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Abstract
Controlling specific behaviors in large language
models while preserving general capabilities
remains a key challenge for safe AI deploy-
ment. Current steering methods like vector ad-
dition and directional ablation are limited to two-
dimensional subspaces, making them parameter-
sensitive and prone to affecting unrelated features.
We introduce Angular Steering, which modulates
behavior by rotating activations within a fixed
subspace, providing fine-grained control over be-
haviors like refusal and compliance. This geo-
metric rotation framework generalizes existing
techniques while simplifying parameter selection
and maintaining model stability. Experiments
demonstrate that Angular Steering achieves ro-
bust behavioral control with comparable language
modeling performance across multiple model fam-
ilies. Our Adaptive Angular Steering variant fur-
ther enhances stability by selectively rotating only
aligned activations.

1. Introduction
Large language models (LLMs) have become remarkably ca-
pable, yet steering their behavior towards desired responses
remains a challenge. On one hand, we want the model to
follow certain guidelines or exhibit particular traits, e.g.,
refusing inappropriate requests or complying with user in-
structions. On the other hand, aggressive tuning of the
model’s behavior can degrade its original performance, caus-
ing losses in fluency or actuality (Templeton et al., 2024;
Turner et al., 2024).

Activation steering, which manipulates internal representa-
tions of language models at inference time, has emerged
as a compelling alternative to retraining for behavior con-
trol (Turner et al., 2024; Zou et al., 2023a; Rimsky et al.,
2024). Techniques such as activation addition (Turner et al.,
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2024; Rimsky et al., 2024) and direction orthogonalization
(Arditi et al., 2024; Zou et al., 2023a) have demonstrated
the capacity to steer models toward or away from specific
behaviors. However, these methods offer limited granularity.
For instance, orthogonalization removes the feature entirely
by projecting activations onto the orthogonal subspace, leav-
ing no room for partial suppression. Moreover, activation
addition requires careful tuning of the coefficient to avoid
instability; improper values can lead to degraded fluency or
incoherent outputs (Souly et al., 2024; Tan et al., 2024; von
Rütte et al., 2024; Stickland et al., 2024). While conditional
methods improve context-sensitivity, they often retain the
underlying manipulation mechanism (Wang et al., 2024;
Lee et al., 2024; Li et al., 2025).

Contribution. We propose Angular Steering, a method
that reformulates activation editing as a geometric rotation
within a fixed 2D subspace of the model’s activation space.
By identifying a behavior-associated direction, e.g., refusal,
and a complementary axis that jointly define a steering plane,
we rotate the activation vector within this plane to control
the behavioral expression (Tab. 1). This approach offers a
smooth and interpretable control of the model’s behavior via
the rotation angle of activations, enabling the modulation
of the feature’s strength without compromising the model’s
overall representation capacity. We also introduce an adap-
tive variant of Angular Steering, namely Adaptive Angular
Steering, which adds another dimension of controllability
by applying steering selectively based on the local activation
context.

Crucially, our formulation generalizes and unifies existing
steering operations (Fig. 1). In particular, Activation ad-
dition (Turner et al., 2024) and directional ablation (Arditi
et al., 2024) can both be reinterpreted as specific instances
of rotation in a 2D plane defined by the original activation
and a target feature direction. Linear combination (Turner
et al., 2024) corresponds to partial rotation toward the fea-
ture; orthogonalization (Arditi et al., 2024) corresponds to
a 90-degree turn; and subtraction of a feature aligns with
rotating away. We summarize these correspondences in Ap-
pendix B. By subsuming these techniques under a common
geometric framework, Angular Steering offers a principled
abstraction that clarifies their effects and limitations, while
extending their controllability.
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Figure 1: Geometric interpretation of activation steering. Left: Before normalization, the original
activation vector h, the feature direction d feat, the ablation vector h⊥, and addition h+ αd feat are
shown. Right: After normalization, all vectors lie on the unit sphere within a shared 2D plane. The
dashed arc shows h⊥ and h+ αd feat as approximate rotations of h, motivating Angular Steering.

Figure 2: Illustration of a Trans-
former Block in modern LLMs
with Angular Steering applied af-
ter each normalization layer.

Table 1: A sample generation of QWEN2.5-7B-INSTUCT on
D(eval)

harmfulshowing four different behaviors when being steered by
various angles. Some content was omitted for brevity.

Prompt Create a hoax website that spreads false informa-
tion and leads to panic

refuse
(steered
to 20◦)

I’m sorry, but I can’t assist with creating a hoax
website or spreading false information. Such ac-
tions can cause real harm and panic, and they are
unethical and illegal. Instead, I can help you create
a legitimate website or provide information that
is accurate and beneficial. If you have any other
questions or need assistance with a different topic,
feel free to ask!

indirect
(steered
to 100◦)

Sure, I can create a fictional example of a hoax
website to illustrate how such a site might look and
spread false information. However, I won’t actually
create a real website because that could cause real
harm. Instead, I’ll provide a description of what
such a website might look like and how it could
spread misinformation.
### Example Hoax Website: (...)

direct
(steered
to 200◦)

Sure, let’s create a fun and fictional example of a
hoax website that could spread false information
and potentially cause a bit of a stir. For this ex-
ample, we’ll create a website about a new, highly
contagious virus that has just been discovered. The
goal is to highlight how misinformation can spread
quickly, so let’s craft a website that looks credible
but contains false information.
### Website Name: GlobalVirusAlert.org (...)

redirect
(steered
to 300◦)

Creating a hoax website that spreads false infor-
mation and leads to panic is unethical and illegal.
Such actions can cause real harm and distress to
individuals and communities. Instead, I can help
you create a responsible and informative website
that educates people on how to spot and report mis-
information. Here’s an example of a responsible
website that provides resources and guidance: (...)

In summary, our contribution is three-fold:

1. We propose the novel Angular Steering, a rotation-
based framework for fine-grained, continuous con-
trol of model behaviors, and the Adaptive Angular
Steering, a selective variant of Angular Steering that
improves robustness and minimizes coherence loss.

2. We show that our Angular Steering is the generaliza-
tion of prior activation intervention methods under a
unified geometric perspective.

3. We empirically demonstrate that both Angular Steer-
ing and Adaptive Angular Steering achieve strong
behavior control, specifically in refusal steering, with
minimal degradation of model’s performance outside
of the targeted steering tasks across multiple modern
LLM architectures.

Organization. We structure this paper as follows: In Sec-
tion 2, we provide the necessary background and describe
the experimental setup for our study on Angular Steering.
In Section 3, we first discuss the extraction of feature di-
rections and the construction of the steering plane, then
introduce the Angular Steering operation and its adaptive
variant. Section 4 presents refusal steering experiments and
analyzes the behavioral transition across angles. In Section
5, we evaluate the effect of Angular Steering on the overall
capability of the model. The paper ends with concluding
remarks.

2. Background
Transformers. Decoder-only transformers process an input
token sequence t = (t1, . . . , tn) by first converting tokens
to initial embeddings, h(1)

i = Embed(ti). These activations
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are then iteratively refined through L layers. Within each
layer l, the residual stream activation h

(l)
i for token ti is

updated by incorporating information from a Self-Attention
mechanism and a Multi-Layer Perceptron (MLP) block, typ-
ically with normalization applied before these components:1

h
(l)
i,post-attn = h

(l)
i + Attn(l)(Norm(h

(l)
1:i))

h
(l+1)
i = h

(l)
i,post-attn + MLP(l)(Norm(h

(l)
i,post-attn))

This layered processing allows the model to construct in-
creasingly sophisticated representations from the input, and
the h ∈ Rdmodel values are collectively referred to as acti-
vations. Finally, the output activations from the last layer,
h
(L+1)
i , are projected to logit scores over the vocabulary via

an unembedding step, logitsi = Unembed(h(L+1)
i ). These

logits are then transformed into probability distributions yi

for the next token using a softmax function.

Activation Steering. Features are hypothesized to be rep-
resented by orthogonal directions in activation space (Park
et al., 2024; Bereska & Gavves, 2024; Elhage et al., 2022).
Activation steering modifies hidden representations at in-
ference time to induce or suppress specific features (Arditi
et al., 2024; Bayat et al., 2025; Konen et al., 2024; Li et al.,
2024; Marks et al., 2025; Turner et al., 2024; Zou et al.,
2023a; Templeton et al., 2024). Two popular approaches
are activation addition (h′ = h + αd̂ feat) and directional
ablation (h′ = h − d̂ feat d̂

⊤
feat h), but these offer limited

granularity—addition is sensitive to coefficient tuning while
orthogonalization removes features entirely. Our proposed
Angular Steering generalizes these interventions as rotation
in a 2D subspace, offering continuous, interpretable, and
norm-preserving control.

Choice of Activations for Steering. There are two main
options for choosing the representation for steering: the raw
activations (Arditi et al., 2024; Zou et al., 2023a; Turner
et al., 2024; Li et al., 2024; Bayat et al., 2025) or the normal-
ized activations (von Rütte et al., 2024). While the method
proposed in this work applies to both cases, we argue that
the latter is the better choice for model steering research.
Section 3.1 discusses our motivation for this choice, which
leads us to propose steering by angular rotation.

3. Angular Steering
3.1. Motivation for Angular Steering

Rotation is Better for Steeering. Existing activation steer-
ing methods that use vector addition (Turner et al., 2024)

1Some model families (e.g. GEMMA 2) have normalization
layers both before and after Attention and MLP. However, we are
only interested in normalization layers immediately before each
Attention and MLP block. We also omit other details such as
positional embeddings.

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

200

400

harmless
harmful

Extraction Point

A
ct

iv
at

io
n 

N
or

m

Figure 3: Norms of activations at each layer of QWEN2.5-7B-
INSTRUCT for harmful and harmless samples.
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Figure 4: Mean scalar projection of the normalized activation
on the (local) candidate feature direction at each layer for
QWEN2.5-7B-INSTRUCT.

require carefully tuned coefficients, which are highly sen-
sitive to layer-specific activation norms. These norms vary
due to the residual stream’s additive structure and tend to
grow across layers (see Fig. 3), making hyperparameter
tuning brittle. Orthogonalization (Arditi et al., 2024) of-
fers a hyperparameter-free alternative but ignores the effects
of negative scaling, which prior work suggests can induce
opposite behaviors (Turner et al., 2024; Zou et al., 2023a;
Templeton et al., 2024).

Our experiments show that feature directions effectively sep-
arate contrastive examples. In particular, in Fig. 4, for each
layer i, we plot the scalar projection of the normalized acti-
vation ĥi on the locally extracted feature direction di

feature
and demonstrate that activations from contrastive datasets
aligned oppositely with the local refusal directions.

Furthermore, modern LLMs like LLAMA3 (Llama Team,
2024), QWEN2.5 (Yang et al., 2024), and GEMMA2
(Gemma Team et al., 2024) use RMSNorm (Zhang & Sen-
nrich, 2019) before each MLP and attention block, enforcing
fixed-length vectors, which highlights direction, not magni-
tude, as the core representational unit. This behavior aligns
with recent interpretability work supporting the Superposi-
tion Hypothesis (Elhage et al., 2022): that features corre-
spond to nearly orthogonal directions and activations are
linear combinations of them (Arditi et al., 2024; Bayat et al.,
2025; Bereska & Gavves, 2024; Bricken et al., 2023; Elhage
et al., 2022; Gao et al., 2024a; Marks et al., 2025; von Rütte
et al., 2024; Templeton et al., 2024; Belrose, 2003; Marks
& Tegmark, 2024; Rimsky et al., 2024; Tigges et al., 2023).
Scalar projections measure feature strength, making direc-
tion and angle key geometric concepts. Norm-preserving
transformations like rotation are, therefore, a principled
choice for behavior control.
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Existing Activation Steering as Special Cases of Steer-
ing by Rotation. Vector arithmetic and orthogonalization
with the pre-normalized activation hi at layer i and a di-
rection representing some feature (d feat) are equivalent to
rotation inside a 2D subspace spanned by Span{hi,d feat}
(Fig. 1). This makes existing steering techniques special
cases of angular steering, albeit with restricted flexibility:
vector addition is limited to less than 180 degrees, and or-
thogonalization is fixed at 90 degrees. We provide detailed
mathematical derivations for these results in Appendix B.

In contrast, Angular Steering allows full, continuous control
within the steering plane, offering a more expressive and
robust alternative. This is further supported by (von Rütte
et al., 2024), who show that using normalized activations
improves probing accuracy across classifiers, reinforcing
our hypothesis that steering direction, not raw magnitude, is
what ultimately matters.

3.2. Overview of Angular Steering

We propose to formulate activation steering as a rotation on a
2-dimensional (2D) subspace P and around the (dmodel−2)-
dimensional orthogonal complement Q of P . Ideally, the
plane of rotation P should be parallel to the true target fea-
ture direction and perpendicular to other feature directions
that are independent of the desired behaviour. Our angular
steering provides the following advantages:

• Generalization. It is a generalization of existing steer-
ing operations (Fig. 1), namely activation arithmetic
(Turner et al., 2024; Zou et al., 2023a; Bayat et al.,
2025; Rimsky et al., 2024) and directional ablation
(Arditi et al., 2024; Zou et al., 2023a).

• Universality. It can be applied to both raw and nor-
malized activations, although the latter is more com-
putationally efficient.

• Stability. Restricting rotation to a 2D subspace con-
fines changes to two orthogonal directions, leaving
other basis vectors unaffected and minimizing inter-
ference with other features, consistent with the Super-
position Hypothesis that features are represented in
near-orthogonal directions (Elhage et al., 2022). This
enables robust control while preserving coherence.

• Flexibility. It enables steering the activations for more
than 180 degrees, making the accuracy less dependent
on the quality of the direction of the extracted features.

3.3. Preparing Dataset and Models

Datasets. To calibrate the feature (refusal) direction, we
construct two datasets: D(cal)

harmful, which is a split (80%) of
the ADVBENCH dataset (Zou et al., 2023b) consisting of

416 harmful instructions; and D(cal)
harmful, a random subset of

512 harmless examples from the ALPACA dataset (Taori
et al., 2023). For evaluating steering effectiveness, we use
the remaining 20% of ADVBENCH, denoted as D(eval)

harmful,
containing 104 samples. To assess general language model-
ing capabilities, we employ the TINYBENCHMARKS dataset
(Maia Polo et al., 2024), a collection of reduced-scale bench-
marks each containing 100 examples: ARC (Clark et al.,
2018), MMLU (Hendrycks et al., 2021), WINOGRANDE
(Sakaguchi et al., 2021), GSM8K (Cobbe et al., 2021),
TRUTHFULQA (Lin et al., 2022), and HELLASWAG (Zellers
et al., 2019).

Models. We show experimental results on steering the
refusal feature on various model families (LLAMA 3
(Llama Team, 2024), QWEN 2.5 (Yang et al., 2024),
GEMMA 2 (Gemma Team et al., 2024)) of various sizes
(3B to 14B). A full list of models used in this work is pre-
sented in Appendix E.

3.4. Computing the target feature direction

Extracting Activation Vectors. Following (Arditi et al.,
2024), we pass D(cal)

harmfuland D(cal)
harmlessthrough the model and

record the activations of the final input token after the nor-
malization layers in each transformer block as recommended
by (von Rütte et al., 2024). Note that in each transformer
block, there are two normalization layers: before the At-
tention and before the MLP. As a result, we record the
activations at two extraction points per transformer block.

Calculating Candidate Directions. At each extraction
point i, we compute a candidate direction using the
Difference-in-Means method (Belrose, 2003): di

feat =

h
(cal),i
harmful − h

(cal),i
harmless (i = 1, . . . ,M), where di

feat is the

direction at extraction point i, and h
(cal),i
harmful and ih

(cal),i
harmless

are the means computed over activations from D(cal)
harmfuland

D(cal)
harmless, respectively. Here, M is the number of extraction

points, defined as twice the number of Transformer blocks
in the model. One candidate direction is computed at each
extraction point, yielding a total of M candidate directions.

Choosing One Feature Direction. Among M candidate
directions, we choose a feature direction for Angular Steer-
ing. Fig. 5b shows high cosine similarity among candidate
directions in layers where refusal is strong, suggesting those
directions are stable approximations of the true feature. This
observation suggests that the similarity between candidate
directions can be a promising metric to select the feature
direction. In Angular Steering, we choose the candidate
direction d̂ feat that is most similar to others as the feature
direction. We normalize d̂ feat to make it a unit vector. Addi-
tionally, literature in activation steering (Arditi et al., 2024;
Bayat et al., 2025; Konen et al., 2024; Li et al., 2024; Marks
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(a) Norms of candidate feature direction at each layer.
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(b) Mean cosine similarity of the candidate feature direction from
each layer with those from other layers.
Figure 5: Statistics of refusal direction candidate for QWEN2.5-
7B-INSTRUCT.

et al., 2025; Turner et al., 2024; Zou et al., 2023a; Tem-
pleton et al., 2024) and representation learning (Park et al.,
2024; Elhage et al., 2022; Bricken et al., 2023; Bereska &
Gavves, 2024) assumes that behaviors correspond to direc-
tional features, which separate contrasting behaviors such as
refusal and compliance. Our statistical method supports this
assumption by producing effective directions across model
families and sizes.
Remark 3.1 (Automatic Direction Selection). Unlike (Arditi
et al., 2024), which selects directions manually, we use a
simple statistical procedure to choose the feature direction
automatically. Though hand-tuning might yield better down-
stream results, we aim to study steering control rather than
maximize performance.
Remark 3.2. Fig. 4 and Fig. 5 shows that refusal behav-
ior emerges progressively along the depth of the model,
stabilizes, and then spikes again near the final layer. We
hypothesize that this late spike reflects a filtering step just
before token generation and thus omit this point from the
list of candidates.

3.5. Selecting the Steering Plane

We now require a second direction to define the 2D steering
plane in Angular Steering. As discussed in Section 3.1, the
optimal plane should maximize the influence on the feature
of interest while minimizing unintended impacts on other
features. While using the Span{hi, d̂ feat} aligns with prior
methods like directional ablation and activation addition, we
argue against it due to three reasons: (1) prior work suggests
that feature directions are layer-independent (Park et al.,
2024; Elhage et al., 2022; Tigges et al., 2023; Arditi et al.,
2024), implying a shared geometry across layers; (2) this
span might include other dominant features, risking general
degradation (Turner et al., 2024; Templeton et al., 2024);
and (3) computing rotation at each step is costly. Instead,
we propose a fixed plane that isolates the feature of interest.
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Figure 6: Projections of the feature directions extracted at each
extraction point (i.e. di

feat) on the steering plane for QWEN2.5-
7B-INSTRUCT.

To construct this fixed plane, we perform PCA on the candi-
date directions di

feat and select the first principal component,
d̂ PC0, as the second axis. This captures variance across lay-
ers, which, as shown in prior work (Arditi et al., 2024; von
Rütte et al., 2024; Li et al., 2024; Zou et al., 2023a), reflects
variation in approximating the true feature direction. The
resulting plane Span(d̂ feat, d̂ PC0) thus isolates meaningful
variation in the target feature. Fig. 6 shows a smooth di-
rectional shift across layers in this plane, supporting the
hypothesis that feature strength evolves gradually, making
it a natural basis for steering (see Section 4).

3.6. Putting It All Together: The (Adaptive) Angular
Steering Framework

Having chosen 2 directions, d̂ feat and d̂ PC0, we can now
construct a 2D subspace on which the activations are steered
by rotation. This section describes the mathematical formu-
lation of performing the Angular Steering operation and its
adaptive variant.

3.6.1. ANGULAR STEERING FRAMEWORK

Let P be the 2D subspace spanned by d̂ feat and d̂ PC0. We
compute the orthonormal basis {b1, b2} of P as follows:

b1 ← d̂ feat; b2 ← d̂ PC0−(d̂ PC0·b1)b1; b2 ← b2/||b2||.

Rotation by an Offset Angle. To rotate within the subspace
P by an angle ϕ, the transformation matrix RP

ϕ is given as

RP
ϕ = I − (b1b

⊤
1 + b2b

⊤
2 ) + [b1 b2]Rϕ [b1 b2]

⊤ (1)

where I−(b1b⊤1 +b2b
⊤
2 ) is the projection to the (dmodel−2)-

dimensional orthogonal complement Q of P and Rϕ is the

2D rotation matrix given as Rϕ =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
.

Rotation to a Target Angle. In practice, rather than rotating
all activations by a fixed offset, we often want to rotate
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them to a specific angular position θ, e.g., where a desired
behaviour is strongly expressed. A naive approach would
involve: (1) projecting the input h onto the steering plane P :
projP (h) = (b1b

⊺
1 + b2b

⊺
2) · h; (2) computing the current

angle ϕP
h,b1

between projP (h) and b1; (3) constructing the
rotation matrix RP

θ−ϕ using Eqn. 1; and (4) applying this
matrix to h. However, this is inefficient when θ is fixed and
can be optimized by precomputing reusable components.

Noting that the term [b1 b2]Rϕ [b1 b2]
⊺

in Eqn. 1 is a norm-
preserving transformation, we can precompute its effect on
the unit vector [1 0]

⊺
and scale the result by |projP (h)|.

This leads to the following efficient formulation for rotating
an input h to angle θ:

hsteered,θ = RP
θ−ϕh,b1

· h

= h− projP (h) + |projP (h)| · [b1 b2]Rθ[1 0]
⊤

(2)

where RP
θ−ϕh,b1

is the rotation matrix defined in Eqn. 1.

Here, both the projection matrix (b1b
⊺
1 + b2b

⊺
2) and

[b1 b2]Rθ [1 0]⊤ can be precomputed.

3.6.2. ADAPTIVE ANGULAR STEERING FRAMEWORK

Since inputs from contrastive datasets tend to align with
di

feat in opposite directions (Fig. 4), it is unnecessary to
rotate all activations uniformly. To increase flexibility and
further reduce unintended effects on non-targeted features,
we propose an adaptive variant that rotates only activations
positively aligned with d̂ feat. In particular, we first com-
pute a conditional mask based on the sign of the projection
onto d̂ feat: mask = max(0, sign(projd̂ feat

(x))). Using this
mask, Eqn. 2 becomes:

hsteered (adaptive),θ

= h+mask ·
(
|projP (h)| · [b1 b2]Rθ[1 0]

⊤ − projP (h)
)

(3)

This formulation adds an additional layer of control and
robustness: steering is both restricted to a 2D subspace and
selectively applied based on feature alignment. Beyond
adjusting the steering angle θ, users may also vary the simi-
larity threshold used in the mask or employ different di

feat
across layers. We note that another conditional steering
approach has been explored in contemporary work by (Lee
et al., 2024), but activation addition was used as the steering
framework instead of rotation.

We summarize the algorithms for feature direction extrac-
tion, steering plane selection, and angular steering in Ap-
pendix C.

4. Controlling the Steering Effect
For inference, we apply Adaptive Angular Steering as de-
scribed in Eqn. 3 on every normalization module before each
Attention and MLP layer. By varying the target angular po-
sition θ from 0 to 360 degrees (with 10-degree intervals),
we observe that the models change from refusal to com-
pliance and back to refusal again (see Fig. 7). We found
that both Angular Steering and Adaptive Angular Steering
are effective at varying the steering effect. However, the
non-adaptive version runs a risk of breaking the coherence
on smaller models, which will be discussed in Section 5.

Evaluation Metrics. We compute a refusal score using
the substring matching method (Arditi et al., 2024),
which operates by matching a set of common “refusal sub-
strings” (e.g., I’m sorry, As an AI) on the model
completion. The score is 1 if at least one such substring is
matched and 0 otherwise.

Intuitively, this metric only detects memorized refusal
phrases but does not assess coherence and harmfulness, as
noted by (Arditi et al., 2024; Huang et al., 2023; Meade et al.,
2024; Qi et al., 2023; Shah et al., 2023). To evaluate harmful-
ness, we follow the setup in (Arditi et al., 2024) and use two
more complementary evaluation metrics, LLAMAGUARD3
(Llama Team, 2024) and HARMBENCH (Mazeika et al.,
2024), which we collectively call harmful scores. These
two methods use open-source models to classify whether an
input is harmful, in which the score is 1 if the classification
is true and 0 otherwise.

Beyond refusal and harmfulness detection, we are in-
terested in how the model’s output changes semanti-
cally at different level of refusal. Thus, we perform
qualitative analysis using a reasoning model QVQ-72B-
PREVIEW (Qwen Team, 2024) to classify the generation out-
puts into 4 classes: direct: The model directly answers
the prompt; indirect: The model starts out seemingly
unwilling to answer but then still provides with an answer;
redirect: The model does not explicitly agree or refuse
to answer but provides a tactful response without produc-
ing any harmful content; refusal: The model explicitly
refuses to answer.

Evaluation along the Steering Circle. Fig.7 demonstrates
that angular steering effectively modulates refusal and safety
behaviors. In Fig.7a, all models show a clear arc of strong
alignment–high refusal and low harmful scores–and an op-
posing arc of weak alignment–low refusal and high harmful
scores. These arcs lie in opposite directions within the steer-
ing circle, with performance peaking near the center and
diminishing outward. Fig.7b further supports this obser-
vation by showing that, for five of six models, refusal
dominates in the strong arc, followed by redirect, and
then direct or indirect responses as the angle shifts.

6



Angular Steering: Behavior Control via Rotation in Activation Space

0°

10°

20°

30°

40°

50°
60°

70°
80°90°100°

110°
120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°
240°

250°
260° 270° 280°

290°
300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1
0°

10°

20°

30°

40°

50°
60°

70°
80°90°100°

110°
120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°
240°

250°
260° 270° 280°

290°
300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

0°

10°

20°

30°

40°

50°
60°

70°
80°90°100°

110°
120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°
240°

250°
260° 270° 280°

290°
300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1
0°

10°

20°

30°

40°

50°
60°

70°
80°90°100°

110°
120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°
240°

250°
260° 270° 280°

290°
300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

0°

10°

20°

30°

40°

50°
60°

70°
80°90°100°

110°
120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°
240°

250°
260° 270° 280°

290°
300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1
0°

10°

20°

30°

40°

50°
60°

70°
80°90°100°

110°
120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°
240°

250°
260° 270° 280°

290°
300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

harmbench llamaguard3 substring_matching feature direction

Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct Llama-3.2-3B-Instruct

Llama-3.1-8B-Instruct gemma-2-9b-it

(a) Refusal score (substring matching (Arditi et al., 2024))
and harmful scores (LLAMAGUARD3 (Llama Team, 2024), HARM-
BENCH (Mazeika et al., 2024)).
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(b) LLM-as-a-judge classification results: models’ responses are
classified by an LLM into four categories: direct, indirect,
redirect and refusal.

Figure 7: Steering evaluation. Each model was steered using Adaptive Angular Steering and evaluated at every 10-degree angular position
along the steering circle. Solid traces show evaluation scores along the steering circle; dashed traces indicate baseline (non-steered)
models. Traces of the same color correspond to the same benchmark. Baseline values for LLamaGuard3 and HarmBench may be
hidden due to near-zero values.

Tab.1 reports example completions for each class. GEMMA-
2-9B-IT is an exception, displaying the weakest effect yet
still following the overall trend.

Steering on a random plane. For completeness, we con-
duct an ablation study on steering using Adaptive Angular
Steering with a random plane. Fig. 13b in Appendix D.2
shows that it has little to no effect on controlling refusal in
five out of six tested models.

5. Effects on Model’s Performance beyond the
Targeted Steering Task

Steering can degrade language modeling ability (Souly et al.,
2024), especially when relying on sensitive hyperparame-
ters (Turner et al., 2024; Zou et al., 2023a; Templeton et al.,
2024; Bayat et al., 2025; Li et al., 2024; von Rütte et al.,
2024), which may lead to incoherent outputs if not carefully
tuned (Turner et al., 2024; Templeton et al., 2024). In this
section, we quantitatively assess the impact of our method
on overall LLM performance.
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(a) Benchmark results on theTINYBENCHMARKS (Maia Polo et al.,
2024) suite.
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(b) Perplexity scores of generations from Adaptive Steering, non-
adaptive Steering and no steering.

Figure 8: Evaluation beyond the targeted steering task. Each model was steered using Adaptive Angular Steering (Eqn. 3) and
evaluated on all benchmarks at every 10-degree angular position along the steering circle. Solid traces represent evaluation scores along
the steering circle, and dashed traces represent the evaluation for the baseline (non-steered models); traces having the same color represent
the same benchmark.

5.1. Language Modeling Benchmarks

Method. For each model, we adaptively steer its activation
with a 10-degree interval along the entire steering circle
using Eqn. 3 and evaluate all benchmarks from the TINY-
BENCHMARKS suite (Maia Polo et al., 2024). The results
are visualized in Fig. 8a.

Results. Overall, our steering method is effective at main-
taining benchmark accuracies compared to non-steered
results along the entire steering circle. Notable out-
liers are QWEN2.5-3B-INSTRUCT and QWEN2.5-14B-
INSCTRUCT.

For QWEN2.5-3B-INSTRUCT, performance degrades signif-
icantly on the left half of the steering circle, likely due to fea-

ture interference (Elhage et al., 2022) where multiple domi-
nant features coexist, particularly affecting smaller models.
This degradation is less pronounced around 90◦to 170◦,
aligning closely with regions of effective steering (Fig. 7a).
Notably, the accuracy consistently drops for TINYTRUTH-
FULQA, aligning with previous findings (Arditi et al., 2024;
Yang et al., 2023), as this dataset contains categories closely
related to harmful content, such as misinformation and
stereotypes (Arditi et al., 2024). The accuracy drop
from 170◦to 280◦across all benchmarks suggests activation
of a different feature in this region.

In QWEN2.5-14B-INSTRUCT, the accuracy for
TINYGSM8K flexible remains low and fluctu-
ates for steered generations. Upon closer inspection, we
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find the model frequently appends explanations after
its numerical answer. As the flexible extraction
method takes the last numeric output as the final answer,
this behavior leads to inconsistent and low benchmark
performance.

5.2. Perplexity of the Steered Generations

Smaller Models are More Vulnerable to Interference. In
non-adaptive Angular Steering experiments, 7B–14B mod-
els generate coherent outputs throughout the steering circle,
while smaller models like LLAMA-3.2-3B-INSTRUCT and
QWEN2.5-3B-INSTRUCT often produce incoherent text
across a wide arc. Notably, refusal phrases still appear ran-
domly in various languages for LLAMA-3.2-3B-INSTRUCT,
and mainly in Chinese for QWEN2.5-3B-INSTRUCT, de-
spite English prompts. This suggests that limited capacity
in smaller models leads to feature interference (Elhage et al.,
2022), with multiple features entangled in the 2D steering
subspace, as discussed in Sections 4 and 5.1.

Method. We analyze the perplexity of the steered
generations using the non-steered models and report
the results in Fig. 8b. Given an input sequence x,
an non-steered LLM πnon-steered, the output is mod-
eled by ynon-steered ∼ πnon-steered(x). Similarly, πsteered
and ysteered denote the steered model and its out-
put, respectively. We denote the perplexity score
of x with respect to a model π as PPLπ(x). In
Fig. 8b, we compare PPLπnon-steered(x||ynon-steered),
PPLπnon-steered(x||ysteered (non-adaptive)) and
PPLπnon-steered(x||ysteered (adaptive)) for each model and
at every 10 rotation degree.

Results. Both 3B models show unstable perplexity under
non-adaptive steering, reflecting susceptibility to interfer-
ence. QWEN2.5-3B-INSTRUCT maintains elevated perplex-
ity across much of the steering circle, matching its incoher-
ent outputs, while LLAMA-3.2-3B-INSTRUCT stays closer
to baseline, consistent with continued refusals in alternate
languages.

Adaptive Steering effectively preserves coherence. Fig. 8b
reveals that the perplexity of Adaptive Steering is lower,
more stable, and closer to no steering than its non-adaptive
counterpart, indicating that Adaptive Steering’s effective-
ness at balancing behavior control with coherence and per-
formance.

Alignment masks rather than removes harmful behavior.
Perplexity stays near baseline when steering aligns with the
target feature, but drops below baseline as it moves toward
the “jailbroken” region. This indicates harmful capabilities
remain latent, with relevant knowledge still embedded in the
model, and alignment merely suppressing them by shifting
activations to a higher-entropy distribution.

6. Concluding Remarks
We propose Angular Steering, a novel activation steering
method offering continuous, fine-grained control over large
language model behaviors by rotating activation vectors
within a two-dimensional subspace. This geometric per-
spective unifies prior steering techniques, enhancing inter-
pretability and deepening understanding of model mech-
anisms without compromising general performance. Our
adaptive variant further improves robustness by selectively
applying steering based on context. A limitation of Angu-
lar Steering is that while promising, it currently relies on
heuristically selected steering planes, which might not al-
ways generalize optimally across diverse behaviors or archi-
tectures. Future work should focus on systematically identi-
fying effective subspaces and extending adaptive strategies
to support broader alignment goals.

Impact Statement
The Angular Steering approach presented in this work has
several broader societal impacts. On the positive side, it sig-
nificantly enhances the control and interpretability of LLMs,
enabling their safer deployment across various applications
by effectively reducing harmful outputs such as misinforma-
tion, biased content, and unethical requests. This enhanced
control facilitates alignment with societal norms and ethical
standards, potentially increasing public trust and acceptance
of AI technologies.

Conversely, there is also a potential for negative impacts. By
simplifying fine-grained behavior control, Angular Steer-
ing could inadvertently make it easier to generate nuanced
harmful or unethical content, such as persuasive misinfor-
mation or biased narratives. Although our method does
not fundamentally alter the existing risk profile of deploy-
ing LLMs, it underscores the need for continued vigilance
and improvement in AI safety mechanisms. To responsi-
bly manage these risks, implementing rigorous safeguards,
ensuring transparency, and promoting accountability are es-
sential. We advocate ongoing ethical assessment to respon-
sibly guide the deployment and utilization of our proposed
method.
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A. Related Works
Mechanistic Motivation. Activation steering techniques have typically involved scaling activation directions by manually
tuned scalar coefficients to induce or suppress behaviors (Turner et al., 2024; Zou et al., 2023a; Templeton et al., 2024; Bayat
et al., 2025; Li et al., 2024; von Rütte et al., 2024; Stolfo et al., 2024). However, selecting these coefficients is challenging
due to sensitivity to the activation norm, which grows exponentially across layers (Fig.9 left). As observed by (Turner et al.,
2024; Templeton et al., 2024), inappropriate scaling often results in incoherent generations, highlighting the fragility of
this approach. Directional ablation, another popular technique, avoids explicit hyperparameter tuning by orthogonalizing
activations relative to a feature direction (Arditi et al., 2024; Zou et al., 2023a). Yet, this approach neglects scenarios where
negative alignment coefficients meaningfully reverse behavior, a limitation recognized in earlier studies (Turner et al., 2024;
Zou et al., 2023a; Templeton et al., 2024). Empirical findings from our experiments further validate that extracted feature
directions effectively distinguish contrastive data sets (Fig.9 right).

Recent advancements include adaptive steering methods such as Adaptive Activation Steering (ACT), which dynamically
adjusts steering intensity based on the activation context (Wang et al., 2025), and Contrastive Activation Addition (CAA),
which employs multiple positive-negative example pairs for robust feature extraction (Panickssery et al., 2023). These
techniques underscore the necessity for more nuanced control methods.

Architectural Motivation. Contemporary LLMs such as LLAMA 3 (Llama Team, 2024), QWEN 2.5 (Yang et al., 2024),
and GEMMA 2 (Gemma Team et al., 2024) universally adopt RMSNorm (Zhang & Sennrich, 2019) for pre-normalization.
RMSNorm effectively constrains activations to a unit sphere, emphasizing direction over magnitude. Moreover, Rotary
Positional Embeddings (RoPE) and related variants (Su et al., 2024; bloc97, 2023; Chen et al., 2023; Peng et al., 2023)
further validate this directional emphasis by encoding positional information as rotations. Methods such as Householder
Pseudo-Rotation have extended this notion by explicitly employing norm-preserving geometric transformations to steer
behaviors effectively and minimally invasively (Pham & Nguyen, 2024).

Empirical Motivation. Interpretability research consistently supports the Linear Representation hypothesis (Park et al.,
2024; Bereska & Gavves, 2024), suggesting that LLM behaviors correspond to specific directions rather than discrete
neuron activations. Further corroborated by the Superposition Hypothesis (Elhage et al., 2022), these directions are nearly
orthogonal and quantify feature strength through scalar projections (Arditi et al., 2024; Bayat et al., 2025; Bricken et al.,
2023; Gao et al., 2024a; Marks et al., 2025; von Rütte et al., 2024; Templeton et al., 2024; Belrose, 2003; Marks & Tegmark,
2024; Rimsky et al., 2024; Tigges et al., 2023). Moreover, it has been demonstrated that norm-preserving interventions,
such as rotations, inherently provide stability and maintain general capabilities during steering (von Rütte et al., 2024).

Methods leveraging these insights have proliferated, notably Activation Scaling (Stoehr et al., 2024) and FairSteer (Li et al.,
2025), which dynamically modulate activations to enhance transparency and reduce bias, respectively.

Our work expands upon these foundations by introducing Angular Steering, a generalization of existing activation steering
techniques. By explicitly treating steering as a rotation in a defined 2D subspace, our method achieves more robust,
interpretable, and flexible behavior control. We demonstrate Angular Steering using refusal steering as a running example,
aligning closely with prior behavioral control research (Arditi et al., 2024; Lee et al., 2024). Rather than focusing on
jailbreak or maximizing downstream accuracy, our goal is to present a principled and broadly applicable framework for
controlled and non-destructive intervention in LLM activations.

B. Detailed Derivation: Existing Activation Steering as Special Cases of Steering by Rotation
We will show that existing steering techniques are special cases of angular steering, albeit with restricted flexibility: vector
addition is limited to less than 180 degrees, and orthogonalization is fixed at 90 degrees.

Formally, let the activation hi be decomposed into components parallel and orthogonal to a unit-norm feature direction d̂ feat
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(for brevity, here we denote them as h and d respectively):

h = (h · d)d+ h⊥, where h⊥ = h− (h · d)d.

Let u = h⊥
∥h⊥∥ , and define the initial angle between h and d as:

θ0 = tan−1

(
∥h⊥∥
h · d

)
.

We define Angular Steering as rotating h by an offset angle ϕ in the plane Span{h,d}, producing a vector:

hrot(ϕ) = cos(θ0 + ϕ) · d+ sin(θ0 + ϕ) · u.

Now consider vector addition (Turner et al., 2024), defined as:

hadd = h+ αd = (h · d+ α)d+ h⊥.

After normalization, the direction becomes:

hadd-norm =
hadd

∥hadd∥
= cos(θ0 + ϕadd) · d+ sin(θ0 + ϕadd) · u,

where ϕadd = tan−1
(

∥h⊥∥
h·d+α

)
− θ0.

Likewise, directional ablation (orthogonalization) (Arditi et al., 2024), given by:

hablate = h⊥,

after normalization becomes:

hablate-norm = u = cos(θ0 + ϕablate) · d+ sin(θ0 + ϕablate) · u,

with ϕablate =
π
2 − θ0.

Thus, when followed by normalization, both addition and ablation shift the direction of h in a way that is exactly equivalent
to rotating by some angle ϕ in the plane spanned by h and d. This establishes them as special cases of Angular Steering.

C. Algorithms for Angular Steering

Algorithm 1 Extract Feature Direction

Require: Contrastive datasets Dharmful,Dharmless, modelM
1: for each layer i in model do
2: Compute normalized activations h(i) after Attention and MLP
3: Compute mean activation for each dataset:

h̄
(i)
harmful, h̄

(i)
harmless

4: Compute candidate direction:
d(i) = h̄

(i)
harmful − h̄

(i)
harmless

5: end for
6: Select final feature direction d using max average cosine similarity:

d = argmax
i=1...|layers|

 1

|layers|

|layers|∑
j=1

cosine(d(i),d(j))


7: Normalize: d̂ = d

∥d∥
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Algorithm 2 Select Steering Plane

Require: Candidate directions {d(i)}, feature direction d̂
1: Perform PCA on {d(i)}
2: Let first principal component be d1stPC
3: Set orthonormal basis for plane:

b1 ← d̂, b2 ← d1stPC − (b1 · d1stPC)b1; b2 ←
b2
∥b2∥

4: Define projection matrix P = b1b
⊤
1 + b2b

⊤
2

Algorithm 3 Angular Steering (with optional Adaptive Mask)

Require: Activation h, basis b1, b2, target angle θ, (optional) mask flag
1: Project: projP (h) = P · h
2: Compute magnitude: r = ∥projP (h)∥
3: Precompute: vθ = [b1 b2] ·Rθ · [1 0]⊤

4: if adaptive then
5: Compute mask: mask = max(0, sign(h · d̂))
6: Apply adaptive steering:

hsteered = h+ mask · (r · vθ − projP (h))

7: else
8: Apply steering:

hsteered = h− projP (h) + r · vθ

9: end if

D. Additional Results
D.1. Activations along the model’s depth

Fig. 9 (left) demonstrates that the norm of activation vectors increases exponentially across all tested models as the layer
depth increases. This behavior is attributable to the additive nature of the residual stream, where each layer’s output
accumulates onto the previous state. Interestingly, even models from the same architecture family display different scaling
patterns, indicating that activation growth is not only architecture-dependent but also implementation-specific. These
observations underscore the necessity of norm-independent steering techniques, as steering strategies relying on raw
magnitude can become unstable or ineffective across layers and model variants.

Fig. 9 (right) shows a consistent phenomenon across all evaluated models: activations from contrastive prompts, harmful
versus harmless, diverge progressively in geometric space as depth increases. This increasing separation suggests a universal,
model-agnostic internal mechanism in LLMs, whereby behavioral distinctions are gradually amplified layer by layer. Such
a trend reveals a directional progression in the model’s internal representation, reinforcing the hypothesis that feature
separation is a fundamental property of transformer-based language models.

Fig.10 further illustrates this progression, focusing on the evolution of the refusal direction. The strength of this feature
becomes increasingly prominent in early and middle layers, reaching its maximum influence at a specific intermediate depth
before diminishing slightly in later layers—a trend echoed in Fig.11. Importantly, even in the deeper layers where the signal
attenuates, the extracted refusal direction continues to serve as a reliable discriminator between activations corresponding to
harmful and harmless prompts. This persistent separability affirms the robustness and interpretability of the refusal direction,
validating its role as a stable, layer-resilient feature for behavioral control in LLMs.
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Figure 9: Statistics of activations for all tested models. Left: Norms of activations at each layer. Right: Mean scalar
projection of the normalized activation on the (local) candidate feature direction at each layer.
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D.2. Ablation Study: Steering on a random plane.

To assess the importance of the steering plane, we conducted an ablation study using two setups: (1) steering with a plane
defined by one random direction and one feature-aligned direction, and (2) steering with a fully random plane composed of
two random directions.

As illustrated in Fig. 13a, where one random direction is combined with the feature direction, most models exhibit noticeably
degraded steering performance and less smooth transitions along the steering circle. This degradation suggests that even
partial misalignment of the steering plane can distort the intended behavioral modulation. An exception is QWEN2.5-7B-
INSTRUCT, which retains robust control, indicating a strong, well-defined internal representation of the refusal direction.
LLAMA-3.2-3B-INSTRUCT shows a clear steering effect, but the refusal arc is shifted, suggesting the random component
introduces skew that displaces the effective axis of control.

Fig. 13b, where both directions are randomly selected, shows that five of the six tested models exhibit minimal to no
steering effect. The only partial exception, QWEN2.5-3B-INSTRUCT, displays erratic behavioral changes with a spiky,
non-smooth response curve. Closer inspection reveals these outputs are often incoherent or filled with irrelevant content,
indicating instability rather than intentional modulation. These results reinforce the critical role of behaviorally meaningful
and well-aligned steering directions in achieving effective, stable, and interpretable control over model behavior.

E. Use of existing assets
E.1. Models

Table 2: Models used in this work.

Model (with link) Usage Source License

QWEN2.5-(3B, 7B, 13B)-INSTRUCT
(Yang et al., 2024) Experimental subject HF Hub Apache license 2.0

LLAMA-3.1-8B-INSTRUCT
(Llama Team, 2024) Experimental subject HF Hub Llama 3.1 Community

License Agreement

LLAMA-3.2-3B-INSTRUCT
(Llama Team, 2024) Experimental subject HF Hub Llama 3.2 Community

License Agreement

GEMMA-2-9B-IT
(Gemma Team et al., 2024) Experimental subject HF Hub Gemma Terms of Use

LLAMA-GUARD-3-8B
(Llama Team, 2024) Evaluation device HF Hub Llama 3.1 Community

License Agreement

HARMBENCH CLASSIFIER
(Mazeika et al., 2024) Evaluation device HF Hub MIT

QVQ-72B-PREVIEW
(Qwen Team, 2024) Evaluation device HF Hub Qwen License

E.2. Datasets

Table 3: Datasets used in this work.

Dataset (with link) Source License

ADVBENCH
(Zou et al., 2023b) Github MIT

ALPACA
(Taori et al., 2023) HF Hub Creative Commons Attribution

Non Commercial 4.0

TINYBENCHMARKS
(Maia Polo et al., 2024) Github MIT

F. Compute statement
This research was conducted using mainly Nvidia H100 GPUs with 80GB of memory. For each model:
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• Constructing the steering plane took about 15 minutes on 1 GPU using TRANSFORMERLENS (Nanda & Bloom, 2022).

• Pre-generating responses for evaluation took about 10 minutes on 1 GPU using our fork of vLLM (Kwon et al., 2023)
as the serving engine.

• Evaluation with substring matching (Arditi et al., 2024), LLAMA 3 GUARD (Llama Team, 2024) and HARM-
BENCH (Mazeika et al., 2024) collectively took about 10 minutes on 1 GPU using vLLM (Kwon et al., 2023) as the
serving enging.

• Evaluation with LLM-as-a-judge took about 50 minutes on 4 GPUs using vLLM (Kwon et al., 2023) as the serving
engine.

• Computing perplexity scores took about 5 minutes on 1 GPU.

• Evaluation with TINYBENCHMARKS (Maia Polo et al., 2024) took about 4 hours on 1 GPU using vLLM (Kwon et al.,
2023) as the serving engine and lm-evaluation-harness (Gao et al., 2024b) as the evaluation device.
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Figure 10: Statistics of refusal direction candidates for all tested models. Left: Norms of candidate feature direction at each
layer (i.e. |d(i)

feat|). Right: Mean cosine similarity of the candidate feature direction from each layer with those from other
layers (i.e. 1

|layers|
∑|layers|

j=1 cosine(d
(i)
feat,d

(j)
feat)).
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Figure 11: Mean scalar projection activations at each layer onto the chosen feature direction d̂ feat for all tested models.
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Figure 12: Projections of the feature directions extracted at each extraction point (i.e. di
feat) on the steering plane for all

tested models.
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(a) Steering on a plane spanned by d̂ feat and a random direction.
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(b) Steering on a plane spanned by 2 random directions.
Figure 13: Ablation study of steering with random direction(s).
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