number of combinatorially
distinct subsets (with respect to B) of X of size η is at most O(mη·κ).Observe that if C ≡ C ′,
then µC(R) = µC′(R) for every R ∈ B. Let C′ ⊆ C be a maximal set of combinatorially distinct
sets (i.e. they are defined by combinatorially distinct subsets of X) in C. Since |C| ≤ η for any
C ∈ C, |C| = O(mκ·η). Finally. we choose a subset D′ ⊆ D of size |C′| as follows. Recall
that each Ci ∈ C is an (α/2)-sample pf a distribution Di ∈ D. Set D′ = {Di | Ci ∈ C′} and
M′ = {µD | D ∈ D′}. To prove thatM′ is an α-cover ofM, let Di be a distribution in D, let
C ′

i ∈ C be the set equivalent to Ci, and let D′
i ∈ D′ be the distribution in D′ corresponding to C′i.

Then for any R ∈ B, |µDi
(R)− µD′

i
(R)| ≤ α/2+α/2 ≤ α (using the triangle inequality). Hence,

dB(µDi , µD′
i
) ≤ α, soM′ is an α-cover ofM of size O(mκ·η) = mO(α−2 logα−1).

To proceed with the proof we require the following definition.

Rademacher complexity. Let B = {R1, R2, . . . , Rm} ⊆ R, be a subset of m ranges. Let
σ = (σ1, . . . , σm) ∈ {+1,−1}m be a random vector where Pr[σi = 1] = Pr[σi = 0] = 1/2. The
empirical Rademacher complexity ofM w.r.t. B is defined as

R̂B(M) :=
1

m
Eσ

[
sup
µ∈M

m∑
i=1

σi µ(Ri)

]
.

For m ≥ 1, we define the (worst-case) empirical Rademacher complexity as R̂m(M) :=

supB⊆R, |B|=m R̂B(M).

Roughly speaking, Rademacher complexity measures the rate of uniform convergence as a function
of training sample size. Using Lemma B.2 and the well-known connection between the covering
number and the Rademacher complexity (see (Shalev-Shwartz & Ben-David, 2014, Ch 27)) we
obtain the following lemma.

Lemma B.3. Let Σ = (X,R) be a range space with VC(Σ) = O(1). Let D be a family of distribu-
tions on X, and letM :=MΣ,D. Then for any m ≥ 1, R̂m(M) = O(m−1/2 log2 m).

Recall the loss function ℓµ : Z 7→ [0, 1] defined with respect to a selectivity function µ in Section 2.
Consider the class of functions LM = {ℓµ : µ ∈ M}. The notion of Rademacher complexity also
applies to the function class LM, by substituting R with Z and replacing B with a subset of Z in the
definition above. Since M ⊆ {R 7→ [0, 1]}, it is known that, see (Shalev-Shwartz & Ben-David,
2014, Chapter 26), R̂m(LM) = O(R̂m(M)). Therefore,

Corollary B.1. For any m ≥ 1, R̂m(LM) = O(m−1/2 log2 m).

We next prove Theorem 4.3 using the Corollary B.1. By plugging the bound on R̂m(LM) =
O(m−1/2 log2 m) from Corollary B.1, into a result by Mohri and Medina (Mohri & Medina, 2012,
Theorem 1), we obtain the following:

Lemma B.4. Let Σ = (X,R) be a range space with VC-dim(Σ) = O(1), and let W1, . . . ,Wk be
SD’s on Z = R× [0, 1]. Suppose that z1, . . . , zk are observations with each zi ∼Wi. Then, for any
SD W , for any δ ∈ (0, 1), the following inequality holds for every µ ∈ M with probability at least
1− δ:

errW (µ) ≤ 1

k

k∑
i=1

(
ℓµ(zi) + discM(Wi,W)

)
+

O(log2 k +
√

log δ−1)√
k

. (9)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Moreover, if µ∗ = argminµ∈M errW (µ) then with probability at least 1− δ it holds that,

1

k

k∑
i=1

ℓµ∗(zi) ≤ errW (µ∗) +
1

k

k∑
i=1

discM(Wi,W) +
O(log2 k +

√
log δ−1)√

k
. (10)

We use Lemma B.4 to prove Theorem 4.3 as follows. Fix a window size m and define ALG as a
(ε,m)-sliding-window ERM algorithm that receives a sequence Z = ⟨z1, z2, . . .⟩ of observations
and for each t maintains a selectivity function µt such that

1

m

t∑
i=t−m+1

ℓµt
(zi) ≤ ε+ inf

µ∈M

1

m

t∑
i=t−m+1

ℓµt
(zi)

Suppose we execute ALG on a stream of observations Z = ⟨z1, z2, . . .⟩ drawn from a sequence
W = ⟨W1,W2, . . .⟩ such that, discM(µi, µi+1) ≤ ∆ for all i, where ∆ ≥ 0. Let µ∗

t =
arg infµ∈M errWt(µ). Consider the random variable Xt+1:

Xt+1 := errWt+1
(µt)− errWt+1

(µ∗
t+1).

Our goal is to bound EZ∼W [Xt+1]. By Fubini’s theorem,

EZ∼W [Xt+1] = EZt∼W [errWt+1(µt)− errWt+1(µ
∗
t+1)].

Since ALG is an (ε,m)-sliding window ERM, we invoke Lemma B.4 on both µt and µ∗
t+1 with a

confidence parameter of δ/2. By the union bound, it follows that both bounds hold simultaneously
with probability at least 1− δ. Combining (9) and (10) it follows that with probability 1− δ,

Xt+1 ≤ ε+
2

m

t∑
i=t−m+1

discM(µi, µt+1) + 2 · O(log2 m+
√

log δ−1)√
m

.

It is easy to verify that for any SD’s W1,W2,W3 over Z, the triangle inequality holds, i.e.,
discM(W1,W3) ≤ discM(W1,W2) + discM(W2,W3) holds. Since discrepancy satisfies the tri-
angle inequality and discM(Wj ,Wj+1) ≤ ∆ for all j, discM(µi, µt) ≤ (t− i)∆. Thus,

1

m

t∑
i=t−m+1

discM(µi, µt) ≤ (m+ 1)∆.

Therefore, with probability at least 1− δ,

Xt+1 ≤ ε+ (m+ 1) ·∆+ 2 ·
O(log2 m+

√
log δ−1)√

m
.

We wish to bound the expectation E[Xt+1]. Let Y be a random variable such that Pr[Y >√
log δ−1] < δ or for any integer a ≥ 1 Pr[Y > a] ≤ 2−a2

, we obtain that E[Y] = O(1).
Hence, we conclude that E[Xt+1] ≤ ε+ (m+1)∆+O(m−1/2 log2 m). This immediately implies
the following lemma.

Lemma B.5. LetA be a (ε,m)-sliding-window ERM algorithm (as described above). Then for any
SD sequenceW = ⟨W1,W2, . . . , ⟩,

errWt+1
(µt) ≤ ε+ inf

µ∈M
errWt+1

(µ) +O(m−1/2 log2 m) + (m+ 1)∆.

In the above lemma, the second term is the estimation error (arising from the Rademacher com-
plexity) while the last term reflects the cumulative drift over a window of size m. To minimize the
prediction error we balance these two terms and set m = Θ(∆−2/3 log4/3 ∆−1). This back yields
an overall excess error of O(∆1/3 log4/3 ∆−1). Therefore, to achieve an error of ε, one must have
∆ = O(ε3/log4(ε−1)). This completes the proof of Theorem 4.3.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C SAMPLE COMPLEXITY BOUND UNDER THE STATIC SETTING

We first state the definition of (ε, δ)-learnability Haussler (1992).

(ε, δ)-learnability. A learning procedure is a function ALG from a finite sequence of observations
from Z to a hypothesis in H. Namely, given a finite sequence zn = (z1, . . . , zn) ∈ Zn, ALG(zn)
returns a function inH.

We say that ALG (ε, δ)-learns from n random samples zn if

sup
W

Pr
[
errW

(
ALG(zn)

)
> inf

µ∈M
errW (µ) + ε

]
≤ δ. (11)

A hypothesis set H is said to be (ε, δ)-learnable if there exists a learning procedure ALG, such that
for every ε > 0 and δ > 0, there is s sample size n0 = n0(ε, δ) such that (11) holds. It is called
ε-learnable if the above holds for every ε > 0 with some fixed confidence parameter δ < 1.

Next, recall the definition of LM from Appendix B. In Corollary B.1, we proved that for any m ≥ 1,
R̂m(LM) = O(m−1/2 log2 m). A well-known relationship between the Rademacher complexity
and sample complexity (Shalev-Shwartz & Ben-David, 2014, Theorem 26.5) implies the following
theorem
Theorem C.1. Let Σ = (X,R) be a range space such that VC-dim(Σ) = O(1). Let D be a family
of probability distribution over X. Then, M := MΣ,D is agnostic (ε, δ)-learnable with sample
complexity O(ε−2(log4 ε−1 + log δ−1)) for any ε, δ ∈ (0, 1).

Suppose VC-dim(Σ) = κ1 and VC-dim(Σ∗) = κ2, where Σ∗ corresponds to the dual range space
of Σ. The order notation in the sample complexity bound of Theorem C.1 hides a dependence on
κ1 ·κ2. It is a well-known fact that for standard geometric ranges such as boxes, balls and halfspaces
in Rd, κ1 · κ2 = O(d2).
Corollary C.1 (restatement of Theorem 2.1). Let Σ = (X,R) be a range space, where X ⊆ Rd and
let R correspond to standard geometric ranges such as boxes, balls or halfspaces. Let D be a family
of probability distribution over X and letM := MΣ,D be the corresponding family of selectivity
functions. Then,M is ε-learnable with sample complexity O(d2ε−2(log4 ε−1)) for any ε ∈ (0, 1)

D DETAILED EXPERIMENTAL RESULTS

Datasets. We use several real-world datasets, all of which have used in prior work, including the
benchmark study Wang et al. (2021):

• Power Dua & Graff (2019): Electric power usage data collected from a household over 47 months,
with 2.1 million tuples over 7 numerical attributes. We consider ranges involving 2–7 dimensions.

• Forest Dua & Graff (2019): Forest cover types with 581,000 tuples and 10 numerical attributes.
We consider ranges involving 2–10 dimensions.

• IMDb Leis et al. (2015): Information about 2.5 million movies, popular in benchmarking query
optimization. While Power and Forest each have a single table, we consider multi-table join
queries with range selections on columns from different tables. We also use IMDb to create
drifting data distributions, as was done in Xiu et al. (2024), by “slicing” the movies by production
year such that each data slice has a naturally different distribution. See details in Section D.2.

Queries. As there are no widely available benchmarks with drifting query distributions over real-
world data, we define our own for the datasets above. For simplicity, we normalize data distributions
such that every Dt of interest has support in the unit hypercube [0, 1]d. While our techniques gen-
eralize to arbitrary ranges in [0, 1]d, we mainly restrict ourselves to orthogonal ranges because they
are supported by all alternative approaches compared. To define a distribution of range queries in-
volving d dimensions, we use two parameters: a center c ∈ [0, 1]d and a diagonal vector g ∈ [0, 1]d.
To generate a query, we sample a center point r from a normal distribution centered at c. Then,
we sample a diagonal vector h from a normal distribution centered at g. The resulting query is a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity Dim 1

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
iv

ity
 D

im
 2

Power-2d: Gradual Drift

Start End

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity Dim 1

0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
iv

ity
 D

im
 2

Power-2d: Abrupt Drift

Start End

Figure D.1: Visualization of drifting query distributions. Each axis corresponds to a selected di-
mension of data; each dot represents the center of a range query, with color indicating temporal
progression from start to end in the query sequence Z . To highlight significant shifts, black arrows
connect consecutive queries whose centers move beyond a fixed threshold (0.3 in either dimension).

hyper-rectangular range [r−h/2, r+h/2], clipped to lie within [0, 1]d. Intuitively, the center c con-
trols where queries are focused, while g controls their size and aspect ratio. As a vector, g provides
coordinate-wise flexibility—allowing queries to be narrow in some dimensions and wide in others.

To synthesize drifting query distributions for our experiments, we construct two scenarios (further
details in Section D.1):

• Gradual drift: In this scenario, the query distribution drifts gradually over time, from an ini-
tial distribution Q1 parameterized by (cstart, gstart) to a final distribution Qn parameterized by
(cend, gend). We ensure that the two distributions have sufficient distance in between to induce
a meaningful drift. Between Q1 and Qn, to obtain an intermediate query distribution Qt with set-
ting (ct, gt), we linearly interpolate between (cstart, gstart) and (cend, gend). This method produces a
smooth drift in both location and size/aspect ratio.2

• Abrupt drift: Here, the query distribution would remain the same for a duration of time, after
which a sudden abrupt change occurs. Specifically, at fixed intervals, we sample a new center
c′ ∈ [0, 1]d and a new diagonal vector g′ ∈ Rd

≥0 to be used for the new query distribution, again
ensuring sufficient separation from the previous setting to create a meaningful shift. For example,
if the stable period is k, the first k query distributions Q1, . . . , Qk will be the same, defined by a
fixed (c, g); then, a new setting (c′, g′) is sampled that defines Qk+1, . . . , Q2k, and so on. This
setup induces a piecewise stationary process with sharp transitions between phrases.

Figure D.1 visualizes these two types of query drift using Power-2d workload as an example, where
queries are 2-d ranges over 2 selected data dimensions. In the gradual drift case, queries evolve
smoothly over time, forming a continuous trajectory. In contrast, the abrupt drift case exhibits
sudden directional changes and clear spatial jumps.

Methods compared. We compare against other approaches that can operate using query feedback
only, without requiring access to the underlying data. Learned query-driven models can be broadly
categorized into two types: deep learning and distribution-based. We pick one representative of each
class, along with a well-studied standard baseline:

• CDF Wu et al. (2025), a representative of the deep learning type, is a recent state-of-the-art model
that has been shown to be more robust than previous work against drifts, both theoretically and
empirically. The original implementation of CDF only supports one-sided ranges; we modify it to
support two-sided ranges.

• PtsHist Hu et al. (2022) is a representative distribution-based model.
• MSCN Kipf et al. (2019) is a widely studied learned model that has served as a standard baseline for

comparison in related work. Note that MSCN also has features that use samples from the underlining
data; to ensure fair comparison in a purely query-driven setting, we turn off such features in our
experiments.

While DUSS maintains a dynamic model that continuously adapts over time, the above methods,
as with most existing ones in literature, are not designed for online updates; instead, they rely on
periodic model retraining or fine-tuning. To ensure fair comparison, we implement various periodic

2Besides linear interpolation, we have also tried non-linear interpolation (e.g., sinusoidal or Bézier curves)
as well as various configurations of the initial and final settings. The conclusions from evaluation results are
consistent across these variants.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

strategies for retraining/fine-tuning for these methods. These strategies not only vary the duration of
the period, but also how much historical information to use in each retraining/fine-tuning step: one
could use recent queries or all past queries (as long as the data distribution is stable). Finally, most
models require some initial training. We give each model access to a fixed set of sinit initial training
queries along with their observed selectivities, drawn from the first workload state distribution in the
sequenceW (i.e., based on Q1 and D1). Algorithm performance is then evaluated on the sequence
of testing queries in Z separate from the initial training queries. Unless otherwise specified, we
set sinit = 2,000 for each model M ∈ {CDF,MSCN, PtsHist}. We then explore the following general
adaptation strategies:

• M-S: After initialization, the model remains static and is used to predict on Z without any further
model updates.

• M-R (w, p): After initialization, the model is retrained every p queries using the most recent w
queries. When w =∞, the model is retrained on all queries seen so far.

• M-T (w, p): After initialization, the model is fine-tuned (as opposed to fully retrained) after every
p queries using the most recent w queries. This strategy is supported only by MSCN and CDF, where
updates are performed using stochastic gradient descent on the w queries for a few epochs. It is
not applicable to PtsHist, which requires solving a non-negative least-squares problem and does not
support incremental updates.

Performance metrics. To measure predictive performance, we use several metrics. For overall
accuracy, we use two standard measures: RMSE (Root Mean Squared Error) and percentile
Q-Error Moerkotte et al. (2009). Given a set of n test queries {R1, . . . , Rn} with estimated
selectivities ŝ(Ri) and true selectivities s(Ri), RMSE is defined as (1n

∑n
i=1 (ŝ(Ri)− s(Ri))

2
)1/2;

Q-error(p) is defined as the p-th percentile of the set of relative errors:
{ max{ŝ(Ri), s(Ri)}/min{ŝ(Ri), s(Ri)} : i ∈ [n] } .

While RMSE focuses on absolute error and penalizes large deviations heavily, Q-error highlights
relative error, capturing performance across varying scales of selectivity.

Finally, to be practical, a model must adapt efficiently and provide fast predictions. Therefore, we
also measure the computation overhead of model retraining/fine-tuning as well as inference. All
experiments were conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 5215 CPU
@ 2.50GHz, 256 GB of RAM, and a NVIDIA GeForce RTX 3090 GPU (24 GB), running CUDA
12.8.

D.1 FIXED DATA, DRIFTING QUERIES

Table D.1: Selectivity estimation accuracy and training cost under gradual and abrupt query drifts
on Power-2d and Power-7d workloads. ▶ marks the lowest error or training time; ▷ marks the
second- and third-lowest.

Method
Power-2d Gradual Power-2d Abrupt Power-7d Gradual Power-7d Abrupt

RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train RMSE Med. 90-th Train
q-err q-err (s) q-err q-err (s) q-err q-err (s) q-err q-err (s)

DUSS ▷0.026 ▷1.154 ▶2.6 ▷5 ▶0.027 ▷1.055 ▶1.8 ▷5 ▶0.092 ▶1.364 ▷14.9 ▷9 ▶0.072 ▶1.215 ▶17.9 22
CDF-R (∞, 2k) 0.105 2. 24.9 236 0.242 11.096 4410.0 245 0.195 2.397 22.4 296 0.215 3.196 126.1 288
CDF-R (∞, 500) 0.063 1.439 4.0 1176 0.176 1.556 237.0 1224 0.139 1.679 ▷11.0 1361 0.164 3.221 ▷60.0 1309
CDF-R (2k, 2k) 0.095 1.761 12.0 255 0.363 8. 4410.0 277 0.179 2.471 33.0 290 0.221 3.330 2163.0 288
MSCN-R (∞, 2k) 0.099 1.579 12.0 49 0.201 3.042 4410.0 50 0.171 2. 23.9 52 0.215 4.442 217.3 55
MSCN-R (∞, 500) 0.071 1.435 4.8 232 0.145 1.613 45.0 252 0.148 1.525 ▶7.0 248 0.168 2.446 ▷47.6 253
MSCN-R (2k, 2k) 0.102 1.557 12.0 19 0.273 458. 4410.0 14 0.217 3. 50.5 20 0.263 10.221 1998.0 25
PtsHist-R (∞, 2k) ▷0.036 1.178 4.6 135 ▷0.135 ▷1.027 1709.0 150 0.106 1.484 38.2 131 ▷0.104 ▷1.340 153.7 134
PtsHist-R (∞, 500) ▶0.016 ▶1.110 ▷3.4 632 ▷0.086 ▶1.017 ▷6.6 711 ▷0.101 ▷1.469 35.0 607 ▷0.095 ▷1.296 75.9 616
PtsHist-R (2k, 2k) ▷0.036 ▷1.116 ▷3.7 73 0.289 626. 4612.0 79 ▷0.103 ▷1.456 36.6 76 0.210 3.745 2584.0 80

CDF-T (2k, 2k) 0.099 2. 24.1 54 0.271 269. 4607.0 51 0.197 2.541 41.0 68 0.257 9. 241.5 72
CDF-T (500, 500) 0.058 1.501 6.0 109 0.181 2. 2765.0 108 0.163 2.124 21.5 123 0.197 3.157 283.5 121
MSCN-T (2k, 2k) 0.147 2.141 23.0 10 0.279 345.471 4227.0 6 0.189 2.112 38.1 10 0.201 3.502 105.1 ▶5
MSCN-T (500, 500) 0.071 1.599 8.2 12 0.198 2.269 618.1 8 0.133 1.846 10.9 12 0.195 3.002 120.4 ▷10

DUSS-S 0.149 5.848 22.4 ▶3 0.224 6.149 ▷40.3 ▶3 0.203 2.808 130.2 ▷6 0.110 1.366 159.1 12
CDF-S 0.181 10. 4000.0 15 0.260 53.5 4643.0 24 0.320 20.330 146.0 24 0.250 9.210 67.2 18
MSCN-S 0.181 11. 4076.0 ▶3 0.275 20.280 4608.0 ▶3 0.310 15.554 116.9 ▶2 0.215 4.749 64.7 ▶5
PtsHist-S 0.137 797. 797.0 13 0.239 9.121 4609.0 14 0.177 2.491 138.0 13 0.113 1.580 200.0 13

We first consider the simpler setting where the data distribution remains fixed, while the query distri-
bution undergoes drift. Although this setting is “simpler,” it still presents considerable challenge for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

learners relying only on query-feedback. We focus on single-table range selection queries over the
Power and Forest. For each dataset, we compare competing query-driven approaches under multiple
workloads, with the number of dimensions in the query range varying from 2 to 7, and query drift
being either gradual or robust. The change in range dimensionality is intended to evaluate the mod-
els under varying degrees of query complexity. Each workload consists a sequence of n = 10,000
testing queries, separate from the initial sinit training queries.

Results on Power. Table D.1 presents results for Power-2d and Power-7d under both gradual and
abrupt drift scenarios. To help spot top performers, we highlight the best values in each column
representing a performance metric. Note that the reported training times (“Train” column) broadly
include model initialization using the sinit training queries, as well as all subsequent updating, re-
training, or fine-tuning costs incurred while processing the testing workload.

As we can see from Table D.1, DUSS consistently delivers the best trade-off between accuracy and
efficiency. It ranks among the top three for all accuracy metrics across workloads, while incurring
some of the lowest training times. In contrast, competing methods occasionally match or slightly
surpass its accuracy, but only do so by incurring substantially higher training costs. For example,
for Power-2d under gradual drift, PtsHist achieves marginally lower RMSE than DUSS, but requires
over 120× more training time. As the query drift intensifies—particularly in high-dimensional or
abrupt settings—the advantage of DUSS becomes even more pronounced: it is the only method to
maintain superior accuracy with minimal training costs—typically under 22 seconds in total. (To
put this number in context, it represents a mere 2% of the time needed to execute all queries in the
workload.)

These results also shed light on the effectiveness of different adaptation strategies. Static baselines,
while requiring no further cost to maintain, consistently underperform in accuracy, highlighting the
importance of model adaptability in a dynamic setting, even if only the query distribution drifts (and
the data distribution does not). Among the adaptive variants, M-R (∞, 500)—which retrains on the
full query history at high frequency—typically delivers the highest accuracy, but incurs substantial
training time. Reducing the frequency to M-R (∞, 2000) lowers cost, though at the expense of accu-
racy. Fine-tuning strategies like M-T (500, 500), which incrementally update the model using fewer
epochs, strike a middle ground: they lower overhead compared to full retraining while improving
accuracy over infrequent retraining. However, they still cannot match the best-performing retrained
models, and they remain more costly than DUSS.

Moreover, we note that the right adaptation strategy depends heavily on the drift scenario. Under
gradual drift, retraining on only recent queries (e.g., M-R (2k, 2k)) is often sufficient and cost-efficient.
However, this approach performs poorly under abrupt drift—sometimes it is even worse than a static
model—as it neglects earlier but still relevant queries. In such cases, retraining on the full query
history, as in M-R (∞, 2k), proves more robust and reliable. In contrast, DUSS does not have this
problem of having to pick the right adaptation strategy at all.

Additional results on Power and Forest. Complementing Table D.1, Figure D.2 visualizes the
trade-off between accuracy (RMSE) and maintenance cost (log-scaled training time) for Power-
2d/7d and Forest-2d/10d under both gradual and abrupt drift scenarios. The trade-offs achieved by
different variants of the same approach are connected into one curve. For DUSS, we additionally
consider a “static” variant where we freeze its model after initiation and prevent it from dynamic
adaption; the performance of this variant is then connected to the normal DUSS. Other approaches
are shown under three retraining strategies with varying retraining frequencies: M-S, M-R (∞, 2k),
and M-R (∞, 500).

DUSS’s ability to achieve high accuracy with minimal maintenance cost is clearly illustrated in
the figure. Across all scenarios, including high-dimensional and abrupt drift cases, DUSS achieves
strong accuracy with under 30 seconds of training time. In comparison, competing methods require
significantly more time to reach similar performance. PtsHist-R (∞, 500) is the most competitive among
the baselines in terms of accuracy, especially under gradual drift in low-dimensional settings. How-
ever, it still falls short of DUSS under abrupt drift and incurs significantly higher cost, up to 1,000
times more in cases like Forest-2d. CDF is often more accurate than MSCN (but not always); at the
same time, it is more costly.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table D.2: Average total training time and end-to-end inference time (per query) comparison across
methods.

DUSS CDF-R (∞, 500) MSCN-R (∞, 500) PtsHist-R (∞, 500)

Train (s) 12 1363 236 1603
Inference (ms) 0.4 1.5 1.4 11.9

101 102 103

Training Time (s)

0.05

0.10

0.15

RM
SE

Power-2d: Gradual Query Drift
DUSS
CDF
MSCN
PtsHist

(a) Power-2d (gradual)

101 102 103

Training Time (s)

0.1

0.2

RM
SE

Power-2d: Abrupt Query Drift

DUSS
CDF
MSCN
PtsHist

(b) Power-2d (abrupt)

101 102 103

Training Time (s)

0.1

0.2

0.3

RM
SE

Power-7d: Gradual Query Drift
DUSS
CDF
MSCN
PtsHist

(c) Power-7d (gradual)

101 102 103

Training Time (s)

0.10

0.15

0.20

0.25

RM
SE

Power-7d: Abrupt Query Drift

DUSS
CDF
MSCN
PtsHist

(d) Power-7d (abrupt)

101 102 103

Training Time (s)
0.0

0.1

0.2

RM
SE

Forest-2d: Gradual Query Drift
DUSS
CDF
MSCN
PtsHist

(e) Forest-2d (gradual)

101 102 103

Training Time (s)
0.00

0.05

0.10

0.15

RM
SE

Forest-2d: Abrupt Query Drift
DUSS
CDF
MSCN
PtsHist

(f) Forest-2d (abrupt)

101 102 103

Training Time (s)

0.02

0.04

0.06

0.08

0.10

RM
SE

Forest-10d: Gradual Query Drift
DUSS
CDF
MSCN
PtsHist

(g) Forest-10d (gradual)

101 102 103

Training Time (s)

0.02

0.04

0.06

0.08

RM
SE

Forest-10d: Abrupt Query Drift

DUSS
CDF
MSCN
PtsHist

(h) Forest-10d (abrupt)

Figure D.2: RMSE vs. log-scaled training time (in seconds) for different estimators under gradual
and abrupt query drift.

Inference cost. Last but not least, we measure the average end-to-end inference time per query for
different models across various scenario enumerated in Figure D.2. Results are shown in Table D.2.
Inference speed is a critical factor in assessing the practicality of a selectivity estimator, as slower
inference slows down query optimization and prolongs end-to-end query latency. Thanks to its
simple model, DUSS, even with a straightforward implementation, achieves the lowest inference
time among all approaches. Deep-learning approaches require preprocessing steps such as zero-
padding, mask generation, and tensor conversion to ready each incoming query for estimation. Both
DUSS and deep-learning approaches offer reasonable inference speed, typically under 1.5ms per
query. In contrast, PtsHist incurs significantly higher inference overhead due to its more complex
internal structure and geometric computations. Although PtsHist can occasionally outperform DUSS
in accuracy after nontrivial training efforts, its high inference cost limits its suitability for latency-
sensitive scenarios.

D.2 DRIFTING QUERY AND DATA DISTRIBUTIONS

We now consider a more challenging and realistic scenario where both the query and data distribu-
tions are drifting simultaneously over time. Table 5.1 presents the results for four workloads based
on IMDb. The queries in IMDb-2d come from a 2-way join query template, with local range selec-
tions on both tables; those in IMDb-7d come from a 7-way join query template, with local range
selections on 6 tables. Changes in the distribution of query ranges are generated as described earlier
in this section. To simulate changes in data distribution, we partition the IMDb dataset based on
the production year of the movies (title.production year). Specifically, we define five slices: 2015-
2006, 2012-2003, 2009-2000, 1999-1981, and 1980-1880, denoted D1 to D5, respectively. Each
slice includes the movies produced within the corresponding year range, along with associated data
in other tables, and is treated as a standalone database instance. The first three instances cover recent
movies in a sliding-window fashion: each slice is 10 years and overlaps with adjacent slices by 7
years. The last two slices include older movies, with no overlap with the earlier slices. In effect,
the sequence simulates somewhat gradual data distribution shifts between D1 to D3, followed by
more abrupt and significant changes to D4 and D5. For the query workload, we again consider the
two types of query drifts studied in Section D.1, gradual and abrupt. Each query workload contains
n = 50,000 queries, divided into equal-sized chunks and assigned to the five corresponding data
slices in order.

For each competing query-driven method M, we evaluate two retraining strategies: M-R (2k, 2k) and
M-R (∞, 2k). In the M-R(∞, 2k) setup, instead of using all historical queries to retrain, we restrict them
to queries that were executed against the current database slice (if they are available). This restriction

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

is intuitive because earlier queries would have provided incorrect selectivity feedback. On the other
hand, the knowledge about when the underlying database slice has changed is in fact unavailable to
the model; therefore, we are effectively giving this setup an unfair advantage over others.

From Table 5.1, we observe trends consistent with those in Section D.1, despite the added difficulty
of simultaneous shifts in both data and query distributions. First, DUSS consistently achieves the
best accuracy and training efficiency across both gradual and abrupt query drift settings, outper-
forming all other query-driven methods—including PtsHist, the strongest among them. Second, as
before, retraining on all observed queries yields better accuracy than using only recent windows—
particularly under abrupt query drifts, where relying solely on recent queries can be detrimental.
Third, CDF generally achieves lower RMSE than MSCN, but this improvement comes at the cost of
significantly higher training time.

In Figure 5.1, we track RMSE and Q-error using a sliding window of size 100 on IMDb-7d with
abrupt query drift—our most challenging setting. Each metric reflects the average error within a
window. A well-adapting model should sustain low error even with small windows. We compare
DUSS against PtsHist-R (∞, 2k), the most competitive baseline in Table 5.1. As expected, both models
exhibit error spikes around distribution shifts—such as transitions between data slices (e.g., from Dn

to Dn+1) and query shifts at 15K and 45K. However, DUSS adapts more quickly and returns to
good accuracy sooner. For RMSE, it has lower worst-case error and faster recovery, whereas PtsHist
lags behind even with much heavier retraining. For Q-error, DUSS remains consistently lower with
smaller fluctuation. These results further demonstrate DUSS’s ability to adapt to both data and
query distribution shifts.

E ADDITIONAL RELATED WORK

Cardinality Estimation. Cardinality/Selectivity estimation is a fundamental problem in query pro-
cessing Lipton et al. (1990); Poosala & Ioannidis (1997); Aboulnaga & Chaudhuri (1999); Bruno
et al. (2001); Srivastava et al. (2006); Markl et al. (2007); Kaushik & Suciu (2009). Recently,
there has been significant interest in ML-based techniques for selectivity estimation Park et al.
(2020); Hasan et al. (2020); Kipf et al. (2019); Yang et al. (2020); Dutt et al. (2019); Hilprecht
et al. (2020); Wang et al. (2021). Broadly, ML-based approaches falls into two categories, including
data-driven Hilprecht et al. (2020); Yang et al. (2020); Hasan et al. (2020) and query-driven Park
et al. (2020); Kipf et al. (2019); Hu et al. (2022); Wu et al. (2025); Dutt et al. (2019). Data-driven
methods aim to model the underlying data distribution by directly accessing full tables or sampled
subsets. In contrast, query-driven methods focus on specific query workloads and typically learn
from query–selectivity feedback. A large variety of models has been proposed for the query-driven
setting, including methods based on probability distributions (e.g., histograms, mixture models), tree
ensembles, graphs and deep neural networks. For a comprehensive survey, see Wang et al. (2021).

Several strategies have been adopted to handle query and data drift. For example, Robust-
MSCN Negi et al. (2023) extends basic MSCN Kipf et al. (2019), leveraging up-to-date DBMS
statistics and data sampling-based features. On the other hand, CDF-MSCN Wu et al. (2025)
shows that distribution-based models are robust against query drift and modifies MSCN to have
this property. However, when the drift is enough, no fixed model can perform well without re-
training/finetuning. This has led to sophisticated techniques such as Warper Li et al. (2022), which
employs a Generative Adversarial Network (GAN) to synthesize additional training queries. More
recently, ShiftHandler Wu & Ives (2024) proposes a replay buffer to select a smaller, high-impact
subset of training queries for retraining. DDUp Kurmanji & Triantafillou (2023) considers how
to update models in the presence of data updates. Typically, methods used to maintain an accurate
model in fully dynamic environments require data access. This is in contrast to our algorithm DUSS
which only works based on observtaions of user generated queries and their cardinalities. For ex-
ample, Warper Li et al. (2022) and ShiftHandler Wu & Ives (2024) accesses data by re-executing
queries; Robust-MSCN Negi et al. (2023) rebuilds its sample bitmaps.

Learning Under Drift. The general problem of learning under drift has been extensively studied
in the machine learning community and giving a full overview is beyond our scope. Early work
by Helmbold & Long (1994) established learning bounds under the assumption that only the target
concept may drift. Subsequently, significant extensions were made by Bartlett (1992); Barve & Long

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(1996). We use the framework by Mohri & Medina (2012), who themselves extended the results of
Bartlett (1992) to real-valued functions.

F LLM DECLARATION

All intellectual contributions in this paper are solely due to the authors. We made limited use of
a large language model (ChatGPT) to edit prose. Specifically, certain paragraphs written by the
authors were lightly polished for style, grammar and clarity. The model was not involved in the
generation of research ideas, including algorithms, proofs, or design of experiments. AI-assistance
was used for coding our algorithms, especially for debugging.

23

	Introduction
	The Learning Model
	Learning in a static setting
	Learning in a dynamic setting

	DUSS: Online Selectivity Learning Algorithm
	Analysis of DUSS
	Stable Data and Arbitrarily Drifting Queries
	Gradually Drifting Data and Queries

	Summary of Experiments
	Proof of Lemma 4.1
	Sliding-window Size bound under the Dynamic Setting
	Sample complexity bound under the static setting
	Detailed Experimental Results
	Fixed Data, Drifting Queries
	Drifting Query and Data Distributions

	Additional Related Work
	LLM Declaration

