
Neural Geometric Fabrics: Efficiently Learning
High-Dimensional Policies from Demonstrations

Mandy Xie1,2∗, Ankur Handa1, Stephen Tyree1, Dieter Fox1,3,
Harish Ravichandar2, Nathan Ratliff1, Karl Van Wyk1

1 NVIDIA, 2 Georgia Institute of Technology, 3 University of Washington.

Abstract: Learning dexterous manipulation policies for multi-fingered robots has
been a long-standing challenge in robotics. Existing methods either limit them-
selves to highly constrained problems and smaller models to achieve extreme sam-
ple efficiency or sacrifice sample efficiency to gain capacity to solve more complex
tasks with deep neural networks. In this work, we develop a structured approach
to sample-efficient learning of dexterous manipulation skills from demonstrations
by leveraging recent advances in robot motion generation and control. Specif-
ically, our policy structure is induced by Geometric Fabrics - a recent frame-
work that generalizes classical mechanical systems to allow for flexible design
of expressive robot motions. To avoid the cumbersome manual design required
by existing motion generators, we introduce Neural Geometric Fabric (NGF) -
a framework that learns Geometric Fabric-based policies from data. NGF poli-
cies are provably stable and capable of encoding speed-invariant geometries of
complex motions in multiple task spaces simultaneously. We demonstrate that
NGFs can learn to perform a variety of dexterous manipulation tasks on a 23-
DoF hand-arm physical robotic platform purely from demonstrations. Results
from comprehensive comparative and ablative experiments show that NGF’s struc-
ture and action spaces help learn acceleration-based policies that consistently out-
perform state-of-the-art baselines like Riemannian Motion Policies (RMPs), and
other commonly used networks, such as feed-forward and recurrent neural net-
works. More importantly, we demonstrate that NGFs do not rely on often-used
and expertly-designed operational-space controllers, promoting an advancement
towards efficiently learning safe, stable, and high-dimensional controllers.

Keywords: Imitation Learning, Dexterous Manipulation

1 Introduction

Autonomous and robust dexterous manipulation capabilities could enable robots to perform a wide
range of tasks, such as opening a door and using tools, in a world built by and for humans. However,
dexterous manipulation involving multi-finger hands continues to be a long-standing challenge in
robotics, with human-level dexterity remaining a distant target. Indeed, there are numerous factors
contributing to this state of affairs, such as complex dynamics, high-dimensional action spaces, and
the difficulties involved in designing bespoke controllers that do not generalize to either novel tasks
or variations of the same task, such as new object poses or different targets.

Recent efforts in robot learning have aimed to study and tackle the challenges that plague au-
tonomous dexterous manipulation [1–11]. Specifically, recent learning-based techniques show
promise by generating appropriate robot behavior for a variety of tasks without the need for hand-
crafted motion policies. Most existing approaches can be divided into two broad areas: i) methods
that utilize deep neural networks to learn highly parameterized, high-dimensional policies that solve
complex dexterous manipulation tasks with minimal manual design, but at the cost of low sam-
ple efficiency and lack of theoretical guarantees [6–8, 12–15], and ii) methods that utilize highly
structured models with significantly fewer parameters that can achieve extreme data efficiency, but
are either limited to highly constrained problems or depend on expertly-designed operational space
controllers [16–26].

In this work, we attempt to combine the best of both high-capacity models and sample-efficient
structures in order to learn high-dimensional dexterous manipulation policies for a physical hand-

∗manxie@gatech.edu

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



Figure 1: NGFs can learn to control all the joints of a hand-arm system to perform tasks, such as (a) grasping
and lifting a box, (b) touching a target point before pushing a can over it, and (c) extracting a toolbox tray.

arm system purely from a limited number of demonstrations. We are concerned with learning poli-
cies that directly and simultaneously coordinate all the joint-space degrees of freedom of both the
arm and the hand and can generate stable and smooth motions for tasks requiring dexterity, such as
grasping and manipulating an object with a multi-fingered robotic hand.

Inspired by the growing evidence in support of structured policies for manipulation (e.g., [27, 28]),
we propose an algorithm to learn highly-structured and generalizable policies for dexterous manip-
ulation from a limited number of demonstrations. Specifically, we leverage the structure imposed
by Geometric Fabrics [29], a recent framework that generalizes classical geometric control (e.g.,
operational space control) using tools from differential geometry, to facilitate stable and flexible
robot motion generation [30]. Geometric fabrics are stable second-order dynamical systems, which
encode behaviors as speed-invariant paths (via geometries) and generate acceleration actions to gen-
erate intended motions. Further, learning to encode dynamical systems via acceleration is known to
be a significantly beneficial form of inductive bias in policy learning [31]. However, designing these
fabrics for complex dexterous manipulation tasks requires considerable expertise and effort.

To circumvent the need for significant expertise and painstaking human effort in designing Geo-
metric Fabrics for dexterous manipulation tasks, we introduce Neural Geometric Fabrics (NGF), a
framework to efficiently learn components of Geometric Fabrics, such as subtask maps, geometries,
and priority metrics. We discuss details of our architecture and learning pipeline in Section 4.

The primary contributions of this paper are: 1) a novel framework to learn Geometric-Fabrics-based
policies directly from demonstrations, removing the need for manual design and expertise; 2) a
thorough investigation of the benefits of additional structure imposed by Geometric Fabrics over
existing approaches when learning dexterous manipulation skills from demonstrations; and 3) to the
best of our knowledge, this is the first framework to train and deploy policies that directly control
all joints of the highly-actuated arm-hand system in the real world without relying on manually-
designed operational-space controllers in elevated actions spaces.

We evaluate the effectiveness of our approach on a 23-DoF physical hand-arm robot platform in
the real world across three different tasks (see Fig 1), and compare its performance against several
baselines inspired by the state-of-the-art in learning from demonstration. Our results show that the
policies learned with our structured approach consistently outperform baseline methods with respect
to metrics measuring task success, safety of deployment, and sample efficiency.

2 Related Work

A variety of approaches have attempted to tackle the challenges of learning dexterous manipulation
polices. Here, we discuss how our approach relates to a few different categories of existing methods.

Deep neural network based approaches such as deep Reinforcement Learning (RL) methods [7–
9, 14, 32] have demonstrated impressive capabilities. However, most RL algorithms suffer from
poor sample efficiency. On the other hand, Imitation Learning (IL) improves sample efficiency
by leveraging expert demonstrations [1, 33]. However, pure IL methods are often limited to non-
dexterous manipulation [2, 26, 34, 35]. Recent approaches have combined IL with RL in efforts to
improve data efficiency in learning complex dexterous manipulation skills [3–6, 12, 36]. However,
these methods are often limited to simulation as collecting exploratory data can be expensive, time-
intensive, and potentially damaging to the hardware in real-world robotic systems. Given these

2



observations, it is critical to develop robot learning frameworks that can learn to generalize from
less data. We demonstrate that NGF can learn complex dexterous manipulation skills directly on
hardware purely via imitation, without expertly-designed operational space controllers.

Exploiting structures in robotic manipulation problems has shown to improve data efficiency in
policy learning even though structured policy parameterizations are more restricted in representa-
tion power than their non-structured counterparts [37]. This is due to the fact that, if the restrictions
provide appropriate inductive biases for the task of interest, structured approaches provide numer-
ous advantages, such as provable stability, safety guarantees, and improved efficiency, without ad-
versely impacting expressivity. Indeed, there are several successful examples of learning structured
policies. The approaches in [38–42] leverage structures from control theory, where learned poli-
cies meet optimal control assumptions to provide stability guarantees. Dynamical system based
approaches [16–26] learn policies by imposing structures or constraints that enforce stability and
convergence while imitating the demonstrations. Recently, it was shown that Riemannian Motion
Policies (RMPs) [27, 28, 43, 44] can encode the geometric structure of manipulation tasks using
structured second-order dynamical systems. One can view the proposed NGFs as specialized ver-
sions of RMPs that are stable and capable of encoding more complex behaviors as geometries,
providing a more appropriate inductive bias for dexterous manipulation. See Appendix L for a more
detailed comparison between NGF and RMP.

The choice of action spaces plays a significant role in learning manipulation policies [37], with the
most popular choice being the end-effector pose space [2, 26, 32, 33] as it is more directly relevant
to the task and can generalize across different robot kinematics [45, 46]. These approaches rely on
an operational space controller to map these desired signals into the joint space. However, it is not
trivial to design such a controller for highly kinematically-redundant robots, such as multi-fingered
hands. In contrast, our method does not require any hand-crafted operational-space controllers as it
leverages the robot’s kinematic model to directly learn in multiple actions spaces simultaneously.

3 Background: Geometric Fabrics

Geometric fabrics are the latest incarnation of research in robot motion generation and control as
defined by second order equations. Geometric fabrics build upon the more general, intuitive, and
flexible aspects of Rimennian Motion Policies (RMPs), but retain the stability guarantees offered
by classical mechanical systems (which are often leveraged in control as geometric or operational-
space control.) In fact, Geometric Fabrics generalize classical mechanical systems and have been
shown to outperform RMPs [29]. Geometric fabrics provide a formal mathematical framework for
building control policies and primarily encode behavior as a set of nonlinear geometries of paths.
This geometrically consistent behavior is known as the nominal behavior of the system and acts as an
optimization medium over which additional policies derived from potential functions and damping
can be applied to further shift the resulting behavior. Policies of this design are guaranteed to be
stable, i.e., the system comes to rest at the minimum of the net potential acting on the system.

3.1 Nonlinear Geometries

A generalized nonlinear geometry is an acceleration policy ẍ+π(x, ẋ) = 0 where π is homogeneous
of degree 2 (HD2), meaning for any λ ≥ 0 we have π(x, λẋ) = λ2π(x, ẋ). The HD2 property
ensures that every integral curve starting from a given task-space position x0 with velocity ẋ0 = ηn̂
will follow the same path. The geometric consistency property turns π into a geometry of paths.
From a imitation learning perspective, this additional structure promotes learning speed-invariant
paths through space instead of trajectories, which are sensitive to the speed of travel. We postulate
the added structure will be beneficial for sample-efficiency in policy learning.

3.2 Geometric Fabrics: encode nominal behaviors

A Geometric Fabric is a system that evolves according to M(q, q̇)q̈ + f(q, q̇) = 0 in root coor-
dinates q, where q̈ = −M−1f is a nonlinear geometry that defines a nominal behavior and M is
the priority metric (we drop function variables for notational simplicity). As discussed in Theorem
IV.5 of [29], we can energize this Geometric Fabric to conserve energy: q̈ = −Pe

[
M−1f

]
, where

Pe = M
1
2

[
I−v̂v̂T

]
M−

1
2 is a metric-weighted projection matrix with v = M

1
2 q̇ and v̂ = v/‖v‖,

3



which projects acceleration to the orthogonal space of velocity, hence conserves energy by perform-
ing no work. The energized fabric defines a nominal behavior independent of a specific task.

3.3 Optimize a potential: solve a task

The nominal behavior can be pushed away from by a potential function to achieve task goals, and
damping dissipation ensures convergence. The desired equation of motion of the system then be-
comes: q̈d = −Pe

[
M−1f

]
−M−1∂qψ(q) − Bq̇, where ψ(q) is a potential function, and B is a

positive definite damping matrix. The potential function induces kinetic energy, resulting in motion,
and together with damping, drives the system towards the potential’s local minima, where motion
ultimately comes to rest at the minima of the potential function, hence its optimization.

3.4 Policy Design with Geometric Fabrics

For robot manipulators, a desired behavior may involve coordinated motion of different parts. Ge-
ometries can be added to spaces of a transform tree [47] for the modular design of composite be-
haviors. We can construct a transform tree with root node in the configuration space C (typically
joint space) of the robot, and add a leaf node in each subtask space Tk in which the task is more
convenient to be described. For instance, a goal-reaching task can be defined in the 3-D Euclidean
space describing the position of the end-effector in relation to the goal. We denote subtask spaces
{Tk}Kk=1, where K is the number of subtasks. Let φk : C → Tk be the mapping from the config-
uration space C to subtask space Tk. An example of φk is the forward kinematic mapping, where
the subtask space Tk is the end-effector frame. We then populate each node with a priority metric
and geometry pair, [Mk, πk], which are pulled-back and combined at the root, resulting in a desired
configuration space policy q̈d = πC(q, q̇). In the case where we only have an end-effector space,
solving for q̈d is equivalent to a pseudo-inverse as described in [48]. We include additional details
about composing policies from sub-task spaces in Appendix A.

4 Neural Geometric Fabrics

In this section, we introduce our NGF policy architecture and its learnable components. We illustrate
our design process in Fig. 2, and elaborate on each step in the sections below.

4.1 Define subtask spaces

We begin by defining two subtask spaces: (1) A 3-D Euclidean space describing the position of the
palm in relation to the object, which is stacked with an Eigenspace of the hand. This map is defined
as φ1 : q 7→ [fkT (q) − xTo , pca

T (q)]T ∈ R8×1, where fk(q) is the forward kinematics mapping
to a palm point and xo is the object position. pca(q) is a linear map of the hand, inspired by the
concept of Eigengrasp [49], where we first apply Principle Component Analysis (PCA) to the 16-
DoF hand joints data, which reduces the 16-DoF joint space to the 5-DoF Eigenspace while the first
five principle components account for more than 95% of the variance. This stacked space directly
shares information between the arm and hand, allowing them to coordinate properly. (2) The full
configuration space of the robot, φ2 : q 7→ q ∈ R23×1. The policy in this space additionally shapes
the configuration space behavior, filling in the nullspace of the preceding space.

4.2 Define learnable components in subtask spaces

Geometric policies: A priority metric and geometry pair in the stacked space φ1 is defined as
[M1, π1], encoding object-reaching and coordinated palm-finger behavior. Another priority metric
and geometry pair [M2, π2] is defined in the configuration space, φ2, that serves as a residual policy,
shaping the configuration space behavior and ensuring the combined Geometric Fabric is full rank.

Potential and damping: We additionally add another priority metric and acceleration-based poten-
tial policy [Mf , πf ] (πf is purely a function of position) in the stacked space φ1 to: 1) maintain
bounded system energy levels while 2) induce motion (energized geometries cannot induce motion
by themselves when at rest), and 3) optimize the corresponding potential function. Finally, a strictly
positive damping scalar b in the configuration space, φ2, is also learned and applied that removes
energy from the system, ensuring convergence to the minima of the potential function.

4



Figure 2: We parameterize NGFs with neural networks and construct them as follows: (1) define
each subtask space with a forward mapping φk that maps coordinates q in the configuration space
into coordinates xk in the k-th subtask space, (2) define a geometric policy pair [Mk, πk] in each
subtask space xk, e.g., k = 1, 2, and define a potential policy pair [Mf , πf ] in the desired sub-
task space, e.g., x1, (3) pull-back the geometric and potential policy pairs into the configuration
space, (4) combine the geometric policies via a metric-weighted average, (5) energize the combined
policy (project orthogonal to the direction of motion with Pe) to create a collection of energy-
preserving paths (the Geometric Fabric), and (6) force the Geometric Fabric with a potential defined
by [Mf , πf ] and damp via b applied along q̇, which ensures convergence to the potential’s minima.
Note that we parameterize the geometric policy pairs [Mk, πk], the potential policy pair [Mf , πf ],
and the damping scalar b with network networks and learn them from data. We can also define φk
with neural networks if desired. For notation simplicity, we use subscript ∗ to represent 1, 2, and f .

All learnable components, including [M∗, π∗] (π∗ is constructed with h∗ and ∗ = 1, 2, f ) and the
damping scalar b, are defined with neural networks. To ensure the priority metrics are positive defi-
nite, we follow the architecture described in [28]. See Appendix B for detailed parameterizations.

4.3 Complete form

Using the pullback and combination operations as defined in Appendix A, the two geometric policies
and potential-based policy are combined at the root along with damping and energization. With the
total metric, M̃ = M̃1 + M̃2 + M̃f , total geometric force, f̃ = f̃1 + f̃2, and potential force f̃f , the
desired NGF acceleration takes the form q̈d = −Pe

[
M̃−1f̃

]
−M̃−1f̃f−bq̇, where Pe = (I− ˆ̇qˆ̇qT )

energizes the fabric with a squared velocity norm energy (see equation (10) of [29] concerning this
energization), and b ∈ R+ is a damper. q̈d is time integrated to produce qd and q̇d, the command
trajectory for the robot to follow (see algorithms in Appendix C).

5 Learning Policies from Demonstrations

Given the policy architecture in Section 4, here we describe how we train NGF-based policies using
demonstrations to solve manipulation tasks on a 23-DoF hand-arm system system (7-DoF arm and a
16-DoF multi-fingered hand). We used the DexPilot teleoperation system [50] to collect task-solving
demonstrations, and trained a policy to replicate the demonstrated joint position trajectories.

5



5.1 Problem Statement

Consider a deterministic discrete-time system with transition model st+1 = f(st, at) where st ∈ Rn
is the state, and at ∈ Rm is the action of the system, and f : Rn × Rm → Rn is the system
transition function. We want to learn an NGF policy πθ : s 7→ πθ(s), Π := {πθ : θ ∈ Θ}, given N
trajectory demonstrations {τ (i)}Ni=1. Each demonstration is defined as a sequence of states, denoted
τ (i) := {s(i)t }

Ti
t=0, where Ti is the horizon for the ith demonstration. Note, the system transition

model we refer to here is simply Euler integration defined by Eq. (7) in Appendix D.

5.2 Policy Optimization

To mitigate the distribution shift issue involved in behavior cloning, we formulate the policy learning
problem as a multi-step prediction error optimization problem, in which we learn a policy that
can reproduce the demonstrated behavior by minimizing the deviation between the demonstrated
trajectory and trajectory produced by a learned policy under the system transition function f . That
is, given a transition function st+1 := f(st, πθ(st)) for each policy, we can rollout a policy trajectory
and perform back-propagation-through-time [51, 52] with the Adam optimizer [53] to improve the
policy parameters. Importantly, the states here are the commanded states during demonstration.
More details on policy optimization and the exact loss function are included in Appendix D.

6 Experiments

Tasks: We studied the effect of i) policy structure and ii) the choice of action space by comparing a
variety of policy classes across three different tasks (see Fig 1). The first task illustrates prehensile
manipulation by requiring the robot to grasp and lift a randomly placed sugar box from the table.
The second task illustrates reaching, collision avoidance, and non-prehensile manipulation by re-
quiring the robot to touch a target point on the table while avoiding collision with a randomly placed
coffee can and then push the can over to the target. The third task illustrates constrained prehensile
manipulation by requiring the robot to precisely maneuver its fingers through a tool tray handle and
extract it from a tool box while avoiding undesirable collisions before placing it onto the table.

Baselines: We compared the performance of NGF against the following baselines: a fully-connected
Neural Network policy (NN), a Riemannian Motion Policy (RMP), a recurrent neural network policy
with Long Short-Term Memory units (LSTM), and an End-Effector Neural Network policy coupled
with a manually-designed Geometric Fabric for operational space control (EEF-GF). We chose these
specific baselines as they represent current practices in imitation learning for manipulation with re-
spect to the choices of policy structure and action space. We provide additional details and justifica-
tions in Appendix E, and details about the experiment setup and data collection in Appendix F.

6.1 Evaluation Procedure

We trained all policies using the procedure described in Section 5 and deployed them on a physical
robot platform to empirically measure their performance in representing the desired behavior im-
plicit in the demonstrations. To be successful, the policies must simultaneously encode approach
and grasping behavior by directly coordinating finger, palm, and arm motions for each task.

For each of the first two tasks involving prehensile and non-prehensile manipulation, we trained
one instance of each policy class (NN, RMP, LSTM, EEF-GF, and NGF) on 80 demonstrations.
We then evaluated each trained policy’s ability to generalize to 20 arbitrary object poses on the
surface of the table used for demonstrations. Each policy received the object pose estimated by
CosyPose [54], a target pose equivalent to the mean pose in the training data, and an initial robot
configuration as inputs. For the third task involving tool tray retrieval, we trained one instance of
each policy class on 6 demonstrations, in which the toolbox is positioned at 6 different orientations
[10, 30, 50, 70, 90, 110] (deg.). We evaluated each trained policy’s ability to retrieve the tool tray
with the toolbox positioned at 9 different orientations [−10, 0, 20, 40, 60, 80, 100, 120, 130] (deg.).
Each policy received the toolbox orientation and the initial robot configuration as inputs.

Metrics: We quantified policy performance by evaluating both task success rate and the safe deploy-
ment rate. To compute safe deployment rate and prevent hardware damage, we used each trained
policy to generate open-loop trajectories for a horizon of 13 seconds for Task 1, and 30 seconds

6



for Tasks 2 and 3. We then visualized the robot enacting these trajectories using PyBullet [55] to
determine its safety for deployment. We consider a trajectory to be safe if it does not excessively
throw the robot into, through, or below the table, and does not lead to violent arm movements. We
deployed all safe trajectories on the physical robot using a PD controller. To compute task success
rate, we considered an execution to be successful only if the following criteria are met within the
deployment horizon. Task 1: the robot grasps and lifts the sugar box from the table; Task 2: the
robot first touches the target point without colliding into the coffee can and then moves the can over
to the target location; Task 3: the robot grasps and lifts the tool tray out of the toolbox. In addition
to these two metrics, we also measured the imitation error of each policy (defined in Eq. (12) of
Appendix G) to evaluate sample efficiency.

6.2 Real-world Task Performance

Task Success Rate: The following key observations can be made from the results reported in
Fig. 3a: (i) Most strikingly, NGF consistently offered the highest level of performance against all
baselines and outperformed the best baseline by 40% to 100%, indicating the benefits of our specific
architecture and our use of multiple action spaces. (ii) EEF-GF had the second highest level of per-
formance by matching other baselines on the coffee can and tool tray tasks and outperforming them
on the sugar box task. EEF-GF’s good performance is explained by the fact that policies trained with
elevated action spaces (in this case, palm pose action) are known to be easier to learn. However, it is
important to note that EEF-GF enjoys the benefits of a manually-tuned Geometric Fabric-based oper-
ational space controller, and yet preforms worse than NGF which does not require such a controller.
This result demonstrates the benefits of learning high-dimensional structured policies directly from
data. (iii) Both second-order baselines, RMP and NN, surprisingly offer relatively same level of task
success rates despite the added taskmap structure of the RMP which aims to introduce beneficial
inductive biases. Although less clear, RMP and NN seemed to offer marginal improvements over
LSTM, suggesting that second-order policies’ ability to encode complex motions is comparable to
that of a well-established recurrent structure commonly found in the literature.

Sugar Box Coffee Can Toolbox0

20

40

60

80

100

Su
cc

es
s

R
at

e
%

NN
RMP
LSTM
EEF-GF (OURS)
NGF (OURS)

(a)

Sugar Box Coffee Can Toolbox0

20

40

60

80

100

Sa
fe

D
ep

lo
y

R
at

e
%

(b)

Figure 3: Policy performance on all three tasks based on (a) percentage of deployments that were
successful, and (b) percentage of deployments that were safe to deploy on the real robot.

Safe Deploy Rate: We report the safe deployment rates for each policy and task in Fig. 3b. Crit-
ically, both NGF and EEF-GF were the safest to deploy across all tasks with 100% deploy rates,
indicating that Geometric Fabrics-induced structure helps generate smooth and safe motions. Next,
RMP had consistently higher deployment rates over NN, indicating that its taskmap structure helps
improve safety. Finally, LSTM was comparable to RMP in generating safe trajectories.

6.3 Analysis on Sample Efficiency

We also studied the sample efficiency of each policy when learning to perform the first task.

Imitation Error: Imitation error captures the difference in trajectories generated by the learned
policy and trajectories from the unseen data. We trained each policy on sets of demonstrations with
sizes [10, 30, 60], and for every 10 epochs, computed the imitation error on a set of 20 held-out
demonstrations. After training for 2000 epochs, we selected the best model based on the imitation
error for each policy over 5 random initialization seeds. We report the mean and standard deviation
of the imitation error for each policy across 5 random seeds in see Fig. 4a. We note that NGF is the

7



most sample-efficient as it results in the lowest mean imitation error (and smallest variance) across
all quantities of demonstrations.

10 30 60
Number of Demonstrations

0.050

0.075

0.100

0.125

0.150
Im

ita
tio

n
E

rr
or

m
Imitation Error vs Dataset Size

NN
RMP
LSTM
EEF-GF (OURS)
NGF (OURS)

(a)

10 30 60Number of Demonstrations
0

20

40

60

80

100

Su
cc

es
s

R
at

e
%

Success Rate vs Dataset Size
NN
RMP
LSTM
EEF-GF (OURS)
NGF (OURS)

(b)

10 30 60
Number of Demonstrations

0

20

40

60

80

100

Sa
fe

D
ep

lo
y

R
at

e
%

Safe Deploy Rate vs Dataset Size

(c)

Figure 4: Sample efficiency analysis based on (a) imitation error of each policy (solid lines indicate
the mean and the shaded area show mean ± standard deviation, over the 5 random seeds). (b) task
success rate, and (c) safe deployment rate on physical robot.

Task Performance and Safety: Following the procedure in Section 6.1, we report how each policy’s
task success rate and safe deployment rate change with dataset size in Figs. 4b and 4c, respectfully.
We note that real-world performance somewhat correlates with imitation error, but not strictly as
observed in [2]. Similar to the results in Section 6.2, NGF consistently outperforms all the baselines
across all dataset sizes (except for EEF-GF’s better safe deployment rate with only 10 demonstra-
tions, perhaps due to its manually-designed controller). Overall, the superior performance of NGF in
all three metrics indicate that the additional structure imposed by Geometric Fabrics helps improve
sample efficiency in policy learning. We provide an extended discussion in Appendix G.1.

7 Final Remarks

Discussion The mixture of near-perfect deploy rates and significantly higher task success rates of
NGF against all baselines demonstrates the structural power of Geometric Fabrics. We find that
EEF-GF is also a very viable architecture which demonstrates how the elevated pose action space
when combined with an analytically-derived Geometric Fabric can improve policy learning. Our
findings suggest that learning entirely new control structures with multiple action spaces beyond
end-effector poses is possible with Geometric Fabrics. Although the policies were deployed open-
loop, this is not an intrinsic limitation of NGFs. To illustrate its reactivity, we deployed the NGF
policy on the coffee can task in closed-loop. We note that NGF successfully adapted and performed
the task, even when we pushed the coffee can during execution (see Appendix H for more details).

Limitations Due to the high cost of running real-world experiments, we partially tested at most
three random seeds per policy class per task and selected the best seed for full assessment. We
acknowledge that experimental and policy variance could produce artifacts in the results. However,
the combination of: 1) screening the best policy for each class and task, 2) the low imitation error
and associated variance of NGF (see Fig. 4a), and 3) the consistency of NGF excelling across tasks
makes it very unlikely that any of the baselines offer better performance in practice. We suspect that
the performance of the EEF-GF policy could be improved by including the underlying Geometric
Fabric policy inside the training loop. Finally, we deployed the policies open-loop for two primary
reasons: 1) object pose detection becomes unreliable during heavy occlusion, and 2) we could as-
sess the safety of the policy’s trajectory before deployment, protecting our hardware. We note that
training with much larger and diverse datasets will likely enable reliable closed-loop control.

Future work Our work opens up a number of avenues for future work, including 1) learning NGF
policies from significantly larger and more diverse datasets, 2) learning NGFs that can process raw
sensory streams including camera data, and 3) investigating the benefits of NGF for reinforcement
learning. We believe that NGF-based learning frameworks have the potential to solve a wide variety
of manipulation tasks in closed-loop, enabling us to move away from simplified representations
of state (e.g., pose) and towards processing raw proprioceptive, tactile, and visual feedback in a
structured manner.

8



Acknowledgments

This research was supported by NVIDIA Research.

9



References
[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances in robot

learning from demonstration. Annual Review of Control, Robotics, and Autonomous Systems,
3:297–330, 2020.

[2] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations
for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

[3] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang. Dexmv: Imitation learning
for dexterous manipulation from human videos. arXiv preprint arXiv:2108.05877, 2021.

[4] R. Jeong, J. T. Springenberg, J. Kay, D. Zheng, Y. Zhou, A. Galashov, N. Heess, and F. Nori.
Learning dexterous manipulation from suboptimal experts. arXiv preprint arXiv:2010.08587,
2020.

[5] I. Radosavovic, X. Wang, L. Pinto, and J. Malik. State-only imitation learning for dexterous
manipulation. arXiv preprint arXiv:2004.04650, 2020.

[6] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[7] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, Y. Tassa,
T. Erez, and M. Riedmiller. Data-efficient deep reinforcement learning for dexterous manipu-
lation. arXiv preprint arXiv:1704.03073, 2017.

[8] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[9] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. Deep dynamics models for learning
dexterous manipulation. In Conference on Robot Learning, pages 1101–1112. PMLR, 2020.

[10] A. Gupta, C. Eppner, S. Levine, and P. Abbeel. Learning dexterous manipulation for a soft
robotic hand from human demonstrations. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3786–3793. IEEE, 2016.

[11] P. Ruppel and J. Zhang. Learning object manipulation with dexterous hand-arm systems from
human demonstration. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5417–5424. IEEE, 2020.

[12] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. In Confer-
ence on Robot Learning, pages 297–307. PMLR, 2022.

[13] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[14] W. Huang, I. Mordatch, P. Abbeel, and D. Pathak. Generalization in dexterous manipulation
via geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.

[15] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep
reinforcement learning: Efficient, general, and low-cost. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3651–3657. IEEE, 2019.

[16] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills
by learning from demonstration. In 2009 IEEE International Conference on Robotics and
Automation, pages 763–768. IEEE, 2009.

[17] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical movement
primitives: learning attractor models for motor behaviors. Neural computation, 25(2):328–
373, 2013.

10



[18] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement primitives. In Robotics
research. the eleventh international symposium, pages 561–572. Springer, 2005.

[19] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters. Active incremental learning of robot
movement primitives. In Conference on Robot Learning, pages 37–46. PMLR, 2017.

[20] A. Paraschos, C. Daniel, J. Peters, G. Neumann, et al. Probabilistic movement primitives.
Advances in neural information processing systems, 2013.

[21] G. J. Maeda, G. Neumann, M. Ewerton, R. Lioutikov, O. Kroemer, and J. Peters. Proba-
bilistic movement primitives for coordination of multiple human–robot collaborative tasks.
Autonomous Robots, 41(3):593–612, 2017.

[22] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with gaus-
sian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

[23] S. M. Khansari-Zadeh and A. Billard. Learning control lyapunov function to ensure stability
of dynamical system-based robot reaching motions. Robotics and Autonomous Systems, 62(6):
752–765, 2014.

[24] N. Figueroa and A. Billard. Locally active globally stable dynamical systems: The-
ory, learning, and experiments. The International Journal of Robotics Research, page
02783649211030952, 2022.

[25] H. Ravichandar and A. Dani. Learning position and orientation dynamics from demonstrations
via contraction analysis. Autonomous Robots, 43(4):897–912, 2019.

[26] H. Ravichandar, I. Salehi, and A. Dani. Learning partially contracting dynamical systems from
demonstrations. In Conference on Robot Learning, pages 369–378. PMLR, 2017.

[27] A. Li, C.-A. Cheng, M. A. Rana, M. Xie, K. Van Wyk, N. Ratliff, and B. Boots. Rmp2: A
structured composable policy class for robot learning. arXiv preprint arXiv:2103.05922, 2021.

[28] M. A. Rana, A. Li, H. Ravichandar, M. Mukadam, S. Chernova, D. Fox, B. Boots, and
N. Ratliff. Learning reactive motion policies in multiple task spaces from human demon-
strations. In Conference on Robot Learning, pages 1457–1468. PMLR, 2020.

[29] K. Van Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. Peele, Q. Wan, I. Akinola, B. Sun-
daralingam, D. Fox, et al. Geometric fabrics: Generalizing classical mechanics to capture the
physics of behavior. IEEE Robotics and Automation Letters, 2022.

[30] N. D. Ratliff, K. Van Wyk, M. Xie, A. Li, and M. A. Rana. Generalized nonlinear and finsler
geometry for robotics. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 10206–10212, 2021. doi:10.1109/ICRA48506.2021.9561543.

[31] N. Gruver, M. A. Finzi, S. D. Stanton, and A. G. Wilson. Deconstructing the inductive biases
of hamiltonian neural networks. In International Conference on Learning Representations,
2022.

[32] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-
free reinforcement learning via multi-task learning: Learning dexterous manipulation behav-
iors without human intervention. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6664–6671, 2021.

[33] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An algorithmic
perspective on imitation learning. arXiv preprint arXiv:1811.06711, 2018.

[34] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,
A. A. Efros, and T. Darrell. Zero-shot visual imitation. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 2050–2053, 2018.

[35] A. O. Ly and M. A. Akhloufi. Learning to drive by imitation: an overview of deep behavior
cloning methods. IEEE Transactions on Intelligent Vehicles, 2020.

11

http://dx.doi.org/10.1109/ICRA48506.2021.9561543


[36] D. Jain, A. Li, S. Singhal, A. Rajeswaran, V. Kumar, and E. Todorov. Learning deep visuomo-
tor policies for dexterous hand manipulation. In 2019 International Conference on Robotics
and Automation (ICRA), pages 3636–3643. IEEE, 2019.

[37] O. Kroemer, S. Niekum, and G. Konidaris. A review of robot learning for manipulation:
Challenges, representations, and algorithms. J. Mach. Learn. Res., 22:30–1, 2021.

[38] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[39] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. Lyapunov-based
safe policy optimization for continuous control. arXiv preprint arXiv:1901.10031, 2019.

[40] J. Choi, F. Castaneda, C. J. Tomlin, and K. Sreenath. Reinforcement learning for safety-
critical control under model uncertainty, using control lyapunov functions and control barrier
functions. arXiv preprint arXiv:2004.07584, 2020.

[41] S. Levine and P. Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In NIPS, volume 27, pages 1071–1079. Citeseer, 2014.

[42] S. Levine, N. Wagener, and P. Abbeel. Learning contact-rich manipulation skills with guided
policy search (2015). arXiv preprint arXiv:1501.05611, 2015.

[43] M. Mukadam, C.-A. Cheng, D. Fox, B. Boots, and N. Ratliff. Riemannian motion policy
fusion through learnable lyapunov function reshaping. In Conference on robot learning, pages
204–219. PMLR, 2020.

[44] X. Meng, N. Ratliff, Y. Xiang, and D. Fox. Neural autonomous navigation with riemannian
motion policy. In 2019 International Conference on Robotics and Automation (ICRA), pages
8860–8866. IEEE, 2019.

[45] M. T. Mason. Compliance and force control for computer controlled manipulators. IEEE
Transactions on Systems, Man, and Cybernetics, 11(6):418–432, 1981.

[46] D. H. Ballard. Task frames in robot manipulation. In AAAI, volume 19, page 109, 1984.

[47] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N. Ratliff. RMPflow:
A computational graph for automatic motion policy generation. In The 13th International
Workshop on the Algorithmic Foundations of Robotics, 2018.

[48] A. Li, C.-A. Cheng, M. A. Rana, M. Xie, K. Van Wyk, N. Ratliff, and B. Boots. RMP2: A
structured composable policy class for robot learning. Robotics: Science and Systems, 2021.

[49] M. Ciocarlie, C. Goldfeder, and P. Allen. Dexterous grasping via eigengrasps: A low-
dimensional approach to a high-complexity problem. In Robotics: Science and systems ma-
nipulation workshop-sensing and adapting to the real world. Citeseer, 2007.

[50] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao, Q. Wan, S. Birchfield, N. Ratliff, and
D. Fox. Dexpilot: Vision-based teleoperation of dexterous robotic hand-arm system. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 9164–9170. IEEE,
2020.

[51] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

[52] J. Langford, R. Salakhutdinov, and T. Zhang. Learning nonlinear dynamic models. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pages 593–600,
2009.

[53] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[54] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic. Cosypose: Consistent multi-view multi-object
6d pose estimation. In European Conference on Computer Vision, pages 574–591. Springer,
2020.

12



[55] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2021.

[56] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmidhuber. Lstm: A search
space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10):2222–
2232, 2017. doi:10.1109/TNNLS.2016.2582924.

[57] P. Florence, L. Manuelli, and R. Tedrake. Self-supervised correspondence in visuomotor policy
learning. IEEE Robotics and Automation Letters, 5(2):492–499, 2020. doi:10.1109/LRA.2019.
2956365.

[58] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep im-
itation learning for complex manipulation tasks from virtual reality teleoperation. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 5628–5635, 2018.
doi:10.1109/ICRA.2018.8461249.

[59] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end
sensorimotor learning. Advances in Neural Information Processing Systems, 33:5058–5069,
2020.

13

http://pybullet.org
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1109/LRA.2019.2956365
http://dx.doi.org/10.1109/LRA.2019.2956365
http://dx.doi.org/10.1109/ICRA.2018.8461249

