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Abstract

Generalization in reinforcement learning (RL) is of importance for real deployment
of RL algorithms. Various schemes are proposed to address the generalization
issues, including transfer learning, multi-task learning, meta learning, as well as
robust and adversarial reinforcement learning. However, there is not a unified
formulation of various schemes and comprehensive comparisons of methods across
different schemes. In this work, we propound GiRL, a game-theoretic framework
for generalization in reinforcement learning, where a RL agent is trained against
an adversary over a set of tasks, over which the adversary can manipulate the
distributions within a given threshold. With different configurations, GiRL is
capable of reducing the various schemes mentioned above. To solve GiRL, we
adapt the widely-used method in game theory, policy space response oracle (PSRO)
framework with three significant modifications as follows: i) we adopt model-
agnostic meta learning (MAML) as the best-response oracle, ii) we propose a
modified projected replicated dynamics, i.e., R-PRD, which ensures the computed
meta-strategy for the adversary falls in the threshold, and iii) we also propose
a protocol of few-shot learning for multiple strategies during testing. Extensive
experiments on MuJoCo environments demonstrate that our proposed method
outperforms state-of-the-art baselines, e.g., MAML.

1 Introduction

In terms of real world deployment of reinforcement learning (RL) algorithms, it’s critical for RL
models to perform robustly on unseen test scenarios. Various schemes are proposed to tackle this
generalization issue [KZGR21], including transfer learning, multi-task learning, meta learning, robust
and adversarial reinforcement learning. Transfer learning focuses on transferring the policy to a new
task without seeing before [PY09], multi-task learning intends to learn a policy which can perform
well on several tasks [Rud17], while meta learning, i.e., ”learning to learn”, tackles the cases of
quickly adapting a trained policy to new tasks [FAL17]. Different from previous schemes, robust
and adversarial reinforcement learning considers to improve the agent’s performance under attacks
from the adversary or uncertainties from the real world [PDSG17]. The considered attacks include
attacking on both the agent’s body and observations. Though these schemes are able to handle
generalization issues, they are often regarded as different research fields. Thus, there lacks a unified
formulation of generalization in RL and their methods are not well compared across different fields.
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To narrow the gaps across different research fields, in this work, we leverage the game-theoretic
methodology to provide a unified perspective of the generalization in RL, which we term as GiRL.
Specifically, GiRL considers the generalization as the game played between an RL agent and an
adversary, where the agent learns to perform well on a set of tasks while the adversary is to manipulate
the distribution (within a threshold) over tasks to decrease the agent’s performance. The number
of tasks can be finite as in multi-task learning, or infinite as in robust learning and with different
configurations, GiRL can reduce the different schemes mentioned above.

To construct GiRL, we adapt the widely-used policy space response oracle (PSRO) in game theory.
PSRO starts with a set of randomly initialized policies, i.e., RL agents, and iteratively add new
policies into consideration through the best-response oracle, which computes the best-response of
the agent against a set of tasks under a specific distribution. We make three critical modifications
to PSRO for GiRL: i) we use model-agnostic meta learning (MAML) as the best-response oracle,
rather than the naive RL algorithms, e.g., PPO, where MAML demonstrates its superior performances
against a set of tasks, ii) we propose a modified projected replicated dynamics (PRD) which ensures
the computed meta-strategy of the adversary fall in the threshold (which is also used during the
evaluation), and iii) we also propose a protocol for the few-shot learning of the multiple strategies
during testing. Extensive experiments are performed on multiple MuJoCo environments, such as
AntVel and AntPos to demonstrate that our proposed methods can outperform existing baselines.

2 Related Works

In this section, we present a brief overview of related works. There are mainly four lines of research
related to our works, reinforcement learning, multi-task/transfer/meta learning, robust and adversarial
reinforcement learning and game-theoretic methods for machine learning.

Reinforcement Learning. Deep reinforcement learning (DRL) is widely applied to solve complex
decision-making tasks. Most of the DRL methods depend on the temporal-difference learning, which
learns the state-vale function by bootstrapping. Examples of off-policy DRL methods, where policies
are trained under data collected by other policy, include DQN [MKS+15], A3C [MBM+16] and
SAC [HZAL18]. While there are only two widely used on-policy DRL methods, i.e., the policy is
trained under data collected by itself: TRPO [SLA+15] and PPO [SWD+17], among which PPO is
developed as a refinement of TRPO and both methods rely on the usages of trust regions. TRPO
serves as the backbone algorithm in our experiments.

Multi-task/Transfer/Meta Learning. The three schemes, multi-task learning, transfer learning
and meta learning, are often regarded as related fields, while there are some slightly differences in
their configurations. Multi-task learning focuses on learning an agent which can perform well across
different tasks, transfer learning is that training an agent on one task and transfer the agent’s policy to
another task, while meta learning focus on improving the learning on new tasks with the knowledge
learned from existing tasks. Various methods include policy distillation, i.e., distilling the knowledge
of an expert or a set of experts to a student policy via knowledge distillation [HVD+15, RCG+16,
PBS16] and representation learning methods that transfer the learned feature representations to
facilitate the policy learning [DGD+17, BBQ+18]. We refer [ZLZ20, GRK+21, KZGR21] for
detail reviews of these methods. Among the various methods proposed in the literature, Model-
Agnostic Meta Learning (MAML) is one of the most notable methods, which demonstrates its
superior performance on various tasks [FAL17, RRBV19]. In this work, we provide a game-theoretic
perspective of these learning schemes, where an adversary is introduced to manipulate the task
distribution and with different assumptions of the adversary, we can obtain the different schemes.

Robust and Adversarial Reinforcement Learning. Robustness is another important measure for
the generalization, which tries to achieve good performance under uncertainties or adversarial attacks.
And it becomes even more critical when the policy is represented by neural networks, because neural
networks are vulnerable to small perturbations [PDSG17]. One of the earliest work to investigate
the robustness in deep RL is [PDSG17], in which an adversary is introduced into training, who
has the power to attack the body of the RL agent. They mainly follows the adversarial training
process, where the RL agent and the adversary are trained alternatively. Subsequent works include
increasing the diversity of the policies [VDP+20, GDW+19] and considering different perturbations
by the adversary [ZCBH20]. However, the training of RARL is often unstable because a strong
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adversary will largely decrease the agent’s performance and make the training unsuccessful [ZHB20].
Therefore, we can leverage game-theoretical methods to stabilize the training. Furthermore, instead
of only considering the specific attacks, introducing an adversary which can manipulate the task
distribution can provide a more general framework for the generalization in RL.

Game-theoretic Methods for Machine Learning. Game theory provides a natural framework
to model the interactions between two competitive players, such as poker [BS18], Go [SHM+16]
and even StarCraft II [VBC+19]. A simple yet powerful framework, policy space response ora-
cle (PSRO), [LZG+17, MOR+20] extends the widely-used double oracle (DO) method [MGB03,
JKV+11] to deep version where a RL-based oracle is used to compute the best-response because
the computing of best-response is reduced to an optimization problem when the opponent is fixed.
The basic idea of PSRO is to start with a set of heuristic or randomly policies and iteratively add the
best-responses into the policy set. The main advantage of PSRO is that it can approximate the equi-
librium solution without explicitly enumerating all policies. Thus, PSRO can also be applied to game
with continuous actions. PSRO as well as DO framework are used to solve large-scale normal-form
and extensive-form games such as security games [TNT12, JKV+11], poker games [WBB09] and
search games [BKLP12] and they are widely used in various disciplines. Recently, DO is successfully
applied to generative adversarial networks (GAN) [AWY+21], which demonstrates the potential of
game-theoretic methods in improving the performance of traditional machine learning methods on
problems with competitive players. In this paper, we exploit the framework of PSRO for GiRL with
modifications in the best-response oracle and meta-solver.

3 Preliminaries

In this section, we present the preliminaries of game theory, Markov Decision Process (MDP) and
the formulation of GiRL.

Game Theory. A normal-form game is a tuple (A, U,N) where N = {1, . . . , n} is a set of players,
A =

∏n
i=1Ai is a pure strategy space with pure strategiesAi for each player i ∈ N and U : A → Rn

is a payoff table for each joint policy played by all players. Each player chooses strategy among Ai

to maximize own expected utility, or by sampling from a mixed strategy distribution πi ∈ ∆(Ai),
where π is known as the mixed strategy profile. The utility of the player i under mixed strategy

profile π gives ui(π) =
∑

a∈A Ui(a)
n∏

j=1

πj(aj). The canonical solution concept in game theory is

Nash Equilibrium (NE), in which no player can unilaterally deviate from the strategy to increase his
utility: a mixed strategy profile π forms an NE if

ui(π) ≥ ui(π−i, π
′),∀i ∈ N, π′ ∈ ∆(Ai) (1)

Computing NE in general-sum games is PPAD-Complete [DGP09], and even computing the NE in
two-player zero-sum games is non-trivial. Therefore, DO framework and its deep version PSRO are
proposed to compute the NE in games with large action and state spaces and even continuous action
and state spaces, in which case instead of enumerating all actions, DO iteratively adds new best-
responses into the restricted games and PSRO utilizes RL methods to compute new best-responses.

Markov Decision Process (MDP). In RL, a task is often represented by a Markov decision process
(MDP). A MDP is defined by a tuple: (S,A,P, r, γ, T ), where S = ⟨s⟩ is the state space and
A = ⟨a⟩ is the action space. P : S × A × S → [0, 1] is the transition function which specifies
that the probability of reaching s′ ∈ S at the next state, when taking a ∈ A at the current s ∈ S,
r : S ×A×S → R is the reward function which specifies the reward of the agent when taking a ∈ A
at s ∈ S and reach s′ ∈ S, γ ∈ (0, 1] is the discount factor and T is the time horizon3. In a MDP,
agent receives current state st ∈ S from the environment and performs an action at ∈ A according
to the policy πθ : S ×A → [0, 1], which is parameterized by θ. The objective of the agent is to learn
an optimal policy π∗ := argmaxθ Eπθ

[∑T
t=0 γ

trt|s0
]
, where s0 is the initial state of the MDP.

Contextual MDP. We follow [KZGR21] to use the contextual Markov decision process (CMDP)
as our formalism of GiRL. Specifically, a CMDPM is a MDP whose states can be decomposed

3When γ < 1, T can be ∞.
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into tuples s = (c, s′), where s′ ∈ S is the underlying state and c ∈ C is referred as context for the
state which is constant during an episode4. Each context corresponds to a different situation that
the agent might be in, with slightly difference in dynamics and rewards, and some shared structure
across which an agent can generalize. During training, the agent has access to a subset of contexts
Ctrain ⊆ C with a known distribution p0 over Ctrain5. When testing, we consider that there is an
adversary who manipulates the test distribution p1 ∈ δ(C) over all contexts for evaluation. We assume
that δ(C) = {p | D(p, p0) ≤ ϵ}, where D(·, ·) is the distance between the two distributions, e.g.,
Kullback–Leibler (KL) divergence, and ϵ is the perturbation budget. During testing, we conduct
K-shot (K ≥ 1) evaluation for the agent, so that average performance is estimated over K-shot
or the last shot. The evaluation vector α tracks the weights for few-shot evaluation. We intend to
train a set of policies F = {fi} for the agent, where f is a specific policy maps the observation to
the action. π is the distribution over F . We assume that |F| ≤ M where if M = 1, there is only
one policy allowed as in meta learning. The performance of the agent according to the evaluation
protocol is denoted as U(c,F) under context c. We assume that the adversary intends to decrease the
performance of the agent, while the adversary can be bounded rational: a simple way to handle the
bounded rationality is to introduce a smooth parameter β between p0 and the optimal distribution
p∗1 = argminp′

1∈δ(C) p
′
1(c)U(c,F), i.e., the distribution for the adversary is p1 = βp0 + (1− β)p∗1.

Our goal is to maximize the performance of the agent during testing, i.e.,
∫
c∈C p1(c)U(c,F).

Table 1: Summary of the types of learning. For those types of learning with ϵ = 0, we can also add a
small perturbation, e.g., 1e− 5 to check whether the training can improve the performance.

Types of Learning Ctrain ϵ K α β

Robust learning C > 0 1 [1] 0
Adversarial learning C > 0 1 [1] 0
Multi-task learning C 0 1 [1] 1
Meta learning < C 0 > 1 [0, . . . , 1] 1
Transfer learning < C > 0 1 [1] 1

From GiRL to Various Learning Schemes. We summarize the relations of the different con-
figurations and various schemes mentioned above in Table 1. Specifically, the adversary is fully
random in multi-task/meta/transfer learning, because the training distribution and the test distribution
over tasks are the same and the agent can maximize the sum of the utilities obtained from different
tasks, and the adversary is fully rational in robust and adversarial reinforcement learning, where
the test distribution is intentionally selected to decrease the agent’s performance. The agent can
access to all the task in robust, adversarial, multi-task learning and can access partial of the tasks
in meta and transfer learning. The distribution shift of the task is considered in robust, adversarial
and transfer learning, and ignored in multi-task and meta learning. We note that different from the
multi-task/meta/transfer learning, robust and adversarial reinforcement learning do not explicit have
the set of the tasks, because the specific task that the agent need to complete is determined by the
adversary policy. However, we can regard the set of tasks as tasks induced by all possible adversary’s
policies. With different configurations of GiRL, we can easily reduce it to different learning scheme.
Therefore, GiRL enables us to handle various learning schemes in a unified framework and even
tackle configurations which are not considered in current literature. Thus, GiRL opens new venues
for generalization in reinforcement learning.

4 The Proposed Method

GiRL formulates the generalization in reinforcement learning as a game between two players, the
agent and the adversary. To compute the optimal policies of both players, we leverage the widely-used
framework, policy space response oracle (PSRO), for GiRL, i.e., PSRO-GiRL, which is a modified
PSRO framework that can handle the following issues: i) deriving the best-response against a set of
tasks with MAML rather than the naive RL methods, ii) computing the meta-strategies in a restricted
strategy space with a restricted projected replicator dynamics (R-PRD), and iii) adopting few-shot

4c is the index of the context when C is discrete and a context vector when C is continuous.
5We note that a distribution over Ctrain is also a distribution over C.
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learning of the learned strategies during evaluation. We also design our evaluation protocol for fair
comparisons. We note that though GiRL provides a general framework for RL generalization, in
this paper, we only focus on the case with finite number of tasks, agent that can access all tasks, i.e.,
Ctrain = C and rational adversary, i.e., β = 1. The details will be presented in the rest of this section.

Start

Restricted Game

Solve with R-PRD

NE=⟨(1/2, 1/2), (1/3, 2/3)⟩

Compute Best Response with MAML

Expand Restricted Game

New response f is added

Terminate

Best responses do not improve results

End

p1(1) p1(2)
π(1) 2 -1
π(2) 0 3

Figure 1: An illustration of the flow of PSRO-GiRL. Figure adapted from [LZG+17].

Algorithm 1 Policy space response oracle (PSRO) for GiRL

1: Initialize the uniform distribution p1 over tasks as in MAML, an empty policy set F , the meta-
strategy distribution π for the agent, and the meta-game payoff table U

2: while loop ∈ {1, 2, . . . } do
3: Compute the agent’s best-response f with MAML against p1 and F = F ∪ {f}
4: Augment the meta game with the new response f to obtain the updated U
5: Compute the mixed strategies of the agent and the distribution over tasks ⟨π, p1⟩
6: end while

Policy Space Response Oracle (PSRO). PSRO is proposed for computing NE in games with
large-scale, even continuous, action and state spaces. We present the general proceduce of PSRO-
GiRL in Algorithm 1. The normal PSRO starts with the randomly initialized policies. However, in
this work, we consider the case with finite number of tasks. Therefore, we can initialize the task
distribution p1 as a uniform distribution (Line 1). Then, we can compute the best-response of the
agent. The normal PSRO uses RL methods, e.g., PPO, to compute the optimal policy against a set of
adversary’s policies, which corresponds to the distribution over the tasks. However, We use MAML
as our best-response oracle (Line 3), which demonstrates its superiority against a set of tasks (which
is detailed below). After obtain the best-response f , we evaluate the new policy on the tasks and
augment the meta-game payoff table U (Line 4). Then, we apply the restricted projected replicator
dynamics (R-PRD) to compute the meta-strategies, i.e., the distributions over the responses computed
π and the distribution over tasks p1 (Line 5). Then the algorithm will terminated if the max loop is
reached, otherwise a new loop will be started. The current PSRO framework can be easily extended to
include i) more criteria for determining the termination, ii) more solution concepts to be considered,
e.g., α-rank distribution [MOR+20], and ii) more advanced response oracle, e.g., ANIL [RRBV19].
More advanced techniques will be considered in future works.

Algorithm 2 Model Agnostic Meta Learning (MAML) as the Response Oracle

1: Given the distribution p1 over tasks, a policy f parameterized by θ.
2: while Not terminated do
3: Sample a set of tasks Csample from Ctrain according to p1
4: for task c in Csample do
5: Sample K trajectories Dc from c

6: Evaluate compute the gradient∇θLc where Lc = −EDc [
∑T

t=0 γ
trt]

7: Update the policy with the gradient and obtain f ′
c: θ′c = θ − α∇θLc

8: Sample K new trajectories D′
c with f ′

c
9: end for

10: Update the policy using D′
c,∀c ∈ Csample: θ = θ − β∇θ

∑
c∼p1(c)

Lc(f
′
c)

11: end while
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MAML as the Response Oracle. We choose MAML as the response oracle to compute the best-
response of the agent at each loop, given that MAML outperforms naive RL methods, e.g., TRPO, in
dealing with multiple tasks. We present the procedure of MAML in Algorithm 2. With the given
task distribution compute by previous loop p1, computing the best-response is equivalent to finding
a policy which can achieve good performances on multiple tasks. Specifically, MAML sample a
set of tasks from the training set of tasks Csample according to the distribution p1 (Line 3) and then
for each sample tasks, MAML conducts the update of the policy to obtain a task-specified policy f ′

c
(Lines 5-7) and then use the new policy to sample the trajectories D′

c. After the inner loop, all the
sampled trajectories of the sampled tasks is used to update the policy f (Line 10). In the experiments,
we use TRPO as the backbone of the MAML update.

Meta-Solver for Restricted Strategy Space. At each loop of PSRO-GiRL, we need to compute the
strategies of the agent and the adversary. The traditional solution methods such as linear program can
not be directly applied to our case because we introduce the constraints between the manipulated task
distribution p1 and the known distribution p0. Therefore, novel meta-solver is needed. Inspiring by
the projected replicator dynamics (PRD) proposed in [LZG+17], we propose restricted PRD (R-PRD)
to handle the restriction of the strategy space. Specifically, given the payoff table U , for convenience
we represent the payoff tables of the agent and the adversary as A and B, respectively. The replicator
dynamics [BTHK15] update the strategies of both players ⟨π, p1⟩ as:

dπ(i)

dt
= π(i)[(Ap1)i − π⊤Ap1] (2)

dp1(j)

dt
= p1(i)[(π

⊤B)j − π⊤Bp1] (3)

where ⊤ means transpose. The PRD is proposed to ensure the exploration during the update,
thus improving the convergence of the learning, where a projection operator Proj(·) is introduced
to map the action with the probability lower than a threshold to the threshold [LZG+17], where
Proj(x) = argminx′∈δϵ{||x′ − x||} and δϵ = {x|x(i) > ϵ,

∑
i x(i) = 1}. In our case, we need to

ensure not only the exploration, but also the strategy of the adversary, i.e., distribution over tasks,
fall in the set δ(C). Therefore, in this paper, we focus on the∞-norm of the distribution, where we
introduce the upper bound p and the lower bound p of the probability that a task can have. Therefore,
after each update with PRD, we clip each element in the strategy p1 with [p, p] and normalize the
sum of the elements into 1. We repeat this process until the p1 falls in δ(C) (Line 5). Then we use the
projection operator to further refine the strategies of both players for exploration and start a new loop
(Line 7). The detailed procedure is presented in Algorithm 1.

Algorithm 3 Restricted Projected Replicator Dynamics (R-PRD) as meta solver

1: Given the current payoff table U , and the uniform distribution over policies and tasks ⟨π, p1⟩
2: while Not converged do
3: Update ⟨π, p1⟩ with Eqs. (2)-(3).
4: while p1 ̸∈ δ(C) do
5: p1(i)← CLIP(p1(i), p, p),∀i
6: end while
7: π ← Proj(π), p1 ← Proj(p1)
8: end while

Fine-Tuning during Testing. The above parts focus on the training where no few-shot learning
is considered. Different from MAML that returns a policy, GiRL returns a set of policies, e.g., 5.
Therefore, for few-shot learning, we assume that during testing, all policies are trained by few-shot
learning, which is mostly in line with the evaluation in game theory where the mixed strategies will
be evaluated for enormous times to compute the expected utility. We can also consider that within the
limited interaction, how to efficiently fine-tuning the multiple policies, which will be investigated in
future works. And then the agent will use the same π during training, i.e., we do not recompute the
meta-strategies of the agent. During testing, we assume that the adversary can observe the agent’s
updated policies and find the optimal distribution p1 that decreases the performance of the agent, i.e.,
the adversary can update the meta-strategy during testing. The finding of the optimal p1 is also using
Algorithm 1 with the fixed agent. We choose this as this is the worst case for the agent during testing.
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5 Experimental Evaluation

5.1 Experiment Setup

To evaluate PSRO-GiRL on RL problems, we consider two widely-used tasks, Ant Velocity and Ant
Position, in MuJoCo environment. We design experiments on these sets of tasks, and compare the
performance of PSRO-GiRL against the baseline MAML. Each of the model trained by PSRO-GiRL
or MAML is a neural network policy, with two hidden layers of size 100, and with ReLU activation.
We use trust-region policy optimization (TRPO) as the meta-optimizer, which is an on-policy RL
method based on trust regions and is widely used in meta-learning. To be mentioned, PSRO-GiRL
consists of two cases, i.e., *GiRL and GiRL, in which *GiRL we reinitialize the policy network at
each iteration, while in GiRL we continue to train the policy network without reinitialization. All
algorithms are implemented by PyTorch [PGM+19] and all experiments are performed on a 64-bit
machine with 56 Intel(R) Xeon(R) CPU E5-2683 v3 CPUs and 4 NVIDIA Tesla V100 GPUs.

Evaluation Protocol. Given that PSRO-GiRL has multiple policies, while MAML only has one
policy, we leverage the following protocol for fair comparisons: Consider that we have M policies,
where M = 1 in MAML and M > 1, e.g., 5, in PSRO-GiRL (policies with positive probabilities
in the final equilibrium strategy). Assume we have N tasks, and conduct K-shot learning, where
K = {0, 1, 3, 5}, of all policies on these tasks, and then evaluate the policies. Therefore, we obtain
M ×N matrices, i.e., 1×N in MAML and 5×N in PSRO-GiRL. Then, we multiply the matrix
with the policy distribution, so both MAML and PSRO-GiRL will get 1×N reward matrix R. Given
that the train distribution over environments is p0, we let the adversary manipulate the distribution,
computed by Algorithm 5, where the agent is fixed, against the reward matrices for both MAML and
PSRO-GiRL, i.e., p1 · R. Therefore, we select the worst distribution over tasks p1 to evaluate the
agent, then calculate the average returns for both MAML and PSRO-GiRL.

5.2 Results

Figure 2: Ant environment.

To study the validity of PSRO-GiRL for complex deep RL
problems, we adopt ant locomotion(including Ant Velocity and
Ant Position) as our meta-RL experiment and generate a set
of high-dimensional locomotion tasks with MuJoCo simulator.
In training process, we set hyper-parameters train_max and
train_min as upper and lower limits for the probability distri-
bution of the tasks to make sure the probability corresponding
to each task is within the range controlled by the upper and
lower limits, while the sum of the probabilities of all tasks
always equals to 1. Three runs were carried out under each
setup with 3 different seeds. In testing process, test_max and
test_min similarly serve as hyper-parameters for upper and
lower limits. The saved model were fine-tuned on its corre-
sponding task for K times (K-shot) before evaluation, where
K is a hyper-parameter. The average and standard deviation values of each run are calculated.

Results on AntVel. For experiments deployed in ant environment with target velocity (AntVel), the
rewards of the experiments are defined as the difference between the current velocity of the agent
and a velocity goal in the range of 0.0 to 3.0. To maximize the diversity of the initialized velocity
goal, we sample 20 different velocity values at equal interval in this range for the 20 generated tasks.
It can be observed from the experimental results shown in Table 2 that our proposed *GiRL and
GiRL both show significant improvement over MAML. In detail, the analysis of the results can be
summarized as follows: 1) The return values of both MAML and our *GiRL decrease as test_max
increases from 0.1 to 0.3. However, *GiRL decreases more gently, indicating that our methods have
more balanced performance in dealing with multiple tasks. 2) For fixed test_max and increased
train_max, GiRL’s performance improves, which shows that policies trained using GiRL can learn
more information when increasing distribution freedom. The standard deviation of GiRL decreases
along with the rise of train_max, which justifies that the extra information learned also promotes
model robustness. However, *GiRL is more prominent when train_max equals to 0.2, comparing to
0.1 and 0.3, which shows that the initialization of each iteration makes the policy lack accumulation
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Table 2: Experiments on AntVel with 20 diverse tasks.

Shots Test max Train max MAML *GiRL (Ours) GiRL (Ours)

0-shot

0.1
0.1

-46.23 (3.31)
-32.11 (6.19) -28.84 (6.47)

0.2 -27.89 (6.09) -24.76 (12.44)
0.3 -32.71 (7.73) -21.71 (2.90)

0.2
0.1

-67.50 (5.15)
-42.41 (10.42) -39.13 (10.86)

0.2 -36.84 (9.74) -33.00 (18.13)
0.3 -42.76 (8.47) -28.04 (2.24)

0.3
0.1

-77.54 (6.71)
-47.81 (14.97) -43.77 (11.78)

0.2 -39.30 (10.36) -36.84 (19.81)
0.3 -46.07 (8.76) -29.68 (1.31)

3-shot

0.1
0.1

-50.65 (14.91)
-29.65 (1.44) -32.21 (3.35)

0.2 -28.60 (1.77) -29.16 (17.55)
0.3 -31.23 (7.92) -21.18 (4.93)

0.2
0.1

-68.85 (26.13)
-38.09 (2.91) -44.65 (5.83)

0.2 -36.37 (1.00) -37.91 (24.76)
0.3 -40.38 (10.23) -27.37 (5.46)

0.3
0.1

-76.14 (31.39)
-42.30 (4.95) -50.76 (8.92)

0.2 -39.24 (0.48) -41.68 (28.03)
0.3 -43.67 (12.04) -29.31 (5.96)

5-shot

0.1
0.1

-39.61 (3.98)
-30.90 (2.30) -24.47 (4.00)

0.2 -28.06 (4.60) -23.87 (7.43)
0.3 -30.77 (8.03) -21.44 (5.19)

0.2
0.1

-55.74 (5.77)
-39.68 (3.69) -31.74 (7.96)

0.2 -37.25 (6.83) -29.69 (7.82)
0.3 -40.39 (9.17) -29.50 (5.74)

0.3
0.1

-61.55 (6.15)
-43.68 (3.34) -35.31 (10.24)

0.2 -40.47 (7.44) -32.56 (8.37)
0.3 -43.56 (8.56) -32.27 (5.43)

of the previous learning process, leading to insufficient learning of some tasks. 3) The return of
MAML increases more obviously than our *GiRL when adding fine-tuning process from 0-shot to
5-shot before evaluation. This shows that the policies obtained by our algorithm achieve a closer
performance to single-task learning on individual tasks comparing to MAML.

Results on AntPos. For experiments deployed in ant environment with target position (AntPos), the
reward of the experiments is defined as the L1 distance between the position of the agent and the target
position within the range of [−3.0, 3.0]2. We sample 20 bisection points on a circle with center [0, 0]
and radius 2.0 as the positions for 20 constructed tasks. Therefore, the initialization is largely diverse
and can effectively eliminate random deviation. It can be observed from the experimental results
shown in Table 3 that our *GiRL outperforms MAML under each training and testing setting, and
our GiRL is also competitive with MAML. Different from AntVel, the deep learning model trained
on AntPos is sensitive to the initialization, so that initializing the policy in each iteration has great
influence on the final results of our method. The accumulation learning in GiRL causes overtraining
and subsequent overfitting of the policy network. We conjecture the cause of this overtraining is
that when initializing with the trained policy in the previous loop, the policy cannot efficiently find
a good policy against the updated distribution over task. We also observe the *GiRL is robust to
the uncertainties of the test_max, i.e., our methods consistently perform better when the test_max
differs from train_max.

To summarize, the experiments on both AntVel and AntPos consistently show that: i) our PSRO-
GiRL methods consistently outperform MAML against the adversary who can manipulate the task
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Table 3: Experiments on AntPos with 20 diverse tasks.

Shots Test max Train max MAML *GiRL (Ours) GiRL (Ours)

0-shot

0.1
0.1

185.03 (40.72)
209.28 (1.34) 176.25 (29.80)

0.2 211.27 (14.92) 186.62 (48.99)
0.3 209.86 (4.46) 161.70 (37.96)

0.2
0.1

160.55 (46.81)
192.17 (9.49) 152.40 (23.81)

0.2 195.34 (16.65) 178.33 (50.34)
0.3 198.59 (10.53) 137.18 (32.42)

0.3
0.1

149.32 (48.14)
186.01 (14.38) 138.44 (18.34)

0.2 189.87 (18.83) 173.35 (52.05)
0.3 193.52 (13.83) 127.11 (27.01)

3-shot

0.1
0.1

192.47 (21.02)
207.96 (10.39) 163.13 (57.05)

0.2 222.71 (2.85) 184.87 (43.60)
0.3 214.51 (6.29) 178.26 (26.80)

0.2
0.1

167.59 (24.58)
185.51 (8.06) 129.35 (62.79)

0.2 210.28 (3.55) 166.69 (48.15)
0.3 201.60 (13.04) 144.82 (24.80)

0.3
0.1

158.69 (26.75)
180.51 (5.60) 114.94 (63.60)

0.2 206.41 (4.04) 159.56 (49.93)
0.3 198.33 (13.76) 128.43 (24.71)

5-shot

0.1
0.1

180.18 (40.47)
221.82 (13.51) 178.54 (64.28)

0.2 222.36 (12.12) 184.19 (52.49)
0.3 218.45 (13.09) 174.03 (42.38)

0.2
0.1

153.70 (41.22)
205.62 (13.93) 153.51 (68.96)

0.2 206.87 (10.22) 167.78 (49.47)
0.3 204.15 (10.36) 145.41 (30.90)

0.3
0.1

143.51 (43.27)
199.94 (14.72) 139.61 (70.94)

0.2 199.11 (11.79) 161.92 (49.39)
0.3 197.32 (10.01) 132.75 (25.48)

distribution, even with few-shot learning during evaluation, and ii) our methods are more robust in
terms of generalization, thus provide better framework for real life deployment of RL.

6 Conclusions

In this work, motivated by the intrinsic similarities of various learning schemes that investigate the
generalization in RL, we propose a game-theoretic framework GiRL, where an adversary is introduced
to manipulate the distribution over tasks, for this issue. PSRO is adapted for GiRL with MAML as the
best-response oracle and R-PRD for meta-solver. Extensive experiments on MuJoCo environments
demonstrate that our proposed methods achieve better performance over existing baselines.

Future Works. GiRL provides a general framework and there are many future directions worth
exploring: i) generalizing to infinite number of tasks, where this is the exact formulation in robust and
adversarial reinforcement learning as each adversary’s policy will determine a task, ii) generalizing
to unseen tasks, where the test tasks may never seen by the agent during training, which corresponds
to the transfer learning. To handle the first direction, we need to learn a compact representation of
the infinite number of tasks, i.e., mapping the task to a latent space. While for the second direction,
we may need to learn a model to generate the possible unseen tasks from the seen tasks during
training. We will leverage the model-based reinforcement learning methods [SAH+20] to improve
the generalization of reinforcement learning in the GiRL framework [AWL+21]. Other directions
such as the perturbation noise during training, the tasks across domains can also be explored.
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