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ABSTRACT

Spiking Neural Networks (SNN) are now demonstrating comparable accuracy
to convolutional neural networks (CNN), thanks to advanced ANN-to-SNN con-
version techniques, all while delivering remarkable energy and latency efficiency
when deployed on neuromorphic hardware. However, these conversion techniques
incur a large number of time steps, and high spiking activity. In this paper, we
propose a novel ANN-to-SNN conversion framework, that incurs an exponentially
lower number of time steps compared to that required in the existing conversion
approaches. Our framework modifies the standard integrate-and-fire (IF) neuron
model used in SNNs with no change in computational complexity and shifts the
bias term of each batch normalization (BN) layer in the trained ANN. To reduce
spiking activity, we propose training the source ANN with a fine-grained ℓ1 regu-
larizer with surrogate gradients that encourages high spike sparsity in the converted
SNN. Our proposed framework thus yields lossless SNNs with low latency, low
compute energy, thanks to the low timesteps and high spike sparsity, and high test
accuracy, for example, 75.12% with only 4 time steps on the ImageNet dataset.
Codes will be made available.

1 INTRODUCTION

Spiking Neural Networks (SNNs) (46) have emerged as an attractive spatio-temporal computing
paradigm for a wide range of complex computer vision (CV) tasks (55). SNNs compute and
communicate via binary spikes that are typically sparse and require only accumulate operations in
their convolutional and linear layers, resulting in significant compute efficiency. However, training
deep SNNs has been historically challenging, because the spike activation function in standard neuron
models in SNNs yields gradients that are zero almost everywhere. While there has been extensive
research on backpropagation through time (BPTT) to mitigate this issue (1; 51; 52; 70; 74; 47; 71),
training deep SNNs from scratch is often unable to yield the same accuracies as traditional iso-
architecture Artificial Neural Networks (ANN).

ANN-to-SNN conversion, which leverages the advances in state-of-the-art (SOTA) ANN training
strategies, has the potential to mitigate this accuracy concern (62; 58; 20). However, since the binary
spikes in the SNN layers need to be approximated with full-precision ANN activations for accurate
conversion, the number of SNN inference time steps required is high. To improve the trade-off
between accuracy and time steps, previous research proposed shifting the SNN bias (13) and initial
membrane potential (4; 28; 27), while leveraging quantization-aware training in the ANN domain
(5; 33; 60; 64), inspired by the straight-through estimator method (2). Although this can eliminate
the component of the ANN-to-SNN conversion error incurred by the spike-driven binarization, the
uneven distribution of the time of arrival of the spikes causes errors, thereby degrading the SNN
accuracy. We first uncover that this unevenness error is responsible for the accuracy drop in the
converted SNNs in low timesteps. To completely eliminate this unevenness as well as other errors
with respect to the quantized ANN, we propose a novel conversion framework that enables exactly
identical ANN and SNN activation outputs, while honoring the accumulate-only operation paradigm
of SNNs. Our framework: (i) encodes both the timing information and binary value of the spikes
in the membrane potential with negligible compute overhead, (ii) shifts the bias term of the BN
layers in the source ANN, and (iii) modifies the IF neuron model with no change in computational
complexity by postponing the neuronal firings and resets after accumulation of the total input current.
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Our framework yields SNNs with SOTA accuracies among both ANN-to-SNN conversion and BPTT
approaches with only 2−4 time steps.

In summary, we make the following contributions.

• We analyze the key sources of error that (i) persist in SOTA ANN-to-SNN conversion approaches,
and (ii) degrade the SNN accuracy when using low number of time steps.

• We propose a novel ANN-to-SNN conversion framework that exponentially reduces the number of
time steps required for SOTA accuracy and eliminates each ANN-to-SNN conversion error. Our
resulting SNN can be supported in neuromorphic chips, (for example, Loihi (10)).

• We significantly increase the compute efficiency of SNNs by incorporating an additional loss term
in our training framework, that penalizes the non-zero bits of the intermediate ANN activations,
along with the task-specific loss (e.g., cross-entropy for image recognition). Further, we propose a
novel surrogate gradient method to optimize this loss.

Figure 1: Comparison of the performance-
efficiency trade-off between ourconversion &
SOTA SNN training methods on ImageNet.

Our contributions simultaneously provide low
latency, high energy efficiency, and SOTA accu-
racy while surpassing all existing SNN training
approaches in performance-efficiency trade-off,
as shown in Fig. 1.

2 RELATED WORKS

ANN-to-SNN conversion involves estimating
the threshold value in each layer by approx-
imating the activation value of ReLU neu-
rons with the firing rate of spiking neurons
(6; 58; 16; 62; 32). Some conversion works esti-
mated this threshold using heuristic approaches,
such as using the maximum (or close to) ANN
preactivation value (57). Others (36; 62) pro-
posed weight normalization techniques while setting the threshold to unity. While these approaches
helped SNNs achieve competitive classification accuracy on the Imagenet dataset, they required
hundreds of time steps for SOTA accuracy. Consequently, there has been a plethora of research
(13; 5; 28; 27) that helped reduce the conversion error while also reducing the number of time steps
by an order of magnitude. All these works used trainable thresholds in the ReLU activation function
in the ANN and reused the same for the SNN threshold. In particular, (13; 42) proposed a shift
in the bias term of the convolutional layers to minimize the conversion error, with the assumption
that the ANN and SNN input activations are uniformly and identically distributed. Other works
include burst spikes (54; 41), and signed neuron with memory (66). However, they might not adhere
to the bio-plausibility of spiking neurons. Some works also proposed modified ReLU activation
functions in the source ANN, including StepReLU (65) and SlipReLU (35) to reduce the conversion
error. Moreover, there have been works that aim to minimize the deviation error, including (5) which
proposed to initialize the membrane potential with half of the threshold value; (28; 27) which adjusts
the membrane potential after observing its trend for a few time steps, and (49) which proposed
threshold tuning and residual block restructuring. Some other works explored error correction meth-
ods between ANN and SNNs, often by adapting SNNs through conversion approaches to resemble
ANNs more closely (60; 64; 33). Lastly, some works minimized the conversion error using novel
neuron models, such as inverted LIF neuron (44) and signed IF neuron (34). Our method builds upon
these foundations by focusing specifically on addressing accuracy gaps at very low time steps (e.g.,
T∼2−4), while providing substantial computational efficiency.

In contrast to ANN-to-SNN conversion, direct SNN training methods, based on BPTT, aim to resolve
the discontinuous and non-differentiable nature of the thresholding-based activation function in the IF
model. Most of these methods (40; 53; 1; 51; 52; 70; 69; 74; 75; 47; 71; 48; 25) replace the spiking
neuron functionality with a differentiable model, that can approximate the real gradients (that are zero
almost everywhere) with the surrogate gradients. In particular, (24) and (22) proposed a regularizing
loss and an information maximization loss respectively to adjust the membrane potential distribution
in order to reduce the quantization error due to spikes. Some works optimized the BN layer in the
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SNN to achieve high performance. For example, (18) proposed temporal effective BN, that rescales
the presynaptic inputs with different weights at each time-step; (76) proposed threshold-dependent
BN; (37) proposed batch normalization through time that decouples the BN parameters along the
temporal dimension; (26) used an additional BN layer to normalize the membrane potential. There
have also been works (56; 8) where the conversion is performed as an initialization step and is
followed by fine-tuning the SNN using BPTT. These hybrid training techniques can help SNNs
converge within a few epochs of BPTT while requiring only a few time steps. Lastly, some works
have explored the use of ℓ1 regularizers in SNN training to improve sparsity (50; 30), but to the best
of our knowledge, no research has specifically applied this regularization method for ANN-to-SNN
conversion.

3 PRELIMINARIES

3.1 ANN & SNN NEURON MODELS

For ANNs used in this work, a block l that takes al−1 as input, consists of a convolution (denoted by
f conv), batchnorm (denoted by fBN ), and nonlinear activation (denoted by fact), as shown below.

al =fact(fBN (f conv(al−1))) = fact(zl)=fact
(
γl
(

W lal−1−µl

σl

)
+ βl

)
, (1)

where W l denotes the convolutional layer weights, µl and σl denote the BN running mean and
variance, and γl and βl denote the learnable scale and bias BN parameters. Inspired by (5), we use
quantization-clip-floor-shift (QCFS) as the activation function fact(·) defined as

al = fact(zl) =
λl

Q
clip

(⌊
zlQ

λl
+

1

2

⌋
, 0, Q

)
, (2)

where Q denotes the number of quantization steps, λl denotes the trainable QCFS activation output
threshold, and zl denotes the activation input. Note that clip(x, 0, µ) = 0, if x < 0; x, if 0 ≤ x ≤
µ; µ, if x ≥ µ. QCFS can enable ANN-to-SNN conversion with minimal error for arbitrary T and
Q, where T denotes the total number of SNN time steps.

The spike-driven dynamics of an SNN is typically represented by the IF model where, at each time
step denoted as t, each neuron integrates the input current zl(t) from the convolution, followed by BN
layer, into its respective state, referred to as membrane potential denoted as ul(t). The neuron emits
a spike if the membrane potential crosses a threshold value, denoted as θl. Assuming sl−1(t) and
sl(t) are the spike inputs and outputs respectively, µl and σl are the BN running mean and variance
respectively, and γl and βl are the learnable scale and bias BN parameters, respectively, the IF model
dynamics can be represented as

zl(t) =

(
γl

(
W lsl−1(t)θl−1 − µl

σl

)
+ βl

)
, sl(t) = H(ul(t−1) + zl(t)− θl), (3)

ul(t) = ul(t−1) + zl(t)− sl(t)θl. (4)

where H(·) denotes the heaviside function. Note that instead of resetting the membrane potential
to zero after the spike firing, we use the reset-by-subtraction scheme where the surplus membrane
potential over the firing threshold is preserved and propagated to the subsequent time step.

3.2 ANN-TO-SNN CONVERSION

The primary goal of ANN-to-SNN conversion is to approximate the SNN spike firing rate with the
multi-bit nonlinear activation output of the ANN with the other trainable parameters being copied
from the ANN to the SNN. In particular, rearranging Eq. 4 to isolate the expression for sl(t)θl,
summing for t=1 to t=T , and dividing both sides by T , we obtain∑T

t=1 s
l(t)θl

T
=

∑T
t=1 z

l(t)

T
+

(
ul(0)− ul(T )

T

)
. (5)

Then, substituting

ϕl(T ) =

∑T
t=1 s

l(t)θl

T
, and Zl(T ) =

∑T
t=1 z

l(t)

T

3
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Figure 2: (a) Comparison between the average magnitude of unevenness error for different number of
time steps with Q=8 and Q=16. Comparisons of the SNN and ANN output activations, ϕl(T ) and
al respectively for (b) Q=8 and T=4, (c) Q=8 and T=2. Reducing the number of time steps from 4 to
2 increases the expected quantization error from 0.0625λl to 0.125λl.

to denote the average spiking rate and presynaptic potential for the layer l respectively, we obtain

ϕl(T ) = Zl(T )−
(
ul(T )− ul(0)

T

)
(6)

Note that for a very large T , ϕl(T ) can be approximated with Zl(T ). Importantly, the resulting
function ϕl(T ) is equivalent to the ANN ReLU activation function, because it outputs zero for
negative values of the input (since the accumulated input current is zero when negative) and directly
reflects the positive values of the input current. This analogy is essential in understanding the
transition from SNNs to ANNs using spike-based models. However, for the low T in our use-case, the
residual term

(
ul(T )−ul(0)

T

)
introduces error in the ANN-to-SNN conversion error, which previous

works (27; 28; 5) refer to as unevenness error. These works also took into account two other types
of conversion errors, namely quantization and clipping errors. Quantization error occurs due to the
discrete nature of ϕl(T ) which has a quantization resolution (QR) of θl

T . Clipping error occurs due
to the upper bound of ϕl(T ) = θl. However, both these errors can be eliminated with the QCFS
activation function in the source ANN (see Eq. 2) and setting θl = λl and T=Q. This yields the
same QR of θl

T and upper bound of θl as the ANN activation.

4 ANALYSIS OF CONVERSION ERRORS

Although we can eliminate the quantization error by setting T=Q, the error increases as T is decreased
significantly from Q for low-latency SNNs1. This is because the absolute difference between the
ANN activations and SNN average post-synaptic potentials increases as (Q−T ) increases as shown
in Fig 2(b)-(c). Note that Q cannot be too small, otherwise, the source ANN cannot be trained
with high accuracy. To mitigate this concern, we propose to improve the SNN capacity at low T
by embedding the information of both the timing and the binary value of spikes in each membrane
potential. As shown later in Section 5, this eliminates the quantization error at T= log2 Q. This
results in an exponential drop in the number of time steps compared to prior works that require T=Q
(5). As our work already enables a small value of T , the drop in SNN performance with further lower
T<log2Q becomes negligible compared to prior works. Moreover, at low timesteps, the unevenness
error increases as shown in Fig. 2(a), and even dominates the total error as shown in Fig. 3(Right),
which highlights its importance for our use case. Previous works (28; 27) attempted to reduce this
error by observing and shifting the membrane potential after some number of time steps, which
dictates the upper bound of the total latency. Moreover, (28) requires iterative potential correction by
injecting or eliminating one spike per neuron at a time, which also increases the inference latency.
That said, the unevenness error is difficult to overcome with the current IF models. To eliminate the
unevenness error, ul(T ) must fall in the range [0, θl] (5). However, this cannot be guaranteed without
the prior information of the post-synaptic potentials (up to T time steps). The key reason this cannot
be guaranteed is the neuron reset mechanism, which dynamically lowers the post-synaptic potential
value based on the input spikes. By shifting all neuron resets to the last time step T , and matching the
ANN activation and SNN post-synaptic values at each time step, we can completely eliminate this
unevenness error, as shown in Section 5.

1Note that T cannot always be equal to Q for practical purposes, since we may want multiple SNNs with
different number of time steps from a single pre-trained ANN
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5 PROPOSED METHOD

In this section, we propose our ANN-to-SNN conversion framework, which involves training the
source ANN using the QCFS activation function (5) and a 1) bit-wise fine-grained ℓ1 regularizer,
followed by 2) shifting the bias term of the BN layers, and 3) modifying the IF model where the
neuron spiking mechanism and reset are pushed after the current accumulation over all the time steps.

5.1 ANN-TO-SNN CONVERSION

To enable lossless ANN-to-SNN conversion, the IF layer output should be equal to the bit-wise repre-
sentation of the output of the corresponding QCFS layer in the lth block, which can be represented
as sl(t)=alt ∀t ∈ [1, T ], where alt denotes the tth bit of al starting from the most significant bit.
This ensures that the cumulative spike train over T=log2Q time steps reconstructs the full quantized
activation value of the ANN.

We first show how this is guaranteed for the input block and then for any hidden block l by induction.

Input Block: Similar to prior works targeting low-latency SNNs (5; 4; 56), we directly use multi-bit
inputs that incur multiplications in the first layer, whose overhead is negligible in a deep SNN. Hence,
the input to the first IF layer in the SNN (output of the first convolution, followed by BN layer)
is identical to the first QCFS layer in the ANN. The first QCFS layer yields the output a1 with
T= log2 Q bits. The first IF layer also yields identical outputs s1(t) = a1t at the tth time step, with
the proposed neuron model as shown later in Eqs. 8 and 9.

Hidden Block: To incorporate the information of both the firing time and binary value of the spikes,
we multiply the input sl−1(t) of the IF layer (i.e., output of the convolution followed by a BN layer)
in the lth block by 2(t−1) at the tth time step, which can be easily implemented by a left shifter. Note
that the additional compute overhead due to the shifting is negligible as shown later in Section 6.3.
The resulting SNN input current in the lth block is computed as ẑl(t) = fBN (f conv(2t−1sl−1(t))).
The input of the corresponding ANN QCFS layer is fBN (f conv(al−1)) where al−1 can be denoted
as
∑T

t=1 2
t−1sl−1(t) by induction.

Condition I: For lossless conversion, let us first satisfy that the accumulated input current over T time
steps is equal to the input of the corresponding QCFS layer in the lth block.

Mathematically, representing the composite function fBN (f conv(·)) as gANN and gSNN for the
source ANN and its converted SNN respectively, Condition I can be re-written as

T∑
t=1

gSNN (k · sl−1(t))=gANN

(
T∑

t=1

k · sl−1(t)

)
(7)

where k=2t−1. However, this additive property does not hold for any arbitrary source ANN and its
converted SNN, due to the BN layer. We satisfy this property by modifying the bias of each BN layer
during ANN-to-SNN conversion, as shown in Theorem I below, whose proof is in Appendix A.2.

Theorem I: For the lth block in the source ANN, let us denote W l as the weights of the convolutional
layer, and µl, σl, γl, and βl as the trainable parameters of the BN layer. Let us denote the same
parameters of the converted SNN for as W l

c , µl
c, σl

c, γl
c, and βl

c. Then, Eq. 7 holds true if W l
c = W l,

µl
c = µl, σl

c = σl, γl
c = γl, and βl

c =
βl

T + (1− 1
T )

γlµl

βl .

Theorem II: If Condition I (Eq. 7) is satisfied and the post-synaptic potential accumulation, neu-
ron firing, and reset model adhere to Eqs. 8 and 9 below, the lossless conversion objective i.e.,
sl(t)=alt ∀t ∈ [1, T ] is satisfied for any hidden block l.

ẑl(t) =

(
γl
c

(
2t−1W l

cs
l−1(t)θl−1 − µl

c

σl
c

)
+ βl

c

)
, (8)

ul(1)=

T∑
t=1

ẑl(t), sl(t)=H

(
ul(t)− θl

2t

)
, ul(t+ 1) = ul(t)− sl(t)

θl

2t
. (9)

The proof of Theorem II is shown in Appendix A.2. Our conversion framework is illustrated in
Fig. 3(Left). Note that our neuron model postpones the firing and reset mechanism until after

5
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Conv BN QCFS

ANN trained using QCFS activation

Conv BN QCFS

Single ANN block

Conv BN New IF 
Neuron

Conv BN QCFS

Conv BN New IF 
Neuron

Converted SNN

Conv BN

Compute BN 
bias shift

New IF neuron, that 
1) segregates accumulation and 

emission phases, 
2) Adds the BN bias shift to the 

initial membrane potential

New IF 
Neuron

Figure 3: (Left) Proposed ANN-to-SNN conversion framework, encompassing i) training of the
source ANN using the QCFS activation function, ii) computing the shift of the bias term of the BN
layers, and copying the other trainable parameters and iii) modification of the IF neuron. (Right)
Comparison of the average magnitude of quantization, clipping, and unevenness errors between the
ANN and SNN.

the input current is accumulated from the incoming spikes emitted over all the T time steps in the
previous layer. Hence, our model does not change the computational complexity of the traditional
IF model. Moreover, our neuron model can be supported in programmable neuromorphic chips,
that implements current accumulation, threshold comparison, and potential reset independently
in a modular fashion. Since our model needs to acquire ẑl(T ), before transmitting the spikes at
any time step to the subsequent layer, it requires layer-by-layer propagation, as used in advanced
conversion works (28; 27). However, this does not prohibit the asynchronous computations that can
be accelerated by an asynchronous accelerator such as Loihi. In particular, spikes are transmitted
to the next layer as soon as they are computed. Moreover, our implemented framework adheres to
this scheme and thus our reported accuracies are consistent with the asynchronous implementation.
The only constraint the layer-by-layer propagation incurs is that all time steps of the previous layer
must be computed before the spikes of the first time step of the next layer can be computed. However,
this constraint does not impose any penalty, as layer-by-layer propagation is superior compared to its
alternative step-by-step propagation in terms of system efficiency as shown in Appendix A.3.

While our approach of separating the aggregation and emission phases is similar to (44), there are
notable differences that result in improved SNN accuracy, particularly at low time steps. Firstly, our
method embeds both the timing and binary value of spikes within the accumulated input current (as
indicated by the term 2t−1 in Eq. 9). Secondly, we provide a mathematical proof demonstrating that
our proposed neuron model completely eliminates the conversion error, In contrast, (44) empirically
shows that their inverted LIF model only reduces (not eliminate) the conversion error.

5.2 ACTIVATION SPARSITY

Although our proposed framework can significantly reduce T while eliminating the conversion error,
the spiking activity does not reduce proportionally. In fact, we can see from Fig. 7(a) that the spiking
activity of a VGG-16 based SNN evaluated on CIFAR10 drops only ∼3% (36.2% to 33.0%) when T
decreases from 8 to 4. We hypothesize this is because the SNN tries to pack a similar number of spikes
within the few time steps available. To mitigate this concern, we propose a fine-grained regularization
method that encourages more zeros in the bit-wise representation of the source ANN. As our approach
enforces similarity between the SNN spiking and ANN bit-wise output, this encourages more spike
sparsity under low T , which in turn, decreases the compute complexity of the SNN when deployed
on neuromorphic hardware. The training loss function (Ltotal) of our proposed approach is shown
below in Eq. 10, where ai,lt denotes the tth bit of the ith activation value in layer l, LCE denotes the
cross-entropy loss calculated on the softmax output of the last layer L, LSP denotes the proposed ℓ1
regularizer loss, and λ is the regularization coefficient.

Ltotal=LCE + λLSP=LCE+λ

L−1∑
l=1

T∑
t=1

N∑
i=1

ai,lt . (10)

Note that we only accumulate (and do not spike) the post-synaptic potential in the last layer L, and
hence, we do not incorporate the loss due to ai,lt for l=L. Since ai,lt ∈{0, 1}, its gradients are either
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zero or undefined, and so, we cannot directly optimize LSP using backpropagation. To mitigate this
issue, inspired by the straight-through estimator (2), we propose a form of surrogate gradient descent
as shown below, where ai,l denotes the t-bit activation of neuron i in layer l:

∂LSP

∂ai,l
=λ

L∑
l=1

N∑
i=1

T∑
t=1

∂ai,lt
∂ai,l

,
∂ai,lt
∂ai,l

=

{
1, if 0 < ai,l < λl

0, otherwise
(11)

6 EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of our framework on image recognition tasks with
CIFAR-10 (39), CIFAR100 (38), and ImageNet datasets (11). Similar to prior works, we evaluate
our framework on VGG-16 (63), ResNet18 (29), ResNet20, and ResNet34 architectures for the
source ANNs. To the best of our knowledge, we are the first to yield low latency SNNs based
on the MobileNetV2 (59) architecture. We compare our method with the SOTA ANN-to-SNN
conversion methods including Rate Norm Layer (RNL) (17), Signed Neuron with Memory (SNM)
(66), radix encoded SNN (radix-SNN) (67), SNN Conversion with Advanced Pipeline (SNNC-AP)
(42), Optimized Potential Initialization (OPI) (4), QCFS (5), Bridging Offset Spikes (BOS) (28),
Residual Membrane Potential (SRP) (27) and direct training methods including Dual Phase (68), Diet-
SNN (56), Information loss minimization (IM-Loss) (22), Differentiable Spike Representation (DSR)
(43), Temporal Efficient Training (12), parametric leaky-integrate-and-fire (PLIF) (20), RecDis-SNN
(25), Membrane Potential Reset (MPR) (23), Temporal Effective Batch Normalization (TEBN) (18),
and Surrogate Module Learning (SML) (14). More details about the proposed conversion algorithm
and training configurations are in Appendix A.1.

6.1 EFFICACY OF PROPOSED METHOD

Figure 4: Comparison of the test accuracy of our conversion
method for different time steps with Q = 16 on (a) CIFAR10
and (b) CIFAR100 datasets. For T=log2Q=4, the ANN &
SNN test accuracies are identical. The source ANN accuracies
are shown in dotted lines.

To verify the efficacy of our pro-
posed method, we compare the accu-
racies obtained by our source ANN
and the converted SNN on CIFAR
datasets. As shown in Fig. 4,
for both VGG and ResNet architec-
tures, the accuracies obtained by our
source ANN and converted SNN are
identical for T=log2Q. This is ex-
pected since we ensure that both the
ANN and SNN produce the same ac-
tivation outputs with the shift of the
bias term of each BN layer. Hence,
unlike previous works, there is no
layer-wise error that gets accumu-
lated and transmitted to the output layer. However, the SNN test accuracy starts reducing for lower
T , which is due to the difference between the ANN and SNN activation outputs, but is still higher
compared with existing works at the same T as shown below.

6.2 COMPARISON WITH SOTA

We compare our proposed framework with the SOTA ANN-to-SNN conversion approaches on
CIFAR10 and ImageNet in Table 1 and 2 respectively. For a low number of time steps, especially
T≤4, the test accuracy of the SNNs trained with our method surpasses all the existing methods.
Our SNNs can also outperform some of the recently proposed SNNs that incur even higher number
of time steps. For example, QCFS reported a test accuracy of 94.95% at T=8; our method can
surpass that accuracy (yield 95.82%) at T=4. Note that (27; 28) requires additional time steps to
capture the temporal trend of the membrane potential. The authors reported 4 extra time steps for the
accuracy numbers that are shown in Table 1. As a result, they require at least 5 time steps during
inference, and their reported accuracies are lower compared to our SNNs at iso-time-step across
different architectures and datasets. Moreover, our approach results in >2% increase in test accuracy
on both CIFAR10 and ImageNet compared to radix encoding (67), that proposed a shifting method
similar to our left-shift approach, for low time steps (<4). This demonstrates the efficacy of our BN
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Architecture Method ANN T=2 T=4 T=6 T=8 T=16 T=32

VGG16

RNL 92.82% - - - - 57.90% 85.40%

SNNC-AP 95.72% - - - - - 93.71%

OPI 94.57% - - - 90.96% 93.38% 94.20%

BOS∗ 95.51% - - 95.36% 95.46% 95.54% 95.61%

Radix-SNN - - 93.84% 94.82% - - -
QCFS 95.52% 91.18% 93.96% 94.70% 94.95% 95.40% 95.54%

Ours 95.82% 94.21% 95.82% 95.79% 95.82% 95.84% 95.81%

ResNet18

OPI 96.04% - - - 66.24% 87.22% 91.88%

BOS∗ 95.64% - - 95.25% 95.45% 95.68% 95.68%

Radix-SNN - - 94.43% 95.26% - - -
QCFS 95.64% 91.75% 93.83% 94.79% 95.04% 95.56% 95.67%

Ours 96.68% 96.12% 96.68% 96.65% 96.67% 96.73% 96.70%

ResNet20

OPI 92.74% - - - 66.24% 87.22% 91.88%

BOS∗ 91.77% - - 89.88% 91.26% 92.15% 92.18%

QCFS 91.77% 73.20% 83.75% 83.79% 89.55% 91.62% 92.24%

Ours 93.60% 86.9% 93.60% 93.57% 93.66% 93.75% 93.82%

Table 1: Comparison of our proposed method to existing ANN-to-SNN conversion approaches on
CIFAR10. Q = 16 for all architectures, λ=1e−8. ∗BOS incurs at least 4 additional time steps to
initialize the membrane potential, so their results are reported from T>4.

Architecture Method ANN T=2 T=4 T=6 T=8 T=16 T=32

ResNet34

SNM 73.18% - - - - - 64.78%

SNNC-AP 75.36% - - - - - 63.64%

OPI 93.63% - - - - - 60.30%

BOS∗ 74.22% - - 67.12% 68.86% 74.17% 73.95%

SRP∗ 74.32% - - - 57.22% 67.62% 68.18%

Radix-SNN - - 72.52% 73.45% 73.65% - -
QCFS 74.32% - - - 35.06% 59.35% 69.37%

Ours 75.12% 54.27% 75.12% 75.00% 75.02% 75.10% 75.14%

MobileNetV2
SNNC-AP 73.40% - - - - - 37.43%

QCFS 69.02% 0.20% 0.26% 0.53% 1.12% 21.74% 58.45%

Ours 69.02% 22.62% 68.81% 68.89% 68.98% 69.02% 69.01%

Table 2: Comparison of our proposed method to existing conversion methods on ImageNet. Q=16 for
both ResNet34 and MobileNetV2, and λ=5e−10. ∗BOS and SRP incurs at least 4 and 8 additional
time steps to initialize the potential, so their results are reported from T>4 and T>8 respectively.

bias shift and neuron model. Moreover, as shown in Table 3, our low-latency accuracies are also
higher compared to other SOTA yet memory-expensive SNN training techniques, such as BPTT
and hybrid training, at iso-time-step. Lastly, compared to these, our conversion approach leverages
standard ANN training with QCFS activation and requires changing only one parameter of each BN
layer, that is not repeated across time steps, before the SNN inference process.

6.3 ENERGY EFFICIENCY

Our modified IF model incurs the same number of membrane potential update, neuron firing, and reset,
compared to the traditional IF model with identical spike sparsity. The only additional overhead is the
left shift operation that is performed on each convolutional layer output in each time step. As shown
in Table 5 in Appendix A.4, a left shift operation consumes similar energy as an addition operation
with identical bit-precision. However, the total number of left shift operations is significantly lower
than the number of addition operations incurred in an SNN for the spiking convolution operation.
Intuitively, this is because the computational complexity of the spiking convolution operation and
the left shift operation are O(sk2cincoutHW ) and O(coutHW ) respectively, where s denotes the
sparsity. Note that k denotes the kernel size, cin and cout denote the number of input and output
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Dataset Method Approach Architecture Accuracy Time Steps

CIFAR10

Dual-Phase Hybrid ResNet18 93.27

4

IM-Loss BPTT ResNet19 95.40
MPR BPTT ResNet19 96.27
TET BPTT ResNet19 94.44

RecDis-SNN BPTT ResNet19 95.53
TEBN BPTT ResNet19 95.58

SurrModu BPTT ResNet19 96.04
Ours ANN-to-SNN ResNet18 96.68

ImageNet

Dspike Supervised learning VGG16 71.24 5
Diet-SNN Hybrid VGG16 69.00 5

SEW ResNet BPTT ResNet34 67.04 4
IM-Loss BPTT VGG16 70.65 5

RMP-Loss BPTT ResNet34 65.27 4
SurrModu BPTT ResNet34 68.25 4
SDT V2 BPTT Meta-Spikeformer 80.00 4

Spikformer V2 BPTT Spikformer V2-8-512 80.38 4
Ours ANN-to-SNN ResNet34 75.12 4

Table 3: Comparison of our method with SOTA BPTT and hybrid training approaches.

channels respectively, and H and W denote the spatial dimensions of the activation map. Even
with a sparsity of 90%, for cin=512 and k=3, in ResNet18, we have sk2cincoutHW

coutHW =406.8. Hence,
as shown in Fig. 5(a), the left shifts incur negligible overhead in the total compute energy across
both VGG and ResNet architectures. Moreover, left shifts can also be supported in programmable
neuromorphic chips.

Figure 5: (a) Comparison of the compute energy of each SNN
operation with λ=1e−8 on CIFAR10. Comparison of the spik-
ing activites of the SNNs obtained via our and SOTA conver-
sion methods on (b) CIFAR10 and (c) CIFAR100 with VGG16
and ResNet20. In (a), LS denotes the left shift operation, and
CE denotes compute energy.

Our low-latency SNNs significantly
reduce the memory access cost,
which is dominated by the succes-
sive read and write operations of
the membrane potentials in each
time step. Moreover, our fine-
grained regularizer significantly re-
duces the spiking activity of the
network. As shown in Fig. 5(b)-
(c), with VGG16, we can obtain
a 1.64× reduction for CIFAR10
and 2.40× reduction for CIFAR100.
For ResNet-18 on CIFAR10 and
ResNet-34 on CIFAR100, the reduc-
tion factors are 2.41× and 2.33× re-
spectively. Compared to SOTA conversion approaches (5; 28), we obtain 3.73−10.70× reduction
in spiking activity. This reduced spiking activity linearly reduces the compute energy. Thus, our
proposed low-latency conversion framework, coupled with high spike sparsity, can significantly
reduce the combined system energy. Detailed energy comparisons with ANNs and additional analysis
are in Appendix A.4.

6.4 ABLATION STUDY OF NEURON MODEL

We conduct ablation studies of our proposed encoding and conversion framework using the traditional
IF model. As shown in Table 4, the SNN accuracy drops compared to the ANN counterpart, and
the degradation is severe for low (2-4) time steps. This is due to the deviation error that appears
with the normal IF model, and increases significantly at low time steps, dominating the total error.
These results validate our hypothesis presented in Section 3. Additionally, when we use the normal IF
model, the encoding and bias shift of the BN layers still yield noticeable accuracy increase compared
to the QCFS training method that our work is based on, especially for 2-4 time steps. For hardware
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Architecture Left shift BN bias shift Modified IF T=2 T=4 T=6 T=8 T=16

VGG16

× × × 91.08% 93.82% 94.68% 94.90% 95.33%

× × ✓ 92.42% 94.80% 95.17% 95.28% 95.21%

✓ × × 93.03% 95.12% 95.24% 95.18% 95.21%

✓ ✓ × 93.33% 95.23% 95.45% 95.45% 95.32%

✓ ✓ ✓ 94.21% 95.82% 95.79% 95.82% 95.84%

ResNet20

× × × 71.42% 83.91% 84.12% 88.72% 92.64%

× × ✓ 76.21% 90.18% 91.92% 92.49% 92.62%

✓ × × 76.10% 91.22% 91.43% 92.40% 92.62%

✓ ✓ × 79.86% 91.81% 92.07% 93.24% 93.48%

✓ ✓ ✓ 86.92% 93.60% 93.57% 93.66% 93.75%

Table 4: Ablation study of the different components of our proposed method on CIFAR10 with
VGG16 and ResNet20.

that can only support the standard IF model, our conversion framework employing this model yields
superior accuracy compared to most of the existing SNN works, as shown in Table 1.

6.5 COMPARISON WITH QUANTIZED ANN

While SNNs were originally proposed to mimic the neural mechanism of humans, one important
goal of SNNs is the extreme energy efficiency arising from the spike sparsity and accumulate-only
operations, while maintaining state-of-the-art accuracy. We realize this goal by drawing inspiration
from activation quantized ANNs and proposing a new neuron model and batch norm (BN) bias
modification strategy, that ensures the ANN and average SNN outputs are identical at each layer.
While this implies some degree of similarity with quantized ANNs, marrying the efficiency benefits
from the quantization in ANNs and sparsity in SNNs helps enable low-power and low-latency neural
networks, particularly given the rise of neuromorphic chips.

As shown in Table 9, with VGG16 and ResNet20 on CIFAR10, our SNNs incur only a marginal
reduction of test accuracy compared to quantized ANNs. This reduction is due to our fine-grained
ℓ1 regularizer that trades accuracy for spiking activity. Note that for a fair comparison, we use
T = Q, where T is the total number of SNN time steps, and Q is the activation bit-width of the ANN.
While our SNNs incur a slight drop in accuracy, they are significantly more energy efficient than
quantized ANNs. First, quantized ANN accelerators do not typically leverage activation sparsity that
avoid computation when any of the bits in the activation are zero. Secondly, they require quantized
multiply-and-accumulate (MAC) operations, which incur significantly more energy compared to
accumulate (AC) operations required by SNNs. For example, a 4-bit integer MAC operation incurs
2.3× higher compute energy compared to a 4-bit integer AC operation in 45 nm CMOS technology,
as observed in our in-house FPGA simulations. Thirdly, our SNNs provide additional spike sparsity
(on top of the natural spike sparsity) due to our fine-grained ℓ1 regularizer, which further increases
the energy-efficiency. As a result, our SNNs incur ∼5.1× lower compute energy for T = Q = 4 as
shown in Table 10, when averaged over VGG and ResNet architectures, on CIFAR10 and ImageNet.

7 CONCLUSION

In this paper, we first uncover the key sources of error in ANN-to-SNN conversion that have not been
completely eliminated in existing works. We propose a novel conversion framework, that introduces
a modified IF neuron model and shifts the bias term of each BN layer of the source ANN, before the
SNN inference. Our framework completely eliminates all sources of conversion errors when we use
the same number of time steps as the bit precision of the source ANN. We also propose a fine-grained
ℓ1 regularizer during the source ANN training that minimizes the number of spikes in the converted
SNN. To the best of our knowledge, our work is the first to achieve ultra-low latency and compute
energy, while still achieving the SOTA test accuracy on complex image recognition tasks with SNNs.
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A APPENDIX

A.1 NETWORK CONFIGURATIONS AND HYPERPARAMETERS

We train our source ANNs with average-pooling layers instead of max-pooling as used in prior
conversion works (28; 5). We also replace the ReLU activation function in the ANN with QCFS
function as shown in Eq. 2, copy the weights from the source ANN to the target SNN and set the
QCFS activation threshold λl equal to the SNN threshold θl. Note that λl is a scalar term for the
entire layer to minimize the compute associated with the left-shift of the threshold in the SNN. We
set the number of quantization steps Q to 16 for all networks on all datasets.

We leverage the Stochastic Gradient Descent optimizer (3) with a momentum value of 0.9. We use
an initial learning rate of 0.02 for CIFAR-10 and CIFAR-100, and 0.1 for ImageNet, with a cosine
decay scheduler (45) to lower the learning rate. For CIFAR datasets, we set the value of weight
decay to 5×10−4, while for ImageNet, it is set to 1×10−4. Additionally, we leverage advanced input
augmentation techniques to boost the performance of our source ANN models (15; 7), which can
eventually improve the performance of our SNNs. The models for CIFAR datasets are trained for 600
epochs, while those for ImageNet are trained for 300 epochs. All experiments are performed on an
NVIDIA V100 GPU with 16 GB memory.
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A.2 PROOF OF THEOREMS & STATEMENTS

Theorem-I: For the lth block in the source ANN, let us denote W l as the weights of the lth hidden
convolutional layer, and µl, σl, γl, and βl as the trainable parameters of the BN layer. Let us denote
the same parameters of the converted SNN for as W l

c , µl
c, σl

c, γl
c, and βl

c. Then, Eq. 7 holds true if
W l

c = W l, µl
c = µl, σl

c = σl, γl
c = γl, and βl

c =
βl

T + (1− 1
T )

γlµl

βl .

Proof : Substituting the value of gSNN for the SNN in the left-hand side (LHS) which is equal to the
accumulated input current over T time steps,

∑T
t=1 ẑl, and gANN in the right-hand side (RHS) of

Equation 7, we obtain∑T
t=1

(
γl
c

(
2t−1W l

cs
l−1(t)θl−1−µl

c

σl
c

)
+ βl

c

)
=
(
γl
(∑T

t=1(2
t−1W lsl−1(t)θl−1)−µl

σl

)
+ βl

)
=⇒ γl

cW
l
cθ

l−1

σl
c

∑T
t=1 2

t−1sl−1(t) + T (βl
c −

µl
cγ

l
c

σl
c
) = γlW lθl−1

σl

∑T
t=1 2

t−1sl−1(t) + (βl − µlγl

σl )

If we assert γl
c = γl, W l

c = W l, σl
c = σl, the first terms of both LHS and RHS are equal. Substituting

γl
c = γl, W l

c = W l, and σl
c = σl with this assertion, LHS=RHS if their second terms are equal, i.e,

T (βl
c −

µlγl

σl ) = (βl − µlγl

σl ) =⇒ Tβl
c = βl + (T − 1)µ

lγl

σl =⇒ βl
c =

βl

T + (1− 1
T )

µlγl

σl

Theorem-II: If Condition I (Eq. 7) is satisfied and the post-synaptic potential accumulation, neuron
firing, and reset model adhere to Eqs. 8 and 9, the lossless conversion objective i.e., sl(t)=alt ∀t ∈
[1, T ] is satisfied for any hidden block l.

Repeating Eqs. 8 and 9 here,

ẑl(t) =

(
γl

(
2t−1W l

cs
l−1(t)θl−1 − µl

c

σl
c

)
+ βl

c

)
, (12)

ul(1) =

T∑
t=1

ẑl(t), sl(t) = H

(
ul(t)− θl

2t

)
, (13)

ul(t+ 1) = ul(t)− sl(t)
θl

2t
. (14)

Note that ul(1) =
∑T

t=1 ẑ
l(t) is the original LHS of Eq. 7. Given that Eq. 7 is satisfied due to

Theorem-I, we can write ul(1) = hl, where hl is the input to the QCFS activation function of the
lth block of the ANN. The output of the QCFS function is denoted as al = fact(hl), whose tth bit
starting from the most significant bit (MSB) is represented as alt. We can check if alt is zero or one,
iteratively starting from the MSB, using a binary decision tree approach where we progressively
discard one-half of the search range for the subsequent bit checking. With the maximum value of hl

being λl, and λl = θl (see Section 3.2), al1 = H(hl − θl

2 ) = H(ul(1)− θl

2 ) = sl(1). To compute
al2, we can lower hl by half of the previous range, by first updating hl as hl = hl − al1

θl

2 , and then
calculating al2 = H(hl − θl

4 ) = H(ul(2) − θl

4 ) which is equal to sl(2). Similarly, updating hl to
calculate the tth bit ∀ t ∈ [2, T ] as hl = hl − θl

2t−1 and then evaluating alt as alt = H(hl − θl

2t ), we
obtain alt = sl(t), ∀t ∈ [1, T ].

A.3 EFFICACY OF LAYER-BY-LAYER PROPAGATION

A.3.1 SPATIAL COMPLEXITY

During the SNN inference, the layer-by-layer propagation scheme incurs significantly lower spatial
complexity compared to its alternative step-by-step propagation. This is because in step-by-step
inference, the computations are localized at a single time step for all the layers, and to process a
subsequent time step, all the data, including the outputs and hidden states of all layers at the previous
time step, can be discarded. Thus, the spatial inference complexity of the step-by-step propagation is
O(N ·L), which is not proportional to T . In contrast, for layer-by-layer propagation, the computations
are localized in a single layer, and to process a subsequent layer, all the data of the previous layers
can be discarded. Thus, the spatial inference complexity of the layer-by-layer propagation scheme
is O(N · T ). Since T << L for deep and ultra low-latency SNNs, the layer-by-layer propagation
scheme has lower spatial complexity compared to the step-by-step propagation.
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Operation Bit Precision Energy (pJ)

Mult.
32 3.1
8 0.2

Add.
32 0.1
8 0.03

Left Shift
32 0.13
8 0.024

Comparator
32 0.08
8 0.03

Table 5: Comparison of the energy consumed by the different operations in our proposed IF neuron
model, and multiplication required in ANNs, on an ASIC (45 nm CMOS technology). Data are
obtained from (73; 31; 21; 61), and our in-house circuit simulations. Note that the reset operation
consumes similar energy as addition, and is not shown here.

Figure 6: Comparison of the test accuracy of our conversion method for different values of the
regularization coefficient λ.

A.3.2 LATENCY COMPLEXITY

When operating with step-by-step propagation scheme, let us assume that the lth layer requires
tstep(l) to process the input sl−1(t) and yield the output sl(t). Then, the latency between the input
X and the output sL(T ) is Dstep = T

∑L
l=1 tstep(l).

With layer-by-layer propagation, let us assume that the delay in processing the layer l i.e., outputting
the spike outputs for all the time steps (sl(t) ∀t ∈ [1, T ]) from the instant the first spike input
sl−1(1) is received, is tlayer(l). Then, the total latency between the input X and the output sL(T ) is
Dlayer =

∑L
l=1 tlayer(l).

Although each SNN layer is stateful, the computation across the different time steps can be fused into
a large CUDA kernel in GPUs when operating with the layer-by-layer propagation scheme (19). Even
on neuromorphic chips such as Loihi (10), there is parallel processing capability. All these imply
that tlayer(l) < T · tstep(l) for any layer l. This further implies that Dlayer =

∑L
l=1 tlayer(l) <∑L

l=1 T · tstep(l) < Dstep.

In conclusion, the layer-by-layer propagation scheme is generally superior both in terms of spatial and
latency complexity compared to the step-by-step propagation, and hence, our method that requires
layer-by-layer propagation to operate successfully, does not incur any additional overhead.

A.4 ENERGY EFFICIENCY DETAILS

Our proposed IF neuron model incurs the same addition, threshold comparison, and potential reset
operations as that of a traditional IF model. It simply postpones the comparison and reset operations
until after the input current is accumulated over all the T time steps. Thus, our IF model has similar
latency and energy complexity compared to the traditional IF model. Moreover, our proposed
conversion framework requires that the output of each spiking convolutional layer is left-shifted by
(t−1) at the tth time step. However, as shown in Fig. 5, the number of left-shift operations in any
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Figure 7: Comparison of the spiking activity of the SNNs obtained via our conversion method for
different values of the regularization coefficient λ for (a) VGG16 on CIFAR10, (b) ResNet20 on
CIFAR10, (c) VGG16 on CIFAR100, and (d) ResNet20 on CIFAR100.

network architecture is negligible compared to the total number of addition operations (even with
the high sparsity provided by SNNs) incurred in the convolution operation. As a left-shift operation
consumes similar energy as an addition operation for both 8-bit and 32-bit fixed point representation
as shown in Table 5, the energy overhead of our proposed method is negligible compared to existing
SNNs with identical spiking activity. Moreover, the energy overhead due to the addition, comparison
and reset operation in our (this holds true for traditional IF models as well) IF model is also negligible
compared to the spiking convolution operations as shown in Fig. 5.

Our SNNs yield high sparsity, thanks to our fine-grained ℓ1 regularizer, and ultra-low latency, thanks
to our conversion framework. While the high sparsity reduces the compute energy compared to
existing SNNs, the reduction compared to ANNs is significantly high. This is because ANNs incur
multiplication operations in the convolutional layer which is 6.6−31× more expensive compared
to the addition operation as shown in Table 5. Thanks to the high sparsity (71−79%) due to the ℓ1
regularizer, and the addition-only operations in our SNNs, we can obtain a 7.2−15.1× reduction in
the compute energy compared to an iso-architecture SNN, assuming a sparsity of 50% due to the
ANN ReLU layers.

The memory footprint of the SNNs during inference is primarily dominated by the read and write
accesses of the post-synaptic potential at each time step (9; 72). This is because these memory
accesses are not influenced by the SNN sparsity since each post-synaptic potential is the sum of
k2cin weight-modulated spikes. For a typical convolutional layer, k = 3, cin = 128, and so it is
almost impossible that all the k2cin spike values are zero for the membrane potential to be kept
unchanged at a particular time step2. Since our proposed conversion framework significantly reduces
the number of time steps compared to previous SNN training methods, it also reduces the number of
membrane potential accesses proportionally. Hence, we reduce the memory footprint of the SNN
during inference. However, it is hard to accurately quantify the memory savings since that depends
on the system architecture and underlying hardware implementation.

A.5 PERFORMANCE-ENERGY TRADE-OFF WITH BIT-LEVEL REGULARIZER

We can reduce the spiking activity of SNNs using our fine-grained ℓ1 regularizer. In particular, by
increasing the value of the regularization co-efficient λ from 0 to 5e−8, the spiking activity can be
reduced by 2.5−4.1× for different architectures on CIFAR datasets as shown in Fig. 7. However,
this comes at the cost of test accuracy, particularly for a very low number of time steps, T<=3,
as shown in Fig. 6. By carefully tuning the value of λ, we can obtain SNN models with different
sparsity-accuracy trade-offs that can be deployed in scenarios with diverse resource budgets. Using
λ=1e−8 for the CIFAR datasets, and λ=5e−10 for ImageNet, yields a good trade-off for different
time steps. As shown in Fig. 6, λ=1e−8 yields accuracies that are similar to λ=0. Note that λ=0
implies training of the source ANN without our fine-grained regularizer for T≈log2Q for CIFAR
datasets. In particular, with ResNet18 for CIFAR10, λ=1e−8 yields SNN test accuracies within 0.2%
of that of λ = 0, while reducing the spiking activity by ∼2.4× (0.53 to 0.22), which also reduces
the compute energy by a similar factor. With ResNet34 for ImageNet, λ = 5e− 10, leads to a 0.4%
reduction in test accuracy, while reducing the compute energy by 2×. Moreover, as shown in Fig. 7,

2Note that the number of weight read and write accesses can be reduced with the spike sparsity, and thus
typically do not dominate the memory footprint of the SNN
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Method Network QQP (%) SST-2 (%) QNLI (%)
QCSF ANN 84.04 81.44 80.92
QCFS SNN 79.12 77.89 75.30
Ours SNN 82.04 80.29 78.33

Table 6: Comparison of our proposed ANN-to-SNN conversion framework with QCFS for the
BERTBASE network on a few representative GLUE tasks.

Architecture Method ANN T=2 T=4 T=6 T=8 T=16 T=32

VGG16

SNM 74.13% - - - - - 71.80%

SNNC-AP 77.89% - - - - - 73.55%

OPI 76.31% - - - 60.49% 70.72% 74.82%

BOS∗ 76.28% - - 76.03% 76.26% 76.62% 76.92%

QCFS 76.28% 63.79% 69.62% 72.50% 73.96% 76.24% 77.01%

Ours 76.71% 72.39% 76.71% 76.74% 76.70% 76.78% 76.82%

ResNet20

OPI 70.43% - - - 23.09% 52.34% 67.18%

BOS∗ 69.97% - - 64.21% 65.18% 68.77% 70.12%

QCFS 69.94% 19.96% 34.14% 49.20% 55.37% 67.33% 69.82%

Ours 70.30% 63.80% 70.30% 70.33% 70.45% 70.49% 70.52%

Table 7: Comparison of our proposed method to existing ANN-to-SNN Conversion approaches on
CIFAR100 dataset. Q=16 for all architectures, and λ=1e− 8. ∗BOS incurs 4 additional time steps
to initialize the membrane potential, so the total number of time steps is T>4.

the spiking activities of our SNNs trained with non-zero values of λ do not increase significantly with
the number of time steps as that with λ=0, which also demonstrates the improved compute efficiency
resulting from our regularizer.

A.6 EVALUATION OF PROPOSED FRAMEWORK FOR TRANSFORMER MODELS

We also evaluate our ANN-to-SNN conversion framework on the BERTBASE model as shown in
Table 6. We replace the GeLU activation function in the BERT model with the QCFS activation
function to train the ANN, modified the SNN IF neuron model as proposed in our method. Note that,
unlike CNNs, BERT models do not have any batch normalization layer that succeeds the linear layer
(unlike convolutional layer in CNNs), and hence, we could not eliminate the unevenness error by
shifting any bias term. However, our modified neuron model outperforms the existing QCFS based
conversion method by∼2.8% on average for a range of tasks in the General Language Understanding
Evaluation (GLUE) benchmark as shown below. We use T = 16 for a reasonable trade-off between
accuracy and latency.

Dataset Approach Architecture Accuracy Time steps
DSR BPTT ResNet18 73.35 4
Diet-SNN Hybrid VGG16 69.67 5
TEBN BPTT ResNet18 78.71 4
IM-Loss BPTT VGG16 70.18 5
RMP-Loss BPTT ResNet19 78.28 4
SurrModu BPTT ResNet18 79.49 4
Our Work ANN-SNN ResNet18 79.89 4

Table 8: Comparison of our proposed method with SOTA BPTT and hybrid training approaches on
CIFAR100 dataset.
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Architecture T=Q SNN Acc. (%) QANN Acc. (%)

VGG16
2 94.21 94.73
3 95.30 95.37
4 95.82 96.02

ResNet20
2 86.90 86.73
3 90.77 91.22
4 93.60 94.06

Table 9: Comparison of accuracy of the SNNs obtained via our conversion framework with quantized
ANNs (QANN) on CIFAR10.

Dataset Architecture Neuromorphic QANN Bit-Serial

CIFAR10
VGG16 1× 4.98× 3.57×

ResNet18 1× 5.70× 4.54×

ImageNet
VGG16 1× 4.52× 3.12×

ResNet34 1× 5.12× 3.70×

Table 10: Comparison of normalized estimated energy of our SNNs on neuromorphic hardware
compared quantized ANNs (QANN) and bit-serial ANNs.

A.7 COMPARISON WITH SOTA FOR CIFAR100

We compare our proposed framework with the SOTA ANN-to-SNN conversion approaches on CI-
FAR100 in Table 7. Similar to CIFAR10 and ImageNet, for ultra-low number of time steps, especially
T≤4, the test accuracy of our SNN models surpasses existing conversion methods. Moreover, our
SNNs can also outperform SOTA-converted SNNs that incur even higher number of time steps. For
example, the most recent conversion method, BOSQ reported a test accuracy of 76.03% at T=6
(with 4 time steps added on top of T = 2 in Table 7 for the extra 4 time steps required for potential
initialization); our method can surpass that accuracy (76.71%) at T=4.

Additionally, as shown in Table 8, our ultra-low-latency accuracies are also higher compared to direct
SNN training techniques, including BPTT and hybrid training step at iso-time-step. For example,
our method can surpass the test accuracies obtained by the latest BPTT-based SNN training methods
(24; 14) by 0.4−1.6%, while significantly reducing the training complexity.

A.8 COMPARISON WITH BIT-SERIAL QUANTIZED ANN

Bit-serial quantization is a popular implementation technique for neural network acceleration. It is
often desirable for low precision hardware, including in-memory computing chips based on one-bit
memory cells such as static random access memory (SRAM) and low-bit cells, such as resistive
random access memory (RRAM). Similar to the SNN, it also requires a state variable that stores the
intermediate bit-level computations, however, unlike the SNN that compares the membrane state with
a threshold at each time step, it performs the non-linear activation function and produces the multi-bit
output directly. However, to the best of our knowledge, there is no large-scale bit-serial accelerator
chip currently available. Moreover, unlike neuromorphic chips, bit-serial accelerators do not leverage
the large activation sparsity demonstrated in our work, and hence, incur significantly higher compute
energy compared to neuromorphic chips. Since our SNNs trained with our bit-level regularizer
provides a sparsity of 68−78% for different architectures and datasets, they incur 3.1−4.5× lower
energy when run on sparsity-aware neuromorphic chips, compared to bit-serial accelerators, as shown
in Table 10 .

It can be argued that our approach without our bit-level regularizer leads to results similar to bit-serial
computations. However, naively applying bit-serial computing to SNNs with the left-shift approach
proposed in this work, would lead to non-trivial accuracy degradations. This is because unlike
quantized networks, SNNs can only output binary spikes based on the comparison of the membrane
potential against the threshold. Our proposed conversion optimization (bias shift of the BN layers
and modification of the IF model) mitigates this accuracy gap, and ensures the SNN computation is
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Epochs Architecture Type Accuracy
300 VGG16 QCFS pre-training 95.82%
30 VGG16 ReLU pre-training + QCFS fine-tuning 95.47%
300 ResNet20 QCFS pre-training 93.60%
30 ResNet20 ReLU pre-training + QCFS fine-tuning 93.51%

Table 11: Comparison of ANN training between QCFS pre-training and ReLU pre-training followed
by QCFS fine-tuning for ANN-to-SNN conversion.

Architecture T Version Accuracy (%)

VGG16
2

PyTorch 94.21%
Lava-DL 94.15%

4
PyTorch 95.82%
Lava-DL 95.61%

ResNet18
2

PyTorch 96.12%
Lava-DL 95.77%

4
PyTorch 96.68%
Lava-DL 96.02%

Table 12: Comparison of the accuracies of our SNN models in PyTorch and Lava-DL.

identical to the activation-quantized ANN computation. This leads to zero conversion error from the
quantized ANNs, and our SNNs achieve identical accuracy with the SOTA quantized ANNs.

A.9 DEPENDENCE ON TRAINING ANNS USING QCFS ACTIVATION

While our ANN-to-SNN conversion framework is based on the QCFS activation function, it cannot
be directly applied to ANNs trained using the ReLU function. However, we ran new experiments that
demonstrate that we need to fine-tune the ANNs with the QCFS function for only a small number of
epochs when they are pre-trained with the ReLU function. In particular, as shown in Table 11 below,
for both VGG16 and ResNet20, we only need 30 epochs of fine-tuning with the QCFS function for
ANNs pre-trained with the ReLU function to achieve the same accuracy as training with the QCFS
function for 300 epochs (as done in our original experiments).

A.10 DEPLOYMENT OF PROPOSED SNN ON LOIHI

In order to enable the deployment of our SNN on Loihi, we implement our SNN with the proposed
neuron model in the Lava-DL library, which supports modular operations, allowing us to flexibly
reorder the neuron model’s operational sequence. Specifically, we adapted the CUrrent BAsed
(CUBA) leaky integrate-and-fire (LIF) neuron model by shifting from a sequential process — current
accumulation, threshold comparison, and potential reset within each time step — to accumulating
current across all time steps first, followed by threshold comparison and reset at each time step.
Additionally, during threshold comparison and reset, we introduced a right-shift operation to halve
the quantized membrane potential, adhering to Loihi’s requirements.

Table 12 below compares the accuracies of our SNN in PyTorch and Lava-DL. We observed an average
accuracy drop of approximately 0.3% on CIFAR-10 across both VGG and ResNet architectures when
using the Lava-DL implementation compared to the PyTorch version. This discrepancy is likely due
to the quantization of the weights and synaptic inputs inherent to the Lava-DL framework, which
introduces slight computational differences. These results are included in the revised manuscript to
provide a detailed analysis of the impact of deploying the SNN model on Loihi via Lava-DL.

A.11 PSEUDO CODE OF PROPOSED CONVERSION FRAMEWORK

In this section, we summarize our proposed ANN-to-SNN conversion framework in Algorithm 1,
which includes training the source ANNs using the QCFS activation function and then converting to
SNNs.
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Algorithm 1 : Proposed ANN-to-SNN conversion algorithm
1: Inputs: ANN model fANN (a;W,µ, σ, β, γ) with initial weight W , BN layer running mean µ,

running variance σ, learnable scale γ, and learnable variance β; Dataset D; Quantization step L;
Initial dynamic thresholds λ; Learning rate ϵ; Number of SNN time steps T

2: Output: SNN model fSNN (a;W,µ, σ, β, γ) & output sL(t) ∀t∈[1, T ] where L = fSNN .layers
3: #Source ANN training
4: for e = 1 to epochs do
5: for length of dataset D do
6: Sample minibatch (a0, y) from D
7: for l = 1 to fANN .layers do
8: al = QCFS(γl

(
W lal−1−µl

σl

)
+ βl)

9: ai,lt = tth-bit, starting from MSB, of the ith term in al

10: end for
11: loss = CrossEntropy(al, y) + λ

∑L
l=1

∑T
t=1 a

i,l
t

12: for l = 1 to fANN .layers do
13: W l ←W l − ϵ ∂loss

∂W l , µl ← µl − ϵ∂loss
∂µl , µl ← σl − ϵ∂loss

∂σl

14: γl ← γl − ϵ∂loss
∂γl , βl ← βl − ϵ∂loss

∂βl , λl ← λl − ϵ∂loss
∂λl

15: end for
16: end for
17: end for
18: #ANN-to-SNN conversion
19: for l = 1 to fANN .layers do
20: fSNN .W l←fANN .W l,fSNN .θl←fANN .λl, fSNN .µl←fANN .µl,fSNN .σl←fANN .σl

21: fSNN .γl ← fANN .γl,fSNN .βl ← fANN .βl

T
+(1− 1

T
) f

ANN .γlfANN .µl

fANN .βl

22: end for
23: #Perform SNN inference on input a0

24: a1 = QCFS
(
fSNN .γ1

(
x0fSNN .W 1a0−fSNN .µ1

fSNN .σ1

)
+ fSNN .β1

)
25: s1(t) = tth-bit of a1 starting from MSB
26: for l = 2 to fSNN .layers do
27: for t = 1 to T do
28: zl(t)=

(
fSNN .γl

(
2t−1fSNN .W lsl−1(t)−fSNN .µl

fSNN .σl

)
+fSNN .βl

)
29: end for
30: ul(1) =

∑T
t=1 z

l(t)
31: for t = 1 to T do
32: sl(t) = H(ul(t)− fSNN .θl

2 )

33: ul(t+ 1) = ul(t)− sl(t) f
SNN .θl

2
34: end for
35: end for
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