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ABSTRACT

Decision-focused learning (DFL) integrates predictive models with downstream
optimization, directly training machine learning models to minimize decision er-
rors. While DFL has been shown to provide substantial advantages when compared
to a counterpart that treats the predictive and prescriptive models separately, it
has also been shown to struggle in high-dimensional and risk-sensitive settings,
limiting its applicability in real-world settings. To address this limitation, this paper
introduces decision-focused generative learning (Gen-DFL), a novel framework
that leverages generative models to adaptively model uncertainty and improve
decision quality. Instead of relying on fixed uncertainty sets, Gen-DFL learns
a structured representation of the optimization parameters and samples from the
tail regions of the learned distribution to enhance robustness against worst-case
scenarios. This approach mitigates over-conservatism while capturing complex de-
pendencies in the parameter space. The paper shows, theoretically, that Gen-DFL
achieves improved worst-case performance bounds compared to traditional DFL.
Empirically, it evaluates Gen-DFL on various scheduling and logistics problems,
demonstrating its strong performance against existing DFL methods.

1 INTRODUCTION
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Figure 1: Proposed Gen-DFL vs. Pred-DFL and
conventional predict-then-optimize (PTO).

Decision-making under uncertainty is central to
many real-world applications, including supply
chain management, energy grid optimization,
portfolio management, and transportation plan-
ning Sahinidis (2004); Liu & Liu (2009); Gar-
lappi et al. (2006); Delage & Ye (2010); Hu et al.
(2016); Kim et al. (2005). In these domains, de-
cision makers must act based on incomplete in-
formation, relying on predictions from machine
learning models to estimate key parameters such
as future demand, asset returns, or power grid
failures.

Standard methods, commonly referred to as predict-then-optimize (PTO) Elmachtoub & Grigas
(2017), tackle this problem by first training a predictive model to estimate the parameters of an
optimization problem (e.g., expected demand or cost coefficients) and then using these estimates as
inputs to an optimization model. While the separation between prediction and optimization enhances
efficiency, it also introduces a fundamental drawback. Predictive models are typically trained to
minimize standard loss functions (e.g., mean squared error), which may not align with the true
objective of minimizing decision costs. As a result, small prediction errors can propagate through
the optimization process, leading to costly, suboptimal decisions. For instance, in power outage
management Zhu et al. (2021), overestimating energy demand may lead to unnecessary resource
allocation, whereas underestimation could result in supply shortages and prolonged downtime.

To address this issue, decision-focused learning (DFL) integrates prediction and optimization into a
single end-to-end framework Donti et al. (2017); Mandi et al. (2024b). Instead of optimizing purely
for predictive accuracy, DFL trains machine learning models with the explicit goal of minimizing
the final decision cost. This key idea is enabled by differentiating the optimization process within
the learning loop, and results in an alignment of the model’s predictions with their downstream
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impact. This approach has shown clear improvements in structured decision-making tasks where the
optimization landscape is well-behaved and relatively low-dimensional.

Despite these advantages, DFL suffers from several critical limitations: (i) Scalability: In high-
dimensional settings, the curse of dimensionality Köppen (2000) degrades the predictive model’s
ability to capture complex dependencies in the parameter space. Since DFL typically relies on
single-point predictions, it struggles to encode the full distributional uncertainty of the decision
variables Mandi et al. (2024a). This leads to overconfident estimates that degrade decision quality
when uncertainty is high. (ii) Risk Sensitivity: In many applications, decision-makers prioritize
robustness over worst-case outcomes rather than optimizing for expected performance. Traditional
DFL models, however, are primarily trained to improve average-case decisions and do not explicitly
model tail risks Ben-Tal et al. (2009); Beyer & Sendhoff (2007).

To overcome these challenges, this paper proposes decision-focused generative learning (Gen-DFL),
a novel end-to-end framework that leverages generative models to enhance decision quality in
high-dimensional and risk-sensitive settings. Unlike traditional approaches that rely on fixed un-
certainty sets, Gen-DFL learns a distributional representation of uncertain parameters using deep
generative models. Recent advances in generative modeling enable efficient learning of complex,
high-dimensional distributions Dong et al. (2023); Wu et al. (2024), allowing for adaptive sampling
from tail regions to support risk-aware decision-making without excessive conservatism. By dy-
namically balancing robustness and efficiency, Gen-DFL provides a more flexible and principled
approach to decision optimization. A schematic comparison of the predict-then-optimize (PTO)
model, standard DFL, and Gen-DFL is shown in Figure 1.

Contributions. The paper makes three key contributions:

• It introduces Gen-DFL, the first DFL framework that leverages generative models to capture
uncertainty in high-dimensional stochastic optimization and enable task-specific risk management
for controllable robustness.

• It provides a theoretical analysis elucidating the conditions under which Gen-DFL outperforms tra-
ditional DFL, with a particular emphasis on high-dimensional and risk-sensitive decision problems.

• Through comprehensive experiments on both synthetic and real-world decision-making tasks, the
paper shows that Gen-DFL significantly improves decision quality compared to existing DFL
baselines.

2 RELATED WORKS

Decision-focused learning (DFL) enhances decision-making under uncertainty by integrating pre-
diction and optimization into a single framework. Bengio (1997) showed that optimizing predictive
models for decision outcomes improves financial performance. Differentiable optimization layers
have further expanded DFL applications Agrawal et al. (2019). For example, Amos & Kolter (2017)
introduced differentiable quadratic programs, enabling backpropagation through constrained op-
timization, while Agrawal et al. (2019) extended this to all convex programs. Parallel work has
explored integrating integer programming into neural networks Mandi & Guns (2020); Wilder et al.
(2019). There is also another line of research which focuses on improving efficiency and effectiveness
of prediction-based DFL Shah et al. (2022; 2024); Kong et al. (2022).

However, existing DFL methods rely on single-point predictions, failing to capture uncertainty and
leading to suboptimal decisions Köppen (2000); Ben-Tal et al. (2009). Additionally, they typically
optimize for average-case performance, making them unsuitable for risk-sensitive applications Mandi
et al. (2024b). Approaches like Conformal-Predict-Then-Optimize (CPO) Patel et al. (2024) attempt
to address this by constructing fixed uncertainty sets but can be overly conservative, especially in
high-dimensional settings.

Robust Optimization (RO) provides a principled approach to decision-making under uncertainty by
ensuring solutions remain feasible under the worst-case scenario Ben-Tal & Nemirovski (2002);
Bertsimas & Thiele (2004); Ben-Tal et al. (2006). Instead of relying on probabilistic assumptions
about uncertain parameters, RO constructs uncertainty sets that define the range of possible parameter
values Bertsimas et al. (2011) and aims to find the decision that is robust against the worst-case in the
uncertainty sets. This approach has found applications in domains such as supply chains Bertsimas &
Thiele (2004), currency portfolio management Fonseca et al. (2011), and power system optimization
Liang et al. (2024).
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Despite its guarantees, the solutions suggested by RO suffer from two major limitations: (i) Un-
certainty set construction usually relies on heuristic choices, making it difficult to capture the real
dynamics in the real-world applications Liang et al. (2024). (ii) Such pre-specified uncertainty sets
tend to be overly conservative Roos & den Hertog (2020) as it focuses solely on the worst-case out-
come Wang et al. (2025); Chenreddy & Delage (2024); Yeh et al. (2024), whereas many high-stakes
applications require accounting for multiple adverse scenarios.

3 PRELIMINARIES

Decision-Focused Learning Consider a general stochastic optimization problem:

w⋆ := argmin
w

Ec∼p(c)[f(c, w)], (1)

where c is a random vector characterizing the problem parameters, and f(c, w) is the objective
function. The goal is to find the optimal decision w∗ that minimizes the expected decision cost under
the conditional distribution p(c).

A common approach, predict-then-optimize (PTO), assumes a linear objective, which simplifies the
problem to

w∗(ĉ) := argmin
w

ĉTw. (2)

where ĉ is the estimate of E[c|x] conditioning on covariate x. This framework consists of two
components: (i) A predictor ĉ := gθ(x), trained to minimize the standard mean squared error (MSE)
E||ĉ−c||2; (ii) An optimization model that finds the best decision w given ĉ. As noted by Elmachtoub
& Grigas (2017), this approach often leads to suboptimal decisions, as minimizing prediction error
does not necessarily translate to improved decision quality.

To mitigate this issue, decision-focused learning (DFL) Mandi et al. (2024b) integrates prediction
with decision-making by training gθ(x) using decision regret as the loss function. The loss function
is defined as follows:

ℓDFL(θ) = Ex [Regret(gθ(x), c)] , where Regret(gθ(x), c) = f(c, w⋆(gθ(x)))− f(c, w⋆(c)).

For notational simplicity, we use c to denote the true mean of the optimization parameters given x.
By optimizing gθ(x) directly with respect to decision performance, DFL ensures that the predicted
parameters yield decisions that are robust to downstream cost objectives. We will refer to this
conventional DFL approach, which relies on explicit prediction models, as Pred-DFL.

Robust Optimization In some real-world applications, the expectation-based optimization in
equation 2 may fail to provide reliable decisions under adverse conditions, potentially leading to
severe consequences Ben-Tal et al. (2009); Beyer & Sendhoff (2007). To mitigate this risk, robust
optimization (RO) Kouvelis & Yu (1997); Ben-Tal et al. (2009); Shalev-Shwartz & Wexler (2016)
seeks decisions that perform well in the worst-case scenario within an uncertainty set U(x), by
solving the min-max formulation below:

w⋆(x) := argmin
w

max
c∈U(x)

f(c, w). (3)

This formulation ensures robustness against the most adverse realization of c, providing worst-case
protection. However, it can be overly conservative, potentially leading to suboptimal decisions in
typical scenarios. In many risk-sensitive applications, a more nuanced approach is required – one that
balances robustness and flexibility by considering a broader range of adverse outcomes beyond just
the extreme worst case Sarykalin et al. (2008). This has led to the development of alternative robust
and risk-aware optimization frameworks, such as distributionally robust optimization (DRO) Gao
et al. (2018); Zhu et al. (2022); Chen et al. (2025) and conditional value-at-risk (CVaR) optimization
Duffie & Pan (1997); Rockafellar et al. (2000); Rockafellar & Uryasev (2002), which offer a more
refined trade-off between robustness and performance.

4 PROPOSED FRAMEWORK: GEN-DFL

3
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Figure 2: Unlike Pred-DFL, Gen-DFL leverages
a generative model to capture p(c|x) while incor-
porating the decision-making objective which em-
phasizes the high-risk region.

This section presents the proposed decision-
focused generative learning (Gen-DFL)
framework. Specifically, we develop a novel
decision-making paradigm, generate-then-
optimize (GTO), designed for risk-sensitive
decision problems. Our approach frames the
problem as a conditional value-at-risk (CVaR)
optimization, leveraging a generative model to
produce plausible samples that capture the dy-
namics of high-risk regions. To effectively learn
the generative model, we propose a new loss
function that integrates both decision-focused
learning and generative modeling objectives,
ensuring that the generated samples not only
reflect the underlying data distribution but
also lead to robust, high-quality decisions.
Figure 2 provides an overview of the proposed
framework.

Problem Setup We seek robust decisions that effectively manage risk by minimizing the percentiles
of loss distributions. This approach has been widely adopted in risk-sensitive domains such as financial
portfolio optimization, where regulatory frameworks often define risk management requirements
in terms of loss percentiles Sarykalin et al. (2008). A widely used measure for quantifying high-
loss scenarios is conditional value-at-risk (CVaR) Duffie & Pan (1997); Rockafellar et al. (2000);
Rockafellar & Uryasev (2002), which provides a characterization of tail risk by capturing the expected
loss beyond a given percentile threshold. Formally, given a confidence level α, CVaR is defined as:

CVaR[f(c, w);α] = E [f(c, w) | f(c, w) ≥ VaRα] , (4)

where VaRα represents the value-at-risk threshold, meaning the probability of exceeding this threshold
is at most α. Our objective is to find the optimal decision w⋆ that minimizes the expected costs in the
worst-α% of outcomes. This leads to the following risk-sensitive optimization formulation Krokhmal
et al. (2002):

w⋆(x;α) := argmin
w

CVaRc∼p(c|x)[f(c, w);α]. (5)

We note that the c is defined over the high-risk region of the distribution p(c|x), allowing for a more
flexible and probabilistic characterization of uncertainty compared to the “hard” uncertainty set used
in equation 3. This formulation bridges robust and expectation-based optimization: (i) As α→ 0, the
problem reduces to robust optimization, focusing exclusively on the worst-case scenario in equation 3.
(ii) As α → 1, it converges to standard expectation-based optimization in equation 1, minimizing
the expected cost across all possible outcomes. Thus, our approach generalizes robust optimization
by ensuring resilience against adverse outcomes beyond a single worst-case scenario, balancing
conservatism and probabilistic risk awareness in decision-making.

4.1 GENERATE-THEN-OPTIMIZE

To solve equation 5, we introduce a novel generate-then-optimize (GTO) paradigm, which leverages
generative modeling to approximate the risk-sensitive optimization problem. Conventional decision-
focused learning (Pred-DFL) relies on a point estimate ĉ of the optimization parameters. While
effective in some cases, this approach fails to capture the full distribution p(c|x), particularly in high-
dimensional settings, making it inadequate for risk-sensitive applications where adverse outcomes
must be explicitly considered. Moreover, point estimates are only appropriate when the objective
function is linear, as the optimization problem in such cases depends solely on the expected value of
c, making variance and higher-order moments irrelevant.

To overcome these limitations, we replace deterministic predictions with a generative model, capturing
the full risk distribution. This allows us to account for uncertainty in a data-driven manner, ensuring
that risk-sensitive scenarios are explicitly considered. The optimization problem is then solved using
sample-average approximation (SAA) Pagnoncelli et al. (2009); Kim et al. (2015); Emelogu et al.
(2016). Formally, we aim to optimize:

w⋆
θ(x;α) := argmin

w
CVaRc∼pθ(c|x) [f(c, w);α] . (6)

4
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Unlike traditional RO, which requires a pre-defined uncertainty set U(x) – often leading to overly
conservative or restrictive formulations – our approach treats uncertainty as a learnable distribution.
Specifically, we model pθ(c|x) using a generative model parameterized by θ, allowing it to adaptively
capture risk-sensitive regions based on empirical data. This approach provides a more nuanced
and adaptive approach to uncertainty modeling, ensuring that decisions are informed by the full
distribution of possible outcomes rather than rigid, pre-specified constraints.

We emphasize that the proposed Gen-DFL framework is model-agnostic and does not rely on a spe-
cific generative modeling choice. In this work, we adopt conditional normalizing flows (CNFs) Win-
kler et al. (2019) to model the conditional distribution p(c|x) due to their flexibility. CNFs transform
a simple base distribution pZ(z) (e.g., Gaussian) into a complex target distribution via an invert-
ible mapping gθ : C → Z , where C,Z are the supports of the resulting distribution and the base
distribution. This enables the representation of arbitrarily complex distributions. This transforma-
tion follows the change-of-variables formula Tabak & Turner (2013); Papamakarios et al. (2021):
pθ(c|x) = pZ(gθ(c;x))

∣∣∣det ∂gθ(c;x)∂c

∣∣∣ . This expressiveness enables our model to generate samples
that accurately capture both typical and high-risk scenarios, improving robustness in decision-making
under CVaR.

4.2 DECISION-FOCUSED GENERATIVE LEARNING

We now present the Gen-DFL framework, which provides a decision-focused solution to the GTO
problems. For simplicity, we denote the optimal decision obtained from our model w⋆

θ(x;α) in
equation 6 as w⋆

θ , omitting x and α. Similar to other DFL frameworks, Gen-DFL consists of two
alternating steps:

1. Generate-Then-Optimize: Generate samples {ck}Kk=1 using conditional generative model (CGM)
pθ(c|x) and solve equation 6 for the optimal decision via SAA.

2. Model Learning: Given the resulting decision w⋆
θ , update the generative model parameters by

jointly minimizing the generative loss and the decision cost under w⋆
θ .

A detailed description of the learning procedure is provided in Algorithm 1 in the Appendix C.1.
Below, we elaborate on key components of our framework.

Regret in CVaR. Unlike Pred-DFL, where the decision cost is computed as the regret for a single
pair (ĉ, c), in our stochastic optimization problem, the parameter c follows a distribution, requiring
regret to be evaluated over all possible realizations of c. Moreover, in robust decision-making, we
seek to minimize decision costs based on the worst-α% outcomes, rather than the full distribution.
To capture this, we define regret using CVaR:

Regretθ,p(x;α) := CVaRp(c|x)

[
f(c, w⋆

θ)− f(c, w⋆);α
]
,

where w⋆ := argminw CVaRc∼p(c|x)[f(c, w);α] is the optimal decision under the true distribution.
The parameter α controls the level of risk sensitivity: The lower values of α emphasize the worst-case
outcomes, making decisions more conservative. When α = 1, it recovers the standard expected regret
across all realizations: Ec∼p(c|x)[f (c, w⋆

θ)− f (c, w⋆)].

Gen-DFL Loss. In practice, the true data distribution p(c|x) is typically inaccessible, making
direct regret evaluation infeasible. To address this challenge, we introduce an auxiliary model q(c|x),
trained on available data to approximate p(c|x). Once learned, q(c|x) remains fixed and serves as
a proxy distribution to compute the estimated Regretθ,q(x, α) and the corresponding surrogate loss
function ℓ(θ;α, q). This enables practical regret evaluation even when the true distribution is not
directly observable. The training objective for Gen-DFL can then be formulated as the aggregated
regret across all inputs x, with an additional regularization term to ensure stability in generative
modeling:

ℓGen-DFL(θ; q, α) := Ex[Regretθ,q(x;α)] + γ · ℓgen(θ), (7)

where ℓgen(θ) is the generative model loss (e.g., negative log-likelihood, evidence lower bound
(ELBO) for variational autoencoders Kingma (2013), or score-matching loss for diffusion models Ho
et al. (2020)). Here, γ is a hyper-parameter that balances the decision-focused regret loss and the
generative model loss. The generative loss term ℓgen(θ) acts as a regularization, preventing the learned
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generative model from deviating excessively from the true data distribution, ensuring reliable sample
generation for decision-making.

Surrogate Loss Function When training DFL models w.r.t the decision loss, backpropagating
the error through the decision variable is necessary. However, this requires calculating the partial
derivatives ∂w⋆

θ

∂c , which often involves complex dependency chains. Inspired by Mulamba et al.
(2020), we propose a surrogate contrastive loss in our Gen-DFL setting to address the above challenge
of differentiating the combinatorial optimization mapping:

ℓGen-DFL(θ;α) = Ex

[ ∑
ws∈S

(
CVaRpθ(c|x) [f (c, ws))− f (c, w⋆) ;α]

) ]
+ γ · ℓgen(θ)

where w⋆ is the target solution, and the negative samples ws ∈ S ⊂ W \ w⋆ is a subset of solutions
that are different from the target solution.

5 THEORETICAL ANALYSIS

This section provides an analysis of the validity of our sample-based regret estimation method and
compares Gen-DFL and traditional Pred-DFL across different problem settings by examining their
regret bounds. Our analysis reveals that as the complexity of the optimization problem increases
– whether due to higher dimensionality, greater variance in the data, or more nonlinear objective
function – Gen-DFL’s advantage over Pred-DFL becomes more pronounced, leading to improved
decision quality in challenging settings.

We first derive the bound for the loss difference |ℓ(θ; p, α)− ℓ(θ; q, α)|, comparing the loss function
ℓ(θ; p, α) under the ground-truth distribution p(c|x) with the surrogate loss ℓ(θ; q, α) computed using
the proxy model q(c|x). The proofs of the theorems can be found in Appendix A.1.
Theorem 5.1. Under the assumption that the objective function f(c, w) is Lf -Lipschitz continuous
with respect to c for a fixed decision variable w, the gap between ℓ(θ; p, α) and ℓ(θ; q, α) is bounded
by

|ℓ(θ; p, α)− ℓ(θ; q, α)| ≤ Kq · Ex [W(p(c|x), q(c|x))] ,
whereW(p(c|x), q(c|x)) is the Wasserstein-1 distance between p(c|x) and q(c|x) and Kq is some
constant.

The theorem above implies that the surrogate loss provides a valid approximation to the original loss
function, provided the proxy model q(c|x) can estimate the ground-truth p(c|x) well. The bound
is directly proportional to theW(p(c|x), q(c|x)), which quantifies the discrepancy between these
distributions. We now establish the conditions under which Gen-DFL outperforms Pred-DFL. To
facilitate our analysis, we first introduce the following two definitions.
Definition 5.2. Let p(c|x) denote the true conditional distribution of c, and let pθ(c|x) be the
generative model. We define Qc to be the “worst α% tail” representative for c under p(c|x) based on
the target decision w⋆. Formally,

Qc[α] := E[c | f(c, w⋆) ≥ VaRα].

Definition 5.3. Given the target decision w⋆ and the decisions found by Pred-DFL (w⋆
pred) and

Gen-DFL (w⋆
θ ), we can define the regret of Pred-DFL and Gen-DFL as:

Rpred(x;α) = f(Qc[α], w
⋆
pred)−f(Qc[α], w

⋆), Rgen(x;α) = CVaRp(c|x)

[
f
(
c, w⋆

θ

)
−f

(
c, w⋆

)
;α

]
.

Next, we develop a regret bound that quantifies the performance gap between Gen-DFL and Pred-
DFL, incorporating data variance and the complexity of the optimization problem, such as the
dimensionality of the parameter space and the risk-sensitive level. The proof can be found in
Appendix A.3.
Theorem 5.4. Let g : X → C be the predictor in Pred-DFL. Assume the objective function f(c, w)
is Lipschitz continuous for any c, w. There exists some constants Lw, Lc, κ1, κ2, κ3 such that the
following upper-bound holds for the aggregated regret gap Ex|∆R(x)|:

Ex|∆R(x)| ≤ Ex

[2Lw

α

[
κ1 W(pθ, p) + κ2 ∥Bias[g]∥

]
+ (

2Lw

α
κ3 + 2Lc)

√
∥Var[c | x]∥

+CVaRp(c|x)[∥Bias[g(x)]∥;α]
∣∣], where ∆R(x) = Rpred(x;α)−Rgen(x;α).
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Task Pairwise Listwise NCE MAP SPO+ Diff-DRO 2Stage (PTO) Gen-DFL

Portfolio

Deg-2 11.48±(0.50) 22.87±(1.11) 8.57±(0.48) 8.88±(0.34) 6.92±(0.26) 8.30±(0.36) 16.90±(0.55) 3.71±(0.18)
Deg-4 11.16±(0.32) 20.70±(1.19) 7.81±(0.52) 8.43±(0.65) 7.23±(0.60) 7.41±(0.67) 14.89±(0.63) 3.81±(0.22)
Deg-6 11.54±(0.78) 18.57±(0.87) 8.69±(0.61) 8.51±(0.38) 7.01±(0.26) 8.56±(0.71) 16.02±(0.78) 4.31±(0.32)
Deg-8 10.44±(0.36) 21.92±(0.95) 7.93±(0.40) 8.90±(0.48) 6.98±(0.98) 8.65±(0.52) 16.17±(0.60) 3.59±(0.31)

Knapsack

Deg-2 34.93±(9.37) 27.03±(8.43) 24.75±(7.87) 35.54±(4.70) 21.90±(7.46) 19.63±(4.5) 20.27±(9.46) 17.60±(3.38)
Deg-4 38.32±(4.44) 26.37±(3.03) 23.43±(4.94) 46.87±(14.43) 20.37±(5.18) 18.45±(3.81) 16.58±(3.68) 15.21±(3.75)
Deg-6 33.85±(8.24) 24.50±(1.19) 20.07±(10.76) 40.33±(5.63) 17.45±(7.2) 17.51±(5.20) 21.66±(6.46) 17.91±(2.44)
Deg-8 33.25±(6.48) 20.38±(6.70) 22.36±(7.89) 34.07±(6.66) 22.90±(11.48) 21.48±(6.28) 21.13±(7.40) 19.29±(3.75)

Shortest Path

Deg-2 8.30±(2.35) 2.65±(0.25) 9.59±(0.75) 12.92±(3.63) 3.23±(0.72) 2.91±(0.93) 10.07±(1.2) 1.87±(0.20)
Deg-4 18.91±(5.30) 12.19±(1.04) 42.87±(2.57) 52.47±(6.49) 28.73±(11.23) 11.78±(2.89) 22.44±(2.84) 3.64±(0.43)
Deg-6 29.63±(7.20) 33.15±(4.60) 68.94±(6.79) 94.46±(10.91) 26.46±(9.31) 23.76±(4.21) 38.64±(2.3) 6.52±(0.71)
Deg-8 63.61±(18.82) 51.65±(13.77) 139.09±(22.08) 173.17±(36.28) 81.78±(21.82) 39.81±(5.46) 45.75±(5.10) 13.36±(2.59)

Energy 1.65±(0.23) 1.67±(0.17) 1.69±(0.13) 1.59±(0.11) 1.56±(0.11) 1.49±(0.12) 1.91±(0.22) 1.09±(0.09)
COVID Resource 17.91±(1.85) 16.83±(1.07) 16.48±(2.25) 16.59±(3.04) 17.94±(3.29) 16.41±(3.8) 18.46±(3.2) 16.86±(4.62)

Table 1: Comparison of Decision Quality (average relative regret, ↓, lower is better) across tasks in
High-Variance Settings (σ = 20).

The above results reveal how the following three factors affect the performance gap between
Gen-DFL and Pred-DFL: (i) Variance of the parameter space ∥Var[c|x]∥: Higher variance in c
conditioned on x increases uncertainty and amplifies the difficulty of accurately approximating
the objective. Pred-DFL, which relies on point estimates from g(x), struggles in high-variance
settings. In contrast, Gen-DFL benefits from modeling the full distribution p(c|x), capturing the
variability and structure needed for robust decision-making under uncertainty; (ii) Dimensionality of
the parameter space, including dc and dx: As the dimensionality increases, the estimation error of
the predictor in Pred-DFL grows at a rate of O(

√
(dx + dc)/n/α), making it increasingly difficult

to obtain reliable point estimates; (iii) Risk level α: The inverse dependence of the estimation error
on α implies that smaller values of α make quantile regression more challenging for Pred-DFL, as
data in the tail regions of the worst α% outcomes become increasingly sparse. This leads to a larger
bias in g(x) for smaller α. In contrast, Gen-DFL leverages a generative model to capture the full
conditional distribution p(c|x). Together, these insights demonstrate that Gen-DFL offers significant
advantages over Pred-DFL in complex, high-dimensional, and risk-sensitive scenarios.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We evaluate the proposed framework using three synthetic optimization problems: Portfolio Manage-
ment, Fractional Knapsack, and Shortest-Path, as well as a real data Ifrim et al. (2012) set in Energy
Management Problem Simonis et al. (1999).

Synthetic Data We analyze our approaches on a series of synthetic experiments (Portfolio, Knap-
sack, and Shortest-Path). We adopt the data synthesizing precess from Elmachtoub & Grigas (2022).
We now give an overview of the optimization problem setup in the Portfolio problem. In Portfolio,
optimization parameters c represents the asset prices and the dimension of ci is the number of assets.
Our non-linear, risk-sensitive Portfolio problem is then formulated as,

w⋆(x;α) := argmin
w

CVaRp(c|x)[−cTw + wTΣw;α], s.t. w ∈ [0, 1]n, 1Tw ≤ 1, (8)

where Σ = LLT + (0.01σ)2I is the covariance among the asset prices c, and the quadratic term
wTΣw reflects the amount of risk. The configurations of our synthetic experiments include the
training size, feature dimension dx, polynomial degree, and the noise scale σ that reflects the amount
of variance in the parameter space and the non-linearity of the above stochastic optimization, since,
by our construction, σ would affect the magnitude of the quadratic term wTΣw. The problem setup
and model configurations for the Fractional Knapsack and Shortest-Path problem are similar to that
of Portfolio. Full details of the data synthesis process and the corresponding optimization formulation
for each experiment are provided in Appendix B.

Real Data For the real data experiments, we consider a real-world Energy-cost Aware Scheduling
problem and a COVID-19 resoure allocation problem that we adopt from Mandi et al. (2022); Kong
et al. (2022). In the Energy-cost Aware Scheduling problem, we consider a demand response program
in which an operator schedules electricity consumption pt ∈ R24 over a time horizon t ∈ Ωt. The
objective is to minimize the total cost of electricity while adhering to operational constraints. In
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the COVID-19 resource allocation problem, we focus on the problem of allocating the number of
hospital beds w ∈ R7 for the next seven days based on the forecasted number of hospitalized patients
c ∈ R7. The details of optimization problem in each experiment can be found in Appendix B.
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Figure 3: Decision quality against different risk-
sensitive regions vs various β.

Model Configuration. The hyperparameters in
our learning algorithm include the decision cost
weight β and the negative log-likelihood weight
γ in 7, which serves as regularization. We intro-
duce an additional hyperparameter β in our exper-
iment to study how different magnitude of DFL
loss will affect the model’s performance. We set
γ = 1 across all experiments and study the effect
of different β values on Gen-DFL’s performance
(Fig. 3). When β = 0, the loss reduces to that
of a standard generative model, only fitting data
without considering decision costs, which results
in the worst regret in all risk-sensitive settings. In-
creasing β improves downstream decision quality
across all risk levels. Full hyperparameter details are provided in Appendix C.2.
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Figure 4: Decision quality in the portfolio task
under different settings (↓ lower is better).

Baseline Methods. We evaluate the perfor-
mance of Gen-DFL against various state-of-the-
art Pred-DFL baselines across all tasks. Specif-
ically, we compare against Smart-Predict-Then-
Optimize (SPO+) Elmachtoub & Grigas (2022),
contrastive loss-based Pred-DFL models (NCE,
MAP) Mulamba et al. (2020), ranking-based Pred-
DFL models Mandi et al. (2022), and the re-
cently proposed Pred-DFL approach with differen-
tiable Distributionally Robust Optimization layers,
which we refer to as Diff-DRO Ma et al. (2024).
These baselines represent a range of decision-
focused learning strategies, differing in their loss
formulations and optimization objectives. The
main results of our comparison are summarized in
Table 1.

6.2 RESULTS

We evaluate the decision quality of different models on various tasks in terms of the average relative
regret, Ex

[
CVaRp(c|x)[f(c,ŵ

⋆)−f(c,w⋆);α]

Ep(c|x)[f(c,w⋆)]

]
× 100%. where lower α indicates greater risk sensitivity.

For our real data experiment, we will first train a proxy model q(c|x) given the data, which will then
be used to evaluate the average relative regret during evaluation. We set α = 1 when we compare
against the baseline models since the above metric is equivalent to the standard relative regret used in
previous Pred-DFL literature, which makes the comparison fair.

Comparison with Baselines Table 1 presents the comparative performance of Gen-DFL, Pred-
DFL, and the two-stage method across different problem settings. Gen-DFL consistently outperforms
baseline methods, reducing regret by up to 58.5% compared to Diff-DRO and up to 48.5% compared
to SPO+ in Portfolio tasks. Gen-DFL’s advantage is particularly pronounced in high-dimensional
tasks like Shortest-Path (Deg-8), where it achieves a remarkable 83.7% reduction in regret over SPO+
(13.36 vs. 81.78). This demonstrates Gen-DFL’s ability to overcome the curse of dimensionality
by effectively capturing the distributional structure of p(c|x) rather than relying on point estimates.
Conversely, in Knapsack (Deg-2), Gen-DFL’s improvements over SPO+ and Diff-DRO are more
moderate (19.6% and 10.3% respectively), suggesting that the benefits of generative modeling are
especially significant in problems where uncertainty is highly non-linear or where high-dimensional
interactions dominate the optimization landscape. The statistical significance tests of Table 1 can be
found in the Appendix.
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Figure 5: Regret under various risk-level α.

Figure 4 illustrates the impact of variance Var[c|x],
problem dimensionality, and training size on model
performance. Gen-DFL demonstrates robustness
across all variance levels (σ ∈ [40, 60, 80, 100]), ef-
fectively capturing the full conditional distribution
p(c|x), unlike Pred-DFL models, which rely on less
expressive predictors and are more sensitive to vari-
ance. As dimensionality increases, baseline methods
suffer from the curse of dimensionality, leading to
higher regret. In contrast, Gen-DFL maintains supe-
rior performance by learning the structural complex-
ity of p(c|x), as predicted in Theorem 5.4. Additionally, while Pred-DFL performance deteriorates
with smaller training sizes due to increased predictor bias, Gen-DFL remains stable by effectively
modeling the underlying distribution. The quadratic term in the objective further amplifies the non-
linearity in high-variance settings, demonstrating Gen-DFL’s adaptability to complex optimization
problems.
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Figure 6: Impact of the number of generated
samples w.r.t various risk levels.

We further compare our Gen-DFL with conventional
data-driven Robust Optimization methods (e.g., LRO
Wang et al. (2025), E2E-CRO Chenreddy & Delage
(2024), E2E-Conformal Yeh et al. (2024)) in Fig. 7.
Instead of learning fixed-geometry uncertainty sets
for a hard min-max problem, Gen-DFL learns a full
generative model to directly capture complex uncer-
tainties and minimizes the Conditional Value-at-Risk
(CVaR). We also did an ablation study on the choice
of the generative models which shows that the power
of our method lies in this core paradigm; while a
Conditional Normalizing Flow (CNF) architecture
outperforms a Variational Autoencoder (VAE) (of
which we attribute to the advantages of exact likelihood training over the ELBO approximation), the
primary contribution remains the development and validation of the Gen-DFL framework itself. We
thus leave the integration of more advanced generative models or optimization schemes as an exciting
avenue for future research.
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Figure 7: Comparison with Conventional RO
and Ablation study.

Risk-sensitive Settings We also evaluate
Gen-DFL under various risk-sensitive settings
(indicated by the "eval α" on the x-axis, where
smaller "eval α" indicates that we are evaluating
under the higher-risk regions) using CVaR, which
measures the decision quality (in terms of regret)
over the worst-α% of outcomes. Fig. 5 shows that
models trained with smaller α (e.g., α = 0.5) out-
perform those trained with larger α (e.g., α = 1.0),
demonstrating better adaptation to adverse outcomes.
The performance gap widens as risk sensitivity
increases, confirming that smaller α enhances
robustness while larger α prioritizes average-case
performance. To further assess stability, we examine
the impact of sample size in the sample-average-approximation step (Fig. 6). Increasing generated
samples consistently improves decision quality across all risk levels, reinforcing the importance
of uncertainty modeling in Gen-DFL. These results highlight Gen-DFL’s flexibility, making it
particularly effective in high-stakes, risk-sensitive environments.

7 CONCLUSION

We presented Gen-DFL, a novel decision-focused learning framework that leverages generative
modeling to solve robust decision-making problems under various risk-sensitive settings and provided
a thorough theoretical analysis demonstrating the performance gain under various high-risk decision-
making problems, verified by comprehensive experiments.
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This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

9 REPRODUCIBILITY STATEMENT

We included our implementation via the supplementary materials and will release the full code
publicly if our manuscript is accepted.
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A THEOREMS AND PROOFS

A.1 SURROGATE LOSS FUNCTION

In this subsection, we present a theoretical bound on the gap between the loss function ℓ(θ; p, α)
w.r.t the ground-truth distribution p(c|x), and the surrogate loss ℓ(θ; q, α) w.r.t the proxy distribution
q(c|x) that approximates p(c|x).
Theorem A.1. Let p(c|x) be the ground-truth distribution and q(c|x) be a surrogate distribution
that approximates p(c|x).
Under the assumption that the objective function f(c, w) is Lf -Lipschitz continuous with respect to c
for a fixed decision variable w, the gap between the loss function ℓ(θ; p, α) and the surrogate loss
ℓ(θ; q, α) is bounded by

|ℓ(θ; p, α)− ℓ(θ; q, α)| ≤ Kq · Ex [W(p(c|x), q(c|x))] ,

where W(p(c|x), q(c|x)) is the Wasserstein distance between p(c|x) and q(c|x) and Kq is some
constant.

Proof. First, by linearity of expectation and the triangle inequality, we see that

|ℓ(θ; p, α)− ℓ(θ; q, α)| ≤ Ex |A−B| , (9)

where

A = |CVaRp(c|x)[f(c, w
⋆
θ)]−CVaRp(c|x)[f(c, w

⋆)]|, B = |CVaRq(c|x)[f(c, w
⋆
θ)]−CVaRq(c|x)[f(c, w

⋆)]|.

For simplicity, we omit α inside CVaR for now.

Then, we can begin by examining the gap between the expectations under p(c|x) and q(c|x) for a
fixed context x.

By the reverse triangle inequality (||x| − |y|| ≤ |x− y|), we have

|A−B| ≤
∣∣CVaRp(c|x)[f(c, w

⋆)]− CVaRq(c|x)[f(c, w
⋆)]

∣∣+ ∣∣CVaRp(c|x)[f(c, w
⋆
θ)]− CVaRq(c|x)[f(c, w

⋆
θ)]

∣∣ .
Let’s define g(c) = f(c, w⋆) and h(c) = f(c, w⋆

θ). By assumption, f(c, w) is Lf -Lipschitz contin-
uous with respect to c, which implies that that g(c) and h(c) are also Lf -Lipschitz. Hence, by the
Kantorvorich-Rubinstein duality for the Wasserstein distance, we have,

W(p(c|x), q(c|x)) = sup
∥g∥Lip≤1

∣∣Ec∼p(c|x)[g(c)]− Ec∼q(c|x)[g(c)]
∣∣ = sup

∥h∥Lip≤1

∣∣Ec∼p(c|x)[h(c)]− Ec∼q(c|x)[h(c)]
∣∣ ,

where the supremum is over all functions g, h that are 1-Lipschitz.

By definition of CVaR, we can see that,∣∣CVaRp(c|x)[f(c, w
⋆)]− CVaRq(c|x)[f(c, w

⋆)]
∣∣ ≤ sup

∥h∥Lip≤1

∣∣Ec∼p(c|x)[h(c)]− Ec∼q(c|x)[h(c)]
∣∣ .

Again, using the assumption that g(c) and h(c) are also Lf -Lipschitz, we can bound the gap in (2) by∣∣CVaRp(c|x)[f(c, w
⋆)]− CVaRq(c|x)[f(c, w

⋆)]
∣∣+∣∣CVaRp(c|x)[f(c, w

⋆
θ)]− CVaRq(c|x)[f(c, w

⋆
θ)]

∣∣ ≤ 2LfW(p(c|x), q(c|x)).

Finally, taking the expectation over x on both sides and using equation (1) and set the constant
Kq = 2Lf , we get:

|ℓ(θ; p, α)− ℓ(θ; q, α)| ≤ Kq · Ex [W(p(c|x), q(c|x))] .

This completes the proof.
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A.2 CVAR/QUANTILE REGRESSION

Theorem A.2 (Finite-Sample Bound for CVaR Estimation). Suppose Y takes values in the interval
[m,M ]. Let ĈVaRα be the empirical estimator derived from

ϕ̂n(η) = η +
1

α

1

n

n∑
i=1

(Yi − η)+, ĈVaRα = inf
η∈R

ϕ̂n(η),

where (y − η)+ := max{y − η, 0} and Y1, . . . , Yn are i.i.d. samples of Y . Then there is a universal
constant C > 0 such that for all δ > 0, with probability at least 1− δ,

∣∣ ĈVaRα − CVaRα(Y )
∣∣ ≤ C

(M −m)

α

√
ln(1/δ)

n
.

In other words, the estimation error for CVaRα converges on the order of
√

ln(1/δ)/n as n grows.

Remark A.3. Here, CVaRα(Y ) = E[Y | Y ≤ VaRα(Y ) ], and

VaRα(Y ) = inf{ t : Pr(Y ≤ t) ≥ α}.

The key step in the proof is the Rockafellar–Uryasev identity,

CVaRα(Y ) = inf
η∈R

{
η + 1

α E
[
(Y − η )+

]}
,

combined with uniform convergence arguments (e.g. Hoeffding or Rademacher complexity bounds).

Proof. Step 1: Rockafellar–Uryasev Representation.

Recall the identity (Rockafellar–Uryasev):

CVaRα(Y ) = min
η∈R

(
η +

1

α
E
[
(Y − η )+

])
.

Set

ϕ(η) = η +
1

α
E[(Y − η )+].

Then CVaRα(Y ) = minη∈R ϕ(η).

Step 2: Empirical Estimator.

Given i.i.d. samples Y1, . . . , Yn, define the empirical counterpart

ϕ̂n(η) = η +
1

α

1

n

n∑
i=1

(Yi − η )+,

and let
ĈVaRα = min

η∈R
ϕ̂n(η).

Similarly, let η∗ ∈ argminη ϕ(η) and η̂n ∈ argminη ϕ̂n(η).

Step 3: Uniform Convergence.

Observe that

|ϕ̂n(η)−ϕ(η)| =
∣∣∣ 1
α

(
1
n

n∑
i=1

(Yi−η )+−E[(Y −η )+]
)∣∣∣ ≤ 1

α
sup
η∈R

∣∣∣ 1n n∑
i=1

fη(Yi) − E[ fη(Y )
]∣∣∣,

where fη(y) := (y − η)+ is bounded by (M −m) if y ∈ [m,M ]. By standard Hoeffding (or VC /
Rademacher) arguments, with probability ≥ 1− δ,

sup
η∈R

∣∣∣ 1n n∑
i=1

(Yi − η)+ − E[(Y − η)+]
∣∣∣ ≤ C1 (M −m)

√
ln(1/δ)

n

15
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for some universal constant C1 > 0. Hence,

sup
η∈R

∣∣ϕ̂n(η)− ϕ(η)
∣∣ ≤ C1 (M −m)

α

√
ln(1/δ)

n
= : εn.

Step 4: Error Between Minimizers.

By definition of η̂n and η∗,
ϕ̂n(η̂n) ≤ ϕ̂n(η

∗).

Also,
ϕ(η̂n)− ϕ(η∗) ≤

[
ϕ̂n(η̂n)− ϕ(η̂n)

]
+

[
ϕ̂n(η

∗)− ϕ(η∗)
]
≤ 2 εn.

Thus

ϕ(η̂n) ≤ ϕ(η∗) + 2 εn =⇒ ϕ̂n(η̂n) = ϕ(η̂n) +
[
ϕ̂n(η̂n)− ϕ(η̂n)

]
≤ ϕ(η∗) + 3 εn.

Similarly, by symmetry, we get ϕ(η∗) ≤ ϕ̂n(η̂n) + 3 εn, so∣∣ϕ̂n(η̂n)− ϕ(η∗)
∣∣ ≤ 3 εn.

Since CVaRα(Y ) = ϕ(η∗) and ĈVaRα = ϕ̂n(η̂n), we conclude∣∣ĈVaRα − CVaRα(Y )
∣∣ ≤ 3 εn = O

(
M−m

α

√
ln(1/δ)

n

)
.

Finally, we absorb constant factors into a single C, yielding the stated bound.

Theorem A.4 (Generalization Bound for Conditional CVaR Estimation). Let (X,Y ) be distributed
on X × R, and let G be a class of measurable functions g : X → R. Define the population
Rockafellar–Uryasev (RU) risk of any predictor g by

R(g) := E
[
g(X) +

1

α

(
Y − g(X)

)
+

]
,

and let
R∗ = inf

g∈G
R(g), g∗ ∈ argmin

g∈G
R(g).

Given i.i.d. samples {(xi, yi)}ni=1, define the empirical RU risk

R̂n(g) :=
1

n

n∑
i=1

[
g(xi) +

1
α

(
yi − g(xi)

)
+

]
,

and let
ĝn ∈ argmin

g∈G
R̂n(g).

Suppose that, with probability at least 1− δ,

sup
g∈G

∣∣∣R̂n(g)−R(g)
∣∣∣ ≤ εn,

where εn is a term that typically of the order O
(

1
α

√
ln(1/δ)

n

)
under standard assumptions (bounded-

ness, sub-Gaussian tails, etc.). Then on that event,

R(ĝn) − R∗ ≤ 2 εn.

Hence the learned predictor ĝn achieves a CVaR-type risk within 2 εn of the best g∗ ∈ G, with high
probability.

Proof. Step 1: Setup & Definitions.

For each g ∈ G, define the population RU risk

R(g) = E
[
g(X) + 1

α

(
Y − g(X)

)
+

]
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The empirical counterpart based on samples (xi, yi)
n
i=1 is

R̂n(g) =
1

n

n∑
i=1

[
g(xi) + 1

α (yi − g(xi))+
]
.

Let
ĝn ∈ argmin

g∈G
R̂n(g), g∗ ∈ argmin

g∈G
R(g).

Step 2: Decompose the Excess Risk.

We want R(ĝn)−R(g∗). Note that

R(ĝn) − R(g∗) =
[
R(ĝn)− R̂n(ĝn)

]︸ ︷︷ ︸
(A)

+
[
R̂n(ĝn)− R̂n(g

∗)
]︸ ︷︷ ︸

(B)

+
[
R̂n(g

∗)−R(g∗)
]︸ ︷︷ ︸

(C)

.

Since ĝn minimizes R̂n, the middle term (B) ≤ 0. Hence

R(ĝn)−R(g∗) ≤ (A) + (C).

But
(A) = R(ĝn)− R̂n(ĝn) ≤ sup

g∈G

∣∣R(g)− R̂n(g)
∣∣,

and similarly
(C) = R̂n(g

∗)−R(g∗) ≤ sup
g∈G

∣∣ R̂n(g)−R(g)
∣∣.

Therefore,
R(ĝn)−R(g∗) ≤ 2 sup

g∈G

∣∣∣R̂n(g)−R(g)
∣∣∣.

Step 3: Uniform Convergence Bound.

By hypothesis (or by a standard Rademacher / VC argument), we have

sup
g∈G

∣∣R̂n(g)−R(g)
∣∣ ≤ εn,

with probability ≥ 1− δ, where εn grows at a rate of O
(
1
α

√
ln(1/δ)

n

)
. Hence on that event:

R(ĝn)−R(g∗) ≤ 2 εn.

Step 4: Why εn Includes a Factor of 1/α.

Observe that
ϕα(x, y; g) = g(x) +

1

α
(y − g(x))+.

Because it is scaled by 1
α , any standard concentration bound (e.g. Hoeffding or Rademacher) for ϕα

incurs an extra factor of 1/α. Specifically:

• Boundedness: If |g(x)| ≤ Gmax and |y| ≤ Ymax, then (y − g(x))+ ≤ | y − g(x) | ≤
Ymax +Gmax. Hence ϕα(x, y; g) ≤ Gmax +

1
α (Ymax +Gmax).

• Rademacher complexity or Hoeffding: A uniform-convergence or covering-number argument

yields a
√

ln(1/δ)
n factor multiplied by the supremum of |ϕα|, which is ≤ C

α for some
constant C.

Thus εn necessarily scales like 1
α

√
ln(1/δ)

n (up to constants and possibly adding a Rn(G) term if G is
large).

17
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Theorem A.5 (High-Dimensional Conditional CVaR Generalization Bound). Let (X,Y ) be a random
pair taking values in Rdx × Rdy , and let α ∈ (0, 1) be fixed. Suppose we have:

• A scalar loss ℓ : R× Rdy → R,

• A hypothesis class G of measurable functions g : Rdx → R,

and define the Rockafellar–Uryasev (RU) risk of any predictor g ∈ G by

R(g) := E
[
g(X) +

1

α

(
ℓ
(
g(X), Y

)
− g(X)

)
+

]
.

Let R∗ = infg∈G R(g), and choose g∗ such that R(g∗) = R∗. Given n i.i.d. samples {(xi, yi)}ni=1 ⊂
Rdx × Rdy , define the empirical RU risk

R̂n(g) :=
1

n

n∑
i=1

[
g(xi) +

1

α

(
ℓ(g(xi), yi)− g(xi)

)
+

]
,

and let ĝn ∈ argming∈G R̂n(g). Assume that with probability at least 1 − δ, we have a uniform-
convergence bound

sup
g∈G

∣∣∣R̂n(g)−R(g)
∣∣∣ ≤ εn,

where εn scales as

εn = Õ
(

1
α

√
dx+dy

n

)
,

under suitable boundedness/sub-Gaussian assumptions on (X,Y ) and ℓ. Then on that event,

R(ĝn) − R∗ ≤ 2 εn.

Hence the learned predictor ĝn achieves a CVaR-type risk within 2 εn of the best g∗ ∈ G, with high
probability.

A.3 GEN-DFL VS PRED-DFL

Definition A.6. Let p(c|x) denote the true conditional distribution of c, and let pθ(c|x) be the
generative model. We define Qc to be the “worst α% tail” representative for c under p(c|x) based on
the target decision w⋆. Formally,

Qc[α] := E[c | f(c, w⋆) ≥ VaRα].

Definition A.7. Given the target decision w⋆, the decision w⋆
pred found by Pred-DFL and the decision

w⋆
θ found by Gen-DFL, we can define the regret of Pred-DFL formally as:

Rpred(x;α) = f(Qc[α], w
⋆
pred)− f(Qc[α], w

⋆).

and the regret of Gen-DFL as:

Rθ(x;α) = CVaRp(c|x)

[
f
(
c, w⋆

θ

)
− f

(
c, w⋆

)
; α

]
.

Theorem A.8. Let g : X → C be the predictor in Pred-DFL. Assume the objective function f(c, w)
is Lipschitz continuous for any c, w. Then, there exists some constants Lw, Lc, κ1, κ2, κ3 such that
the following upper-bound holds for the aggregated regret gap Ex|∆R(x)|:

Ex|∆R(x)| ≤ Ex

[
Lw ·

2

α

[
κ1 W(pθ, p) + κ2

√
∥Var[c | x]∥ + κ3 ∥Bias[g]∥

]
+ 2Lc

∣∣√d∥V ar[c | x]∥+ CVaRp(c|x)[∥Bias[g(x)]∥]
∣∣].

Remark A.9. Let dc and dx denote the dimension of C and X , respectively. The bias term ||Bias[g]||
of the predictor grows at a rate of O( 1

α

√
(dx + dc)/n). This suggests that the smaller the α is, the

harder for the predictor in the Pred-DFL to get an accurate estimation of Qc[α].
Remark A.10. We may write c = c̄+ σϵ, where c̄ = Ep(c|x)[c]. Under some mild assumptions, such
as ϵ being Gaussian, the variance term is of the order O(σ2

√
dc).
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Proof. Step 1: Decomposition of the Regret

|∆R(x)| =
∣∣CVaRp(c|x)[f(c, w

⋆
θ)− f(c, w⋆);α]− CVaRp(c|x)[f(c, w

⋆
pred)− f(c, w⋆);α]

∣∣
=

∣∣CVaRp(c|x)[f(c, w
⋆
θ)− f(c, w⋆

pred);α]
∣∣

= CVaRp(c|x)[
[
f(g(x), w⋆

θ)− f(g(x), w⋆
pred)

]
+ [f(c, w⋆

θ)− f(g(x), w⋆
θ)]

− [f(c, w⋆
pred)− f(g(x), w⋆

pred)];α]

≤
∣∣CVaRp(c|x)[f(g(x), w

⋆
θ)− f(g(x), w⋆

pred);α]
∣∣+ 2LcCVaRp(c|x)[||c− g(x)||;α]

=
∣∣CVaRp(c|x)[f(g(x), w

⋆
θ)− f(g(x), w⋆

pred);α]
∣∣+ 2LcCVaRp(c|x)[∥c−Qc[α] +Qc[α]− g(x)∥;α]

≤
∣∣CVaRp(c|x)[f(g(x), w

⋆
θ)− f(g(x), w⋆

pred);α]
∣∣+ 2Lc

∣∣CVaRp(c|x)[∥c−Qc[α]∥;α]
+ CVaRp(c|x)[∥Bias[g]∥;α]

∣∣
≤

∣∣CVaRp(c|x)[f(g(x), w
⋆
θ)− f(g(x), w⋆

pred);α]
∣∣+ 2Lc

∣∣√d∥V ar[c | x]∥+ CVaRp(c|x)[∥Bias[g]∥;α]
∣∣

where we used the fact f(c, w⋆
θ) = f(g(x), w⋆

θ) + [f(c, w⋆
θ) − f(g(x), w⋆

θ)] and f(c, w⋆
pred) =

f(g(x), w⋆
pred) + [f(c, w⋆

pred)− f(g(x), w⋆
pred)].

Step 2: Bounding ∆Term =
∣∣CVaRp(c|x)[f(g(x), w

⋆
θ)− f(g(x), w⋆

pred);α]
∣∣

Now, we need to bound the ∆Term =
∣∣CVaRp(c|x)[f(g(x), w

⋆
θ)− f(g(x), w⋆

pred);α]
∣∣ term.

By assumption, for any fixed c0, the map w 7→ f(c0, w) is Lw-Lipschitz in w. Equivalently,∣∣ f(c0, w1)− f(c0, w2)
∣∣ ≤ Lw ∥w1 − w2∥.

Applying this specifically at c0 = g(x), we get:∣∣ f(g(x), w⋆
θ)− f(g(x), w⋆

pred)
∣∣ ≤ Lw

∥∥w⋆
θ − w⋆

pred

∥∥.
Since CVaRp[·] is merely an expectation that does not affect the integrand here (it does not depend
on c anymore), we have

∆Term ≤ Lw

∥∥w⋆
θ − w⋆

pred

∥∥.
Step 3: Bounding ∥w⋆

θ − w⋆
pred∥

First, we define the following auxiliary (aggregate objectives) functions for both Gen-DFL and
Pred-DFL,

Gen-DFL: Jgen(w) = CVaRpθ
[ f(c, w);α

]
, Pred-DFL: Jpred(w) = f

(
g(x), w

)
.

So
w⋆

θ = argmin
w

Jgen(w), w⋆
pred = argmin

w
Jpred(w).

Next, let’s define

∆(w) = Jgen(w)− Jpred(w) = CVaRpθ

[
f(c, w);α

]
− f

(
g(x), w

)
.

We take a uniform bound over w:
T = sup

w

∣∣∆(w)
∣∣.

We will then show that,

T ≤ κ1∥pθ − p∥+ κ2

√
∥Var[c | x]∥+ κ3∥Bias[g]∥.

Step 4: Bounding T

By definition,

T := sup
w

∣∣∣CVaRpθ
[ f(c, w);α

]
− f

(
g(x), w

)∣∣∣.
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To relate this to the true distribution p and Qc[α] = Ec∼p[ c], we can do the following decomposition:

CVaRpθ
[ f(c, w);α

]
− f(g(x), w) =

(
CVaRpθ

[f(c, w);α]− CVaRp[f(c, w)]
)

+
(

CVaRp[f(c, w);α]− f(Qc[α], w)
)
+

(
f(Qc[α], w)− f(g(x), w)

)
.

Hence, if we set
T = sup

w

∣∣(A) + (B) + (C)
∣∣,

then by triangle inequality:

T ≤ sup
w

∣∣(A)
∣∣︸ ︷︷ ︸

T1

+ sup
w

∣∣(B)
∣∣︸ ︷︷ ︸

T2

+ sup
w

∣∣(C)
∣∣︸ ︷︷ ︸

T3

.

We now bound each piece T1, T2, T3 separately.

First, we can see that

T1 = sup
w

∣∣CVaRpθ
[f(c, w);α]− CVaRp[f(c, w)]

∣∣ ≤ κ1 W(pθ, p),

where κ1 depends on the Lipschitz constant of f in c.

Next, by taking the Taylor expansion, we have

f(c, w) = f(g(x), w)+∇cf(g(x), w)
T (c−g(x))+1

2
(c−g(x))T∇2

cf(g(x), w)(c−g(x))+O(||c−g(x)||2)

After taking the CVaR expectation, we see that

T2 = sup
w

∣∣CVaRp[f(c, w);α]− f(g(x), w)
∣∣ ≤ κ2

√
∥Var[c | x]∥,

where κ2 incorporates the Lipschitz constant.

Finally, for T3, assuming that f(·, w) is Lipschitz in c, then

T3 = sup
w

∣∣f(Qc[α], w)− f(g(x), w)
∣∣ ≤ Lc ∥Qc[α]− g(x)∥ ≤ Lc ∥Bias[g]∥.

Hence,
T3 ≤ κ3 ∥Bias[g]∥.

Combining all the steps.

Collecting T1, T2, T3:

T = sup
w

∣∣∣CVaRpθ
[f(c, w);α]− f(g(x), w)

∣∣∣ ≤ T1 + T2 + T3

≤ κ1 W(pθ, p) + κ2

√
∥Var[c | x]∥ + κ3 ∥Bias[g]∥.

Thus,

T ≤ κ1 W(pθ, p) + κ2

√
∥Var[c | x]∥ + κ3 ∥Bias[g]∥.

Strong Convexity in w Yields Solution Stability.

Assume Jgen(·) and Jpred(·) are α-strongly convex in w. Then,∥∥w⋆
θ − w⋆

pred

∥∥ ≤ 2

α
sup
w

∣∣∆(w)
∣∣ =

2

α
T.

Therefore, ∥∥w⋆
θ − w⋆

pred

∥∥ ≤ 2

α
(κ1 W(pθ, p) + κ2

√
∥Var[c | x]∥ + κ3 ∥Bias[g]∥).
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Combining all the steps

∆Term =
∣∣CVaRp[f(g(x), w

⋆
θ)− f(g(x), w⋆

pred);α]
∣∣ ≤ Lw

∥∥w⋆
θ − w⋆

pred

∥∥ ≤ Lw
2

α
T,

Therefore,

∆Term ≤ Lw ·
2

α

[
κ1 W(pθ, p) + κ2

√
∥Var[c | x]∥ + κ3 ∥Bias[g]∥

]
.

Finally, we get,

Ex|∆R(x)| ≤ Ex

[
Lw ·

2

α

[
κ1 W(pθ, p) + κ2

√
∥Var[c | x]∥ + κ3 ∥Bias[g]∥

]
+ 2Lc

∣∣√d∥V ar[c | x]∥+ CVaRp(c|x)[∥Bias[g(x)]∥];α
∣∣].

Moreover, by Theorem A.5 that we developed earlier, we can see the bias term ||Bias[g]|| grows at a
rate of O( 1

α

√
(dx + dc)/n)

B EXPERIMENTAL SETUPS

B.1 SYNTHETIC: PORTFOLIO OPTIMIZATION

In the Portfolio experiment, we generate the synthetic data as follows:

xi ∼ N (0, Idx),

Bij ∼ Bernoulli(0.5),
Lij ∼ Uniform[−0.0025σ, 0.0025σ]

ϵ ∼ N (0, Idc)

c̄ij =

(
0.05
√
p
Bxi + 0.1

)deg

+ Lf + 0.01σϵ,

where dx, dc are the dimensionality of the input features x and the cost vector c. The polynomial
degree reflects the level of non-linearity between the feature and the price vector. In Portfolio, c
represents the asset prices and the dimension of ci is the number of assets.

The non-linear, risk-sensitive optimization problem in Portfolio Management is then formulated as,

w⋆(x) := min
w

CVaRp(c|x)[−cTw + wTΣw;α]

s.t. w ∈ [0, 1]n, 1Tw ≤ 1,
(10)

where Σ = LLT +(0.01σ)2I is the covariance over the asset prices c, and the quadratic term wTΣw
reflects the amount of risk.

B.2 SYNTHETIC: FRACTIONAL KNAPSACK

In the Knapsack experiment, we generate the synthetic data as follows:

xi ∼ N (0, Idx),

Bij ∼ Bernoulli(0.5),
Lij ∼ Uniform[−0.0025σ, 0.0025σ]

ϵ ∼ N (0, Idc)

c̄ij =

(
0.05
√
p
Bxi + 0.1

)deg

+ Lf + 0.01σϵ,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where dx, dc are the dimensionality of the input features x and the cost vector c.

The optimization problem in Knapsack is formulated as:

w⋆(x) := min
w

CVaRp(c|x)[−cTw;α]

s.t. w ∈ [0, 1]n, pTw ≤ B,
(11)

where p ∈ Rn and B > 0 represent the capacity and weight vector, respectively.

B.3 SYNTHETIC: SHORTEST-PATH

In the Shortest-Path experiment, we generate the synthetic data as follows:

xi ∼ N (0, Idx),

Bij ∼ Bernoulli(0.5),
ϵij ∼ Uniform[0.5, 1.5]

c̄ij =

[
1

3.5deg

(
1
√
p
Bxi + 3

)deg

+ 1

]
· ϵji ,

where dx, dc are the dimensionality of the input features x and the cost vector c. The polynomial
degree reflects the level of non-linearity between the feature and the price vector.

The optimization problem in Shortest-Path is formulated as:

w⋆(x) := min
w

CVaRp(c|x)[c
Tw;α]

s.t. w ∈ [0, 1]n,
(12)

where cTw represents the cost of the selected path, and the cost vector cji is defined as follows:

cji =

[
1

3.5deg

(
1
√
p
Bxi + 3

)deg

+ 1

]
· ϵji ,

where B is a random matrix, and ϵji is the noise component.

The features xi ∈ Rdx follow a standard multivariate Gaussian distribution, and the uncertain
coefficients cji exist only on the objective function, meaning that the weights of the items remain
fixed throughout the dataset. The parameters include the dimension of resources k, the number of
items m, and the noise width.

B.4 REAL DATASET: ENERGY-COST AWARE SCHEDULING PROBLEM

In this task, we consider a demand response program in which an operator schedules electricity
consumption pt over a time horizon t ∈ Ωt. The objective is to minimize the total cost of electricity
while adhering to operational constraints. The electricity price for each time step is denoted by πt,
which is not known in advance. However, the operator can schedule the electricity consumption pt
within a specified lower bound Pt and upper bound P t. Additionally, the total consumption for the
day, denoted as P sch

t , must remain constant. This assumes flexibility in shifting electricity demand
across time steps, provided the total demand is met.

The optimization problem, assuming perfect information about prices πt, can be formulated as:

min
pt

CVaRπ

[ ∑
t∈Ωt

πtpt;α
]
,

subject to the constraints:
Pt ≤ pt ≤ P t, ∀t,∑
t∈Ωt

pt =
∑
t∈Ωt

P sch
t .
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Algorithm 1 Learning Algorithm for Gen-DFL
Input: Dataset D = {(xi, ci)}Ni=1, CGM pθ(c|x), learning rate η, regularization ratio γ, sampling
size K, risk-level α, a proxy model q(c|x) trained on D.
while not converged do
{ck}Kk=1 ∼ pθ(c|x); Nk ← number of ck that satisfy 1{f(ck, w) ≥ VaRα}

w⋆
θ ← argmin

w

1
Nk

K∑
k=1

f(ck, w)1{f(ck, w) ≥ VaRα};

ℓ(θ; q, α)← 1
n

n∑
i=1

Regretθ,q(xi;α) + γ · ℓgen(θ);

θ ← θ − η · ∂ℓ/∂θ;
end while

Here, Pt ≤ pt ≤ P t ensures the consumption at each time step is within the allowed bounds, while
the equality constraint guarantees that the total electricity consumption remains fixed across the time
horizon.

This setup reflects the practical challenges of demand-side electricity management, where prices
are uncertain, and demand shifting across time steps provides opportunities for cost reduction while
maintaining overall consumption levels. The problem serves as a testbed for evaluating optimization
approaches under uncertain electricity prices and operational constraints.

B.5 COVID RESOURCE ALLOCATION

The COVID-19 pandemic has highlighted the challenges policymakers and epidemiologists face
in planning for surges in medical resource demand, such as hospital beds. As the number of
infected patients increases, accurate forecasts of hospitalizations become critical for effective resource
allocation. To achieve this, epidemiological models based on Ordinary Differential Equations (ODEs)
are often employed to capture and forecast the dynamics of infectious disease outbreaks. These
forecasts are then used as guidance for planning future resource allocation.

In this task, we focus on the optimization problem of hospital bed preparation during a pandemic,
a critical task for ensuring adequate medical infrastructure. Specifically, the goal is to decide how
many hospital beds a ∈ R7 to allocate for the next seven days based on the forecasted number of
hospitalized patients y ∈ R7. The optimization objective combines linear and quadratic costs to
account for both over-preparation ([ai − yi]+) and under-preparation ([yi − ai]+) of hospital beds,
ensuring both efficiency and safety in resource allocation.

The optimization problem is formulated as:

min
a∈R7

7∑
i=1

cb[ai − yi]+ + ch[yi − ai]+ + qb([yi − ai]+)
2 + qh([ai − yi]+)

2,

where cb and ch represent the linear cost coefficients for over- and under-preparation, while qb and qh
represent the quadratic penalty coefficients for the same. These terms reflect the trade-offs between
allocating too many beds, which leads to wasted resources, and too few beds, which risks inadequate
care for patients.

This formulation integrates ODE-based forecasts to guide decision-making, enabling a data-driven
approach to resource planning under uncertainty. The problem is designed to balance competing
objectives effectively, ensuring sufficient resources while minimizing waste during critical periods of
high demand.

C IMPLEMENTATION

C.1 ALGORITHM

The details of Gen-DFL implementation can be found in Algorithm 1 .
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Task Method Learning Rate Variance σ Dimension d Training Size β

Portfolio

Pairwise 10−3 20 50 320 -
Listwise 10−3 20 50 320 -

NCE 10−3 20 50 320 -
MAP 10−3 20 50 320 -
SPO 10−3 20 50 320 -

MSE (PTO) 10−3 20 50 320 -
Gen-DFL 10−3 20 50 320 10.0

Knapsack

Pairwise 10−3 20 50 320 -
Listwise 10−3 20 50 320 -

NCE 10−3 20 50 320 -
MAP 10−3 20 50 320 -
SPO 10−3 20 50 320 -

MSE (PTO) 10−3 20 50 320 -
Gen-DFL 10−3 20 50 320 10.0

Shortest-Path

Pairwise 10−1 5 25 320 -
Listwise 10−1 5 25 320 -

NCE 10−1 5 25 320 -
MAP 10−1 5 25 320 -
SPO 10−1 5 25 320 -

MSE (PTO) 10−1 5 25 320 -
Gen-DFL 10−3 20 50 320 10.0

Table 2: Hyperparameters and Problem Configurations

C.2 HYPERPARAMETER CONFIGURATIONS

Table 2 summarizes the hyperparameter settings and problem configurations across different tasks
and baselines. For all methods, we maintain a consistent number of training samples (n = 320) and
input dimensionality (d = 50 for Portfolio and Knapsack, d = 25 for Shortest-Path) to ensure a fair
comparison. The learning rates vary across tasks, with a higher value (0.1) used for the Shortest-Path
problem, reflecting its different optimization landscape. The noise scale σ remains fixed at 20 for
Portfolio and Knapsack, while a lower value (σ = 5) is used for Shortest-Path to account for its
different problem structure.

For Gen-DFL, we introduce an additional DFL loss weight β which controls the balance between the
decision-focused objective and the negative log-likelihood (NLL) regularization, so that

ℓGen-DFL(θ; q, α) := β · Ex[Regretθ,q(x;α)] + γ · ℓgen(θ).

Unlike baseline Pred-DFL models, which optimize directly over point estimates, Gen-DFL leverages
generative modeling and requires careful tuning of β, γ to ensure stable training. The uniformity in
hyperparameter selection across methods helps isolate the impact of different learning paradigms.

D COMPUATIONAL COMPLEXITY

Regarding training cost, our method scales linearly with the number of Monte Carlo samples used
in the sample average approximation (SAA). Our experiments on a consumer-grade Apple M2
CPU show: with 200 generated samples per decision, Gen-DFL is roughly five times slower to
train than Pred-DFL, and with 800 samples it can be up to twenty times slower. In the portfolio
experiment, for example, training Pred-DFL takes about 8 minutes, whereas Gen-DFL with 200
generated samples takes roughly 40 minutes. This overhead stems from our desire to model the full
conditional distribution p(c|x) expressively; each additional sample improves the approximation of
the CVaR but also increases runtime. We emphasize that this computational overhead does not pose
a significant drawback since inference typically relies on pre-trained models rather than real-time
training.
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E STATISTICAL ANALYSIS

Task Setting p-value (Gen-DFL vs 2Stage) p-value (Gen-DFL vs SPO+)
Portfolio Deg-2 < 0.0001 < 0.0001
Portfolio Deg-4 < 0.0001 < 0.0001
Portfolio Deg-6 < 0.0001 < 0.0001
Portfolio Deg-8 < 0.0001 < 0.005
Knapsack Deg-2 0.79 0.61
Knapsack Deg-4 0.80 0.43
Knapsack Deg-6 0.59 0.95
Knapsack Deg-8 0.83 0.77
Shortest Path Deg-2 < 0.0001 0.085
Shortest Path Deg-4 < 0.0001 0.038
Shortest Path Deg-6 < 0.0001 0.046
Shortest Path Deg-8 < 0.0001 0.006
Energy – 0.003 0.004

Table 3: Comparison: Gen-DFL vs 2Stage (PTO) and SPO+
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