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Abstract

Knowledge Tracing (KT) aims to model a stu-001
dent’s learning state over time and predict their002
future performance. However, traditional KT003
methods often face challenges in explainability,004
scalability, and effective modeling of complex005
knowledge dependencies. While Large Lan-006
guage Models (LLMs) present new avenues007
for KT, their direct application often struggles008
with generating structured, explainable student009
representations and lacks mechanisms for con-010
tinuous, task-specific refinement. To address011
these gaps, we propose Collaborative Iterative012
Knowledge Tracing (CIKT), a framework that013
harnesses LLMs to enhance both prediction014
accuracy and explainability. CIKT employs a015
dual-component architecture: an Analyst gen-016
erates dynamic, explainable user profiles from017
student historical responses, and a Predictor018
utilizes these profiles to forecast future perfor-019
mance. The core of CIKT is a synergistic opti-020
mization loop. In this loop, the Analyst is itera-021
tively refined based on the predictive accuracy022
of the Predictor, which conditions on the gener-023
ated profiles, and the Predictor is subsequently024
retrained using these enhanced profiles. Eval-025
uated on multiple educational datasets, CIKT026
demonstrates significant improvements in pre-027
diction accuracy, offers enhanced explainability028
through its dynamically updated user profiles,029
and exhibits improved scalability. Our work030
presents a robust and explainable solution for031
advancing knowledge tracing systems, effec-032
tively bridging the gap between predictive per-033
formance and model transparency.034

1 Introduction035

Knowledge Tracing (KT) (Corbett and Anderson,036

1994) is a foundational task in educational data037

mining and intelligent tutoring systems, aiming038

to model a student’s evolving knowledge state039

from their historical learning interactions to ac-040

curately predict future performance, thereby fa-041

cilitating personalized learning and targeted inter-042

ventions. While early approaches like Bayesian 043

Knowledge Tracing (BKT) (Corbett and Ander- 044

son, 1994) and its extensions (Pardos and Hef- 045

fernan, 2011, 2010) offered interpretable param- 046

eters, they often struggled with the complex tem- 047

poral dependencies of learning processes. Deep 048

learning-based KT (DLKT) models subsequently 049

emerged, significantly advancing predictive accu- 050

racy. Pioneering models such as Deep Knowledge 051

Tracing (DKT) (Piech et al., 2015) with Recur- 052

rent Neural Networks, and memory-augmented 053

architectures like DKVMN (Zhang et al., 2017), 054

laid crucial groundwork (Liu et al., 2019; Na- 055

gatani et al., 2019). Further advancements, includ- 056

ing Transformer-based models like SAKT (Pandey 057

and Karypis, 2019), AKT (Ghosh et al., 2020), 058

and LPKT (Shen et al., 2021) (which incorpo- 059

rated cognitive dynamics), alongside innovations 060

like FoLiBi’s linear forgetting mechanisms (Im 061

et al., 2023) and the integration of side informa- 062

tion (Wang et al., 2021; Pandey and Srivastava, 063

2020) or graph structures (Nakagawa et al., 2019; 064

Yang et al., 2025; Wang et al., 2025), have contin- 065

ued to push KT performance boundaries. 066

Despite these significant strides in predictive 067

power, achieving robust explainability remains a 068

persistent challenge in the DLKT landscape (Minn 069

et al., 2022; Zhao et al., 2020). Although var- 070

ious strategies have been explored—from inher- 071

ently interpretable components (Zhang et al., 2017; 072

Shen et al., 2021) and post-hoc analyses (Scruggs 073

et al., 2019) to aligning models with learning the- 074

ories (Chen et al., 2023; Cui et al., 2024)—many 075

DLKT models remain substantially opaque. This 076

lack of transparency can hinder their adoption and 077

trustworthiness in high-stakes educational settings 078

where understanding the model’s reasoning is cru- 079

cial. 080

The transformative capabilities of LLMs, demon- 081

strated across specialized domains like scien- 082

tific discovery (Pyzer-Knapp et al., 2022; Mer- 083
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chant et al., 2023) and automated research assis-084

tance (Wang et al., 2024b,a; Lu et al., 2024; Huang085

et al., 2023; Tyser et al., 2024), offer promising new086

avenues for addressing KT’s dual challenges. How-087

ever, directly applying general-purpose LLMs to088

the nuanced task of knowledge tracing introduces089

distinct difficulties: (1) eliciting structured, inter-090

pretable representations of dynamic student knowl-091

edge states beyond mere task-specific predictions;092

(2) optimizing LLM behavior for KT without abun-093

dant, explicit preference signals or fine-grained su-094

pervision for explainability; and (3) resolving the095

inherent tension between maximizing predictive096

accuracy and maintaining KT process explainabil-097

ity. Moreover, many current LLM applications098

operate statically post-deployment, lacking mech-099

anisms for continuous self-improvement based on100

domain-specific feedback.101

To address these multifaceted limitations, we102

propose Collaborative Iterative Knowledge Tracing103

(CIKT), a framework architected around two core104

LLM-based components: an Analyst that gener-105

ates structured, interpretable student profiles from106

historical responses, and a Predictor that leverages107

these profiles for future performance forecasting.108

The cornerstone of CIKT is an iterative learning109

strategy employing Kahneman-Tversky Optimiza-110

tion (KTO) (Ethayarajh et al., 2024). This mecha-111

nism facilitates reciprocal enhancement: the Predic-112

tor’s accuracy, conditioned on Analyst-generated113

profiles, provides reinforcement-style feedback to114

progressively refine the Analyst. Subsequently, the115

Predictor is retrained with these enhanced profiles,116

completing a collaborative optimization loop. Both117

the Analyst and Predictor are built upon a large-118

scale pre-trained language model backbone, ensur-119

ing flexibility and powerful representation learning.120

The major contributions of this paper are sum-121

marized as follows:122

• We propose a collaborative knowledge tracing123

framework that explicitly models student knowl-124

edge states via an Analyst and utilizes these dy-125

namic profiles for predictive tasks through a Pre-126

dictor.127

• We introduce an iterative optimization strategy128

based on reinforcement-style feedback, enabling129

mutual refinement between the Analyst and Pre-130

dictor to improve both the quality of generated131

profiles and overall predictive performance.132

• We conduct extensive experiments on multi-133

ple educational datasets, demonstrating that our134

CIKT framework outperforms existing KT mod-135

els in predictive accuracy while simultaneously 136

offering enhanced explainability through its gen- 137

erated student profiles. 138

2 Related Work 139

Knowledge tracing (KT) (Corbett and Anderson, 140

1994), a key task in educational data mining, mod- 141

els students’ evolving knowledge states to predict 142

future performance. Early models like Bayesian 143

Knowledge Tracing (BKT) (Corbett and Anderson, 144

1994) used binary mastery variables and explain- 145

able parameters for learning/forgetting dynamics. 146

Extensions to BKT (Pardos and Heffernan, 2011, 147

2010) and other machine learning methods (Pavlik 148

et al., 2009) aimed to improve accuracy and flexibil- 149

ity. However, these models struggled with complex 150

temporal dependencies and latent interactions. 151

Deep learning-based knowledge tracing (DLKT) 152

models emerged to overcome these limitations. 153

Deep Knowledge Tracing (DKT) (Piech et al., 154

2015) notably used RNNs to learn latent represen- 155

tations from student interactions. DKVMN (Zhang 156

et al., 2017) later enhanced the structure by using 157

key-value memory networks for concept mastery 158

tracking. These pioneering DLKT models estab- 159

lished a foundation for later work (Liu et al., 2019; 160

Nagatani et al., 2019; Shen et al., 2021). 161

Recent advances leverage attention mechanisms 162

and Transformers to better model long-range depen- 163

dencies. Models like SAKT (Pandey and Karypis, 164

2019), AKT (Ghosh et al., 2020), LPKT (Shen 165

et al., 2021) (with memory-aligned gates), and 166

FoLiBi (Im et al., 2023) (with linear forgetting) 167

improved accuracy and explainability by model- 168

ing contextual and cognitive dynamics. Integrat- 169

ing side information like temporal or contextual 170

features (Wang et al., 2021; Pandey and Srivas- 171

tava, 2020) also enhanced KT performance. Graph- 172

based methods (Nakagawa et al., 2019; Yang et al., 173

2025; Wang et al., 2025) model concept and inter- 174

action dependencies for better knowledge represen- 175

tation. 176

Explainability remains a key DLKT concern de- 177

spite these developments. Efforts include inher- 178

ently explainable architectures (Zhang et al., 2017; 179

Shen et al., 2021; Minn et al., 2022), post-hoc 180

analysis of trained models (e.g., attention weights) 181

(Zhao et al., 2020; Scruggs et al., 2019), and inte- 182

grated modules like attention or cognitive mecha- 183

nisms. However, these methods often face general- 184

izability issues and task-specific design dependen- 185
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cies. Other works target explainability by aligning186

models with learning theories (Chen et al., 2023;187

Cui et al., 2024). Still, most DLKT models remain188

opaque, posing audit challenges in high-stakes ed-189

ucation.190

The adaptation of Large Language Models191

(LLMs) for specialized applications in various ver-192

tical domains shows considerable promise beyond193

general-purpose tasks. For instance, their capabil-194

ities are harnessed for nuanced information pro-195

cessing, such as automating scientific literature re-196

trieval (Wang et al., 2024b), generating domain-197

specific survey papers (Wang et al., 2024a), aid-198

ing complex data analysis in scientific discovery199

(e.g., material discovery (Pyzer-Knapp et al., 2022;200

Merchant et al., 2023)), supporting prompt-driven201

research pipelines (Lu et al., 2024), evaluating spe-202

cialized content like scientific papers (Tyser et al.,203

2024), and assisting in domain-specific coding so-204

lutions (Huang et al., 2023). While these domain-205

specific adaptations often achieve notable perfor-206

mance through fine-tuning or sophisticated prompt-207

ing, a common limitation is their static operation208

post-deployment; they typically lack embedded209

processes for continuous self-iteration and perfor-210

mance enhancement based on ongoing, domain-211

specific feedback. Addressing this crucial gap,212

our work proposes a novel collaborative iterative213

optimization framework specifically designed to214

empower LLMs to continuously refine their own215

effectiveness for the specialized task at hand.216

3 Methodology217

3.1 Overall Framework218

To enhance both the accuracy and explainability219

of KT, we propose CIKT, a framework leveraging220

the capabilities of LLMs. CIKT revolves around221

two core intelligent components: an Analyst re-222

sponsible for generating rich, structured student223

profiles from historical interaction data, and a Pre-224

dictor that utilizes these profiles, alongside interac-225

tion history, to forecast student performance. The226

synergy between the Analyst and Predictor is culti-227

vated through a meticulously designed four-stage228

iterative process, illustrated in Figure 1. This cycle229

begins with Distillation, where the Analyst learns230

foundational profiling capabilities from curated231

annotations initially provided by a large teacher232

model. Next, in the Profiling stage, the trained233

Analyst generates comprehensive user profiles for234

student data. Subsequently, during Reasoning, the235

Predictor is trained to predict outcomes using these 236

profiles and historical interactions. Finally, the It- 237

eration stage employs a refinement loop where 238

feedback from the Predictor’s performance, guided 239

by Kahneman-Tversky Optimization (KTO) (Etha- 240

yarajh et al., 2024) principles, is used to further 241

optimize the Analyst via reinforcement learning. 242

This iterative process facilitates mutual improve- 243

ment, enhancing both the quality of the generated 244

profiles and the accuracy of predictions. 245

3.2 Stage 1: Distillation 246

This initial Distillation stage aims to endow the 247

Analyst with the foundational capability to gener- 248

ate structured and informative user profiles from 249

raw student interaction data. The process begins by 250

leveraging a large-scale teacher model, LLMteacher 251

(e.g., GPT-4o (Hurst et al., 2024)), to process his- 252

torical interaction sequences from a subset of stu- 253

dents. For a student s, their sequence is denoted as 254

Ss = {(e1, r1), (e2, r2), . . . , (eN , rN )}, where ei 255

is the i-th exercise and ri ∈ {0, 1} its binary cor- 256

rectness. The LLMteacher produces initial textual 257

profiles: 258

ps,teacher = LLMteacher(Ss) (1) 259

These profiles, ps,teacher, are designed as textual 260

outputs capturing the student’s knowledge state, 261

including aspects like mastery levels across knowl- 262

edge concepts, inferred learning patterns, and po- 263

tential difficulties. Subsequently, these profiles un- 264

dergo a manual curation process where their format 265

and content are reviewed and corrected; only se- 266

lected, high-quality profiles, denoted as p∗
s,teacher, 267

that accurately reflect student understanding are 268

retained for training. 269

The Analyst, parameterized by θA and based on 270

our chosen backbone LLM architecture, is then 271

fine-tuned via supervised learning using pairs of 272

student sequences (Ss) and their corresponding cu- 273

rated teacher profiles (p∗
s,teacher) from a training set 274

Dtrain. The Analyst learns to map an input sequence 275

Ss to its own profile generation ps,analyst: 276

ps,analyst = Analyst(Ss; θA) (2) 277

The training objective is to minimize a distillation 278

loss, LDistill. Given that the profiles are textual, this 279

loss is formulated as a token-level cross-entropy 280

(LCE) between the Analyst-generated profiles and 281
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Figure 1: The CIKT framework, illustrating the collaborative four-stage process involving the Analyst and
Predictor: distillation, profiling, reasoning, and iteration.

the curated teacher profiles:282

LDistill(θA) =
∑

s∈Dtrain

LCE(p
∗
s,teacher,ps,analyst)

(3)283

This supervised distillation phase equips the Ana-284

lyst with a robust initial model for generating mean-285

ingful user profiles.286

3.3 Stage 2: Profiling287

Following the initial foundation building in the Dis-288

tillation stage, the Analyst, now equipped with its289

learned parameters θA, is applied to generate user290

profiles for all relevant student data. The primary291

objective of this Profiling stage is to transform raw292

student historical interaction sequences into rich,293

structured profile representations that will inform294

the subsequent prediction tasks.295

For each student s with a historical interaction296

sequence Ss = {(e1, r1), (e2, r2), . . . , (eN , rN )},297

the trained Analyst synthesizes a corresponding298

user profile ps. This process can be represented as:299

ps = Analyst(Ss; θA) (4)300

where ps is the textual profile generated by the An-301

alyst based on the student’s historical interactions.302

This profiling step is systematically applied across303

the entire dataset, including the training, validation,304

and test sets. The resulting set of user profiles {ps}305

serves as a crucial augmented input, alongside the306

original interaction sequences {Ss}, for training 307

and evaluating the Predictor in the subsequent Rea- 308

soning stage (Section 3.4). The quality and infor- 309

mativeness of these profiles are paramount for the 310

Predictor’s ability to make accurate and nuanced 311

performance forecasts. 312

3.4 Stage 3: Reasoning 313

The "Reasoning" stage centers on training the Pre- 314

dictor, parameterized by θP . Its objective is to 315

accurately forecast a student’s performance ys,t 316

(where ys,t ∈ {0, 1} indicates binary correct- 317

ness) on a subsequent learning exercise et. To 318

achieve this, the Predictor utilizes a combination 319

of the student’s historical interaction sequence 320

Hs,t−1 = {(e1, r1), . . . , (et−1, rt−1)} (where ei is 321

an exercise and ri its correctness), the correspond- 322

ing user profile ps,t−1 generated by the Analyst 323

(i.e., ps,t−1 = Analyst(Hs,t−1; θA)), and informa- 324

tion pertaining to the target exercise et. The Pre- 325

dictor then outputs the predicted probability of a 326

correct response: 327

ŷs,t = Predictor(Hs,t−1,ps,t−1, et; θP ) (5) 328

Training of the Predictor is conducted via su- 329

pervised fine-tuning. Given a training set Dtrain 330

comprising instances of (Hs,t−1,ps,t−1, et, ys,t), 331

the parameters θP are optimized by minimizing the 332

binary cross-entropy loss function, LPredict. This 333

loss encourages the predicted probabilities ŷs,t to 334
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Dataset ASSIST2009 ASSIST2012 Eedi
Metrics ACC ACClen>15 F1 ACC ACClen>15 F1 ACC ACClen>15 F1
DKT 0.737 0.744 0.808 0.745 0.737 0.828 0.712 0.707 0.814
AKT 0.725 0.716 0.801 0.744 0.725 0.821 0.719 0.702 0.807
SAKT 0.743 0.755 0.810 0.743 0.747 0.830 0.722 0.725 0.816
LPKT 0.738 0.750 0.812 0.731 0.751 0.832 0.728 0.729 0.818
IKT 0.726 0.710 0.802 0.745 0.741 0.807 0.719 0.701 0.793
DIMKT 0.749 0.748 0.810 0.747 0.756 0.816 0.733 0.727 0.819
DKVMN 0.724 0.729 0.793 0.735 0.727 0.760 0.719 0.715 0.766
GPT-4o 0.732 0.756 0.794 0.720 0.619 0.802 - - -
Deepseek-R1 0.669 0.665 0.762 0.646 0.671 0.770 - - -
CIKT-Llama3.1-8B 0.775 0.781 0.827 0.774 0.784 0.847 0.770 0.775 0.834
CIKT-Qwen2.5-7B 0.777 0.778 0.820 0.780 0.790 0.852 0.777 0.781 0.836
improv. +3.74% +4.13% +2.10% +4.42% +4.50% +2.40% +6.00% +7.13% +2.08%

Table 1: Results of the main experiments.

closely align with the true outcomes ys,t:335

LPredict(θP ) =−
∑

(s,t)∈Dtrain

[
ys,t log(ŷs,t)

+ (1− ys,t) log(1− ŷs,t)

]
(6)

336

This process enables the Predictor to learn complex337

relationships between past learning activities, the338

summarized knowledge state encapsulated in the339

profile, and future performance, thereby effectively340

reasoning to arrive at its predictions.341

Dataset ASSIST2009 ASSIST2012 Eedi
# Responses 0.4m 2.7m 17.8m
# Sequences 8.3k 67.1k 475.4k
# Questions 6.9k 53.1k 2.7k
# Concepts 200 265 386

Table 2: Statistics of the preprocessed datasets.

3.5 Stage 4: Iteration342

The Iteration stage is pivotal to our CIKT frame-343

work’s capacity for progressive enhancement of344

user profile quality and, consequently, knowledge345

tracing prediction accuracy. This stage imple-346

ments an iterative refinement loop where the An-347

alyst is optimized using feedback from the Pre-348

dictor’s performance. This optimization is guided349

by Kahneman-Tversky Optimization (KTO) prin-350

ciples (Ethayarajh et al., 2024), which leverage351

binary feedback indicating whether a generated352

profile contributes to an accurate prediction by the353

Predictor.354

The iterative cycle unfolds as follows:355

1. Profile Generation: The current Analyst, pa-356

rameterized by θA and denoted as a policy πθA ,357

generates a user profile pt from a given student’s 358

historical interaction sequence xt: 359

pt ∼ πθA(· | xt) (7) 360

2. Prediction and Reward Computation: The 361

current Predictor (parameterized by θP , denoted 362

fθP ) utilizes pt, xt, and potentially the next 363

exercise et+1, to predict student performance 364

ŷt+1. This prediction is compared against the 365

ground truth yt+1 to yield a binary reward rt+1: 366

ŷt+1 = fθP (xt,pt, et+1) (8) 367
368

rt+1 =

{
+1, if ŷt+1 = yt+1

−1, if ŷt+1 ̸= yt+1

(9) 369

3. Analyst Optimization: The reward rt+1 guides 370

the update of the Analyst’s parameters θA, en- 371

couraging the generation of profiles that lead 372

to accurate Predictor outcomes. The KTO loss 373

function for a batch of instances is: 374

LKTO(θA) = −
∑
t

[rt+1 · log πθA(pt | xt)]

(10) 375

where the sum is over instances t in a training 376

batch. This update resembles a policy gradi- 377

ent step, with log πθA(pt | xt) being the log- 378

probability of generating profile pt. 379

4. Predictor Re-training: After the Analyst is up- 380

dated (to θ
updated
A ) and its profiling capabilities 381

are enhanced, the Predictor can be retrained or 382

further fine-tuned. This uses profiles pnew gen- 383

erated by the improved Analyst and minimizes 384

the predictive loss (Equation 6): 385

θP ← argmin
θP

∑
(s,t)∈Dtrain

LCE
(
fθP (Hs,t−1, 386

pnew
s,t−1, et), ys,t

)
(11)

387
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Dataset ASSIST2009 ASSIST2012 Eedi
Metrics ACC ACClen>15 F1 ACC ACClen>15 F1 ACC ACClen>15 F1
CIKT-Llama3.1-8B 0.775 0.781 0.827 0.774 0.784 0.847 0.770 0.775 0.834
train
w/o Iteration & Cooperation 0.766 0.772 0.818 0.767 0.770 0.841 0.768 0.747 0.830
w/o Iteration 0.772 0.777 0.824 0.756 0.755 0.833 0.755 0.767 0.830
inference
w/o Profile 0.755 0.750 0.805 0.760 0.765 0.835 0.760 0.700 0.830
CIKT-Qwen2.5-7B 0.777 0.778 0.820 0.780 0.790 0.852 0.777 0.781 0.836
train
w/o Iteration & Cooperation 0.765 0.770 0.812 0.766 0.777 0.843 0.761 0.756 0.826
w/o Iteration 0.768 0.772 0.814 0.775 0.747 0.851 0.775 0.771 0.833
inference
w/o Profile 0.749 0.750 0.798 0.768 0.732 0.844 0.765 0.757 0.835

Table 3: Results of the ablation experiments. "CIKT w/o Iteration" removes the iterative refinement but keeps the
cooperative structure trained in a single pass. "CIKT w/o Iteration & Cooperation" removes both iteration and the
cooperative structure, representing a more direct LLM fine-tuning. "CIKT w/o Profile (Inference)" means the full
model was trained, but profiles were withheld from the Predictor during inference.

where pnew
s,t−1 = Analyst(Hs,t−1; θ

updated
A ).388

This entire cycle is repeated iteratively, fostering389

mutual improvements in both the Analyst and Pre-390

dictor components.391

4 Experiments392

To systematically evaluate the efficacy, robustness,393

and contributions of key components within our394

proposed collaborative knowledge tracing frame-395

work based on large language models, this sec-396

tion details a series of comprehensive experiments.397

These experiments are designed to thoroughly in-398

vestigate and address the following core research399

questions:400

• RQ1: Overall Performance401

Can our CIKT surpass traditional knowledge trac-402

ing methods and other state-of-the-art large lan-403

guage model baselines?404

• RQ2: Ablation Study405

What are the specific impacts of core design ele-406

ments affecting overall predictive performance?407

What are the actual contributions of each compo-408

nent?409

• RQ3: Sensitivity Analysis410

How do two critical parameters, the total number411

of iteration rounds and the sample size used per412

iteration, concretely affect the final predictive per-413

formance, and what degree of sensitivity does the414

model exhibit to variations in these parameters?415

• RQ4: Explainability416

Do the user profiles generated by the Analyst417

demonstrably enhance the explainability of stu-418

dent knowledge states, and do they offer effective419

guidance for the Predictor’s subsequent outcome420

predictions?421

4.1 Experimental Setup 422

4.1.1 Datasets 423

Our framework was evaluated on three widely used 424

public educational datasets, providing extensive 425

student interaction records for robust KT model 426

training and validation: 427

• ASSIST09 (Feng et al., 2009): Collected from 428

the ASSISTments online mathematics tutoring 429

system (2009-2010). We utilized the combined 430

version, common in KT research. 431

• ASSIST12 (Feng et al., 2009): Also from the 432

ASSISTments platform, this dataset contains stu- 433

dent interaction data from 2012-2013. 434

• Eedi (Wang et al., 2020): Sourced from 435

the Eedi mathematics platform as part of the 436

NeurIPS 2020 Education Challenge. We used 437

the train_task_1_2.csv file from this challenge, 438

adopting the leaf nodes of its provided math 439

concept tree as the relevant knowledge concepts 440

(KCs) for each question. 441

Prior to model training, the datasets underwent 442

the following preprocessing steps: 443

• Data Cleaning: Invalid or duplicate records, 444

such as those lacking essential information (e.g., 445

student/question IDs, response correctness), were 446

removed. 447

• User Interaction Sequence Construction: Stu- 448

dent records were organized into chronological 449

interaction sequences, each detailing the assessed 450

knowledge concepts (KCs), question difficulty, 451

and response correctness. 452

• Question Difficulty Calculation: Question dif- 453

ficulty was estimated as 1 − pass rate, derived 454

from the average correctness for each question 455
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within the training set.456

• Sequence Segmentation and Filtering: Com-457

plete student interaction sequences were seg-458

mented into 50-interaction subsequences; those459

with fewer than 5 interactions were removed to460

ensure effective modeling length.461

Detailed statistics of the preprocessed datasets are462

summarized in Table 2.463

4.1.2 Backbone464

In our framework, both the Analyst and Predic-465

tor components leverage large language models as466

their backbone. We experimented with two primary467

models: Llama3.1-8B-Instruct and Qwen2.5-7B-468

Instruct. All experiments reported in this paper469

were conducted on a single NVIDIA A100 GPU.470

4.1.3 Evaluation471

For model evaluation, each dataset was partitioned472

into training, validation, and test sets using an 8:1:1473

ratio. As KT is a binary classification task, we474

employed ACC and the F1-score as standard eval-475

uation metrics. To specifically assess framework476

scalability and performance on longer interaction477

sequences, we additionally computed ACC for sub-478

sequences where the total number of interactions479

(including the item to be predicted) exceeds 15,480

denoted as ACClen>15. The model achieving the481

best validation set performance was subsequently482

used for test set evaluation, with prediction results483

assessed at the final position of each processed se-484

quence. We take the average of five times on the485

test set as the displayed result. The detailed im-486

pact of sequence length characteristics, including487

the ACClen>15 metric, on model performance is488

further discussed in the RQ1: Overall Performance489

section.490

4.1.4 Baselines491

To comprehensively evaluate our CIKT frame-492

work, we compare its performance against a di-493

verse set of nine baselines, covering both main-494

stream DLKT methods and general-purpose LLMs.495

The selected DLKT models include pioneering496

approaches such as DKT (Piech et al., 2015)497

and the memory-augmented DKVMN (Zhang498

et al., 2017); Transformer-based architectures499

like SAKT (Pandey and Karypis, 2019) and500

AKT (Ghosh et al., 2020); LPKT (Shen et al.,501

2021), which explicitly models learning and for-502

getting dynamics; and other established methods503

IKT (Minn et al., 2022) and DIMKT (Shen et al.,504

2022). This group represents a spectrum of well- 505

regarded techniques in the KT field. Furthermore, 506

to benchmark against general LLM capabilities 507

when applied directly to the knowledge tracing 508

task, we include GPT-4o (Hurst et al., 2024) and 509

Deepseek R1 (Guo et al., 2025) as LLM baselines. 510

4.2 RQ1: Overall Performance 511

To address our first research question (RQ1) con- 512

cerning the predictive efficacy of our proposed 513

framework, this section compares our CIKT against 514

traditional KT and several LLM baselines. Detailed 515

performance metrics across the ASSIST2009, AS- 516

SIST2012, and Eedi are presented in Table 1. 517

Our CIKT framework, particularly the CIKT- 518

Qwen2.5-7B variant, demonstrates highly com- 519

petitive performance, significantly surpassing the 520

strongest traditional KT baselines in terms of Accu- 521

racy (ACC) and F1-score across all three datasets. 522

Notably, this performance advantage of CIKT is 523

often more pronounced on longer interaction se- 524

quences. Such superior performance on extended 525

histories underscores CIKT’s enhanced capabil- 526

ity to effectively model long-range dependencies 527

and leverage comprehensive contextual informa- 528

tion through its dynamic student profiling mech- 529

anism. Furthermore, CIKT showcases a clear ad- 530

vantage over general-purpose LLM baselines like 531

GPT-4o and Deepseek-R1 when applied directly 532

to the KT task. Their considerably lower perfor- 533

mance highlights the necessity of CIKT’s special- 534

ized, structured, iterative, and collaborative archi- 535

tecture, which features explicit student profile gen- 536

eration and targeted optimization, as opposed to 537

direct, unspecialized LLM application. 538

These findings effectively address RQ1, demon- 539

strating that our framework achieves superior per- 540

formance in knowledge tracing compared to both 541

traditional methods and direct LLM applications. 542

4.3 RQ2: Ablation Study 543

To investigate the individual contributions of key 544

components within our CIKT framework—namely, 545

the iterative optimization, the cooperative Analyst- 546

Predictor structure with profile generation, and 547

the utilization of profiles at inference—we con- 548

ducted a series of ablation studies, thereby address- 549

ing RQ2. These experiments were performed us- 550

ing both Llama3.1-8B-Instruct and Qwen2.5-7B- 551

Instruct as backbone models. The specific config- 552

urations and detailed results of these studies are 553

presented in Table 3, with the caption of the table 554
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Figure 2: Effect of the number of interaction rounds and sample size per iteration on the performance of CIKT.

defining each ablated variant.555

The results in Table 3 consistently demonstrate556

the critical importance of each evaluated compo-557

nent across both backbone models and all datasets.558

Comparing the full CIKT framework to CIKT w/o559

Iteration, a clear performance drop is observed,560

highlighting the positive impact of the iterative561

process on refining profile quality and enhancing562

Analyst-Predictor synergy. When both iteration563

and the cooperative profiling structure are removed564

(CIKT w/o Iteration & Cooperation), represent-565

ing a direct LLM fine-tuning approach, perfor-566

mance generally degrades further. This underscores567

the benefits of CIKT’s explicit two-component ar-568

chitecture and profile-based modeling, even with-569

out iterative refinement. Most notably, the CIKT570

w/o Profile (Inference) configuration, where pro-571

files are withheld from the Predictor during infer-572

ence after full CIKT training, results in the most sig-573

nificant performance deterioration. This unequivo-574

cally confirms the crucial role of the dynamically575

generated student profiles in enabling accurate pre-576

dictions, as their absence severely hampers the Pre-577

dictor’s capability. The results address RQ2.578

4.4 RQ3: Sensitivity Analysis579

To address RQ3, we analyzed model sensitivity to580

the total number of iteration rounds and the itera-581

tion sample size, denoted as k. These results are582

visually summarized in Figure 2.583

First, our examination of iteration rounds, varied584

from 0 to 3 for the CIKT-Qwen2.5-7B model on the585

ASSIST2012 dataset and depicted in Figure 2(a),586

revealed that performance generally stabilized or587

reached a strong point around three iterations. This588

underscores the efficacy of progressive refinement589

in enhancing the model’s predictive capabilities.590

Next, regarding sensitivity to the iteration sam-591

ple size k, which was varied from 500 to 2000 using592

CIKT-Qwen2.5-7B on the ASSIST2009 dataset as 593

shown in Figure 2(b), results indicated that while 594

larger k values generally improved overall metrics, 595

these gains diminished at the higher end of the 596

tested range. Notably, ACC on longer sequences, 597

specifically the ACClen>15 metric for sequences 598

with more than 15 interactions, exhibited more sus- 599

tained improvement with increasing k. This sug- 600

gests a particular advantage for modeling long-term 601

dependencies. Considering the trade-off between 602

overall efficacy and computational overhead, an 603

iteration sample size of k = 1000 was adopted for 604

most other experiments. 605

4.5 RQ4: Explainability and Profile Utility 606

RQ4 assesses the explainability offered by our 607

CIKT framework and the predictive utility of the 608

user profiles generated by the Analyst. These 609

dynamic textual profiles are designed to provide 610

human-understandable summaries of student learn- 611

ing patterns, concept mastery, and areas needing 612

attention. Due to space constraints, a detailed qual- 613

itative case study is presented in Section C. This 614

case study illustrates how the profiles are refined 615

through the iterative KTO process to yield more 616

nuanced pedagogical insights and how these im- 617

proved profiles contribute to the Predictor’s en- 618

hanced, more interpretable forecasting, thereby ad- 619

dressing both aspects of RQ4. 620

5 Conclusion 621

We proposed CIKT to iteratively optimize student 622

profiling and performance prediction for accurate 623

and explainable knowledge tracing. Its synergistic 624

architecture enables continuous mutual enhance- 625

ment, yielding significantly improved predictive 626

accuracy and explainable student profiles on multi- 627

ple educational datasets. 628
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Limitations629

Because our framework primarily generates bina-630

rized judgments for student responses, we focused631

on metrics such as ACC and F1-score, and conse-632

quently did not employ ranking-sensitive evalua-633

tion metrics like AUC. Moreover, due to the con-634

text window constraints of our backbone models,635

we did not incorporate the textual content of ques-636

tion stems, which limited the potential for more637

fine-grained, content-aware modeling of student638

knowledge.639
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A Notation Table 819

We list and explain the notations in our methodol- 820

ogy in Table 4. 821

B Hyper-parameter Setting 822

We provide the training and inference hyper- 823

parameter settings in Table 5 and Table 6. 824

C Case Study 825

To qualitatively illustrate the efficacy of our CIKT 826

framework’s iterative optimization process, partic- 827

ularly its impact on the quality of student profiles 828

generated by the Analyst and the subsequent predic- 829

tion accuracy of the Predictor, we present a detailed 830

case study. The selected case, detailed in Table 7, 831

involves a student interaction sequence where the 832

Predictor’s outcome for the "Next Question" was 833

incorrect based on the initial profile generated by 834

the Analyst before iteration, but became correct af- 835

ter the Analyst was refined through iterations. The 836

ground truth for the "Next Question" – ([’Conver- 837

sion of Fraction Decimals Percents’], 0.16) – was 838

"False". 839
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Notation Description
General Notations
s Index for a student
ei The i-th exercise or question encountered by a student
ri Binary correctness (0 or 1) of the student’s response to ei

Ss Historical interaction sequence for student s, e.g., Ss = {(e1, r1), . . . , (eN , rN )}
ps User profile (typically textual) for student s, generated by the Analyst
θA Parameters of the Analyst model
θP Parameters of the Predictor model
Dtrain Set of training instances (e.g., students or student-interaction sequences)
LCE(·, ·) Standard cross-entropy loss function

Stage 1: Distillation
LLMteacher Large-parameter teacher model (e.g., GPT-4o) for initial profile annotation
ps,teacher Initial textual profile for student s generated by LLMteacher (Eq. 1)
p∗
s,teacher Curated, high-quality teacher profile for student s used for training

ps,analyst Profile for student s generated by the Analyst during distillation (Eq. 2)
LDistill(θA) Distillation loss for training the Analyst (Eq. 3)

Stage 2: Profiling
{ps} Set of all generated user profiles
{Ss} Set of all student interaction sequences

Stage 3: Reasoning
Hs,t−1 Historical interaction sequence for student s up to interaction t− 1

ps,t−1 User profile for student s based on historyHs,t−1

et The t-th (current or next) exercise for student s
ys,t Actual binary correctness of student s’s response to et

ŷs,t Predicted probability of student s correctly answering et (Eq. 5)
LPredict(θP ) Predictive loss for training the Predictor (Eq. 6)

Stage 4: Iteration
xt A student’s historical interaction sequence
πθA The Analyst viewed as a policy parameterized by θA

pt User profile generated by Analyst πθA from xt (Eq. 7)
fθP The Predictor model parameterized by θP

et+1 The subsequent exercise for which a prediction is made based on xt,pt

yt+1 Ground truth outcome for the prediction ŷt+1

ŷt+1 Prediction by fθP for et+1

rt+1 Binary reward signal (+1 or −1) based on prediction accuracy (Eq. 9)
LKTO(θA) KTO loss function for optimizing the Analyst (Eq. 10)
log πθA(pt | xt) Log-probability of the Analyst generating profile pt given sequence xt

θ
updated
A Updated parameters of the Analyst after a KTO step
pnew
s,t−1 Profile generated by the updated Analyst using historyHs,t−1

Table 4: Notation Table for the CIKT Framework.
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Parameter(training) Analyst Predictor
# lora_rank 8 8
# learning_rate 5.0e-6 1.0e-4
# train_epochs 10 10
# warmup_ratio 0.1 0.1

Table 5: Training hyper-parameter setting of CIKT.

Parameter(inference) Analyst Predictor
# temperature 0.95 0
# top_p 0.7 0.7
# top_k 50 50

Table 6: Inference hyper-parameter setting of CIKT.

Profile Before Iteration and Initial Prediction.840

The initial user profile generated by the Analyst841

before iterative refinement is presented in the left842

column of the bottom table in Table 7. This profile,843

while attempting to summarize performance across844

concepts like "Making a Table from an Equation,"845

"Equivalent Fractions," and "Conversion of Frac-846

tion Decimals Percents," tends to exhibit character-847

istics of a more direct translation or surface-level848

summary of the interaction sequence. For instance,849

it meticulously lists the number of attempts and850

correctness for each topic (e.g., "The student has851

encountered three questions related to this topic,852

all answered incorrectly" for "Making a Table from853

an Equation"). While it provides some overview,854

it contains redundancies in its factual recounting855

and offers a somewhat limited depth of analytical856

insight beyond stating observed patterns.857

Crucially, regarding the "Next Question" on858

"Conversion of Fraction Decimals Percents" (diffi-859

culty 0.16), the profile (as highlighted in Red notes:860

"- This question is slightly easier than the previ-861

ous one, which may provide an opportunity for the862

student to consolidate their understanding." This863

particular phrasing, emphasizing the "easier" na-864

ture and "opportunity to consolidate," might lead865

the Predictor to infer a higher likelihood of a cor-866

rect answer. In this instance, the Predictor, relying867

on this pre-iteration profile, made an incorrect pre-868

diction (implicitly predicting "True", while the real869

response was "False").870

Profile After Iteration and Corrected Predic-871

tion. The right column of the bottom table in Ta-872

ble 7 showcases the student profile generated by873

the Analyst after several KTO iterations. This re-874

fined profile demonstrates a notable improvement875

in several aspects. It is more focused in its anal-876

ysis, moving beyond simple sequence translation877

to offer more structured insights and actionable878

recommendations. For example, it categorizes ob- 879

servations into "Overall Performance and Patterns," 880

"Difficulty and Learning Progression," "Projected 881

Next Question," and detailed "Recommendations." 882

This structure itself provides a clearer, more ped- 883

agogically useful summary. The suggestions pro- 884

vided, such as "Focus on reinforcing understanding 885

of "Table" as a standalone topic..." and "Work on 886

integrating concepts...", are more specific and reli- 887

able, offering genuine guidance applicable in real 888

educational scenarios. 889

The shift in the analysis of the "Next Question" 890

is particularly significant. The refined profile high- 891

lighted in Green states: "- The upcoming question 892

on "Conversion of Fraction Decimals Percents" 893

with a difficulty of 0.16 is consistent with the diffi- 894

culty level at which the student has previously strug- 895

gled with this knowledge point, presenting a chal- 896

lenge." This revised perspective, informed by the it- 897

erative feedback loop, correctly identifies the ques- 898

tion as a challenge despite its slightly lower diffi- 899

culty, considering the student’s prior struggles with 900

the same concept at a similar difficulty (0.17, as per 901

the profile’s detailed breakdown). This more nu- 902

anced and context-aware assessment likely guided 903

the Predictor to correctly forecast the outcome as 904

"False" for the "Next Question", aligning with the 905

ground truth. 906
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Question and Input
Question:
The student has completed some questions in a listing order from earliest to latest, with each ternary in the subsequent
sequence representing a piece of information containing the knowledge points contained in the question, the difficulty of
the question (expressed as the complement of the pass rate on the full set), and the response to the question, whether true or
false. The sequence culminates with the presentation of a binary comprising the knowledge points and the difficulty of the
subsequent question. Please provide a high-level summary of the student’s state of knowledge acquisition in detail.
Input:
The student’s historical response sequence:
([’Making a Table from an Equation’], 0.47, False), ([’Making a Table from an Equation’], 0.64, False), ([’Making a Table
from an Equation’], 0.61, False), ([’Equivalent Fractions’], 0.13, True), ([’Equivalent Fractions’], 0.26, True), ([’Equivalent
Fractions’], 0.19, True), ([’Equivalent Fractions’], 0.37, False), ([’Equivalent Fractions’], 0.32, False), ([’Equivalent
Fractions’], 0.39, False), ([’Conversion of Fraction Decimals Percents’], 0.17, True), ([’Conversion of Fraction Decimals
Percents’], 0.17, False)
Next Question: ([’Conversion of Fraction Decimals Percents’], 0.16)
Real response(No input): False

Profile Before Iteration Profile After Iteration
1. Making a Table from an Equation:

- The student has encountered three questions related to this
topic, all answered incorrectly.

- The difficulty levels of these questions ranged from 0.47
to 0.64, indicating a moderate level of challenge.

- This suggests that the student may not yet have a solid
understanding of this concept or is struggling with the appli-
cation of this knowledge.
2. Equivalent Fractions:

- The student has answered five questions related to this
topic, with a mix of correct and incorrect responses.

- The difficulty levels ranged from 0.13 to 0.39.
- The student demonstrated a good grasp of easier questions

(e.g., those with a lower difficulty, such as 0.13 and 0.26), but
struggled with more challenging ones (e.g., 0.37, 0.32, and
0.39).

- This indicates that while the student has some understand-
ing of the topic, there may be gaps in knowledge or difficulty
with more complex problems.
3. Conversion of Fraction Decimals Percents:

- The student has attempted two questions related to this
topic.

- The first question was answered correctly, and the second
was answered incorrectly.

- Both questions had a difficulty level of 0.17.
- The student shows potential understanding of this topic

but may need further practice or reinforcement to solidify their
knowledge.
Next Question:

- The next question is related to "Conversion of Fraction
Decimals Percents" with a difficulty level of 0.16.

- This question is slightly easier than the previous one,
which may provide an opportunity for the student to consoli-
date their understanding.
Overall Summary:

- The student demonstrates varying levels of understanding
across different topics.

- They show strong potential in "Equivalent Fractions" for
easier questions but may need more practice with more chal-
lenging problems.

- They seem to have a good understanding of "Conversion
of Fraction Decimals Percents" but need reinforcement.

- There is a clear area for improvement in "Making a Table
from an Equation," as the student has consistently answered
questions incorrectly, indicating a need for focused practice
and possibly revisiting foundational concepts.

1. Making a Table from an Equation:
- The student initially struggled with questions related to

"Making a Table from an Equation," as evidenced by incorrect
responses to questions with moderate difficulty levels (0.47,
0.64, and 0.61). This suggests a gap in understanding or ap-
plication of this concept.
2. Equivalent Fractions:

- The student demonstrated initial proficiency with "Equiv-
alent Fractions," correctly answering questions with low to
moderate difficulty levels (0.13 and 0.26). However, there
was a decline in performance as the difficulty increased, with
incorrect responses to questions at 0.37, 0.32, and 0.39. This
indicates that while the student has a foundational understand-
ing, they may struggle with more complex applications or
problem variations of this concept.
3. Conversion of Fraction Decimals Percents:

- The student showed mixed results with "Conversion of
Fraction Decimals Percents." They correctly answered a ques-
tion with a low difficulty level (0.17), indicating a basic under-
standing, but then responded incorrectly to another question
of the same difficulty level (0.17). This inconsistency suggests
that the student may need further practice or clarification to
solidify their understanding of this concept.
4. Overall Knowledge Acquisition:

- The student’s knowledge acquisition shows a pattern of ini-
tial difficulty with a concept, followed by some improvement
or partial understanding, but often ending with inconsistencies
or gaps in understanding, especially as the difficulty increases.

- The upcoming question on "Conversion of Fraction Deci-
mals Percents" with a difficulty of 0.16 is consistent with the
difficulty level at which the student has previously struggled
with this knowledge point, presenting a challenge.
5. Recommendations:

- The student should focus on reinforcing their understand-
ing of "Making a Table from an Equation" and "Equivalent
Fractions" through targeted practice and review of fundamen-
tal concepts.

- For "Conversion of Fraction Decimals Percents," the stu-
dent should review the basic principles and practice a variety
of problems to build confidence and consistency in their re-
sponses.

- Providing feedback on incorrect responses and ensuring
the student understands the reasoning behind the correct an-
swers will be crucial in improving their overall performance.
- Gradually increase difficulty level in practiced areas.

Table 7: Example of profiles before and after iteration.
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