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Abstract

Recent approaches to arbitrary-scale single image super-resolution (ASR) use neural fields
to represent continuous signals that can be sampled at arbitrary resolutions. However,
point-wise queries of neural fields do not naturally match the point spread function (PSF)
of pixels, which may cause aliasing in the super-resolved image. Existing methods attempt
to mitigate this by approximating an integral version of the field at each scaling factor,
compromising both fidelity and generalization. In this work, we introduce neural heat
fields, a novel neural field formulation that inherently models a physically exact PSF. Our
formulation enables analytically correct anti-aliasing at any desired output resolution, and —
unlike supersampling — at no additional cost. Building on this foundation, we propose Thera,
an end-to-end ASR method that substantially outperforms existing approaches, while being
more parameter-efficient and offering strong theoretical guarantees. The project page is at
https://therasr.github.iol

1 Introduction

Over the years, learning-based image super-resolution (SR) methods have achieved increasingly better results.
However, unlike interpolation techniques that can resample images at any resolution, these methods typically
require retraining for each scaling factor. Recently, arbitrary-scale SR (ASR) approaches have emerged, which
allow users to specify any desired scaling factor without retraining, significantly increasing flexibility (Hu
et all, |2019). Notably, with LIIF, |Chen et al|(2021)) pioneered the use of neural fields for single-image SR,
exploiting their continuous representation to enable SR at arbitrary scaling factors. LIIF has since inspired
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Figure 1: We present Thera, the first method for arbitrary-scale super-resolution with a built-
in physical observation model. Given an input image, a hypernetwork predicts the parameters of a
specially designed neural heat field, inherently decomposing the image into sinusoidal components. The
field’s architecture automatically attenuates frequencies as a function of the scaling factor so as to match
the output resolution at which the signal is re-sampled.

several follow-ups which build upon the idea of using per-pixel neural fields (Lee & Jinl 2022} |Cao et al.
[2023} |Chen et al. 2023} |Zhu et al 2025). This is not surprising: Neural fields are in many ways a natural
match for variable-resolution computer vision and graphics . By implicitly parameterizing a
target signal as a neural network that maps coordinates to signal value, they offer a compact representation,
defined over a continuous input domain, and are analytically differentiable.

While neural fields naturally model continuous functions, they do not easily allow for observations of such
functions other than point-wise evaluations. For many tasks, however, integral observation models such as
point spread functions (PSFs) are desirable. This is particularly true for neural fields-based ASR methods,
which by nature do not commit to a fixed upscaling factor a priori but regress continuous representations with
unbounded spectra that can be observed at various sampling rates. If the Nyquist frequency corresponding
to the desired sampling rate is lower than the highest frequency represented by the field, the sampling
operation is prone to aliasing. This explains the initially counterintuitive relevance of anti-aliasing for super-
resolution: When using neural fields, signals are first upsampled to infinite (continuous) resolution and
then resampled at the desired resolution, and this latter operation must be done carefully. Incorporating
a physically plausible observation model is not trivial (Barron et al., 2021} 2022; [Lindell et al. 2022} [Yang
et all,2022; Hu et al., 2023} Barron et al., 2023)), but has the potential to avoid aliasing. For this reason, |Chen
and successor works (Lee & Jinl 2022;[Cao et al.| [2023; [Chen et al. [2023; [Zhu et all,[2025)) have
already taken a first step towards learning multi-scale representations, via cell encoding. Fundamentally,
these “learning-based anti-aliasing” approaches require the scaling factor (or, equivalently, the output pixel
area) as additional input to the neural field and learn an integrated (i.e., appropriately blurred and therefore
anti-aliased) version of the field for each scaling factor; arguably wasting field capacity to approximate a
relation that can be described exactly through Fourier theory.

In this work, we combine recent advances in implicit neural representations with ideas from classical signal
theory to introduce neural heat fields, a novel type of neural field that guarantees anti-aliasing by construction.
The key insight is that sinusoidal activation functions (Sitzmann et al., 2020b) enable selective attenuation
of individual components depending on their spatial frequency, following Fourier theory. This allows for
the exact computation of Gaussian-blurred versions of the field for any desired (isotropic) blur radius.
When rasterizing an image, the field can therefore be queried with a Gaussian PSF that matches the target
resolution, effectively preventing aliasing. In practice, heat fields receive an additional input coordinate t,
controlling the strength of the Gaussian blur applied to the signal. Unlike learning-based anti-aliasing, the
resulting filtering operation is expressed analytically, rather than learned from data. In other words, previous
approaches fit a 3D field (z, y, and scale) while we only need to fit a 2D field (z and y), whereas the scale
dimension is computed analytically, significantly reducing field complexity and data requirements. Notably,
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Figure 2: Comparison of recent ASR methods, averaged over x{2,3,4} scales. We generally achieve higher
performance at lower parameter counts. Our best model, Thera Pro, achieves highest overall performance
by a large margin.

filtering with neural heat fields incurs no computational overhead: The querying cost is the same for any
width of the anti-aliasing filter kernel, including infinite and zero widths.

Building on this, we then propose Thera, an end-to-end ASR method that combines a hypernetwork
Bt all, with a grid of local neural heat fields, offering theoretical guarantees with respect to multi-
scale representation (see Figure . Empirically, Thera outperforms all competing ASR methods, often by a
substantial margin, and is more parameter-efficient (see Figure . To the best of our knowledge, Thera is
also the first neural field method to allow bandwidth control at test time.

In summary, our main contributions are:

1. We introduce neural heat fields, which represent a signal with a built-in, principled Gaussian obser-
vation model, and therefore allow anti-aliasing with minimal overhead.

2. We use neural heat fields to build Thera, a novel method for ASR that offers theoretically guaranteed
multi-scale capabilities, delivers state-of-the-art performance and is more parameter efficient than
prior art.

2 Related Work

2.1 Neural Fields

A neural field, also called an implicit neural representation, is a neural network trained to map coordinates
onto values of some physical quantity. Recently, neural fields have been used for parameterizing various
types of visual data, including images (Karras et al., [2021} |Sitzmann et al. 2020b} [Tancik et al., |2020}
|Chen et al., [2021; Lee & Jin, 2022; |de Lutio et al., 2019; [Wu et al., 2023), 3D scenes (e.g., represented
as signed distance fields (Park et al), 2019; Sitzmann et al,, 2020bja; Williams et al) 2022; Wu et al,,
2023)), occupancy fields (Mescheder et al., 2019; [Peng et al., [2020), LiDAR fields (Huang et al., [2023), view-
dependent radiance fields (Mildenhall et al., 2021; Barron et al., [2021} 2022; 2023; [Wu et al.,|2023)), or digital
humans (Yenamandra et al., [2021} Zheng et al., [2022; |Cao et al., 2022; [Xiu et al 2022; Giebenhain et al
. Frequently, it is desirable to impose some prior over the space of learnable implicit representations.
A common approach for such conditioning is encoder-based inference , where a parametric
encoder maps input observations to a set of latent codes z, which are often local (Chen et al.l [2021} [Lee &/
Jin, 2022; Vasconcelos et al., 2023; |Cao et al., 2023; |Chen et al., 2023). The encoded latent variables z are
then used to condition the neural field, for instance by concatenating z to the coordinate inputs or through
a more expressive hypernetwork , mapping latent codes z to neural field parameters 6. An

early example of this approach, which is gaining popularity (Xie et al [2022), was proposed in
(2020D).
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2.2 Arbitrary-Scale Super-Resolution

ASR is the sub-field of single-image SR, in which the desired SR scaling factor can be chosen at inference
time to be (theoretically) any positive number, allowing maximum flexibility, such as that of interpolation
methods. The first work along this line is MetaSR (Hu et al., 2019)), which infers the parameters of a
convolutional upsampling layer using a hypernetwork conditioned on the desired scaling factor. An influential
successor work is LIIF (Chen et al. [2021), in which the high-resolution image is implicitly described by local
neural fields. These fields are conditioned via concatenation, with features extracted from the low-resolution
input image. The continuous nature of the neural fields allows for sampling target pixels at arbitrary locations
and thus also arbitrary resolution.

Most subsequent work has since been built upon the LIIF framework. For example, UltraSR (Xu et al.
2021) improves the modeling of high-frequency textures with periodic positional encodings of the coordinate
space, as is common practice for e.g., neural radiance fields (Mildenhall et al.;,|2021; |[Barron et al.l|2021;2022;
2023). LTE (Lee & Jin|, [2022) makes learning higher frequencies more explicit by effectively implementing
a learnable coordinate transformation into 2D Fourier space, prior to a forward pass through an MLP.
Vasconcelos et al.| (2023) use neural fields in CUF to parameterize continuous upsampling filters, which
enables arbitrary-scale upsampling. More recently, methods like CiaoSR (Cao et al., |2023), CLIT (Chen
et all,|2023), and most recently MSIT (Zhu et al.; 2025) have integrated (multi-scale) attention mechanisms,
improving reconstruction quality. In a parallel line of research, Wei & Zhang| (2023) propose SRNO, an
attention-based neural operator that learns a continuous mapping between low- and high-resolution function
spaces.

Another line of work employs generative models such as denoising diffusion for SR (Saharia et al., [2022;
Gao et all [2023). While most methods minimize per-pixel errors (essentially predicting the minimum
mean square error estimate), generative models are trained to produce more realistic-looking outputs by
predicting one of many plausible high-resolution images. However, since specific ground truth details are not
exactly recovered, such models typically report worse distortion metrics (like PSNR and SSIM) compared
to pixel-based methods, c.f. [Blau & Michaelil (2018)); Delbracio & Milanfar| (2023)). In this paper, we adopt
a pixel-based objective to preserve fidelity to the ground truth, which is important for many downstream
applications (e.g., face or license plate recognition).

2.3 Anti-Aliasing in Neural Fields

Early in the recent development of implicit neural representations, concerns regarding aliasing were raised.
Barron et al.|(2021]) proposed integrating a positional encoding with Gaussian weights, which reduced aliasing
in NeRF (Mildenhall et al., [2021). Improvements were later proposed for unbounded scenes (Barron et al.
2022) and to improve efficiency (Hu et al., 2023). |Barron et al| (2023) tackle anti-aliasing within the
Instant-NGP (Miiller et al., |2022)) approach. Recent work has succeeded in limiting the bandwidth using
multiplicative filter networks (Lindell et al.} [2022), polynomial neural fields (Yang et al.| [2022) or cascaded
training (Shabanov et al., [2024), although these works are restricted to discrete, pre-defined band limits
(and thus resolutions) and have not tackled super-resolution tasks. These methods are not a good fit for
ASR because they do not allow for continuous anti-aliasing, nor bandwidth control at test time. To perform
scale-dependent filtering, most fields-based ASR methods instead explicitly provide the scale as input to
the field, attempting to learn an appropriate observation model from data. While this approach may work
reasonably well in in-distribution settings, it seeks to learn a model from data that can be described exactly
with a differential equation, ultimately sacrificing fidelity and generalization.

In contrast, in this paper we explore a way to directly integrate a physics-informed observation model into
the neural field representation.

3 Method

In this section we introduce Thera, a novel neural fields-based ASR method that guarantees analytical anti-
aliasing at any desired output resolution at no additional cost. First, we present neural heat fields, a special
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Figure 3: Overview of Thera. A hypernetwork estimates parameters {by, WQ}(iJ ) of pixel-wise, local neural
heat fields. The phase shifts b; operate on globally learned components, before thermal activations scale
each component depending on their frequency and the desired scaling factor. The components are then
linearly combined using coefficients W5, resulting in an appropriately-blurred, continuous local neural field.
This field is then rasterized at the appropriate sampling rate (resolution) to yield a part of the final output
image (red square).

type of neural field that inherently achieves anti-aliasing by implicitly attenuating high-frequency components
as a function of a time coordinate. Next, we propose a mechanism for learning a prior over a grid of neural
heat fields, enabling them to represent a multi-scale output image conditioned on a lower-resolution input
image. Finally, we show that our formulation allows us to impose a regularizer on the underlying, continuous
signal itself — something that, to the best of our knowledge is not possible in previous methods.

3.1 Neural Heat Fields for Analytical Anti-Aliasing

Let x € R? denote the spatial coordinates of a continuous image function f(x). Aliasing occurs when this
continuous signal is sampled at a rate that does not adequately capture its highest frequency components,
resulting in overlapping spectral replicas in the Fourier domain. One must therefore apply a low-pass filter
g(x) whose cut-off frequency is aligned with the Nyquist frequency of the sampling rate, then sample the
band-limited signal f ® g(x). The key of our method is that, if a signal is decomposed into sinusoidal
components, such filtering can be done simply by re-scaling each component by a factor that depends on
their frequency as well as a time coordinate, which we call t. The time coordinate acts as a third, continuous
input to the neural field and controls the amount of re-scaling, and therefore the Gaussian blur applied to the
signal. This perfectly mimics how high-frequency components decay faster than low-frequency ones in the
analytical solution to the heat equation. The detailed derivation can be found in Appendix[A] The behavior
described above is naturally accomplished by parameterizing the field ® as a two-layer perceptron,

D(x,t) = Wy - £ (Wix + by, (W), K, t) + by, (1)

with parameters 8 := {W1, Wy, by, bo}. Intuitively, W; serves as a frequency bank, with its components
acting as the basis functions that compose the signal ®(x,0), and phase shifts encoded by b;. The matrix
W, with one row per output channel, contains initial magnitudes of these components, and bs is the
global bias of ® per channel. Finally, we introduce the thermal activation function £(-), which models the
aforementioned decay of sinusoidal components (implied by W) over time:

&(z,v, K, t) = sin(z) - exp(— |v|” Kt). (2)

Here, |v| = |[v(W1)| denotes the row-wise Euclidean norm of W1, representing the magnitudes of the implied
wave numbers (frequencies). Interestingly, Equation |1 constitutes the solution of the isotropic heat equation

%—‘f = k- V2®, as derived in Appendix [Al We therefore refer to this MLP as a neural heat field.

There is an ideal bijection between the desired sampling rate f; and ¢t. At ¢ = 0 no filtering takes place,
implying a continuous signal (fs — o). A low-pass filtered version of the signal is observed for ¢ > 0.
To obtain a desired level of anti-aliasing, we only need to compute the corresponding value of ¢. The
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relationship between the cut-off frequency of the filter and ¢ is controlled by a global diffusivity constant x,
which defines how fast components of different frequencies decay over time in the underlying PDE model.
We can freely set x to any positive number, but for simplicity, and without loss of generality, we set  in
our theoretical derivations such that the native resolution of the (observed, discrete) signal D corresponds
to t = 1. Assuming equal sampling rate fs along both coordinate axes, the optimal value of x then evaluates
to
o In(4) .
2f2m2

To subsample the signal D by a factor S, the field ® should be sampled at

(3)

t= 82, (4)

where S is the subsampling rate, i.e., the inverse of the scaling factor. In other words, the equation above
defines the correct value for ¢ according to the scaling factor at which the field should be sampled. For a
derivation of these values and a demonstration of the filtering mechanism of neural heat fields, see Section [A]

3.2 Learning a Super-Resolution Prior

The multi-scale signal representation inherent in neural heat fields is a natural match for ASR. Still, two
challenges must be addressed. First, our formulation restricts the choice of architecture to MLPs with a single
hidden layer. Second, while it theoretically guarantees the downsampling operation (¢ > 1), the upsampling
operation (0 < ¢t < 1) remains ill-posed. To narrow down the (infinite) solution space to a unique result, a
prior must either be defined in an unsupervised fashion or learned from data. Our solution to both challenges
is to condition local fields with a hypernetwork W : RW*HxC _, RWxHXN = Rirgt g standard backbone, as
used in previous work (Chen et al., [2021} [Lee & Jinl |2022; Vasconcelos et al., [2023; |Cao et al., 2023; |(Chen
et all, 12023), extracts image features from the low-resolution input image. Then, the hypernetwork maps
these features to the N parameters of each local neural heat field. As originally proposed by LIIF (Chen
et all, [2021)) and adopted by recent ASR methods (Lee & Jin, 2022; |Cao et al., [2023; [Vasconcelos et al.| |2023;
Chen et al., 2023)), each local field spans the area of one pixel of the low-resolution input. It is important
that even though the fields themselves model only a local part of the image, the hypernetwork informs them
with contextual features collected over a large receptive field.

During training, the local fields are supervised with values of high-resolution target pixels at the appropriate
spatial coordinates x and time index ¢ (ensuring that the signal is correctly blurred for the target resolu-
tion), and the entire architecture is optimized end-to-end. In practice, we directly optimize a single global
frequency bank W1, rather than having the hypernetwork predict a separate Wy for each low-resolution
pixel. Not only does this better fit the idea to represent the signal with a single, consistent basis, it also
reduces the total parameter count.

The described scheme, which we call Thera, is depicted in Figure [3] It allows for arbitrary-scale
super-resolution, combining the multi-scale signal representation within neural heat fields with the expres-
sivity of proven feature extraction backbones for SR and image restoration. As the entire network is trained
end-to-end, the feature extractor can learn super-resolution priors for a whole range of resolutions covered
by the training data. E.g., a network trained with scaling factors up to x4 will encode priors that enable us
to observe the field at t > %. By training on multiple resolutions, we can also make k a trainable parameter
that allows the network to adapt to different downsampling operators. Finally, we set the bias terms for
the three color channels of every local field ® (i.e., bz) to the RGB values of the associated low-resolution
pixel. Thus, the hypernetwork only predicts field-wise phase shifts b; and amplitudes W.

3.3 Total Variation at t =0

To allow Thera to better generalize to higher, out-of-domain scaling factors, we can place an unsupervised
regularizer at ¢ = 0. Note that this is a prior on the continuous signal itself — something that, to the best
of our knowledge, sets Thera apart from all previous methods. In our implementation it takes the form of
a total variation (TV) loss term, well known to promote piece-wise constant signals that describe natural
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images well (Chugunov et al., [2024). We use an ¢! variant of TV,

Lry(2(x,0)) = Ex[[VO(x,0)]]. ()

Given our continuous signal representation, V®(x, 0) can be computed analytically by automatic differentia-
tion, rather than falling back to a neighborhood approximation as in most previous work (Rudin et al.,[1992)).
We further motivate this approach in Figure |5, which demonstrates that our method faithfully recovers the
gradients of super-resolved images.

3.4 Implementation and Training

Thera is implemented in JAX (Bradbury et al. [2018). Similar to prior work (Chen et al., 2021} Lee & Jin|
[2022; |Cao et all |2023; |Zhu et al.| [2025), we randomly sample a scaling factor r ~ U(1.2,4) for each image
during training, then randomly crop an area of size (48r)? pixels as the target patch, from which the source
is generated by bicubic downsampling to size 482. As corresponding targets, 482 random pixels are sampled
from the target patch. We train with standard augmentations (random flipping, rotation, and resizing),
using the Adam optimizer (Kingma & Ba), 2015) with a batch size of 16 for 5 x 10° iterations, with initial
learning rate 1074, 81 = 0.9, B2 = 0.999 and ¢ = 10~%. The learning rate is decayed to zero according to a
cosine annealing schedule (Loshchilov & Hutter| 2016). We use MAE as reconstruction loss, to which the TV
loss from Eq. [ is added with a weight of 10~*. Like previous work (Timofte et al. [2016; Lim et al., 2017}
[Vasconcelos et al, [2023), we employ geometric self-ensembling (GSE) instead of the local self-ensembling
introduced in LIIF (Chen et al.|[2021). In GSE, the results for four rotated versions of the input are averaged
at test time. Including reflections did not improve performance.

4 Results

Throughout this section we evaluate three variants of our method, which differ solely in the size of the
hypernetwork and the number of field parameters:

e Thera Air: A tiny version with the number of globally shared components in W1 set to 32, and the
hypernetwork being a single 1 x 1 convolution that maps features to field parameters. This version
adds only 8,256 parameters on top of the backbone.

o Thera Plus: A balanced version that employs an efficient ConvNeXt-based (Liu et al.l 2022) hyper-
network. Its parameter count of ~1.41 M matches that of recent medium-sized competitors like

(2023).

o Thera Pro: The strongest version uses a high-capacity, attention-based hypernetwork. Its added
parameter count is ~4.63 M, still less than the most recent competitor (Zhu et al.l |2025) and much
smaller than |Chen et al.| (2023), both attention-based.

Datasets and metrics. Following previous work, our models are trained with the DIV2K
& Timottd, training set, consisting of 800 high-resolution RGB images of diverse scenes. We re-
port evaluation metrics on the official DIV2K validation split as well as on standard benchmark datasets:
Set5 (Bevilacqua et all 2012), Set14 (Zeyde et al.l 2012), BSDS100 (Martin et al. [2001)), Urban100
et all, 2015)), and Mangal09 (Matsui et al., [2017). Following prior work, we use peak signal-to-noise ratio
(PSNR, in decibels) as the main evaluation metric and compute it in RGB space for DIV2K and on the
luminance (Y) channel of the YCbCr representation for benchmark datasets. Additional quantitative results
are given in Appendix [C] Not all numbers could be computed for competing methods for which code or
checkpoints were not publicly shared (see Appendix .

Backbones. We combine each of the three variants of our method with two standard backbones for super-
resolution and image restoration, as done in previous work: (7) EDSR-baseline (Lim et all [2017) (1.22 M
parameters) and (%) RDN (Zhang et al) [2018)) (22.0 M parameters).
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Table 1: Quantitative comparison of peak signal-to-noise ratio (PSNR, in dB) obtained by various methods
on the held-out DIV2K validation set. The highest PSNR value per backbone and scaling factor is bold and
the second highest is underlined.

Backbone Method Num. of In-distribution Out-of-distribution
(params.) MO add. params. | x2 x3 x4 x6  x12  x18  x24  x30
— Bicubic — 31.01 28.22 26.66 | 24.82 2227 21.00 20.19 19.59
+ Sinc interpol. — 3452 30.89 28.98 | 26.75 23.76 2225 21.29  20.62
MetaSR 0.45 M 34.64 3093 28.92 | 26.61 2355 22.03 21.06 20.37
LIIF 0.35 M 34.67 30.96 29.00 | 26.75 23.71 2217 21.18  20.48
LTE 0.49 M 3472 31.02 29.04 | 26.81 23.78 2223 21.24  20.53
CUF 0.30 M 34.79  31.07 29.09 | 26.82 23.78 2224  — —
Ez?sglfi{r; . CiaoSR 1.43 M 3488 3112 2919 | 26.92 23.85 2230 21.29 20.44
(122 M) CLIT 15.7 M 34.81 3112 29.15 | 26.92 23.83 2229 21.26 20.53
SRNO 0.80 M 34.85 31.11 29.16 | 26.90 23.84 2229 21.27 20.56
MSIT 4.83 M 34.95 3123 29.22 | 26.94 23.83 2227 21.26 20.54
Thera Air (ours) .008 M 34.75  31.09 29.10 | 26.84 23.80 22.26 21.26 20.56
Thera Plus (ours) 1.41 M 34.89 31.22 29.24 | 26.96 23.89 22.34 21.32 20.61
Thera Pro (ours) 4.63 M 35.19 31.50 29.51 | 27.19 24.09 22.51 21.48 20.73
+ Sinc interpol. 3459 31.03 29.12 | 26.89 23.87 2234 21.36 20.68
MetaSR 0.45 M 35.00 31.27 29.25 | 26.88 23.73 2218 21.17  20.47
LIIF 0.35 M 34.99 31.26 29.27 | 26.99 23.89 2234 21.31 20.59
LTE 0.49 M 35.04 31.32 2933 | 27.04 23.95 2240 21.36 20.64
CUF 0.30 M 35.11 31.39 2939 | 27.09 2399 2242  — -
RDN CiaoSR 1.43 M 35.13  31.39 2043 | 27.13 24.03 2245 2141 2055
(22.0 M) cLIT 15.7 M 35.10 31.39  29.39 | 27.12 24.01 2245 31.38 20.64
SRNO 0.80 M 35.16 31.42 2942 | 27.12 24.03 2246 21.41 20.68
MSIT 4.83 M 35.16 3142 2942 | 27.11 23.99 2242 21.37 20.65
Thera Air (ours) .008 M 35.06 31.42 29.43 | 27.13 24.04 2248 21.44  20.71
Thera Plus (ours) 1.41 M 35.00 31.40 29.44 | 27.16 24.06 2249 2145 20.71
Thera Pro (ours) 4.63 M 35.25 31.56 29.57 | 27.25 24.14 22.56 21.52 20.77

Table 2: Results on common benchmark datasets for in-distribution scale factors with an RDN (Zhang et al.,
2018) backbone. The numbers represent PSNR in dB, calculated on the luminance (Y) channel of the YCbCr
representation following previous work.

Method Set5 Set14 B100 Urban100 Mangal09

X2 x3 x4 X2 x3 x4 X2 X3 x4 X2 x3 x4 X2 X3 x4
MetaSR 38.22 34.63 3238 | 33.98 30.54 2878 | 32.33 29.26 27.71 | 3292 28.82  26.55 — — —
LIIF 38.17  34.68 32,50 | 33.97 30.53 28.80 | 32.32 29.26 27.74 | 32.87 28.82 26.68 | 39.26 34.21 31.20
LTE 38.23  34.72  32.61 | 34.09 30.58 2888 | 32.36 29.30 27.77 | 33.04 2897 26.81 | 39.28 34.32  31.30
CUF 38.28 34.80 32.63 | 34.08 30.65 2892 | 32.39 29.33 27.80 | 33.16 29.05 26.87 — — —
CiaoSR 38.29 34.85 32.66 | 34.22 30.65 2893 | 3241 29.34 27.83 | 33.30 29.17 27.11 | 39.51  34.57  31.57
CLIT 38.26  34.80 32.69 | 3421 30.66 28.98 | 32.39 29.34 27.82 | 33.13 29.04 2691 — — —
SRNO 38.32  34.84 32,69 | 34.27 30.71 2897 | 3243 2937 27.83 | 33.33 29.14 26.98 | 39.52 34.67 31.61
MSIT 38.31 34.85 32.72 | 34.26 30.70 2897 | 3242 2935 27.81 | 33.27 29.14 2693 | 39.44 34.62 31.58
Thera Air 38.18  34.75  32.60 | 34.13 30.70 2895 | 32.33 29.29 27.80 | 33.16 29.14 2691 39.03 34.57 31.66
Thera Plus | 38.11  34.67  32.56 | 34.20 30.67 2897 | 32.26 29.28 27.81 | 33.14 29.15 2697 38.69 3442 31.65
Thera Pro | 38.36 34.88 32.79 | 34.43 30.85 29.08 | 32.46 29.39 27.87 | 33.63 29.58 27.26 39.62 34.98 31.98

4.1 Super-Resolution Performance

Quantitative results. We first evaluate the three variants of our method on the held-out DIV2K validation
set, following the setup described above. Table [1I| shows PSNR values for all tested methods, for both in-
distribution (x2 to x4) and out-of-distribution (x6 to x30) scaling factors. Thera Pro outperforms all
competing methods at all scaling factors, often by a substantial margin (e.g., 29.51 vs. 29.22 on EDSR x4),
even though its parameter overhead on top of the backbone is lower compared to the second-best method
MSIT (Zhu et al., [2025), and less than a third of CLIT (Chen et al., |2023). Interestingly, even our minimal
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Low-res input LIIF MSIT Thera Pro (ours)

DIV2K

DIV2K

Urban100

Mangal09

Set14

Mangal09

Figure 4: Qualitative examples for a representative x6 scale factor, with an RDN (Zhang et al. 2018)
backbone for all methods. Best viewed zoomed in.

variant Thera Air— with only about 8000 parameters on top of the backbone — performs on par with or better
than methods of much higher parameter count. This supports our claim that hard-wiring a theoretically
principled sampling model, which rules out signal aliasing, enables better generalization and higher-fidelity
reconstruction. For comparison with conventional interpolation, we also report numbers obtained with
Lanczos (sinc) resampling on top of the respective x4 backbone. This baseline is consistently outperformed
by dedicated ASR methods, indicating that the latter do learn scale-specific priors.

Like earlier work, we further report the performance of Thera on five popular benchmark datasets with an
RDN backbone in Table Our method again outperforms all competing methods in all settings, often
substantially (e.g., 29.58 vs. 29.14 on Urban100 x3). We hypothesize that Thera’s hard-wired PSF is also
beneficial when generalizing to unseen datasets. Once again we observe that the performance of Thera Air
is often comparable to that of methods with orders of magnitude higher parameter counts.
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ReLU-based Thera (ours)

Ax®d

Figure 5: Thera reconstructs a signal ® and its gradient V,® more faithfully than a ReLLU-based competitor
(Chen et al., 2021)). Due to its natural, Fourier-inspired representation, Thera is also infinitely differentiable,
while ReLLU-based competitors approximate the signal as a piecewise-linear function with null higher deriva-
tives (last row).

Qualitative results. Upon visual inspection — see Figure [4 for examples — we observe that Thera produces
results that are both perceptually convincing and more correct, particularly in the presence of repeating
structures. Neural heat fields enable Thera to reproduce a high level of detail without suffering from aliasing,
no matter the sampling scale (see also Figure [J] in Appendix [B]).

Fidelity of the Signal and its Derivatives. Neural fields with periodic activation functions have been
shown to be superior when it comes to fitting high-resolution, natural signals, and to correctly recovering
their derivatives (Sitzmann et al. 2020b). We observe similar effects for Thera, whose thermal activations
at t = 0 can be seen as a special case of periodic activations, ¢f. Figure[f] In fact, due to the use of thermal
activations — and unlike all prior work based on multi-layer ReLU-activated fields — Thera is infinitely
differentiable.

4.2 Ablation Studies

In Table 3] we ablate individual components and design choices of our method to understand their contribu-
tions to overall performance. The comparisons use Thera Plus with EDSR backbone, and are representative
of all variants.

Single scale training. We run three experiments using a single scale (x2, x3, x4) to test how this affects
scale generalization. k was fixed at the theoretically derived value for these experiments, as multi-scale
training is required to optimize it. As expected, we observe equal or even superior performance of single-
scale training when tested at the training scale (marked in yellow in Tablc, but a significant drop compared
to the default multi-scale version when generalizing to other scaling factors.

Trainable k. Fixing x at the theoretically derived value (Equation [3)) leads to a small drop in performance.

This suggests that there remain effects that are not accounted for by our proposed observation model, albeit
very minor.
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Table 3: Ablation study using Thera Plus (w/ EDSR-baseline)

Experiment In-distribution Out-of-distribution
pertme X2 X3 x4 X6 x18 x30
Thera Plus ‘ 34.89 31.22 29.24 ‘ 26.96 22.34 20.61

%2 only, fixed & 35.00 30.96 28.76 | 26.34 21.87 20.25
x3 only, fixed & 34.70 31.25 29.25 | 26.90 22.23 20.53
x4 only, fixed K 34.36  31.18 29.25 | 26.98 22.31 20.58

Fixed k 34.85 31.22 29.24 | 26.95 22.29 20.56
No GSE 34.81 31.15 29.18 | 26.91 22.29 20.57
No TV prior 34.89 31.23 29.24 | 26.87 20.42 18.68

ReLU instead & 34.80 31.11 29.13 | 26.87 22.28 20.57
Predicted comps. | 34.90 31.23 29.25 | 26.97 22.34 20.61

Geometric self-ensemble. In line with previous work (Timofte et al., |2016; |Lim et al., |2017; [Vasconcelos
et all, 12023) we see a notable performance boost with geometric self-ensembling. Note, though, if an appli-
cation prioritizes inference speed over quality this add-on can be disabled at test-time without re-training
the network.

Total variation prior. The regularizer has a negligible effect for in-domain scaling factors, but performance
degrades significantly without it for out-of-distribution scales.

Thermal activations. We replace thermal activations (Equation with standard ReLU activations.
What remains is only the hypernetwork controlling the parameters of the local fields. A consistent loss in
performance shows the impact of the proposed thermal activation underlying our multi-scale representation.

Shared components. Predicting W7 along with by and W5 leads to negligible gains. This comes at the
cost of doubling the amount of field parameters that the hypernetwork predicts. Thus, Thera uses a shared,
global frequency bank.

4.3 Limitations and Future Work

Neural heat fields as introduced in this paper, and by extension Thera, come with relatively strict archi-
tectural requirements that currently only allow for a single hidden layer in the neural field. While this can
be beneficial from a computational standpoint, it limits hierarchical feature learning and potentially makes
modeling of complex non-linear relations harder than necessary. Nonetheless, as our experiments show, the
current neural heat field architecture does easily have enough capacity to model local, subpixel information
for the scaling factor range discussed in this paper. We have compensated for the relatively less expres-
sive fields with a higher-capacity hypernetwork, and we speculate that there may be ways to extend the
signal-theoretic guarantees of Thera to multi-layer architectures in future work. This could result in even
higher parameter efficiency, and potentially better generalization. We also expect that more advanced priors
than TV could be even more effective at regularizing ®. Priors at ¢ = 0, made possible by Thera, have the
potential to regularize the continuous signal itself, and therefore improve SR quality for all scaling factors.

5 Conclusion

We have developed a novel paradigm for arbitrary-scale super-resolution by combining traditional signals
theory with modern implicit neural representations. Our proposed neural heat fields implicitly describe an
image as a combination of sinusoidal components, which can be selectively modulated according to their
frequency to perform Gaussian filtering (anti-aliasing) between scales analytically, with negligible overhead.
Our experimental evaluation shows that Thera, our ASR method based on neural heat fields, consistently
outperforms competing methods. At the same time, it is more parameter-efficient and offers theoretical
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guarantees w.r.t. aliasing. We believe that Thera-style representations could benefit other computer vision
tasks and hope to inspire further research into neural methods that integrate physically meaningful and
theoretically grounded observation models.
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A Theory

A.1 Preliminaries

As was described in Section the idea underlying our neural heat field with thermal activations is to
formulate a neural field ®(x,t), with x being the 2-dimensional spatial coordinates (z1,x2), such that ®

follows the heat equation:

%:H-Vfgb:/@-( (6)

e 0
ot '

2 2
Oxy{  Oxs

15



Published in Transactions on Machine Learning Research (10/2025)

The reason for this is that the analytical solution to the (isotropic) heat equation can be modeled as a
convolution of the initial state ®(x,0) with a Gaussian kernel

1 3 + 23
t) = . — . 7
g(xt) = — exp( P (7)

By fitting the data (image I) at ®(x,1), we are assuming a Gaussian point spread function (PSF) with the

shape
1 z3 4 23
PSF(x) = — - _oirte2 )
SF(x) = 72 (- ®)

In this formulation, we attempt to recover a “pure” signal at ¢ = 0 or higher sampling rates 0 < ¢ < 1 given
an observation at ¢ = 1. Note that

meaningless, ift <0
pure signal, ift=20
®(x,t) is { ill-posed, ifo<t<1 9)
I, ift=1
well-posed, ift>1

The ill-posed problem for 0 < ¢ < 1 is the interesting case, where this formulation relates to super-resolution.
The super-resolution algorithm should somehow condition the solution space to find the appropriate solution
in this domain.

For all the formulations here, we define the image I to correspond to the coordinates x,z2 € [—0.5,0.5].

A.2 Thermal Diffusivity Coefficient

To use the above formulations, we need to compute the thermal diffusivity coefficient k. One way to do so is
to match the cut-off frequency of the filter in Equation [fat ¢ = 1 to the well-known Nyquist frequency given
by the image’s sampling rate. We take the cut-off frequency of the Gaussian filter defined in Equation [7] to
be the frequency whose amplitude is halved, which is

fo= VD) 0y = Y00 (10)

For the signal compressed into the domain [—0.5,0.5], we can compute the Nyquist frequency to be

N
fNyquist = 57 (11)
where N is the number of samples along a given dimension. This formulation assumes even sampling over
1 and zo. To extend this formulation to non-square images, it would be necessary to change the shape of
the signal’s domain in order to maintain even sampling in all spatial dimensions.

If we solve for f. = fyquist at £ = 1, we get

= 21;2‘(;1\;2' 12)

For our proposed Thera formulation, we want ® to contain a single pixel at ¢ = 1. This is the pixel from the
low-resolution input which will become SR? pixels for super-resolution with a scaling factor of SR. Therefore
we initialize k with

In(4)

K= .
2m?

(13)

Note that the exact value of k will depend on the characteristics of the system that is being modeled and
the anti-aliasing filter that was used (or is assumed). Lower values of k allow for sharper signals to be
represented at any given value of ¢, but are also more prone to aliasing.
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Figure 6: Comparison between a theoretical anti-aliasing filter (top row) and anti-aliasing with neural heat
fields (bottom row), which is computed without convolutions or over-sampling. The heat field was supervised
at ®(x,1) only.

Finally, we would like to highlight that Equation is specific to the case where x is 2-dimensional. The
theoretically ideal value of k is the only part of our formulation that does not directly apply when using our
field’s formulation in spaces with numbers of spatial dimensions other than 2. Nonetheless, computing x for
other cases would be a simple matter of repeating the steps above with the formulas for a Gaussian filter
with the appropriate number of dimensions.

A.3 Relationship Between t and s

Assuming that the field is learned appropriately, we still need to know at what time ¢ we should sample from
to obtain the correct (aliasing-free) signal for a different sampling rate. If we define S to be the subsampling
rate (i.e., if our base image has N = 128 and we want to subsample it down to N = 64, we have S = 2) we
need to find ¢ such that fyyquist scales by 1/5. Using Equation [10| and Equation we can easily find the
quadratic relationship

t= 8% (14)

For instance, if we want to upsample the image by a factor of 2, we should use ¢t = 0.52 = 0.25. Thus,
0 < t < 1 refers to super-resolution, while ¢ > 1 refers to downsampling. This is intuitive: As t grows, the
image becomes blurrier (the Gaussian kernel gets wider), which corresponds to stronger low-pass filters and
therefore lower sampling rates.

Figure [f] shows an example where we fit a neural heat field at ¢ = 1 to the image. After training, any low-pass
filtered version of the image can be generated by setting ¢ according to Equation @] We emphasize that:
(i) Computing these filtered images requires no over-sampling or convolutions; (ii) The computational cost
does not depend on the size of the blur kernel or on ¢; (7ii) Given ®(x, %), the filtered versions ®(x,t) are
known for any ¢ > tg.

In Figure [7} we show four local neural heat fields in which aliasing would occur without the anti-aliasing
mechanism modeled by thermal activations. Note that aliasing is not always as obvious to the eye as Moiré
patterns: in the cases shown in the figure, it would simply mean that sampling the center location at t = 0
would not be representative of the pixel’s footprint. Figure [§| further illustrates how such blur is equivalent
to a scale-appropriate anti-aliasing filter.
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a) b) C) d)

Figure 7: Example situations where aliasing would occur without the suppression of high frequencies as
modeled by neural heat fields. Sampling the center location at ¢ = 0 would not be representative of the
pixel’s footprint.

0.0 0.3 0.3
” =
Point sample Blur + sample PSF sample

Figure 8: Blurring an image before a point-wise sample is equivalent to observing with a PSF equivalent to
the blur kernel.

A.4 Other Filters

In theory, the formulation presented in Section [3.1] allows us to use any low-pass filter we want, since
we can modulate different components freely. Gaussian filters are an obvious choice since they are often
used as anti-aliasing filters, and since they are fully defined by a single parameter, the standard deviation.
Initial explorations of a sharp low-pass filter that completely removes components above fyyquist led to a
performance reduction, likely due to the associated effect on gradients during training. It remains an open
question whether more complex filters (e.g., Butterworth) would improve the current formulation in any way.
For quantitative evaluations, this is unlikely, since the downsampling operations use Gaussian anti-aliasing,
but in real-world applications or other scenarios, this may be desirable.

A.5 Initialization of Components

We have noticed during our experiments that the initialization of the components, W; in Equation [T} is
important. [Sitzmann et al.| (2020b) made similar observations when periodic activation functions were first
used for neural fields. The final distribution of frequencies |v(W7)| did not change much during training.
Thus, we choose to initialize W7 such that

p(lv(wi)|) o [v(wi)] (15)

up to a given maximum frequency, allotting more components to higher frequencies. See code for more
details.

B Continuous Upsampling Example

In Figure[9] we provide a practical showcase of the continuous upsampling capabilities of our method.

18



Published in Transactions on Machine Learning Research (10/2025)

x5.3

Figure 9: Showcase of multiscale upsampling using Thera Pro with a RDN (Zhang et al., 2018) backbone,
shown with non-integer scaling factors.

C Additional Quantitative Results

C.1 Further Metrics

Table [4 shows SSIM metrics on the DIV2K validation set, which complement the PSNR values reported in
Table [I] We use the SSIM implementation from torchmetrics (Detlefsen et al., [2022). We observe strong
performance of Thera, although overall there is relatively little variance across all methods using this metric.

Table 4: SSIM scores (higher is better) for several methods and scaling factors evaluated on the (hold-out)
DIV2K validation set. We use the RDN backbone for all models. Some methods did not provide checkpoints
at the time of writing, see Appendix E

In-distribution OOD
X2 X3 x4 X6 X8
LIIF 934 .866 .804 .704 .636
LTE .936 .868 .807 707 .639
CiaoSR .938 871 .814 718 .651
SRNO .937 .873 .819 738 .685
MSIT .942 .882 .829 751 .700
Thera Pro .943 .884 .833 757 .706
Thera Pro (std.) | £2.0e-5 +4.0e-5 +£8.9e-5 | £9.7e-5 +5.5e-5

Table 5: Evaluation of GMSD (lower is better) on DIV2K for various methods.

Backbone Model In-distribution Out-of-distribution
X2 X3 x4 X6 x12 x18 x24 x30

LIIF 0.0065  0.0354  0.0667 | 0.1192  0.1976  0.2319 0.2516  0.2645
LTE 0.0064  0.0351 0.0664 0.1187  0.1970  0.2316 0.2515  0.2645

EDSR.b. Ciao 0.0063  0.0340  0.0641 0.1159  0.1942 0.2295 0.2497  0.2635
SRNO 0.0063  0.0344  0.0648 0.1165  0.1947  0.2296 0.2499  0.2631
MSIT 0.0061 0.0334  0.0636 0.1156  0.1944  0.2298 0.2502  0.2634
Thera Pro 0.0057 0.0314 0.0596 | 0.1094 0.1878 0.2242 0.2451 0.2591
Thera Pro (std.) +1.0e-5 +£4.1e-5 £T7.6e-5 | £1.6e-5 +£7.1e-5 +£5.9e-5 £1.2e-4 =£1.6e-4
LIIF 0.0060  0.0330  0.0628 0.1145 0.1934  0.2285 0.2489  0.2622
LTE 0.0058  0.0327  0.0622 0.1135  0.1925 0.2280  0.2487  0.2621

RDN Ciao 0.0058  0.0321 0.0609 0.1114  0.1897  0.2258 0.2470  0.2614
SRNO 0.0057  0.0321 0.0611 0.1118  0.1906  0.2266 0.2477  0.2613
MSIT 0.0057 0.0321 0.0610 0.1122 0.1920 0.2288 0.2501 0.2641
Thera Pro 0.0055 0.0309 0.0588 | 0.1083 0.1869 0.2235 0.2446 0.2588
Thera Pro (std.) | £7.9e-6 £1.4e-5 +4.0e-5 | £3.1e-5 £3.7e-5 £2.0e-5 +£6.3e-5 =£9.0e-5
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Table 6: PSNR (Y channel) on common benchmark datasets for out-of-distribution scale factors, with an
RDN (Zhang et al [2018]) backbone. For some methods, code and/or checkpoints were not publicly available,
see Appendix [H}

Setb Set14 B100 Urban100 Mangal09

Method X6 X8 X6 X8 X6 X8 X6 X8 X6 X8

MetaSR 29.04 2996 | 26.51 2497 | 25.90 24.83 | 23.99 22.59 — —

LITF 29.15 27.14 | 26.64 25.15 | 25.98 2491 | 2420 2279 | 27.33 25.04
LTE 29.32 2726 | 26.71 25.16 | 26.01 24.95 | 24.28 22.88 | 27.49 25.12
CUF 29.27 — 26.74 — 26.03 — 24.32 — — —

CiaoSR 29.46 27.36 | 26.79 25.28 | 26.07 25.00 | 24.58 23.13 | 27.70 25.40
CLIT 29.39 2734 | 26.83 25.35 | 26.07 25.00 | 24.43 23.03 — —

SRNO 29.38 2728 | 26.76 25.26 | 26.04 24.99 | 2443 23.02 | 27.66 25.31
MSIT 29.34  27.29 | 26.75 25.26 | 26.05 24.98 | 24.43 2299 | 27.61 25.26

Thera Air 29.31 2725 | 26.76 25.27 | 26.06 24.99 | 2439 23.00 | 27.70  25.30
Thera Plus | 29.31  27.29 | 26.80 25.32 | 26.07 25.00 | 24.45 23.04 | 27.80 25.41
Thera Pro | 29.51 27.34 | 26.90 25.38 | 26.12 25.04 | 24.70 23.24 | 27.94 25.49

Table [5| reports Gradient Magnitude Similarity Deviation (Xue et al., [2013) (GMSD) metrics for various
methods. Thera reaches significantly lower GMSD for all backbone-scale combinations, indicating more
faithful gradient structure. Note that some methods did not provide code/checkpoints and can therefore not
be re-evaluated (see Section .

Furthermore, in Table[6] we show quantitative evaluations which are out of distribution both in terms of data
(benchmark datasets) and in terms of scaling factors (above x4).

C.2 Parameter Efficiency

In Figure [I0] we compare the number of additional parameters and PSNR values for various methods and
individual upsampling factors on the DIV2K validation set.

C.3 Error Bars

Table [7] reports standard deviations for PSNR observed over N =3 training runs that were initialized with
different random seeds, complementing the main table. For SSIM and GMSD, we have reported standard
deviations alongside the respective metrics in Tables[d]and[5] Standard deviations are in all cases significantly
lower than performance improvements over competing methods.

X2 Scaling Factor X3 Scaling Factor x4 Scaling Factor
Thera Pre
35.2 A Thera Prc Thera Pr
—~ 35.1 N _ 3o A _ 295 ;
m oo ' m 314 . m 29.4 !
Z 35 LN VIR C 31.3 | ? = S
s o - - . Thera Plus 8 MSIT o 29.3 Thera Plus & MSIT
Z 34.9 QVHSR"\J‘SO,( = 31.2 .(Ours) . SR‘NS Z 29.2 (Ours) SRNO X
n (Ours) = % n [fhere Alr_ o= = o N 7Y rheraAir_ e ® TUr + e
A 34.8 fherair_ o= * o a, 311 A &= + A 991 | ="~
AT Ll 31 HIO ¢ ) oy
34.7 *O LTE * 29 %= LTE
T T T T T T T T T T T T
102 1071 109 10! 102 107! 109 10! 1072 107! 10 10!
Model Size (M parameters) Model Size (M parameters) Model Size (M parameters)

Figure 10: Comparison of ASR methods for different scaling factors (x2, x3, and x4) on DIV2K. Thera
consistently achieves better performance at lower parameter counts across all scaling factors.
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Table 7: Standard deviation of PSNR (in dB) on the DIV2K validation set over N =3 runs.

In-distribution Out-of-distribution

Backbone  Method %2 %3 x4 %6  x12  x18  x24 %30

Thera Air | 0.0137 0.0143 0.0149 | 0.0107 0.0084 0.0055 0.0040 0.0040
EDSR-b.  Thera Plus | 0.0131 0.0122 0.0114 | 0.0094 0.0075 0.0049 0.0060 0.0022
Thera Pro | 0.0063 0.0088 0.0062 | 0.0034 0.0054 0.0049 0.0056 0.0034

Thera Air | 0.0187 0.0152 0.0113 | 0.0045 0.0036 0.0054 0.0022 0.0034
RDN Thera Plus | 0.0045 0.0018 0.0011 | 0.0011 0.0009 0.0013 0.0026 0.0024
Thera Pro | 0.0025 0.0009 0.0038 | 0.0024 0.0021 0.0036 0.0021 0.0012

D Analysis of Learned Components & Kappa

Figure [TI] shows a statistical analysis of the frequency components learned by Thera-Pro with an RDN
backbone for the DIV2K training data. Components are distributed uniformly across directions, with fewer
components at low frequencies and progressively more components at higher frequencies. This provides
more representational capacity for the reconstruction of fine details, analogous to the typical distribution of
frequency components for other decompositions such as the Fourier or discrete cosine transforms.

To investigate whether these components form a generalizable basis, we fit heat fields to images from various
datasets other than the training data: Urban100, Mangal09, and a highly out-of-distribution subset from
the fastMRI (Zbontar et al.| 2018) medical imaging dataset (single-coil knee validation split, with intensities
scaled to [0,1]). In all experiments, we fix the frequency bank to the one shown in Figure and optimize
only the scale and shift parameters with the AdamW optimizer for 600 iterations per image, with learning
rate 0.001. We use local fields that cover patches of N x N pixels, with N € {3,4,6,12,18}. Table [§/ shows
that the pre-trained components reconstruct all datasets with negligible error at smaller local field sizes
(in-distribution scales), and still achieve very low errors at larger field sizes up to 18 x 18 pixels (out-of-
distribution scales).

These numbers are not surprising, as the frequency bank was optimized to fit local fields and can act as an
over-parametrized dictionary for smaller field sizes (e.g., 4 x 4 GT pixels per field). Notably, it still works
relatively well for large OOD sampling factors. Also, there is no obvious difference between the values for
natural images and those for MRI images, which suggests that the frequency bank is a general-purpose basis,
similar to Fourier or DCT components.

Furthermore, Table [ reports final, converged values of the thermal diffusivity coefficient x. We observe that
K is very similar across runs (o & 0.003), but deviates from the theoretically derived value (for a Gaussian
downsampling model, Equation [3) by a factor of &~ 1/2. This deviation suggests that the cutoff frequency
of the anti-aliasing used in the cubic Mitchell-Netravali filter — used to downsample images during training
— does not exactly match the Gaussian one used in the theoretical derivations, being more lenient towards
aliasing than the theoretical model (anti-aliasing filters are tuned empirically to balance aliasing against
loss of details). The result indicates that Thera is indeed able to tune k as necessary to approximate the
downsampling characteristics seen in the training data, in a repeatable manner.

Table 8: Reconstruction MSE when fitting heat field grids of various sizes to out-of-distribution datasets.

Local field size | 3x3 4x4 6x6 12x12  18x18

Setb 2e-10  6e-11 1le-11 1.37e-6 2.16e-4
Urban100 4e-9  9e-10 2e-10 2.83e-6 7.54de-4
Mangal09 2e-8  4e-9  Te-10 1.4le-6 3.0le4
fastMRI 3e-11  1le-11 1le-11 8.83e-6 9.23e-4
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Table 9: Converged values of x for multiple runs.

Backbone Model ‘ Converged &
Thera Air 0.0295
EDSR-b. Thera Plus 0.0336
Thera Pro 0.0266
Thera Air 0.0300
RDN Thera Plus 0.0360
Thera Pro 0.0293
Theoretical Gaussian ‘ 0.0702
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Figure 11: Statistical distribution of the converged frequency bank of the Thera Pro run with an RDN
backbone. Left: Polar scatter plot of spatial frequency and angular direction of components. Right: Corre-
sponding marginal distributions.

E Hypernetwork Architecture

In our implementation, Thera Air uses no feature refinement blocks on top of the backbone except a 1 x 1
convolution mapping pixel-wise features into field parameters, as done in SIREN (Sitzmann et al., [2020b)).
Thera Plus uses 6 ConvNeXt blocks with d = 64 followed by 7 ConvNeXt blocks with
d =96 and 3 ConvNeXt blocks with d = 128, prior to the final mapping layer. Projection blocks are added
between blocks with different d, which consist of a layer normalization and a 1 x 1 convolution operation.
For Thera Pro, two windowed transformer-based blocks (Liang et al. 2021; Liu et al., 2021) blocks are used
with 7 and 6 layers respectively, and 6 attention heads in each layer.

There are 128 field parameters for Thera Airand 2048 for the larger variants Thera Plus and Thera Pro. These
numbers are computed as follows: Let ¢ be the number of components used (32, 512, and 512 respectively),
then we need c field parameters indicating phase shift and 3¢ field parameters for the linear mapping between
components and RGB channels, resulting in a total of 4c field parameters produced by the hypernetwork. The
total parameter count of the hypernetwork is 8,192, 1.41 M, and 4.63 M for the three variants, respectively.
To this we have to add the parameters of the components themselves (i.e., the mapping from coordinate
space to thermal activation arguments defined by W) that are defined in a global, learnable frequency bank,
adding further 2¢ parameters. We highlight that these do not come from the hypernetwork.
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Table 10: Comparison of runtime and VRAM footprint of various methods with an EDSR-baseline backbone.

Method ‘ Add. params. Time VRAM

MetaSR 0.45 M 3.72 ms 834 MiB
LIIF 0.35 M 13.8 ms 604 MiB
LTE 049 M 16.7 ms 574 MiB
CiaoSR 1.43 M 37.5ms | 3894 MiB
CLIT 15.7 M 86.5 ms | 9402 MiB
SRNO 0.80 M 11.2 ms | 2702 MiB
MSIT 4.83 M 92.2 ms 9388 MiB
Thera Air .008 M 3.56 ms 322 MiB
Thera Plus 1.41 M 14.2 ms 664 MiB
Thera Pro 4.63 M 19.44 ms | 686 MiB

F Computational Complexity

Table [I0] reports inference time and VRAM requirements of different Thera variants as well as comparison
methods, on the 48 x 48 pixels standard input patch size and scaling factor 4 (i.e., 192x 192 output size). Each
Thera variant improves compute time and memory efficiency compared to methods with similar or higher
parameter counts, with particularly pronounced gains over Transformer-based competitors (e.g., Thera Pro
uses less than 1/4 of the time and 1/13 of the VRAM footprint of MSIT, at similar parameter count). All
tests were performed on an NVIDIA GeForce RTX 3090 Ti GPU.

G Real-World Optical Zoom Data

To evaluate the effectiveness of our approach on real-world continuous optical zoom data, we conducted
experiments using the COZ dataset (Fu et al., [2024). We introduce Thera++, which combines two compo-
nents: (1) Thera Plus (EDSR) trained on the COZ dataset, and (2) a lightweight spatial transformer network
(STN) (Jaderberg et all 2015) that estimates just 6 parameters per image to correct domain-specific affine
distortions. Despite its name, the STN is not a transformer network in the modern sense that employs
attention mechanisms; rather, it is an image model block that explicitly allows the spatial manipulation of
data within a convolutional neural network.

The STN component follows a standard architecture, consisting of a simple convolutional localization network
with adaptive pooling to handle variable input sizes. The network processes the input image along with the
scale factor and outputs six parameters of a 2D affine transformation (xy-translation, anisotropic zy-scale,
rotation and shear). With approximately 10K parameters, this lightweight component efficiently corrects for
geometric distortions while adding minimal computational overhead.

Table 11: Results (PSNR in dB) on the COZ test set.

In-distribution Out-of-distribution

Method X2 X3 x4 x5 X6

MetaSR 28.70 26.55 25.17 24.31 23.25
LIIF 28.72  26.61 25.16 | 24.32 23.23
LTE 28.67 26.55 25.15 | 24.37 23.26
SRNO 28.73  26.59 25.15 | 24.31 23.25
LIT 28.74  26.58  25.15 | 24.35 23.19
LMI 28.86 26.66 25.22 24.39 23.29

Thera++ | 29.06 26.84 25.45 | 24.49 23.46
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Thera++ addresses an important limitation of the COZ dataset. When looking at the data it becomes
obvious that COZ samples are not perfectly aligned, resulting in xy-jitter between images. Additionally,
dynamic objects like people, dust, leaves, and moving shadows appear inconsistently across images of the
same scene, significantly increasing the noise level. These challenges make super-resolution particularly
difficult for this dataset. However, Thera++ outperforms previous state-of-the-art methods, including LMI,
across all scaling factors, highlighting its applicability under real-world imaging conditions, see Table [T1}

H Reproducibility of Existing Methods

We encountered challenges attempting to recreate the results reported for some of the competing methods,
which explains why some are missing or differ from the originally reported numbers. Details are provided
below.

CUF (Vasconcelos et al., [2023)). At the time of writing, there were no public code or checkpoints
available for CUF. Therefore, we could not generate numbers for datasets and scaling factors not reported
in the original paper. We have denoted those missing values with “—” in the tables. Furthermore, we could
not create any qualitative samples using CUF.

CLIT (Chen et al., [2023)). For CLIT, at the time of writing, there is a public code, but no checkpoints.
We have made a bona fide attempt to reproduce the models, but due to the cascaded training schedule and
the large model size, the training process would require excessive amounts of compute: over a month using
8% Nvidia GeForce RTX 3090 GPUs. Unfortunately, the authors did not respond to our requests for the
trained checkpoints used in their paper.

CiaoSR (Cao et al., [2023). We found that in the official CiaoSR, implementation border cropping prior
to evaluating on DIV2K deviated slightly from all other methods. We thus adapted the evaluation code to
match the competition and enable a meaningful comparison. All DIV2K numbers were re-computed with
the corrected code, resulting in slight deviations from those reported in the original paper.

MSIT (Zhu et al., [2025)). The numbers reported in the paper were achieved by training on a roughly 3x
larger training set, comprising not only DIV2K but also Flickr2K. For a fair comparison with all other ASR
methods used in our paper, we re-trained MSIT on DIV2K alone. We used the authors’ official code and
configuration files and trained for two stages, each comprising 1050 epochs. For the second (RiM) training
stage we used scaling factors between x1 and x4. Performance generally drops as a result of the smaller
training set, in line with the ablation experiments reported for MSIT, where the models were also trained
only with DIV2K.
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